搜档网
当前位置:搜档网 › FLUENT知识点解析(良心出品必属精品)

FLUENT知识点解析(良心出品必属精品)

FLUENT知识点解析(良心出品必属精品)
FLUENT知识点解析(良心出品必属精品)

一、基本设置

1.Double Precision的选择

启动设置如图,这里着重说说Double Precision(双精度)复选框,对于大多数情况,单精度求解器已能很好的满足精度要求,且计算量小,这里我们选择单精度。然而对于以下一些特定的问题,使用双精度求解器可能更有利[1]。

a.几何特征包含某些极端的尺度(如非常长且窄的管道),单精度求解器可能不能足够精确地表达各尺度方向的节点信息。

b.如果几何模型包含多个通过小直径管道相互连接的体,而某一个区域的压力特别大(因为用户只能设定一个总体的参考压力位置),此时,双精度求解器可能更能体现压差带来的流动(如渐缩渐扩管的无粘与可压缩流动模拟)。

c.对于某些高导热系数比或高宽纵比的网格,使用单精度求解器可能会遇到收敛性不佳或精确度不足不足的问题,此时,使用双精度求解器可能会有所帮助。

[1] 李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战:FLUENT GAMBIT ICEM CFD Tecplot[M]. 北京,人民邮电出版社,2011:114-116

2.网格光顺化

用光滑和交换的方式改善网格:通过Mesh下的Smooth/Swap来实现,可用来提高网格质量,一般用于三角形或四边形网格,不过质量提高的效果一般般,影响较小,网格质量的提高主要还是在网格生成软件里面实现,所以这里不再用光滑和交换的方式改善网格,其原理可参考《FLUENT全攻略》(已下载)。

3.Pressure-based与Density-based

求解器设置如图。下面说一说Pressure-based和Density-based 的区别:

Pressure-Based Solver是Fluent的优势,它是基于压力法的求解器,使用的是压力修正算法,求解的控制方程是标量形式的,擅长求解不可压缩流动,对于可压流动也可以求解;Fluent 6.3以前的版本求解器,只有Segregated Solver和Coupled Solver,其实也是Pressure-Based Solver的两种处理方法;

Density-Based Solver是Fluent 6.3新发展出来的,它是基于密度法的求解器,求解的控制方程是矢量形式的,主要离散格式有Roe,AUSM+,该方法的初衷是让Fluent具有比较好的求解可压缩流动能力,但目前格式没有添加任何限制器,因此还不太完善;它只有Coupled的算法;对于低速问题,他们是使用Preconditioning方法来处理,使之也能够计算低速问题。Density-Based Solver下肯定是没有SIMPLEC,PISO这些选项的,因为这些都是压力修正算法,不会在这种类型的求解器中出现的;一般还是使用Pressure-Based Solver解决问题。

基于压力的求解器适用于求解不可压缩和中等程度的可压缩流体的流动问题。而基于密度的求解器最初用于高速可压缩流动问题的求解。虽然目前两种求解器都适用于各类流动问题的求解(从不可压缩流动到高度可压缩流动),但对于高速可压缩流动而言,使用基于密度的求解器通常能获得比基于压力的求解器更为精确的结果。

4.axisymmetric和axisymmetric swirl

从字面的意思很好理解axisymmetric和axisymmetric swirl的差别:

axisymmetric:是轴对称的意思,也就是关于一个坐标轴对称,2D的axisymmetric问题仍为2D问题。而axisymmetric swirl:是轴对称旋转的意思,就是一个区域关于一条坐标轴回转所产生的区域,这产生的将是一个回转体,是3D的问题。在Fluent中使用这个,是将一个3D的问题简化为2D问题,减少计算量,需要注意的是,在Fluent中,回转轴必须是x轴。

5.操作工况参数(Operating Conditions)

①操作压力的介绍

关于参考压力的设定,首先需了解有关压力的一些定义。ANSYS FLUENT中有以下几个压力,即Static Pressure(静压)、Dynamic Pressure(动压)与Total Pressure(总压);Absolute Pressure (绝对压力)、Relative Pressure(参考压力)与Operating Pressure (操作压力)。

这些压力间的关系为,Total Pressure(总压)=Static Pressure (静压)+Dynamic Pressure(动压);Absolute Pressure(绝对压力)=Operating Pressure(操作压力)+Gauge Pressure(表压)。

其中,静压、动压和总压是流体力学中关于压力的概念。静压是测量到的压力,动压是有关速度动能的压力,是流动速度能量的体现。

而绝对压力、操作压力和表压是FLUENT引入的压力参考量,在ANSYS FLUENT中,所有设定的压力都默认为表压。这是考虑到计算精度的问题。

②操作压力的设定

设定操作压力时需要注意的事项如下:

●对于不可压缩理想气体的流动,操作压力的设定直接影响流体

密度的计算,因为对于理想气体而言,流动的密度由理想气体

方程获得,理想气体方程中的压力为操作压力。

●对于低马赫数的可压缩流动而言,相比绝对静压,总压降是很

小的,因此其计算精度很容易受到数值截断误差的影响。需要

采取措施来避免此误差的形成,ANSYS FLUENT通过采用表压

(由绝对压力减去操作压力)的形式来避免截断误差的形成,

操作压力一般等于流场中的平均总压。

●对于高马赫数可压缩流动的求解而言,因为此时的压力比低马

赫可压缩流动的大得多,所以求解过程中的截断误差的影响不

大,可以不设定表压。由于ANSYS FLUENT中所有需输入的压

力都为表压,因此此时可以将操作压力设定为0(这样可以最

小化由于压力脉动而引起的误差),使表压与绝对压力相等。

●如果密度设定为常数或者其值由通过温度变化的函数获得,操

作压力并没有在计算密度的过程中被使用。

●默认的操作压力为101325Pa。

操作压力的设定主要基于两点考虑,一是流动马赫数的大小,二是密度计算方法。

表格 1 操作压力的推荐设置

密度关系式马赫数操作压力

理想气体定律大于0.1 0或约等于流场的平均压力理想气体定律小于0.1 约等于流场的平均压力

关于温度的函数不可压缩不使用

常数不可压缩不使用

不可压缩约等于流场的平均压力

不可压缩的理想

气体

③关于参考压力位置的设定

对于不涉及任何压力边界条件的不可压缩流动,ANSYS FLUENT在每次迭代后要调整表压值。这个过程通过使用参考压力位置处(或该位置附近)节点的压力完成。因此,参考压力位置处的表压应一直为0。如果使用了压力边界条件,则不会使用到上述关系,因此参考压力位置不被使用。

