搜档网
当前位置:搜档网 › 测量油漆厚度的仪器

测量油漆厚度的仪器

测量油漆厚度的仪器
测量油漆厚度的仪器

OU3500

测量油漆厚度的仪器

使用说明书

基本概述

涂层测厚仪又叫电镀涂层测厚仪、涂层厚度测试仪、便携式涂层测厚仪、高精度涂层测厚仪、涂层检测仪、涂层厚度测试仪、涂层测厚仪价格、涂层测厚仪厂家、磷化膜检测仪、磷化膜测试仪、磁阻法磷化膜测厚仪、磁阻法镀层测厚仪、磁性磷化膜测厚仪、磁阻法测厚仪、磁式测厚仪、磁感应测厚仪、磁性覆层测厚仪、磁性镀层测厚仪、磁性涂层测厚仪价格、油漆镀层测厚仪、油漆覆层测厚仪、油漆涂层测厚仪厂家、油漆涂层测厚仪价格、油漆涂层测试仪、油漆涂层检测仪、电泳镀层测厚仪、电泳漆覆层测厚仪、电泳漆漆膜测厚仪、电泳漆厚度测试仪、涂镀层测量仪、电镀层测试仪、防腐层检测仪、涂镀层测试仪、涂镀层测量仪、油漆测厚仪价格、油漆层测厚仪、油漆膜厚仪、钢结构油漆层测厚仪、钢板油漆测厚仪、钢管油漆测厚仪、油漆防腐层测厚仪、油罐防腐层测厚仪可无损地测量磁性金属基体(如钢、铁、合金和硬磁性钢等)上非磁性涂层的厚度(如铝、铬、铜、珐琅、橡胶、油漆等)及非磁性金属基体(如铜、铝、锌、锡等)上非导电覆层的厚度(如:珐琅、橡胶、油漆、塑料等)。涂镀层测厚仪具有测量误差小、可靠性高、稳定性好、操作简便等特点,是控制和保证产品质量必不可少的检测仪器,广泛地应用在制造业、金属加工业、化工业、商检等检测领域。

附表一:

功能OU3500F OU3500N OU3500FN 测量原理磁性涡流磁性/涡流测量范围标准配置探头(F1/N1):0猇1250μm

测量精度±(3%H+1)μm(零点校准)±(1%H+1)μm(二点校准)

统计量平均值(MEAN)、最大值(MAX)、最小值(MIN)、测试次数(NO)、标准偏差(S.DEV)

存贮和统计500个测量值

零点校准√√√二点校准√√√删除功能√√√自动关机√√√蜂鸣声提示√√√错误提示√√√

标准配置主机、F1探头、基

体、校准片、说明

书、包装箱

主机、N1探头、

基体、校准片、说

明书、包装箱

F1(N1)探头、基

体、校准片、说明

书、包装箱

选配件F400、N400、

F1/90、F10、

CN02

F400、N400、

F1/90、F10、

CN02

F400、N400、

F1/90、F10、

CN02、打印机、

通讯软件

一、概述

本仪器根据探头类型的不同,分别运用磁感应和涡流原理测量覆层厚度,并符合以下工业标准:

JB/T 8393-1996 磁性和涡流式覆层厚度测量仪

1.1 应用

本仪器是便携式、快速、无损、精密地进行涂、镀层厚度的测量。既可用于实验室,也可用于工程现场。本仪器能广泛地应用在电镀、防腐、航天航空、化工、汽车、造船、轻工、商检等检测领域。

配置不同的探头,适用于不同场合。

1.2 测量原理

本仪器根据探头类型的不同,采用了磁性法和涡流法两种测厚方法。

F型探头采用磁性法,可测量磁性金属基体(如钢、铁、合金和硬磁性钢等)上非磁性覆盖层的厚度(如锌、铝、铬、铜、橡胶、油漆等)。

N型探头采用涡流法,可测量非铁磁性金属基体(如铜、铝、锌、锡等)和奥氏体不锈钢上非导电覆盖层的厚度(如:橡胶、油漆、塑料、阳极氧化膜等)。

1.3 仪器配置

1.3.1 标准配置

主机 ---------------------------------------1台

探头(F1或N1) -----------------------1支

基体 ---------------------------------------1块

标准片 ------------------------------------5片

9V碱性电池------------------------------1节

使用说明书 ------------------------------1本

1.3.2 可选件

其他型号探头 ---------------------------(适用于OU3500)

打印机 ------------------------------------1台(适用于OU3500B)

通讯电缆 ---------------------------------1条(适用于OU3500B)

- 1 -

- 2 -1.4 使用环境

温度:0℃猇40℃

湿度:20%RH 猇90%RH 无强磁场环境1.5 电源

一节9V 碱性干电池1.6 仪器各部件的名称

1.6.1 主机

4、键盘

1.6.2 液晶显示

1、RS232接口(OU3500B )

2、探头插座

3、液晶显示器

1. 工作方式指示

2. 测量厚度值

3.统计值

4. 测头类型指标

5. 低电压指标

6. 设限界指示

7. 打印指示

D PRINT LIMIT

MAX=50.2 MIN=49.9MEAN=50.1

NO=10

50.0

Fe

m m

1

2

7

65

4

3

- 3 -

1.6.3 探头1.6.3.1 探头结构

所有探头(CN02除外)都安装在滑套里,以确保探头安全稳定地定位,并保持探头适当的接触压力。滑套前端的V 型槽可保证在凸面上准确测量。测量时须握住探头上的滑套,保持探头轴线与被测面垂直。探头的顶端由耐用的硬质材料制成。

2、滑套

1、测头部分3、插头(与主机连接)

1.6.3.2 探头的技术参数

用户根据需要测量工件的特点选用下列不同探头与仪器。

表一:主机可选用探头表

探头F1

F1/90

N1

F400

N400

F10

CN02

OU3500A

OU3500B ★

OU3500A ★★★★★★★

OU3500B ★★★★★★★

主机

表二:探头技术参数表:H——标称值

F型:

工作原理磁感应

探头型号F400F1F1/90°F10

测量范围(m m)0猇4000猇12500猇10000低限分辨力(m m)1110

示值误差一点校准(m m)±(3%H+0.7)±(3%H+1)±(3%H+10)二点校准(m m)±(1%H+0.7)± (1%H+1)±(1%H+10)

测试条件最小曲率半径(mm)凸1 1.5平直10最小面积的直径(mm)F3F7F7F40基体临界厚度(mm)0.20.50.52

工作原理涡流

探头型号N400N1CN02测量范围(m m)

0猇4000猇1250

10猇200

铜上镀铬 0猇40

低限分辨力(m m)111

示值误差一点校准(m m)±(3%H+0.7)±(3%H+1.5)±(3%H+1)二点校准(m m)±(1%H+1)± (1%H+1.5)-----

测试条件最小曲率半径(mm)凸1.5凸3仅为平直最小面积的直径(mm)F4F5F7

基体临界厚度(mm)0.30.3无限制

N型:

- 4 -

1.6.4 探头的选用参考

表三探头选用参考表(1)

覆盖层

覆盖层基体

基体

有机材料等非金属覆盖层

(如:漆料、涂漆、珐琅、搪瓷、塑料和阳极化处理等)覆盖层厚度不超过100m m覆盖层厚度超过100m m

如铁、钢等磁性金属被测面积的直

径大于30mm

F400型探头0猇400mm

F1型探头0猇1250m m

F400型探头 0猇400m m

F1型探头 0猇1250m m

F10型探头 0猇10mm 被测面积的直

径小于30mm

F400型探头

0猇400m m

F1型探头 0猇1250m m

F400型探头 0猇400m m

如铜、铝、黄铜、锌、锡等有色金属被测面积的直

径大于10mm

N400型探头0猇400m m

N1型探头 0猇1250m m

N400型探头 0猇400m m

N1型探头 0猇1250m m

被测面积的直

径小于10mm

N400型探头

0猇400m m

N1型探头 0猇1250m m

N400型探头 0猇400m m

非磁性的有色金属覆盖层

(如:铬、锌、铝、铜、锡、银等)