参考压力位置默认为等于或接近(0,0,0)的节点中心位置。实际计算中可能需要设置参考压力位置到绝对静压已知的位置处。在Operating Conditions对话框中的Reference Pressure Location

选项组中设置新的参考压力位置的x,y,z的坐标即可。

如果要考虑某一方向的加速度,如重力,可以勾选Gravity复选框。

对于VOF计算,应当选择Specified Operating Density,并且在Operating Density 下为最轻相设置密度。这样做排除了水力静压的积累,提高了round-off精度为动量平衡。同样需要打开Implicit Body Force,部分平衡压力梯度和动量方程中体积力,提高解的收敛性。

Reference Pressure Location(参考压强位置)应是位于流体永远是100%的某一相(空气)的区域,光滑和快速收敛是其基本条件。

二、求解模型的设定

1.流动模型的设置

①无粘模型

理想流体是一种设想的没有粘性的流体,在流动时各层之间没有相互作用的切应力,即没有内摩擦力。十分明显,理想流体对于切向变形没有任何抗拒能力。应该强调指出,真正的理想流体在客观实际中是不存在的,它只是实际流体在某些条件下的一种近似模型。

在Inviscid流动模型应用方面,无粘流动忽略了粘性对流动的影响,这对高雷诺数的流动是合适的,因为高雷诺数流动惯性力的作用远大于粘性力的作用,粘性力可以忽略,所以可以将其考虑成无粘流

动。无粘流动的求解更快,其激波在某些值上预测的偏高。无粘流动能对流动状态和激波位置进行快速预测。

马赫数与激波

马赫数的定义是

v

=

M

a

它表示流体的流动速度与当地声速之比,是一个无量纲的参量。对应于1

M=和1

M>这三种情况的流动分别称为亚声速流、声M<,1

速流和超声速流。当马赫数很小时,速度的相对变化只能引起很小的密度相对变化,但当马赫数很大时,则将引起较大的密度相对变化,这也说明了马赫数是流体压缩性的一个表征。

当飞机、炮弹和火箭以超音速飞行时,或者发生强爆炸、强爆震时,气流受到急剧的压缩,压强和密度突然显著增加,这时所产生的压强扰度将比声速大得多的速度传播,波阵面所到之处气流的各种参数都将发生显著变化,参数突跃。这样一个强间断面叫做激波阵面。

渐缩渐扩管的流动是计算流体力学模拟的经典问题之一。在这类流动中,激波的出现是流动中可压缩效应的体现。精确的激波模拟是CFD研究的热点之一。为了更好捕捉压力梯度,需要采用较细的网格并结合合适的数值模拟和格式。很多实际模拟中,局部网格的自适应会很有帮助。

②层流模型

流动有层流和湍流之分,判断湍流的标准可以参考[2],这里写出内流的判断标准:

Re 2300UD ρ

μ=>

对于内流而言,一般大多数流动都是湍流,一般不使用湍流模型。而对一些外流而言(如外掠平板或是外掠障碍物),则很有可能是层流运动。

③ 湍流模型的评价与选择

a. k ε-湍流模型

这里我们使用的湍流模型是Standard k ε-模型,这种模型应用较多,计算量适中,有较多数据积累和比较高的精度,对于曲率较大和压力梯度较强等复杂流动模拟效果欠佳。一般工程计算都使用该模型,其收敛性和计算精度能满足一般的工程计算要求,但模拟旋流和绕流时有缺陷。

壁面函数的选择

对于有壁面的流动,当主流为充分发展湍流时,根据离壁面法线距离不同,可将流动划分为壁面区(或称内区、近壁区)和核心区(或称外区)。

核心区是完全湍流区,为充分发展的湍流。

在壁面区,由于有壁面的影响,流动与核心区不同。壁面区可分为3个子层:粘性底层、过渡层和对数率层。

[2] 李鹏飞,徐敏义,王飞飞.精通CFD 工程仿真与案例实战:FLUENT GAMBIT ICEM CFD Tecplot[M]. 北京,人民邮电出版社,2011:122

粘性底层是一个紧贴壁面的极薄层,在动量、热量和质量的交换过程中粘性力起主要作用,而湍流切应力可以忽略,因此流动几乎可以看成层流流动,且在平行于壁面方向上的速度呈线性分布。 过渡层处于粘性底层之外,在此层中,粘性力和湍流切应力的作用相当,流动状况较为复杂,很难用公式或定律表述。实际工程计算中由于过渡层厚度极小,可不考虑此层,直接以对数率层的方法处理。 对数率层处于近壁区的最外层,粘性力的影响不明显,湍流切应力占主要地位,流动处于充分发展的湍流状态,流速分布接近对数律。 壁面区内不同子层的高度和速度可以沿壁面法向的无量纲高度和无量纲速度表达。

u u U τ+= yU y τν

+= 其中,u 是流体的时均速度,U τ是壁面摩擦速度,w U ττρ

=

,w τ是壁面切应力,y 是壁面的垂直距离。 在5y +<时,区域为粘性底层,此时速度沿壁面法线方向呈线性分布,即u y ++=。

在60300y +<<时,流动处于对数率层,此时速度沿壁面法线方向呈对数率分布,即 2.5ln 5.5u y ++=+。

壁面函数法的本质是,对于湍流核心区的流动使用k ε-模型求解,而在壁面区并不进行求解,直接使用半经验公式得出该区域的速度等物理量。

FLUENT提供了多种壁面函数处理方式,如标准壁面函数法、非平衡壁面函数法和增强壁面处理。

标准壁面函数法利用对数校正法提供了必需的壁面边界条件(对于平衡湍流边界层)。而非平衡壁面函数法用来改善高压力梯度、分离、再附和滞止等情况下的结果。标准壁面函数法和非平衡壁面函数法都允许在近避免区域上使用较粗的网格。对于大多数高雷诺数情况使用标准的或者非平衡的壁面函数(6

Re10

)。

增强壁面处理选项把混合边界模型和两层边界模型结合起来,对低雷诺数流动或者复杂近壁面现象很适合,湍流模型在内层上得到了修正。

表格 2 几种壁面处理方法的比较

优点缺点

标准壁面函数法应用较多,计算量

小,有较高的精度

适合高雷诺数流动,对低雷诺数流

动问题,有压力梯度、高度蒸腾和

大的体积力、低雷诺数和高速三维

流动问题不适合

非平衡壁面函数法考虑了压力梯度,可

以计算分离,在附着

以及撞击问题

对低雷诺数流动问题,有较强压力

梯度、强体积力及强三维性问题不

适合

增强壁面处理不依赖壁面法则,对

于复杂流动,特别是

要求网格密,因而要求计算机处理

时间长,内存大

低雷诺数流动很适

2.多相流模型

①VOF模型

该模型通过求解单独的动量方程和处理穿过区域的每一流体的容积比来模拟两种或三种不能混合的流体。典型的应用包括流体喷射、流体中大泡运动、流体在大坝坝口的流动、气液界面的稳态和瞬态处

理等。一般而言VOF主要适用于非稳态的多相流模型,仅对某些特定问题的多相流模型的稳态问题能够适用。

VOF方法适用于计算空气和水这样不能互相掺混的流体流动,对于分层流和活塞流,最方便的就是选择VOF模型。需要注意的是,对于湍流模型的设置,VOF不能用于无粘流,也不能用大涡模拟[3]。

Geo-Reconstruct格式

Geo-Reconstruct格式(在Solution Methods中设置)是一种较为精确的追踪自由表面的计算格式,广泛地应用于瞬变流的VOF问题中,但必须注意的要使用该格式VOF模型必须使用显示离散格式(在VOF模型设置选项设置)。

Body Force Formulation

为提高解的收敛性,对于涉及到表面张力的计算,建议在Body Force Formulation 中勾选 Implicit Body Force。这样做由于压力梯度和动量方程中表面张力的部分平衡,从而提高解的收敛性。

[3] 李进良, 李承曦, 胡仁喜. 精通FLUENT.6.3流场分析[M]. 北京, 化学工业出版社, 2009:231-236

②Mixture模型

这是一种简化的多相流模型,用于模拟各种有不同速度的多相流,但是假定了在短空间尺度上局部的平衡。相之间的耦合应当是很强的。它也用于模拟有强烈耦合的各向同性多相流和各向以相同速度运动的多相流。典型的应用包括沉降(sedimentation)、气旋分离器、低载荷作业下的多粒子流动、气相容积率很低的泡状流。

Mixture Parameters

一般需要勾选Mixture Parameters中的Slip Velocity复选框,以此来求解滑移速度模型,因为在多相流中各种组分的速度有很大不

同。对于求解一个均匀的多相流问题可以选择不做滑移速度的计算,可以在mixture parameters选项下将slip velocity关掉。

③Eulerian模型

该模型可以模拟多相分离流及相互作用的相,相可以是液体、气体、固体。与在离散相模型中Eulerian-Lagrangian方案只用于离散相不同,在多相流模型中Eulerian方案用于模型中的每一项。

3.固化与熔化模型

FLUENT 采用“焓-多孔度(enthalpy-porosity)”技术模拟流体的固化和熔化(Solidification/Melting)过程。在流体的固化和熔化问题中,流场可以分成流体区域、固体区域和两者之间的糊状区域。“焓-多孔度”技术采用的计算策略是将流体在网格单元内占有的体

积百分比定义为多孔度(porosity),并将流体和固体并存的糊状区域看作多孔介质区进行处理。在流体的固化过程中,多孔度从1 降低到0;反之,在熔化过程中,多孔度则从0 升至1。“焓-多孔度”技术通过在动量方程中添加汇项(即负的源项)模拟因固体材料存在而出现的压强降。

“焓-多孔度”技术可以模拟的问题包括纯金属或二元合金中的固化、熔化问题、连续铸造加工过程等。计算中可以计算固体材料与壁面之间因空气的存在而产生的热阻,固化、熔化过程中组元的输运等等。需要注意的是,在求解固化、熔化问题的过程中,只能采用分离算法,只能与VOF模型配合使用,不能计算可压缩流,不能单独设定固体材料和流体材料的性质,同时在模拟带反应的组元输运过程时,无法将反应区限制在流体区域,而是在全流场进行反应计算。

①Parameters定义

在Parameters 下面定义Mushy Zone Constant(糊状区域常数)。这个常数的取值范围一般在104到107之间,取值越大沉降曲线就越陡峭,固化过程的计算速度就越快,但是取值过大容易引起计算振荡,因此需要在计算中通过试算获得最佳数值。

②Materials设置

在Materials(材料)面板上,定义Melting Heat(熔化热)、Solidus Temperature(固相点温度)和Liquidus Temperature(液相点温度)。如果计算中涉及组元输运过程,则必须同时定义溶剂的融解温度(Melting Temperature),同时需要定义熔化物的液相线相对于浓度

的斜率(Slope of Liquidus Line)、分配系数(Partition Coefficient)和固体中的扩散速率(Diffusion in Solid)等参数。

③设置边界条件

除了常规的边界条件设置,对于固化和熔化问题还有一些特殊设置,其中包括:在计算壁面接触热阻时设置接触热阻(Contact Resistance)。这个参数在Wall(壁面)面板中的Thermal Conditions (热力学条件)下给定。

果需要定义壁面上表面张力对温度的梯度,则在 Shear Condition(剪切条件)下选择Marangoni Stress(Marangoni 应力)选项。

如果计算拉出速度,则在边界条件中的速度边界条件将被用于拉出速度的计算。

三、相设置

相设置一般用于多相流的设置,对于相设置,这里主要讲一下Interaction的设置,如图:

Interaction设置

Interaction设置用来定义两相的相互作用,其有多个选项卡,如图。

Drag选项卡

针对每对物相,在下拉菜单中选择阻力函数。其中包括

schiller-naumann 模型、morsi-alexander 模型、symmetric(对称)模型等用于流体与流体之间阻力计算的模型,也包括wen-yu 模型、gidaspow 模型、syamlal-obrien 模型等用于液体与固体之间阻力计算的模型,还包括syamlal-obrien-symmetric 模型用于固体与固体之间的阻力计算。除此之外,还可以将阻力函数定义为constant(常数),或者选择user-defined(用户定义)由用户自己定义阻力函数。如果计算中不需要设定阻力,还可以选择none(不计阻力)选项。

阻力设置的相关原理比较复杂,可参考帮助,一般保持默认的schiller-naumann设置不变。

Surface Tension选项卡

Surface Tension选项卡用来定义表面张力,如果相包含壁面粘附,可勾选“Wall Adhesion”复选框。

四、Cell Zone Condition

Frame Motion选项

对于流体,可以通过Frame Motion选项确定坐标运动方式(如离心泵内部流体的旋转使用运动参考系模型),如图:

知识点汇总和思维导图

第九单元知识点汇总和思维导图【一轮复习】 一、溶液的形成 1、溶液概念:一种或几种物质分散到另一种物质里形成的均一的、稳定的混合物,叫做溶液 溶液的基本特征:均一性、稳定性 注意: a、溶液不一定无色,如CuSO4溶液为蓝色 FeSO4溶液为浅绿色 Fe2(SO4)3溶液为黄色 b、溶质可以是固体、液体或气体;水是最常用的溶剂 c、溶液的质量 = 溶质的质量 + 溶剂的质量溶液的体积≠溶质的体积 + 溶剂的体积 d、溶液的名称:溶质的溶剂溶液(如:碘酒——碘的酒精溶液) 2、溶质和溶剂的判断 3、饱和溶液、不饱和溶液 ⑴概念:(略); ⑵注意:①条件:“在一定量溶剂里”“在一定温度下”;②甲物质的饱和溶液不是乙物质的饱和溶液,故甲物质的甲物质的饱和溶液还可以溶解乙物质。 ⑶判断方法:继续加入该溶质,看能否溶解; ⑷饱和溶液和不饱和溶液之间的转化 注:①Ca(OH)2和气体等除外,它的溶解度随温度升高而降低;②最可靠的方法是:加溶质、蒸发溶剂 ⑸浓、稀溶液与饱和不饱和溶液之间的关系 ①饱和溶液不一定是浓溶液; ②不饱和溶液不一定是稀溶液,如饱和的石灰水溶液就是稀溶液; ③在一定温度时,同一种溶质的饱和溶液要比它的不饱和溶液浓; ⑹溶解时放热、吸热现象 a.溶解吸热:如NH4NO3溶解; b.溶解放热:如NaOH溶解、浓H2SO4溶解; c.溶解没有明显热现象:如NaCl 二、溶解度 1、固体的溶解度定义:在一定温度下,某固态物质在100g溶剂里达到饱和状态时所溶解的质量

四要素:①条件:一定温度②标准:100g溶剂③状态:达到饱和④质量:溶解度的单位:克 (1)溶解度的含义:如20℃时NaCl的溶液度为36g含义: a.在20℃时,在100克水中最多能溶解36克NaCl。 b.或在20℃时,NaCl在100克水中达到饱和状态时所溶解的质量为36克。(2)影响固体溶解度的因素:①溶质、溶剂的性质(种类)②温度 a大多数固体物的溶解度随温度升高而升高;如KNO3 b少数固体物质的溶解度受温度的影响很小;如NaCl c极少数物质溶解度随温度升高而降低。如Ca(OH)2 (3)溶解度曲线 例: (a)t3℃时A的溶解度为 80g ; (b)P点的的含义在该温度时,A和C的溶解度相同; (c)N点为 t3℃时A的不饱和溶液,可通过加入A物质、降温、蒸发溶剂的方法使它变为饱和; (d)t1℃时A、B、C、溶解度由大到小的顺序C>B>A; (e)从A溶液中获取A晶体可用降温结晶的方法获取晶体; (f)从B的溶液中获取晶体,适宜采用蒸发结晶的方法获取晶体; (g)t2℃时A、B、C的饱和溶液各W克,降温到t1℃会析出晶体的有A和B 无晶体析出的有 C ,所得溶液中溶质的质量分数由小到大依次为 A

Fluent后处理(DOC)

第四章Fluent后处理 利用FLUENT 提供的图形工具可以很方便的观察CFD 求解结果,并得到满意的数据和图形,用来定性或者定量研究整个计算。本章将重点介绍如何使用这些工具来观察您的计算结果。 1 生成基本图形 在FLUENT中能够方便的生成网格图、等值线图、剖面图,速度矢量图和迹线图等图形来观察计算结果。下面将介绍如何产生这些图形。 一、生成网格图 生成网格或轮廓线视图的步骤 (1)打开网格显示面板 菜单:Display –〉Grid... 图4-1 网格显示对话框 (2)在表面列表中选取表面。点击表面列表下的Outline 按钮来选择所有“外”表面。如果所有的外表面都已经处于选中状态,单击该按钮将使所有外表面处于未选中的状态。点击表面列表下的Interior 按钮来选择所有“内”表面。同样,如果所有的内表面都已经处于选中状态,单击该按钮将使所有内表面处于未选中的状态。 (3)根据需要显示的内容,可以选择进行下列步骤: 1)显示所选表面的轮廓线,在图4-1所示的对话框中进行如下设置:在Options 项选择Edges,在Edge Type 中选择Outline。 2)显示网格线,在Options 选择Edges,在Edge Type 中选择ALL。 3)绘制一个网格填充图形,在Options 选择Faces。显示选中面的网格节点,在Options 选择Nodes。