覆盖层厚度不超过100m m覆盖层厚度超过100m m

如铁、钢等磁性金属被测面积的直

径大于30mm

F400型探头0猇400mm

F1型探头0猇1250m m

F400型探头 0猇400m m

F1型探头 0猇1250m m

F10型探头 0猇10mm 被测面积的直

径小于30mm

仅用于铜上镀铬

N400型探头0猇40m m

-----

如铜、铝、黄铜、锌、锡等有色金属被测面积的直

径大于10mm

----------

被测面积的直

径小于10mm

N400型探头

0猇400m m

N1型探头 0猇1250m m

N400型探头 0猇400m m

塑料、印刷线路非金

属基体被测面积的直

径大于7mm

CN02型探头10猇200m m

探头选用参考表(2)

- 5 -

- 6 -

二、仪器使用前的准备

使用本仪器前,请务必仔细阅读第3章(校准)和第8章(影响测量精度的因素)

2.1 检查电源

(a) 本仪器使用9V 碱性电池。

(b) 按

键,检查电池。

● 开机时无显示,表示无电池或电池电压太低,无法显示。需更换电池。● 无低电压指示,表示电池电压充足。

● 有低电压指示,表示电池电压不足则显示低压指示约1秒钟后自动

关机。这时应立即更换电池。

2.2 更换电池

(a) 按

键关机;(b) (c) 取出电池,放入新电池;(d) 盖好电池仓盖。

注意:仪器长时间不使用时应将电池取出,以避免电池漏液腐蚀仪器。

2.3 选择探头

根据被测工件选择探头(请阅1.6.3探头),安上并拧紧。2.4 测量操作

(a)准备好待测试件,将测头置于开放空间,按一下

键开机,正

常开机后显示上次关机前的测量值;如:

说明:开机时若电池电压不足则显示低压指示约1秒钟后自动关

机。这时应立即更换电池;

D

50.0

Fe

m

(b)如果需要校准仪器,则选择适当的校准方法进行校准(参见第三章);

(c)测量

迅速将测头与测试面垂直地接触并轻压测头定位套,随着一声鸣响,屏幕显示测量值,提起探头可进行下次测量;

(d)关机

在无任何操作的情况下,大约2-3min后仪器自动关机。按一下键,立即关机。

2.重复测量三次或三次以上,测量后可显示四个统计值:平均值(MEAN)、测量次数(NO.)、最大测量值(MAX)、最小测量值(MIN)。

2.5 功能设置

2.5.1 工作方式

该仪器具有两种工作方式:直接方式和成组方式

(a)直接方式:此方式用于随意性测量,此方式下可存储100个测量值,当存满100个值时,新的测量值将替掉旧的测量值,总保留最新的100个测量值。

(b)成组方式:此方式便于用户分批记录所测试的数据,一组最多存100个测量值,总共五组,可存500个测量值。当每组存满100个值时,屏幕将显示“存储器满”,此时,仍可进行测量,但是测量值只显示不存储,也不参与统计计算。只有删除该组数据,才能保存新的测量值。每组内设有一个校准值,即该组下各个数据都是基于这个校准值测得的。成组方式下,每个测量统计计算。只有删除该组数据,才保存新的测量值。每组内设有一个校准值都参与统计计算。因为成组方式下,可存贮几套基于不同校准值的测量数据,因此该方式特别适合于现场测量。

- 7 -

- 8 -

2.5.2 测量方式

该仪器具有两种测量方式:单次测量和连续测量

单次测量──测头每接触被测件1次,随着一声鸣响,显示一个测量结果;

连续测量──不提起测头动态测量,测量过程中不伴鸣响,屏幕

连续显示测量结果;

● 两种方式的转换方法:

(a) 仪器开机后,自动进入直接工作方式,工作方式区显示【D 】。按

键,显示如右图:

(b) 按

键,进入系统设置;按

键,选择【工作方式】设置;(c) 按

键,设置工作方式。

说明:【*】表示该组中已有校准值;(d) 按两次

键退出。

● 两种方式的转换方法:

(a) 按

键,选择【系统设置】;(b) 按

键,选择测量方式;(c) 按

键,选择单次测量或连续测

量;

(d) 按两次

键退出。

- 9 -

2.5.3 单位制式转换(公制/英制)

(a) 按

键, 选择系统设置;(b) 按

键,再按

键选择

【单位】设置;

(c) 按

键,选择【um 】或【mils 】;

(d) 按两次

键,退出。

2.5.4 在线打印(用于OU3500B )

在线打印 : 每测量一个值就立即打印这个值,在线打印功能开时,屏幕显示【PRINT 】提示符。(a) 按

键, 选择【系统设置】;(b) 按

键,再按

键选择

【在线打印】设置;

(c) 按

键选择在线打印:【开】或

【关】;(d) 按两次

键,退出。

说明:在选择“在线打印:开”之前,应按〈6.1打印机的连接〉连接好打印机

- 10 -

2.5.5 在线统计值

(a) 按

键, 选择系统设置;(b) 按

键,再按

键选择

【在线统计值】设置;

(c) 按

键选择在线统计值:【开】

或【关】;(d) 按两次

键,退出。

2.5.6 设置限界

(a) 按

键,然后按

键,选

择【限界设置】;

(b) 按

键,进入【限界设置】;(c ) 按

键选择【上限】或【下

限】,数据区显示以前设置的上限或下限的值,按

键设定

新的上限或下限的值;

(d) 按两次

键,退出。

说明: 1.大于上限或小于下限的测试结果由蜂鸣声报警;

2.限界以外的测试结果与其它测试结果一起被存贮并进行统计计算。

3.上限与下限的接近程度是有限的。在上限值为200μm 以上时,上、下限最小接近程度为上限的3%,在上限值为200μm 以下时,上、下限最小接近程度为5μm 。

2.5.7 背光设置

键可随时打开或关闭背光。

三、仪器的校准

为使测量准确,应在测量场所对仪器进行校准。

3.1 校准标准片(包括箔和基体)

已知厚度的箔或已知覆盖层厚度的试样均可作为校准标准片。简称标准片。

(a) 校准箔

对于磁性方法,“箔”是指非磁性金属或非金属的箔或垫片。对于涡流方法,通常采用塑料箔。“箔”有利于曲面上的校准,而且比用有覆盖层的标准片更合适。

(b) 有覆盖层的标准片

采用已知厚度的、均匀的、并与基体牢固结合的覆盖层作为标准片。对于磁性方法,覆盖层是非磁性的。对于涡流方法,覆盖层是非导电的。

3.2 基体

(a) 对于磁性方法,标准片基体金属的磁性和表面粗糙度,应与待测试件基体金属的磁性和表面粗糙度相似。对于涡流方法,标准片基体金属的电性质,应当与待测试件基体金属的电性质相似。为了证实标准片的适用性,可用标准片的基体金属与待测试件基体金属上所测得的读数进行比较。

(b) 如果待测试件的金属基体厚度没有超过表一中所规定的临界厚度,可采用下面两种方法进行校准:

(1) 在与待测试件的金属基体厚度相同的金属标准片上校准;

(2) 用一足够厚度的,电学性质相似的金属衬垫金属标准片或试件,但必须使基体金属与衬垫金属之间无间隙。对两面有覆盖层的试件,不能采用衬垫法。

(3) 如果待测覆盖层的曲率已达到不能在平面上校准,则有覆盖层的标准片的曲率或置于校准箔下的基体金属的曲率,应与试样的曲率相同。

- 11 -

3.3 校准方法

本仪器有三种测量中使用的校准方法: 零点校准、二点校准、在喷沙表面上校准。二点校准法又分一试片法和二试片法。还有一种针对测头的基本校准。本仪器的校准方法是非常简单的。