(4)设置网格和轮廓线显示中的其它选项。 (5)单击Display 按钮,就可以在激活的图形窗口中绘制选定的网格和轮廓线。 二、绘制等值线和轮廓图 生成等值线和轮廓的步骤: 通过图4-2 所示的等值线对话框来生成等值线和轮廓。 菜单:Display –〉Contours... 图4-2 等值线对话框 生成等值线或轮廓的基本步骤如下: (1) 在Contours Of 下拉列表框中选择一个变量或函数作为绘制的对象。首先在上面的列表中选择相关分类;然后在下面的列表中选择相关变量。 (2) 在Surfaces 列表中选择待绘制等值线或轮廓的平面。对于2D情况,如果没有选取任何面,则会在整个求解对象上绘制等值线或轮廓。对于3D情况,至少需要选择一个表面。 (3) 在Levels 编辑框中指定轮廓或等值线的数目。最大数为100。 (4) 如果需要生成一个轮廓视图,请在Option 中选中Draw Profiles 选项。在轮廓选项对话框中(如图4-3),可以如下定义轮廓:

《地球和地球仪》思维导图及知识点解析教学内容

《地球和地球仪》思维导图及知识点解析

收集于网络,如有侵权请联系管理员删除 《地球和地球仪》思维导图及知识点解析 一、思维导图 答案:(1)不规则球体(2)6371(3)4万(4)5.1亿(5)赤道(6)缩短(7)东西(8)赤道(9)垂直(10)半圆(11)南北(12)0°(13)20°W 和160°E(14)经线(15)纬线

二、知识点解析 知识点梳理(基础知识、基本方法、思维拓展)例题解析基础知识点一、地球的形状和大小 (1)认识过程 人类对地球形状的认识,经历了漫长而艰难的探索过程。 天圆地方我国古代有“天圆如张盖,地方如棋局”的说法 太阳和月亮人们根据太阳、月亮的形状,推测地球也是个球体,于是就有了“地球”的概念 麦哲伦环球航行路线图1519~1522年,葡萄牙航海家麦哲伦率领的船队,首次实现了人类环绕地球一周的航行,证实了地球是一个球体 地球卫星照片20世纪,人类进入了太空,从太空观察地球,并且从人造卫星上拍摄了地球的照片,确证地球是一个球体 (2)地球的大小 随着科学的发展,人们利用科学仪器,精确地测量出了地球的大小,下面是一组数据。【例1】下列可以说明地球的形状为球体的是()。 ①人造卫星拍摄的地球照片 ②远航的船舶逐渐消失在地平线以下 ③麦哲伦环球航行 ④环太平洋地带多火山和地震 ⑤流星现象 A.①②③B.②③④ C.③④⑤D.②③⑤ 解析:人造卫星拍摄的地球照片是地球形状的最直观、最有力的证据;远航船舶消失在地平线以下说明地球是一个球体;麦哲伦环球航行也证明了地球是球体。而火山、地震、流星现象与地球的形状无关。 答案:A 收集于网络,如有侵权请联系管理员删除

Fluent 经典问题

QUICK格式可能产生比二阶精度更好的结果。但是,一般情况下,用二阶精度就已足够,即使使用QUICK格式,结果也不一定好。乘方格式(Power-law Scheme)一般产生与一阶精度格式相同精度的结果。中心差分格式一般只用于大涡模拟,而且要求网格很细的情况。 53 对于FLUENT的耦合解算器,对时间步进格式的主要控制是Courant数(CFL),那么Courant 数对计算结果有何影响? courant number实际上是指时间步长和空间步长的相对关系,系统自动减小courant数,这种情况一般出现在存在尖锐外形的计算域,当局部的流速过大或者压差过大时出错,把局部的网格加密再试一下。 在Fluent中,用courant number来调节计算的稳定性与收敛性。一般来说,随着courant number的从小到大的变化,收敛速度逐渐加快,但是稳定性逐渐降低。所以具体的问题,在计算的过程中,最好是把courant number从小开始设置,看看迭代残差的收敛情况,如果收敛速度较慢而且比较稳定的话,可以适当的增加courant number的大小,根据自己具体的问题,找出一个比较合适的courant number,让收敛速度能够足够的快,而且能够保持它的稳定性。 54 在分离求解器中,FLUENT提供了压力速度耦和的三种方法:SIMPLE,SIMPLEC及PISO,它们的应用有什么不同? 在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC(SIMPLE-Consistent)算法,默认是SIMPLE算法,但是对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松驰迭代时,具体介绍如下: 对于相对简单的问题(如:没有附加模型激活的层流流动),其收敛性已经被压力速度耦合所限制,你通常可以用SIMPLEC算法很快得到收敛解。在SIMPLEC中,压力校正亚松驰因子通常设为1.0,它有助于收敛。但是,在有些问题中,将压力校正松弛因子增加到1.0可能会导致不稳定。 对于所有的过渡流动计算,强烈推荐使用PISO算法邻近校正。它允许你使用大的时间步,而且对于动量和压力都可以使用亚松驰因子1.0。对于定常状态问题,具有邻近校正的PISO 并不会比具有较好的亚松驰因子的SIMPLE或SIMPLEC好。对于具有较大扭曲网格上的定常状态和过渡计算推荐使用PISO倾斜校正。 当你使用PISO邻近校正时,对所有方程都推荐使用亚松驰因子为1.0或者接近1.0。如果你只对高度扭曲的网格使用PISO倾斜校正,请设定动量和压力的亚松驰因子之和为1.0比如:压力亚松驰因子0.3,动量亚松驰因子0.7)。如果你同时使用PISO的两种校正方法,推荐参阅PISO邻近校正中所用的方法 55 对于大多数情况,在选择选择压力插值格式时,标准格式已经足够了,但是对于特定的某些模型使用其它格式有什么特别的要求? 压力插值方式的列表只在使用Pressure-based求解器中出现。一般情况下可选择Standard;对于含有高回旋数的流动,高 Rayleigh数的自然对流,高速旋转流动,多孔介质流动,高曲率计算区域等流动情况,选择PRESTO格式;对于可压缩流动,选择Second Order;当然也可以选择Second Order以提高精度;对于含有大体力的流动,选择Body Force Weighted。 注意:Second Order格式不可以用于多孔介质;在使用VOF和Mixture多相流模型时,只能