3.3.1 零点校准

(a) 在基体上进行一次测量,屏幕显示<×.×μm>。

(b) 按

键,屏显<0.0>。校准已完成,可以开始测量了。

(c) 重复上述a、b步骤可获得更为精确的零点,高测量精度。零点校

准完成后就可进行测量了。

3.3.2 二点校准

3.3.2.1 一试片法

这一校准法适用于高精度测量及小工件、淬火钢、合金钢。

(a) 先校零点(如上述)。

(b) 在厚度大致等于预计的待测覆盖层厚度的标准片上进行一次测量,

屏幕显示<×××μm>。

(c) 用

键修正读数,使其达到标准值。校准已完成可以开始

测量了。

注意:1.即使显示结果与标准片值相符,按

键也是必

不可少的,例如按一次

一次

。这一点适用于所有校准方

法。

2. 如欲较准确地进行二点校准,可重复b、c过程,以提高校准的精度,减少偶然误差。

- 12 -

3.3.2.2 二试片法

两个标准片厚度至少相差三倍。待测覆盖层厚度应该在两个校准值之间。这种方法尤其适用于粗糙的喷沙表面和高精度测量。(a) 先校零值;

(b) 在较薄的标准片上进行一次测量,用

键修正读数,使其

达到标准值;

(c) 紧接着在厚的一个样片上进行一次测量,用

键修正读

数,使其达到标准值。校准已完成,可以开始测量了。

3.3.2.3 铜上镀铬层的校准方法

适用于N型测头,并使用特殊的校准标准片。

⊙必须使用一试片法。

⊙使用标有“铜上镀铬” (CHROME ON COPPER) 字样的特殊标准片。

说明:在温度变化极大的情况下,如冬季或盛夏在室外操作时,应在与待测箔厚度接近的标准片上进行校准。校准时的环境温度应与使用时的环境温度一致。

注意: 1. 出现下列情况,必需重新校准。

-----校准时,输入了一个错误值

-----操作错误

2.在直接方式下,如果输入了错误的校准值,应紧接着做一次测量,随后再做一次校准,即可获取新值消除错误值;

3. 每一组单元中,只能有一个校准值。

4.零点校准和二点校准都可以重复多次,以获得更为精确的校准值,提高测量精度但此过程中一旦有过一次测量,则校准过程便告结束。

3.3.3 修改组中的校准值

删除组单元中的所有数据和校准值之后才能重新校准。否则将出现错误提示和鸣响报警。

- 13 -

3.4 基本校准的修正

在下述情况下,改变基本校准是有必要的:

----测头顶端被磨损。

----特殊的用途。

在测量中,如果误差明显地超出给定范围,则应对测头的特性重新进行校准称为基本校准。通过输入 6个校准值(1个零和5个厚度值),可重新校准测头。

(a) 在仪器关闭的状态下按住

键同时再按

键,显示开机后

放开

键继续按住

健即可进入基本校准状态;在仪器进入基本

校准状态屏幕菜单区显示【基本校准】。

(b) 先校零值 (方法同3.3.1) 。可连续重复进行多次,以获得一个多次校准的平均值,这样做可以提高校准的准确性;

(c) 使用标准片校准,按厚度增加的顺序进行,一个厚度上可做多次。每个厚度应至少是上一个厚度的1.6 倍以上,理想的情况是2倍。

例如F1探头的校准:

首先选5个厚度的校准片分别约为:50μm、100μm、200μm、400μm 800μm。最大值应该接近但低于测头的最大测量范围。

按3.3.1的方法校零后,用厚度约为50μm的校准片在基体进行一

次测量,屏幕显示<×××μm>。用

键修正读数,使其

达到标准值。然后按顺序进行厚度约为100μm、200μm、400μm、800μm的校准片进行校准。

注意:1、即使显示结果与标准片值相符,按

键也是

必不可少的。

2、每个厚度应至少是上一个厚度的1.6 倍以上,否则视为基本校准失败。

(d) 在输入 6个校准值以后,测量一下零点,仪器自动关闭,新的校准值已存入仪器。当再次开机时,仪器将按新的校准值工作。

- 14 -

3.5 关于测量和误差的说明

如果已经进行了适当的校准,所有的测量值将保持在一定的误差范围内;根据统计学的观点,一次读数是不可靠的。因此任何由该仪器显示的测量值都是五次“看不见”的测量的平均值。这五次测量是在几分之一秒的时间内由探头和仪器完成的;

●为使测量更加精确,可利用统计程序在一个点多次测量,对误差较大的测量值可在测量后立即删除。最后覆层的厚度为:

CH = M+S+δ

其中: CH:覆层厚度M:多次测量的平均值

S:标准偏差δ:仪器允许误差

四、测量与统计

4.1 存储功能

直接方式下自动保留最新的100个测量值。

成组方式下测量值自动存入内存单元,一组最多存100个数值,总共五组,可存500个数值。当每组存满100个值时,屏幕将显示“存储器满”,此时,仍可进行测量,但是测量值只显示不存储,也不参与统计计算。只有删除该组数据,才能保存新的测量值。

4.2 统计计算

本仪器对测量值自动进行统计处理,它需要至少三个测量值来产生5个统计值:平均值(MEAN)、标准偏差(S.DEV)、测试次数(No.)、最大测试值(MAX)、最小测试值(MIN)。参加统计计算的测量值:

●在直接方式下所有测量值(包括关机前的测量值)均参加统计计算。

注意:当存满100个数值时,总保留最新的100个测量值参加统计计算。

●在成组方式下,参加统计计算的测量值仅限于本组内的数据。

注意:每组当存满100个数值时,尽管测量能继续,但不能修改统计值。

- 15 -

4.3 数据浏览

浏览统计值和测量值

(a) 按

键,然后按

键,选择

【浏览数据】;

(b) 按

键,然后按

,可选

择浏览统计值或浏览测量值;(c) 按

键,选择【统计值】可浏览五个统计值:平均值(MEAN)、标准偏差(S.DEV)、测试次数(No.)、最大测试值(MAX)、最小测试值(MIN);(d) 按

键,选择【测量值】在直接方式下,可浏览该方式下的所有测量值,在批组方式下可浏览该组的所

有测量值,浏览时用

键进

行换页。

(e) 按三次

键退出。

NO=009

MEAN=50.2

S.DEV=0.1

MAX=50.4

MIN=50.1

001 50.3m m

002 50.4m m

003 50.2m m

004 50.2m m

005 50.2m m

006 50.2m m

007 50.2m m

008 50.1m m

五、删除功能

5.1 删除当前测量值

无论在直接方式或成组方式下,只要在测量值显示状态,按一下键,随着一声鸣响,当前测量值已被删除。

5.2 删除当前组数据

删除直接方式或成组方式下当前组的所有测量值

- 16 -

- 17 -

(a) 按

键,然后按

键,选择

【功能选择】;

(b) 按

键,进入【功能选择】;按

键,选择【删除当前组数据】;(c) 按

键,显示删除确认提示,再按

键,当前文件中的测量值已

被删除。(d) 按两次

键,退出。

5.3 删除当前组所有数据

删除直接方式或成组方式下当前组的所有测量值,统计值、两点校准值、限界值

(a) 按

键,然后按

键,

选择【功能选择】;

(b) 按

键,进入【功能选择】;(c) 按

键,选择【删除所有

数据】;

(d) 按

键,显示删除确认提示,再按

键,当前文件中所有测量

值、统计值、两点校准值、限界值已被删除。e) 按两次

键,退出。

钢板厚度测量系统

长沙理工大学钢板厚度测量系统 学院:汽车与机械工程学院 班级:车辆1102 学号:201169030201 姓名:侯健

钢板厚度测量系统 一、测量对象说明 本测量系统对象是普通钢板,但为保持测量灵敏度要求其厚度大于0.1mm,被测面应光洁、不应有洞眼、刻痕等,长度50mm、宽度30mm、厚度在0~16mm间。 二、测量原理框图 三、测量原理与方法说明 1.测量原理 如图1所示,在金属板一侧的电感线圈中通以高频激励电流I1时,线圈将产生高频磁场,由于集肤效应,高频磁场作用于金属板表面薄层,并在这薄层中产生涡流。涡流I2又会产生交变磁通Ф2反过作有于线圈,使得线圈中的磁通Ф1发生变化而引起自感量变化,在线圈中产生感应电势。电感的变化随涡流而变,而涡流又随线圈与金属板间距x而变化,因此可以用高频反射式涡流传感器来测量位移x的变化。图2为涡流效应等效电路。R1为线圈电阻;L1为线圈电感;R2为短路电阻;L2为短路环电感;U1为激励电压;M为线圈与短路环间的互感。

回路方程: 受涡流影响后线圈的等效阻抗为: 线圈阻抗只与L1、L2、M有关,而L1、L2、M都与x有关,即Z=f(x),因此,如固定传感器的位置,当间距x发生变化时,Z就发生变化,从而达到以传感器阻抗变化值来检测被测金属位移量的值。 传感器阻抗变化还需进一步转化为电信号以便进入数据采集系统。通常的测量方法式采取阻抗变换电路:电涡流传感器探头内线圈,与其它固定阻抗组成原始平衡电桥,随着钢板厚度的变化,探头线圈阻抗值随之变化,这样就破坏了电桥的原始平衡,失衡电桥的桥路输出电压值可反映被测钢板厚度值。除电桥法外,还有高精度的谐振调幅、调频等测量电路。 2、测量方法说明 利用高频反射式涡流传感器的原理,采用上下2路涡流传感器,被

利用线阵 CCD 进行物体外形尺寸的测量

实验十二利用线阵CCD进行物体外形尺寸的测量 一、实验目的 通过本实验掌握利用线阵CCD进行非接触测量物体尺寸的基本原理和方法,用实例 探讨影响测量范围、测量精度的主要因素,为今后设计提供重要依据。 二、实验准备内容 1. 利用线阵CCD进行非接触测量物体尺寸的基本原理 线阵CCD的输出信号包含了CCD各个像元所接收光强度的分布和像元位置的信息,使它在物体尺寸和位置检测中显示出十分重要的应用价值。 CCD 输出信号的二值化处理常用于物体外形尺寸、物体位置、物体震动(振动)等的测量。如图3-1所示为测量物体外形尺寸(例如棒材的直径D)的原理图。将被测物体A置于成像物镜的物方视场中,将线阵CCD 像敏面恰好安装在成像物镜的最佳像面位置上。 当被均匀照明的被测物体A通过成像物镜成像到CCD的像敏面上时,被测物体像黑白分明的光强分布使得相应像敏单元上存储载荷了被测物尺寸信息的电荷包,通过CCD及其 。根据驱动器将载有尺寸信息的电荷包转换为如图3-1右侧所示的时序电压信号(输出波形) 输出波形,可以测得物体A在像方的尺寸D' ,再根据成像物镜的物像关系,找出光学成像系统的放大倍率β,便可以用下面公式计算出物体A的实际尺寸D (3-1) D= D' /β 显然,只要求出D' ,就不难测出物体A 的实际尺寸D。 线阵CCD的输出信号U O随光强的变化关系为线形的,因此,可用U O模拟光强分布。采用二值化处理方法将物体边界信息(图3-1 中的N1与N2)检测出来是简单快捷的方法。有了物体边界信息便可以进行上述测量工作。 2.二值化处理方法 图3-2所示为典型CCD输出信号与二值化处理的时序图。 图中FC信号为行同步脉冲,FC的上升沿对应于CCD 的第一 个有效像元输出信号,其下降沿为整个输出周期的结束。U G 为绿色组分光的输出信号,它为经过反相放大后的输出电压 信号。为了提取图3-2 所示U G的信号所表征的边缘信息,采 用如图3-3 所示的固定阈值二值化处理电路。

油漆厚度检测作业指导书

油漆厚度检测作业指导书-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

油漆厚度检测作业指导书 1.0范围 该作业指导书描述了的油漆厚度检验过程和验收方法。 2.0 最终检验员负责油漆的湿膜厚度检验,和干膜厚度检验。 3.0湿膜厚度检验: 膜厚度测厚仪的优点在于可以在涂覆过程中检查和改正不适当的涂膜厚度。如果涂覆者知道了湿膜厚度,当以此数据乘以涂料固体份的体积百分率,就可估算出干膜厚度。 干膜厚度(μm)=湿膜厚度(μm)*涂料固体分(体积%)。 湿膜厚度的测定,只是保证干膜膜厚的辅助手段,由于干、湿膜比例变化很大,仅用湿膜厚度估算干膜厚度,会带来偏差,评价总厚度,还是以干膜厚度为准。 3.1设备:湿膜厚度梳规 3.2测量方法:把试板固定在一合适的水平基础上,这样在测定漆膜过程中试板就不会 产生移动或跳动,将该仪器放在待测厚度湿膜上,使其最小读数在顶部,而仪器偏心轮和湿膜之间最大间隙正好在湿膜上方,然后将其向前滚动半周(180°)并反方向重复滚动半周(180°)后移动,检查仪器中央轮缘与湿膜表面首先接触的位置,读出读数并计算平均值成为一个读数。当使用每个标度的线性中心区段,即使用标度总量程的80%左右的区段,精度最高。

3.3抽样比例:湿膜厚度是参照数值,用于油漆工艺认证和过程监视。常规油漆不定期 巡检。工艺认证时每批抽检一个。 3.4检验记录:油漆湿膜厚度巡检记录。 4.0干膜厚度检验 4.1设备:易高345 超声波膜厚检测仪。 4.2测量方法:

校正错误处理: 如果在校正中显示屏上出现1Err表明校正没有正确的进行,可能是不正确的基材、数值和单位造成的,按θ键可以消除错误信息,仪器会自动恢复到工厂校正模式,请重新进行校正即可。 光滑表面校正: 放置探头在裸露金属上,等到有读数显示,然后把它打开。按“0”键把显示复0。 紧密贴近裸露金属放置校准膜片,然后读数。按+和-键来调节显示值到测试箔值。 按θ键来确定这次校验或等待7秒让仪器自动确定已被校准。显示器会闪烁然后重复显示读数。在“0”和膜片上确认仪器的读数。简单重复以上步骤即可重新校准。 4.3抽样比例:参照批准的油漆程序,或者客户批准的规范。 检验位置:阀体上正反面各5点,阀盖正反各4点,共计18点。 4.4验收标准和检验记录:验收标准按照程序文件或客户批准规范,检验结果记录在 阀门最终检验记录上。 5.0其它要求: 5.1涂装和油漆厚度检测期间, QC 必须按照公司的要求正确佩戴防护用品。 5.2 湿膜厚度计使用后,需要采用相应的稀释剂或清洗剂清洁干净,放置干燥处。长期 不用时应将仪器涂上油进行防锈处理。 5.3 干膜厚度计需要按照公司的要求进行检定或校准,使用前需要采用标准片进行复 校。 使用完毕,防止干燥整洁处。

精密尺寸测量仪器知识介绍

精密尺寸测量仪器知识介绍 一、精密尺寸测量仪器概念 所谓的精密测量就是以微米为计量单位的测量技术,它是随着高标准的工业设计对加工制造行业提出越来越高的技术要求而形成的。所谓的尺 寸就是以几何元素点、直线、线段、圆、圆弧、角、面、球体等为基本要 素的几何关系。所以精密尺寸测量仪器就是以满足精益求精的设计及加工 制造的要求而形成的计量分析管控这种几何关系的仪器。 二、精密尺寸测量仪器分类 精密尺寸测量仪器种类很多,但大致可以分成接触式精以测量仪器和非接触式精密测量仪器。接触式精密测量仪器以三坐标为主,并衍生出一 维高度计和二维高度计。非接触式精密测量仪器早期以投影测量仪为代表,但是随着计算机软件技术和高像素光感传感器的飞速发展,投影测量仪逐 渐被淘汰,从而形成新的代表仪器——二次元影像测量仪。 三、仪器原理 1、三坐标测量机原理 三坐标测量机是由三个互相垂直的运动轴X,Y,Z建立起的一个直角坐标系,测头的一切运动都在这个坐标系中进行,测头的运动轨迹由测球中心来表示。测量时,把被测零件放在工作台上,测头与零件表面接触,三坐标测量机的检测系统可以随时给出测球中心点在坐标系中的精确位置。当测球沿着工件的几何型面移动时,就可以得出被测几何面上各点的坐标值。将这些数据送入计算机,通过相应的软件进行处理,就可以精确地计算出被测工件的几何尺寸,现状和位置公差等。