地球和地球仪思维导图及知识点解析

1 / 13 《地球和地球仪》思维导图及知识点解析 一、思维导图 答案:(1)不规则球体(2)6371(3)4万(4)5.1亿(5)赤道(6)缩短(7)东西(8)赤道(9)垂直(10)半圆(11)南北(12)0°(13)20°W 和160°E(14)经线(15)纬线

二、知识点解析 知识点梳理(基础知识、基本方法、思维拓展)例题解析基础知识点一、地球的形状和大小 (1)认识过程 人类对地球形状的认识,经历了漫长而艰难的探索过程。 天圆地方我国古代有“天圆如张盖,地方如棋局”的说法 太阳和月亮人们根据太阳、月亮的形状,推测地球也是个球体,于是就有了“地球”的概念 麦哲伦环球航行路线图1519~1522年,葡萄牙航海家麦哲伦率领的船队,首次实现了人类环绕地球一周的航行,证实了地球是一个球体 地球卫星照片20世纪,人类进入了太空,从太空观察地球,并且从人造卫星上拍摄了地球的照片,确证地球是一个球体 (2)地球的大小 随着科学的发展,人们利用科学仪器,精确地测量出了地球的大小,下面是一组数据。【例1】下列可以说明地球的形状为球体的是()。 ①人造卫星拍摄的地球照片 ②远航的船舶逐渐消失在地平线以下 ③麦哲伦环球航行 ④环太平洋地带多火山和地震 ⑤流星现象 A.①②③B.②③④ C.③④⑤D.②③⑤ 解析:人造卫星拍摄的地球照片是地球形状的最直观、最有力的证据;远航船舶消失在地平线以下说明地球是一个球体;麦哲伦环球航行也证明了地球是球体。而火山、地震、流星现象与地球的形状无关。 答案:A 2 / 13

谈重点:地球的基本数据可以证明地球的形状 地球的赤道半径比极半径长约21千米,可以证明:地球是一个两极稍扁、赤道略鼓的不规则球体。 析规律:歌谣记忆地球的基本数据 3 / 13

fluent图形后处理技巧

在图的图的标题栏上右键,先在page setup中选择color,然后选copy to clipboard 就可以了,不用截图。 你可以这样子,没必要colormap一定非得在左边,是吧?如果你的模型是扁长型的话,你可以这样子:在fluent中display>options ,在option panel中的右下角,在colormap alignment 中选bottom。然后在显示的图形界面中将图放大,并将其拖到靠近colormap的地方,再继续我之前帖子中的操作就可以了。 数据可以在显示图形时调整好,然后不要关闭调整好的窗口,连续导入不同的数据进行显示就可以了..或者可以采用tecplot来进行后处理,图片会漂亮些.... File-hardcopy-调整一下即可 不用改,复制到word里背景直接就变成白色了 生成图片使用file下的hardcopy命令,有一个选项是背景色翻转,你虽然看到的是黑色,输出图片背景是白色 的。还有一种方式就是显示也希望是白色背景,使用命令display>set>colors>background 把gambit的背景变成白色 在edit的default的graphic的windows-background-color中把black修改成white,然后modify f luent中默认的图形背景颜色为黑色,这对于要发表的图形很不利,因此很多人希望背景为白色,那么可以使用如下命令:Lf ile-》hardcopy设置格式选择为jpg,color选项之后save那么图形就是希望的白色背景。我发现似乎转化成jpg之后没有运行时候显示的清晰,略微模糊一些,大家可以实验其他设置选择,以求得最好的效果zV>3}D另外可以在控制台命令行输入display/set/color回车之后就显示哪些可以设置的选择,敲进比如background之后就可以改变了,提醒一下单纯改变背景为黑色会使得legnd变成一个梯子,其数字会消失。you should change foreground from white to black .this can be done at he same dislay/set/colors> as the background.p<> 好怎么去掉FLUENT图形显示的黑色背景,一般都建议用抓图后反色背景。另外还有数据显示范围比较小,数据显示相同,色轴没有差别的情况。 本人通过摸索,发现这两个问题可以直接在FLUENT里设置。

[整理]fluent经典问题请问双CPU并行计算的效率问题.

fluent 经典问题请问双CPU并行计算的效率问题.txt27信念的力量在于即使身处逆境,亦能帮助你鼓起前进的船帆;信念的魅力在于即使遇到险运,亦能召唤你鼓起生活的勇气;信念的伟大在于即使遭遇不幸,亦能促使你保持崇高的心灵。发信人: rao (绕绕), 信区: NumComp 标题: [合集] 请问双CPU并行计算的效率问题 发信站: BBS 水木清华站 (Mon Jul 7 03:32:43 2003), 站内 ☆─────────────────────────────────────☆ xuzheng (天使暂时离开@_@反方向的钟) 于 (Fri Jul 4 11:03:44 2003) 提到: 大致上只有一个CPU在工作,或者两CPU占有率相当于一个CPU mpich1.2.5+fortran 怎么配置可以使两个CPU同时工作?? BOW ☆─────────────────────────────────────☆ luxz (panda--在热死和冻死边缘挣扎) 于 (Fri Jul 4 11:04:57 2003) 提到: mpirun -np 2 *.exe 【在 xuzheng (天使暂时离开@_@反方向的钟) 的大作中提到: 】 : 大致上只有一个CPU在工作,或者两CPU占有率相当于一个CPU : mpich1.2.5+fortran : 怎么配置可以使两个CPU同时工作?? : BOW ☆─────────────────────────────────────☆ xuzheng (天使暂时离开@_@反方向的钟) 于 (Fri Jul 4 11:06:27 2003) 提到: 不是,你误解了我的意思 再具体点说就是16个节点双CPU的集群,并行计算过程中 每个节点的CPU效率大概只有50%

1.4《地形图的判读》思维导图及知识点解析

. 《地形图的判读》思维导图及知识点解析 一、思维导图 答案:(1)海平面(2)垂直(3)闭和(4)相等(5)密集(6)稀疏(7 )降低(8)降低(9)海拔低处(10)海拔高处(11)

. 重叠相交(12)平原(13)海洋(14)等高线地形图 二、知识点解析 知识点梳理 例题解析 知识点一、等高线地形图 (1)地面高度的计算 ①海拔:地面某个地点高出海平面的垂直距离。 ②相对高度:某个地点高出另一个地点的垂直距离。 辨误区:海拔和相对高度的参照点不同 (2)等高线 ①含义:在地图上,把海拔相同的各点连接成线,叫等高线。 ②特点:除陡崖外,等高线一般不相交;同一条等高线上的各点,海拔相等;等高线有无数条。 析规律:等高距的含义及特点 任意相邻的两条等高线之间的距离,叫等高距。同一幅等高线地形图上,等高距相等。 【例1-1】世界最高峰珠穆朗玛峰海拔约8 844米,我国陆地最低的地方吐鲁番盆地在海平面以下155米,两地相对高度约是( )。 A .8689米 B .9003米 C .8999米 D .9009米 解析:首先确定所求两点的海拔。然后计算二者海拔之差就是相对高度。 答案:C 【例1-2】读图(单位:米),完成下列问题。

(3)等高线地形图 ①含义:用等高线表示地形的地图,叫等高线地形图。 等高线地形图实际上是将不同高度的等高线投影到同一平面上来表示起伏的地形。 ②等高线地形图的判读 在等高线地形图上,可以根据等高线的疏密状况判断地面的高低起伏。坡陡的地方,表示等高线密集;坡缓的地方,表示等高线稀疏。山体的不同部位,等高线形态也不一样。 山体不同部位的等高线分布特点,如下表: 地形部位等高线分布特点 山峰等高线封闭,数值从中间向四周逐渐降低,常用“”表示 山脊等高线的弯曲部分向海拔低处凸出 山谷等高线的弯曲部分向海拔高处凸出 鞍部两个山顶之间相对低洼的部分 陡崖等高线重叠、相交处,常用符号表示 (4)等深线 (1)写出图中字母所代表的地形名称。 A________,B______,C______,D_______,E________。 (2)H点与G点的相对高度是________米。 (3)沿B虚线和C虚线登山,较容易的是________,其原因是_______________。 (4)山峰M与A,较高的是________。 解析:第(1)题,根据图中等高线的分布特点可知,A处等高线封闭,数值从中间向四周逐渐降低,为山峰;B处等高线的弯曲部分向海拔低处凸出,为山脊;C处等高线的弯曲部分向海拔高处凸出,为山谷;D处位于两个山顶之间相对低洼的部分,为鞍部;E处有几条海拔不同的等高线重叠相交,为陡崖。第(2)题,H点所在的等高线是400米,G点处在200米等高线上,二者相对高度是200米。第(3)题,沿B处虚线的等高线稀疏,说明坡度较缓,易攀登。第(4)题,根据等高线地形图中数据变化规律,A、M两点海拔高,是山峰,且M峰多了 .

FLUENT知识点解析(良心出品必属精品)

一、基本设置 1.Double Precision的选择 启动设置如图,这里着重说说Double Precision(双精度)复选框,对于大多数情况,单精度求解器已能很好的满足精度要求,且计算量小,这里我们选择单精度。然而对于以下一些特定的问题,使用双精度求解器可能更有利[1]。 a.几何特征包含某些极端的尺度(如非常长且窄的管道),单精度求解器可能不能足够精确地表达各尺度方向的节点信息。 b.如果几何模型包含多个通过小直径管道相互连接的体,而某一个区域的压力特别大(因为用户只能设定一个总体的参考压力位置),此时,双精度求解器可能更能体现压差带来的流动(如渐缩渐扩管的无粘与可压缩流动模拟)。 c.对于某些高导热系数比或高宽纵比的网格,使用单精度求解器可能会遇到收敛性不佳或精确度不足不足的问题,此时,使用双精度求解器可能会有所帮助。 [1] 李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战:FLUENT GAMBIT ICEM CFD Tecplot[M]. 北京,人民邮电出版社,2011:114-116

2.网格光顺化 用光滑和交换的方式改善网格:通过Mesh下的Smooth/Swap来实现,可用来提高网格质量,一般用于三角形或四边形网格,不过质量提高的效果一般般,影响较小,网格质量的提高主要还是在网格生成软件里面实现,所以这里不再用光滑和交换的方式改善网格,其原理可参考《FLUENT全攻略》(已下载)。 3.Pressure-based与Density-based 求解器设置如图。下面说一说Pressure-based和Density-based 的区别: Pressure-Based Solver是Fluent的优势,它是基于压力法的求解器,使用的是压力修正算法,求解的控制方程是标量形式的,擅长求解不可压缩流动,对于可压流动也可以求解;Fluent 6.3以前的版本求解器,只有Segregated Solver和Coupled Solver,其实也是Pressure-Based Solver的两种处理方法;

Fluent经典问题及答疑1

Fluent经典问题及答疑1 1 对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢?(#61) 2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。(13楼) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?(#80) 4 常见离散格式的性能的对比(稳定性、精度和经济性)(#62) 5 在利用有限体积法建立离散方程时,必须遵守哪几个基本原则?(#81) 6 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?(#130) 7 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?(#55) 8 什么叫边界条件?有何物理意义?它与初始条件有什么关系?(#56) 9 在一个物理问题的多个边界上,如何协调各边界上的不同边界条件?在边界条件的组合问题上,有什么原则? 10 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?(#143) 11 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?(#35) 12 在GAMBIT的foreground和background中,真实体和虚实体、实操作和虚操作四个之间是什么关系? 13 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?(#38) 14 画网格时,网格类型和网格方法如何配合使用?各种方法有什么样的应用范围及做网格时需注意的问题?(#169) 15 对于自己的模型,大多数人有这样的想法:我的模型如何来画网格?用什么样的方法最简单?这样做网格到底对不对?(#154) 16 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?(#40) 17 依据实体在GAMBIT建模之前简化时,必须遵循哪几个原则?(#170) 18 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?(#128) 19 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?(#127) 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?(#41) 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?(9楼) 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?(7楼) 23 在FLUENT运行过程中,经常会出现“turbulence viscous rate”超过了极限值,此时如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响?(#28) 24 在FLUENT运行计算时,为什么有时候总是出现“reversed flow”?其具体意义是什么?有没有