三坐标结构图测量侧头结构图 2、二次元影像测量仪原理 二次元影像仪通过的CCD光学传感器将光信号转化为数字信号记录影像 和光栅尺记录位移参数,再利用视频采集处理器和数据采集处理器将数字型号 传输至电脑,之后经过影像测量仪软件在电脑上由操作人员逆向绘图并测量。影像仪之所以被称之为二次元是因为它实际绘制测量出来的只是当时产品放 在仪器工作台上的俯视图,只能完成x和y方向上的二维尺寸测量或z方向 上的高度测量。 二次元影像测量仪结构图工作台结构图

油漆湿膜测厚轮使用方法

油漆湿膜测厚轮使用方法 产品名称:欧谱湿膜测厚轮 ?产地:中国销售:沧州欧谱 ?简介:湿膜测厚轮、滚轮式湿膜厚度规是测量色漆、清漆等 各种涂料湿膜涂刷厚度的测量工具。该厚度规不仅能在平整 的基板上,并能在曲面状基板上进行测量,测量精度高。 ? 一、基本简介 该仪器按照国际标准ISO2808-1974(E)《色漆和清漆-漆膜厚度的测定》的要求而设计制造的,主要用于测定涂漆表面湿膜的厚度并可大致估计膜干时的大致厚度,该仪器即可用实验室又可用于生产控制。 二、技术参数 1.测量范围:0~100um、0~150um、0~200um、0~500um 2.测量精度:5um 三、使用和操作方法 1.把涂料涂覆在适宜的硬度平板(刚性底材)上,试板面积必须足够大,以便漆膜厚度测定处和试板任一边的距离至少为25mm,涂覆后立即测定湿膜厚度。 2.把试板固定在一合适的水平基础上,这样在测定漆膜过程中试板就不会产生移动或跳动,将该仪器放在待测厚度湿膜上,使其最小读数在顶部,而仪器偏心轮和湿膜之间最大间隙正好在湿膜上方然后将其向前滚动半周(180°)并反方向重复滚动半周(180°)后移动,检查仪器中央轮缘于湿膜表面首先接触的位置,读出读数并计算其平均值成为一个读数。 3.如果面漆含有挥发性快的溶剂或其固体含量低时,那么最好在刚涂好的漆膜上,另外至少再取一个单独的读数并计算这些单独读数的平均值。 注:虽本仪器适用于测定涂在平整试板上的湿膜厚度,但在现场或工厂也可以用于只向一个方向弯曲的工件表面,只要底材在两同心轮间不弯曲变形以至影响仪器的测定即可。 四、结果评定 当使用每个标度的线性中心区段,即使用标度总量程的80%左右的区段,精度最高。

非接触式钢板厚度测试仪

西安工业大学北方信息工程学院 课程设计(论文)题目:非接触式钢板厚度测试仪 系别:光电信息系 专业:光电信息工程 班级:B090104 学号:B09010418 姓名:韦华伟 2012年10月29号

目录 第1章引言 (1) 1.1 研究的背景和意义 (1) 1.2 国内外研究状况 (1) 第2章测量原理和方法论证 (2) 2.1 检测系统的测量原理 (2) 2.2 方案的可行性分析 (3) 2.3 本章小结 (4) 第3章系统设计 (4) 3.1 光学系统设计 (4) 3.2机械结构设计 (5) 3.3 电路系统设计 (6) 3.4 计算机软硬件系统设计 (15) 第4章精度分析 (18) 4.1 电路对测量精度的影响 (18) 4.2 误差分析 (18) 第5章总结 (19) 参考文献 (20)

第一章引言 §1.1研究背景和意义 传统的测量方法开始于接触式测量,这种测量方法检测效率低,劳动强度大,而且会使测量仪器的检测头发生磨损,从而造成仪器的测量精度下降。毋庸置疑,科技的发展和社会的进步还没达到一个高度。因此,在现代板材生产中,不论是轧制过程中还是最终产品的调整中,为获得较高的板材命中率和最佳的轧制过程及剪切效果,板材尺寸测量系统已成为生产线上不可缺少的设备之一。 第一台接触式速续测厚仪大约出现在1930年。操作者用这台侧厚仪器去侧量铜材的厚度时, 必须把它推向待侧的钢带, 用机械的方法来测量距带材边沿几寸范围内的金属材料的厚度。这种测量方法使用极其不便,而且测量精度也很低。在我们看来,一般的物体尺寸的测量,无非长、宽、高(厚),三个方面,而厚度测量是生产中最常见的测量内容之一,常用量具是游标卡尺或千分尺,这些量具在使用时都必须和工件接触,虽然接触压力不大,但对一些特殊工件,在测量时不允许量具和工件接触,否则会在工件表面上留下压印或划痕,甚至有些测量环境环境下很难或无法进行接触式测量,那么,这就需要有一种新的方法来代替接触式测量. 随着科技大发展和生产力的要求,非接触式的测量方法出现了。第一台成功的非接触式自动测厚仪应用了X射线吸收技术。从此,非接触式测量方法开始了迅猛发展,其强大的功能和优点无法使传统的接触式测量望其项背,也为人类社会的发展,工业文明的进步做出了巨大的贡献。 激光测厚仪是近年来开发出的高科技实用型设备, 是用于热轧生产线上时在线式连续测量成材厚度的非接触式测量设备。它有效地改善了工作环境, 具有测量准确、精度高、实用性好、安全可靠、无辐射、非接触式测量等人工测量及其它测量方法无法比拟的优点, 并为轧制钢材厚度控制提供了准确的信息, 从而提高了生产效率和产品质量, 降低了劳动强度度。激光测厚仪使用两年多以来, 具不完全统计, 因板厚误差造成的废品率下降了50%以上, 创经济效益上亿元, 广泛地受到人们的肯定与赞赏。我们有理由相信,在未来的发展过程中,激光测厚仪作为非接触测量领域的一个重要分支将更能发挥其作用。 §1.2国内外研究现状 近50年来,随着现代化生产和加工技术的发展,对于加工零件的检测速度与精度有了更高的要求,向着高速度、高精度、非接触和在线检测方向发展。利用CCD 技术对产品表面质量进行实时检测、动态测量,具有结构简单、非接触、精度高、测量速度快、性能稳定可靠等优点。摄像头的主要传感部件是CCD,它具有灵敏度高、畸变小、寿命长、抗震动、抗磁场、体积小、无残影等特点。 CCD 产业前七大厂商皆为日系厂商,占了全球98.5%的市场份额,在技术

油漆厚度检测作业指导书

油漆厚度检测作业指导书 1.0范围 该作业指导书描述了的油漆厚度检验过程和验收方法。 2.0 最终检验员负责油漆的湿膜厚度检验,和干膜厚度检验。 3.0湿膜厚度检验: 膜厚度测厚仪的优点在于可以在涂覆过程中检查和改正不适当的涂膜厚度。如果涂覆者知道了湿膜厚度,当以此数据乘以涂料固体份的体积百分率,就可估算出干膜厚度。 干膜厚度(μm)=湿膜厚度(μm)*涂料固体分(体积%)。 湿膜厚度的测定,只是保证干膜膜厚的辅助手段,由于干、湿膜比例变化很大,仅用湿膜厚度估算干膜厚度,会带来偏差,评价总厚度,还是以干膜厚度为准。 3.1设备:湿膜厚度梳规 3.2测量方法:把试板固定在一合适的水平基础上,这样在测定漆膜过程中试板就不会 产生移动或跳动,将该仪器放在待测厚度湿膜上,使其最小读数在顶部,而仪器偏 心轮和湿膜之间最大间隙正好在湿膜上方,然后将其向前滚动半周(180°)并反方 向重复滚动半周(180°)后移动,检查仪器中央轮缘与湿膜表面首先接触的位置,读出读数并计算平均值成为一个读数。当使用每个标度的线性中心区段,即使用标 度总量程的80%左右的区段,精度最高。 3.3抽样比例:湿膜厚度是参照数值,用于油漆工艺认证和过程监视。常规油漆不定期 巡检。工艺认证时每批抽检一个。 3.4检验记录:油漆湿膜厚度巡检记录。 4.0干膜厚度检验 4.1设备:易高345 超声波膜厚检测仪。 4.2测量方法:

校正错误处理: 如果在校正中显示屏上出现1Err表明校正没有正确的进行,可能是不正确的基材、数值和单位造成的,按θ键可以消除错误信息,仪器会自动恢复到工厂校正模式,请重新进行校正即可。 光滑表面校正: 放置探头在裸露金属上,等到有读数显示,然后把它打开。按“0”键把显示复0。 紧密贴近裸露金属放置校准膜片,然后读数。按+和-键来调节显示值到测试箔值。 按θ键来确定这次校验或等待7秒让仪器自动确定已被校准。显示器会闪烁然后重复显示读数。在“0”和膜片上确认仪器的读数。简单重复以上步骤即可重新校准。

第三章 长度尺寸测量工具

第三章长度尺寸测量工具 一、简易量具 1、钢直尺 1)钢直尺结构与规格 钢板尺俗称钢尺或直尺,如图1所示,是用来测量长度的一种最常用的简单量具,可直接测量工件尺寸。尺边平直,尺面有米制或英制的刻度,可以用来测量工件的长度、宽度、高度和深度。有时还可用来对一些要求较低的工件表面进行平面度检查。 图1钢板尺 钢板尺测量范围基本取决于钢尺的长度。测量范围主要有:0~150 mm、0~200 mm、0~300 mm、0~500 mm等规格,其测量范围就是所能测定的最大长度。钢板尺最小刻度一般为0.5 mm或l mm。 2)使用方法 要根据被测件的形状和尺寸大小灵活掌握使用钢板尺的方法。应根据测量尺寸的大小,选择恰当长度的钢板尺。实际测量工件时,应将钢板尺拿稳,用拇指贴靠工件。图2(a)所示为正确的测量方法;图2(b)所示为错误的测量方法。手指位置不对,易使钢板尺不稳定,造成测量不准确。读数时,应使视线与钢板尺垂直,而不应倾斜,否则会影响测量的准确度。 钢板尺起始端是测量的基准,应保持其轮廓完整,以免影响测量的准确度。如果钢板尺端部已经磨损,应以另一刻度线作为基准。 (a)正确 (b)不正确 图2钢板尺测量工件 2、卡钳 卡钳是一种间接测量的简单量具,不能直接读出测量数值,必须与钢板尺或其他带有刻度的量具一起使用才尺或其他带有刻度的量具一起使用才行。 1)卡钳的种类 卡钳还分为普通卡钳和弹簧卡钳。普通卡钳结构简单,是用铆钉或螺钉连接两个卡脚的;弹簧卡钳是用弹簧连接两个卡脚的,通过调整螺母来限制卡脚张开的大小,如图3所示。

图3 卡钳 1—卡钳 2—铆钉或螺钉 3—弹簧 4—螺钉 5—调整螺母卡钳分外卡钳和内卡钳,外卡钳是由两个弧形卡脚连接起来的,两个钳口是相对的,可用来测量外尺寸,如外圆直径、厚度、宽度等。内卡钳是由两个直形卡脚连接起来的,两个钳口是向外的,可用来测量内尺寸,如内孔、沟槽等。 卡钳适合用来测量铸、锻件毛坯。 在精加工过程中,卡钳应与千分尺配合使用,对某一加工尺寸,用预先调整好的卡钳进行测试,可提高测量精度和工作效率。 2)卡钳的调整方法 普通卡钳的调整 卡钳卡脚张开的大小,称为卡钳的开度。调整普通卡钳的开度时,先用两手进行大致调整,开度接近需要的大小时,用手捏住连接处,轻轻敲击卡脚,使它微微张大或缩小来进行细微调整。图4(a)、(b)是轻敲卡脚的外边(图示箭头为敲击方向),使它由大调小;图4(c)、(d)是轻敲卡脚的内边,使它由小调大。 (a)(b) (c)(d)

机械课程设计板料厚度测量仪设计

摘要 根据超声波脉冲反射来进行厚度测量的,当探头发射的超声波脉冲通过被测物体到达材料分界面时,脉冲被反射回探头,通过精确测量超声波在材料中传播的时间来确定被测材料的厚度。凡能使超声波以一恒定速度在其内部传播的各种材料均可采用此测量。按此设计的可对各种板材和各种加工零件作精确测量,也可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。可广泛应用于石油、化工、冶金、造船、航空、航天等各个领域仪器采用最新的高性能、低功耗微处理器技术,基于超声波测量原理,可以测量金属及其它多种材料的厚度,并可以对材料的声速进行测量。本机利用单片机技术应用液晶显示测量厚度值,并同时显示声速,自动校准实现了已知声速测量厚度及已知厚度测量声速两大功能.操作简单,稳定可靠,是无损检测工作者的理想检测工具. 【关键词】超声波脉冲反射;电涡流传感器;数据采集系统;CCD输出信号。

Abstract Thickness measurement, according to the ultrasonic pulse reflection when the launch of the ultrasonic pulse probe through the material object to be tested interface, the pulse is reflected back to the probe, through the accurate measurement of ultrasonic wave propagation in the material time to determine the thickness of the material being tested. Those that make the ultrasonic wave at a constant speed in its internal communications can adopt the measure of various materials. According to this design can accurately measure about all kinds of plates and all kinds of machining parts, can be all kinds of pipeline and pressure vessel in the production equipment to monitor, monitor them in the process of using the degree of corrosion after thinning. Can be widely used in petroleum, chemical industry, metallurgy, shipbuilding, aviation, aerospace and other fields,Equipment using the latest high performance and low power consumption microprocessor technology, based on ultrasonic measuring principle, can measure the thickness of the metal and other a variety of materials, and can be conducted on the material of the sound velocity measurement. The machine using the single chip microcomputer technology application of measuring the thickness of the liquid crystal display (LCD) value, and at the same time shows that sound velocity, implements the automatic calibration known sound velocity measuring thickness and thickness measuring sound velocity known two big functions. The operation is simple, stable and reliable, and is an ideal testing tools to nondes 【key words】ultrasonic pulse reflection; The eddy current sensor; Data acquisition system; The CCD output signal.

钢板厚度检测作业指导书

一、编制目的 为保证钢结构钢板厚度检测项目的顺利开展,确保检测工作的规范性,特制定本作业指导书。 二、适用范围 本作业指导书适用于钢结构钢板厚度检测项目。 三、引用标准 1、《建筑结构检测技术标准》(GB/T 50344-2004); 2、《钢结构施工质量验收规范》(GB 50205-2001); 3、《热轧钢板和钢带的尺寸、外形、重量及允许偏差》 (GB/T709-2006) 四、检验仪器设备 1、TT110+42513420超声波测厚仪 五、操作程序 1、在承接检测时应向委托方索取工程图纸及相关技术资料。 2、检测人员应根据技术资料要求,确定检测标准、检测部位,及检测等级、检测比例、合格级别。 3、清洁表面,测量前,应清除表面上的任何附着物质,如尘土、油脂及腐蚀物质等覆盖层物质。 4、检查电源 5、将测头置于开放空间,按一下“on”键,开机。 ●开机后,出现“5900m/s”可以正常使用,反之则应校准仪器。 6、仪器的校准

给仪器标准块上涂抹耦合剂,使探头与标准块垂直接触,轻按住探头,仪器显示〈4.0mm〉,即完成探头校准。 7、测量 首先在钢板测试面位置涂抹耦合剂,然后迅速将探头与测试面垂直地接触并轻轻压住,屏幕显示测量值,提起测头可进行下次测量;如果在测量中测头放置不稳,显示一个明显的可疑值,可挪动探头或左右旋转探头,最后选取最小测量数值。每个构件检测5处,每处测量三次,取平均值。 8、关机 在无任何操作的情况下,大约2~3min后仪器自动关机。 六、原始记录及报告 1、原始数据记录在记录表格中,并由现场检测人员签字。 2、检测报告内容必须包括必要的检测信息,符合标准、规范、规程的要求,并与相应的原始记录一致。检测报告主要包括:标题、检测单位的名称、报告唯一性编号和每页的标识、委托单位名称、工程名称、所用检测方法的标识或说明、检测样品的状态描述和编号、委托日期、检测日期、报告日期、检测结果、检测人员、报告编写人员、报告审核人员以及批准人的签名等。 3、如检测报告的内容是有关复检检测的内容,检测报告上应有明确的标记。凡分包项目的检测报告可在备注栏中注明必要的说明。

钢板厚度测量---光电仪器课程设计

西安工业大学北方信息工程学院课程设计(论文) 题目:钢板厚度测试仪 系别: 专业: 班级: 学号: 姓名: 2012年11月12号

目录 第1章引言 (1) 1.1 研究的背景和意义 (1) 1.2 国内外研究状况 (1) 第2章测量原理和方法论证 (2) 2.1 检测系统的测量原理 (2) 2.2 方案的可行性分析 (3) 2.3 本章小结 (4) 第3章系统设计 (4) 3.1 光学系统设计 (4) 3.2机械结构设计 (5) 3.3 电路系统设计 (6) 3.4 计算机软硬件系统设计 (15) 第4章精度分析 (18) 4.1 电路对测量精度的影响 (18) 4.2 误差分析 (18) 第5章总结 (19) 参考文献 (20)

第一章引言 §1.1.1研究背景和意义 测量是人类生产、社会生活中不可或缺的活动:工作计时、购物称重、量体裁衣……都是测量活动,是分别对时间、质量、长度等物理量的测量。几何量测量则主要是对各种零件的几何形状、几何尺寸的测量,它在整个测量系统中占有重要地位,在现代化的工业企业中按照专业化协作原则组织生产的,各零部件在专业分厂成批制造后集中到一厂进行装配,因而只有通过精确的测量、制造才能保证零部件的互换性和装配的可靠性,从而保证整机产品的质量和使用性能。由此可见测量技术在现代的工业企业中的重要作用。传统的测量方法开始于接触式测量,这种测量方法检测效率低,劳动强度大,而且会使测量仪器的检测头发生磨损,从而造成仪器的测量精度下降。那么,这就需要有一种新的方法来代替接触式测量. 随着科技大发展和生产力的要求,非接触式的测量方法出现了。第一台成功的非接触式自动测厚仪应用了X射线吸收技术。从此,非接触式测量方法开始了迅猛发展,其强大的功能和优点无法使传统的接触式测量望其项背,也为人类社会的发展,工业文明的进步做出了巨大的贡献。 激光测厚仪是近年来开发出的高科技实用型设备, 是用于热轧生产线上时在线式连续测量成材厚度的非接触式测量设备。它有效地改善了工作环境, 具有测量准确、精度高、实用性好、安全可靠、无辐射、非接触式测量等人工测量及其它测量方法无法比拟的优点, 并为轧制钢材厚度控制提供了准确的信息, 从而提高了生产效率和产品质量, 降低了劳动强度度。激光测厚仪使用两年多以来, 具不完全统计, 因板厚误差造成的废品率下降了50%以上, 创经济效益上亿元, 广泛地受到人们的肯定与赞赏。我们有理由相信,在未来的发展过程中,激光测厚仪作为非接触测量领域的一个重要分支将更能发挥其作用。 §1.1.2测量分类 几何量测量中,长度(包括厚度)是基本的、主要的测量参数,其测量的技术水平随人类文明发展而不断地创新、拓宽。从线刻尺到千分尺等机械测长仪, 说明了长度测量技术的不断发展。进入20世纪后,加工精度的提高又要求有 较高的测量技术,因此出现了光、电、气等各种测量手段。在较丰富的测量方法中,分类方法也较多,特别是对不同的被测对象,采用的方法也不一样,大致可 分为: 按自动化方式来分:自动测量、非自动测量,非自动测量是手动测量的方法,是在测量操作者的直接操作下完成整个厚度测量过程;而自动测量是指按测量者 是指按测量者所规定的程序自动进行并完成厚度测量过程的方法。很明显,自动

激光三角法测量钢板厚度光学系统设计

光学系统设计论文

目录 摘要….......................................................................................................................... 第一章引言.................................................................................................................. 1.1研究的背景和意义........................................................................................... 1.2 国内外研究现状................................................................................................ 1.2.1 国外发展现状............................................................................................. 1.2.2 国内发展现状............................................................................................... 第二章测量原理及方案论证..................................................................................... 2.1 设计任务分析..................................................................................................... 2.2 测厚技术简述.................................................................................................... 2.3 激光三角法测量原理........................................................................................... 2.3.1激光三角法测量的类型和区别.................................................................... 2.3.2激光三角法测量的基本原理........................................................................ 2.4 沙姆条件…………………………………………………................................ 2.5 测量模型及方案论证…………………………………………........................... 第三章光学系统设计.................................................................................................... 3.1总体结构布局....................................................................................................... 3.2光源...................................................................................................................... 3.3聚焦系统与成像系统........................................................................................... 第四章误差与精度分析................................................................................................ 4.1 误差分析............................................................................................................... 4.1.1光学系统误差分析......................................................................................... 4.1.2随机误差分析................................................................................................ 4.2 精度分析............................................................................................................. 第五章总结.................................................................................................................... 参考文献.........................................................................................................................

油漆干膜厚度检测 漆膜干膜厚度测定方法

油漆干膜厚度检测漆膜干膜厚度测定方法我中心提供油漆干膜厚度检测,涂层干膜厚度检测,涂料干膜厚度检测,油漆干膜厚度测定,涂层干膜厚度测定,涂料干膜厚度测定,油漆干膜厚度测试,涂层干膜厚度测试,涂料干膜厚度测试。 在涂膜完全干燥后,可按照国家标准GB1764-89(79)测定干膜厚度,干膜厚度的数值是厚度管理的重要内容,只有每道涂膜达到规定的干膜厚度,才能达到整体的总膜厚要求。 国家标准中有规定杠杆千分尺和磁性测厚仪测定的两种方法,随着涂料检测水平的提高,一般多采用磁性测厚仪法,而且涂膜测厚仪的灵敏度、准确性、适用性以及方便使用性越来越高,出现了不同型号的测厚仪,有数字显示的、便携式的以及壁式的,轻巧、高灵敏度,使用方便,使用新型仪器,可测量的钢铁底材上的所有涂层的膜厚,亦可测量非磁性,底材诸如铝、钢、锌及不锈钢上的绝缘涂料的膜厚。主要原理是铁系上采用电磁法、非磁性底材(铝、铜等)上用涡流法,国内外有多种型号,测量范围一般在0~600μm,最高可达1.5mm。 测定干膜厚度的主要性在于包管涂覆到达规则的厚度,防止因为不恰当的厚度招致涂层的过早掉效。干膜厚度的测量,必需在涂膜完全枯燥后,采用干膜测厚仪进行测定。常用的干膜测厚仪有:磁性测厚仪、固定探头测厚仪、涡流仪和毁坏性测厚仪。磁性厚度仪是当前普遍使用的,个中有一种笔式测厚仪,用于现场反省非常便捷,不必于精细反省。测量时,必需使笔尖的磁探头接触并垂直于涂层外表,涂层测厚仪当弹簧的张力超越探头对铁基体的引力时,其笔尖端的磁 科标涂料检测中心(SCT)是一家专业从事涂料检测的机构,中心主营涂料的成分分析、成品检测、老化测试以及防火阻燃测试,由青岛科标化工分析检测有限公司运营。

机械零件尺寸高效测量方法

机械零件尺寸高效测量解决方案

摘要:随着科学技术的发展,生产过程自动化的飞速发展和精密加工的广泛应用,对生产加工的机械零件的精度要求日益提高,机械加工零件的尺寸测量问题也越来越引起人们的重视. 目前,主流的机械零件尺寸测量方法还是人工用测量仪器一边测量一边记录数据.这种方法由于人工读数所带来的误差比较大、效率非常低;而且当数据量大时,无法对数据的及时处理及误差分析.所以企业急需一种更有效新型测量方式的出现. 随着计算机以及测量技术的不断发展, 检测仪器数字化是当前及未来仪器的普遍趋势.目前很多测量仪器都配串口,如RS232/485等, 通过对具有数据接口的测量仪器配置太友科技的数据分析仪,将使测量仪器的性能大大得到提高,数据采集仪的主要作用是自动从测量仪器中获取测量数据,进行记录,分析计算,形成相应的各类图形,对测量结果进行自动判断.系统能及时、准确地对工件进行检测和误差分析.大幅度缩短测量工件和统计分析的时间,使操作者能够及时了解工艺系统的工作状态、加工误差的变化趋势及加工误差的影响因素,以便及时调整工艺系统,使加工误差的在线测量、实时分析得以实现. 说明: ●量具要求: 测量仪器必须要配有串口,如RS232/485等; ●数据采集仪可自动从测量仪器中获取测量数据,进行记录,分析计算;

●测量结果会在趋势图上实时体现出来,方便了解测量过程的整体趋势; ●可设置测量上下规格值, 数据采集仪可对测量结果进行自动判断,一旦测量值超出所设置的上下 规格值时,系统可自动报警; ●在现场采集数据后,测量数据可传送到服务器的SPC数据库中,软件对数据进行分析及监控,所 有的分析自动完成,分析的图形包括控制图,CPK分析,RUN Chart,良品率推移图等; ●如果需要更大程度地提高检测的效率,可同时连接多个测量仪器进行检测,则可更大程度上提高 检测的效率.

1-长度测量基本仪器的使用

第三章 普通物理实验 实验1 长度测量基本仪器的使用 【实验目的】 1.熟悉游标卡尺、螺旋测微计、测量显微镜的构造、测量原理及使用方法; 2.学习有效数字和不确定度的计算,掌握误差理论与数据处理方法. 【实验仪器】 游标卡尺,螺旋测微计,测量显微镜,球体,圆柱等. 【仪器介绍】 1.游标原理 普通米尺最小刻度是1mm ,因此使用米尺只能准确地测量到1mm ,为更准确地测量长度,人们采用了游标装置. 游标尺有主尺(米尺)和副尺(标有N 个刻度的游标)两部分构成.由于主尺上标出的相应长度与副尺上标出的相应刻度均相差一个小量x ?,1/(mm )x N ?=,(常见的有三种,1/10(mm )x ?=,1/20(mm)x ?=,1/50(mm )x ?=.当副尺上标有N 个刻度时,游标上这N 个刻度恰好能等分主尺上的1mm ,使读数可精确到1/(mm )N .可见,游标原理可用四个字来概括—— 例如:1/10(m m )游标(也叫十分游标).游标上每个刻度与主尺相应刻度均差 1/10(mm )x ?=,当测量某物体长度时,先将被测物体一端和主尺的零刻线对齐,而另 一端落在主尺的第k 和k+1个刻度之间(k =6,k +1=7),则物体长度L k L =+?,L ?为物体另一端距离第k 个刻度的距离.由于游标刻度与主尺刻度存在差值x ?,两排刻度经对比,必然可找到游标上某个刻度(设为第n 个)与主尺上某刻度重合或最为接近,如图1-2中n =5处与主尺最为接近,即 图1-2 游标卡尺读数举例 图1-1 游标卡尺差示法

150.510 L ?= ?= 而 60.5 6.5()L k L mm =+?=+= 一般而言,当游标上第n 个刻度与主尺上某一刻度重合时,主尺第k 个刻度与游标零刻线间距离为L n x ?=?,待测物体长度由两部分读数构成:①游标零刻线指示部分,即主尺上第k 个刻度所标示的长度,这部分可从主尺上读出,②游标刻线与主尺刻线重合部分所标示的长度,即L n x ?=?,这部分可从游标上读出(目前使用的游标上的刻度不是n 的值,而是n 与x ?相乘后的结果).即 L k L =+? 1/20(mm )的游标也叫“二十分游标”,游标上有20个刻度,如图1-3(a )所示, 游标上每个刻度与主尺的1mm 刻度相差1/20(mm ).游标上的刻度值0,25,50,75,0就是L ?的数值. 1/50(mm )的游标如图1-3(b )所示,其具体含义仿前述讨论,可以自行总结. 2.游标卡尺 游标卡尺的构造如图1-4所示,卡钳E 和E '同刻有毫米的主尺A 相连,游标框W 上附有游标B 以及卡钳F 和F ',推动游标框W 可使游标B 连同卡钳F 、F '沿主尺滑 (a ) 图1-3 二十分、五十分游标 (b )

油漆涂装技术要求和检验规范

产品表面处理规范 -----处理方法概述FZV/QS XX.1-2008一.概述 本规范规定了产品最终表面处理的一般要求。如没有特殊说明,一般指成品最终要达到的表面处理要求。 二.表面处理方法分类 1. 对锻造阀体的闸阀、截止阀、止回阀、过滤器、旋塞阀: a. 阀体材料为奥氏体不锈钢、双相不锈钢的,阀门外表面做酸洗钝化处理; b. 阀体材料为碳钢、低合金钢和合金钢等易蚀铁素体金属的,阀门外表面采用表面磷化处理; c. 阀体材料为铜及铜合金类、铝及铝合金等有色金属和合金的,保持原有表面作为最终完工状态; 2. 对锻造阀体的球阀: a. 阀体材料为奥氏体不锈钢、双相不锈钢、各种有色金属及其合金(铜基、镍基等合金)的,保持 机加工表面作为最终完工状态; b. 阀体材料为碳钢、低合金钢和合金钢等易蚀铁素体金属的,完工表面采用油漆涂装方法; 3. 对铸造阀体阀门: a.阀体材料为奥氏体不锈钢、双相不锈钢、各种有色金属及其合金(铜基、镍基等合金)的,阀门外表面做酸洗钝化处理; b. 阀体材料为灰铸铁和球墨铸铁类的,阀门外表面采用静电喷涂环氧粉末,色标RAL5015(天蓝); c. 其他采用外表面油漆涂装方法。 4. 其他表面涂装方法如ENP、镀锌、达克罗等方法作为特殊要求,根据需求执行,不列入本规范。 5. 参考或执行标准、规范: a. 酸洗钝化的执行和检验按照JB/T 6978《涂装前表面处理---酸洗》的规定; b. 磷化的执行和检验按照GB/T 6807《钢铁件涂装前磷化处理技术条件》的规定; c. 静电粉末喷涂参考GB/T 15607《涂装作业安全规程粉末静电喷涂工艺安全》的规定; d. 油漆涂装按照FZV/QS XX.2-2008表三的规定选取油漆及操作方法,按FZV/QS XX.2-2008进行控 制和检验。

相关主题