基于思维导图的知识点

1. 函数、极限与连续 重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。 2. 一元函数微分学 重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。 3. 一元函数积分学 重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。 4. 向量代数与空间解析几何(数一) 主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等。该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。 5. 多元函数微分学

重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。 6. 多元函数积分学 重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。 7. 无穷级数(数一、数三) 重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。 8. 常微分方程及差分方程 重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。此外,数三考查差分方程的基本概念与一介常系数线形方程求解方法。数一还要求会伯努利方程、欧拉公式等。

离心风机CFD模拟及改进

2005 Fluent 中国用户大会论文集 由于CFD计算可以相对准确地给出流体流动的细节,如速度场、压力场、温度场等特性,因而不仅可以准确预测流体产品的整体性能,而且很容易从对流场的分析中发现产品和工程设计中的问题,所以在国外已经逐步得到广泛的应用。另外,跨学科组合优化设计方法也已经成为复杂叶轮产品的设计平台。 如今,CFD技术运用于风机的实例在我国已不少见,但由于计算机计算能力的限制,模型过于简单。如单独一个离心叶轮的流道或单独算一个蜗壳;或运用一个流道与蜗壳迭代计算的方法研究风机内部流动,上述模型均忽略了由于蜗壳型线的非对称而导致叶轮各叶道流动呈现的非对称流动特征,而且从离心风机通道内流场分析来看,各部件间的相互影响很严 重,所以,必须充分考虑它们之间的相互影响,不能孤立地分别研究[2]。 本文应用Fluent流动分析软件,计算某型号离心通风机全流场,详细得到通风机内部流场流动情况,并根据气动流场,对叶轮前盘 形状和蜗壳出口部位等进行优化设计,同 时,运用多学科优化平台软件OPTIMUS集成流体计算软件FLUENT,优化计算通风机进口型线,比较集成优化型线与单独用Fluent 反复计算的结果,两者基本接近,说明集成优化是可信的。 将流动区域分为三部分:通风机进口部分、叶轮和蜗壳。进口部分和蜗壳是静止元件,叶轮转动,采用gambit进行参数化建模。整个通风机的网格数为80 万,网格采用四面体和六面体混合的非结构网格技术。

气体在通风机内流动时,它的气动性能在很大程度上由它本身的造型决定。由于流道形状、哥氏力和粘性力的影响,通风机内的气体流动十分复杂。一般认为气流在叶轮内的相对运动和在静止元件内的绝对运动为定常流,而且通风机内的气体压强变化不大,可忽略气体的压缩性。因此,通风机内的流动是三维、定常、不可压缩流动。求解相对稳定的、三维不可压缩雷诺平均N-S方程,湍流模型采用标准的εκ?两方程模型,采用一阶迎风格式离散方程,用SIMPLE方法求解控制方程。在OPTIMUS提供的优化算法中,采用序列二次规划算法。 3 数值计算结果与分析 3.1原通风机建模及数值模拟原有离心通风机存在风量不足、风压不均匀等问题,所以首先对原通风机模型进行数值模拟,分析其内部气流流动状况,找出问题所在。图 1 原通风机子午面的速度分布表2 原通风机回转面的速度分布叶轮出口部位的速度 分布很不均匀,在叶轮前半部分,叶轮不出风反而进风,所以此处有较多逆流存在。观察叶轮子午面上速度分布如图1所示,可以看到叶轮出口明显的逆流现象。风机出风口有较多逆流现象,如图2所示。通过上述流场仿真计算,可以确定原通风机的气动性能很不好。分析气动流场,认为性能差的原因主要基于三个方面:1叶片进口部位缺乏导流部分,气体流动的流线不能折转,所以造成叶片前半部分压强低,产生逆流。由于叶轮出口有较多逆流,导致进入蜗壳的气流速度不均匀。2原模型叶轮 采用前向叶片,叶轮的前盘采用平前盘。平前盘制造简单,但对气流的流动情况有不良影响[3]。3通风机蜗壳出口的面积过大,所以在蜗壳出口处压力过低而产生较多的逆流。3.2通风机改型优化计算优化是对通风机改型以得到较好 气动性能的过程。针对原通风机模型气动流场中存在的问题,在结构上作一些相应修改。3.2.1 改进模型A 针对原通风机模型计算中存在的叶片前半部分逆流 现象严重的问题,将叶轮前盘改为弧线型,使计算结果改善。但由于将叶轮的前盘改为弧形,而使叶轮出口宽度减小,所以为了不降低流量,将叶轮的轴向尺寸增加。叶轮出口宽度增加到252mm。如此改动后,叶轮沿子午面速度分布如图3所示。改为 弧形前盘,对气流进行导流,则气动性能改善。与原模型相比,通风机的出口风压增加24.9%,出口流量增加17%,轴功率增加9.4%,效率增加7.6%。2005 Fluent 中国用户大会论文集90 气动性能有所改善,但轴功率增加。通过观察通风机内部气流 的流动情况,叶轮进口部位的流动得到好转,但蜗壳出口部位的流动仍然不好,蜗壳

Fluent经典问题及解答

Fluent经典问题及解答 1 对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢?(#61) 2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。(13楼) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?(#80) 4 常见离散格式的性能的对比(稳定性、精度和经济性)(#62) 5 在利用有限体积法建立离散方程时,必须遵守哪几个基本原则?(#81) 6 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?(#130) 7 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?(#55) 8 什么叫边界条件?有何物理意义?它与初始条件有什么关系?(#56) 9 在一个物理问题的多个边界上,如何协调各边界上的不同边界条件?在边界条件的组合问题上,有什么原则? 10 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?(#143) 11 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?(#35) 12 在GAMBIT的foreground和background中,真实体和虚实体、实操作和虚操作四个之间是什么关系? 13 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?(#38) 14 画网格时,网格类型和网格方法如何配合使用?各种方法有什么样的应用范围及做网格时需注意的问题?(#169) 15 对于自己的模型,大多数人有这样的想法:我的模型如何来画网格?用什么样的方法最简单?这样做网格到底对不对?(#154) 16 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?(#40) 17 依据实体在GAMBIT建模之前简化时,必须遵循哪几个原则?(#170) 18 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?(#128) 19 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?(#127) 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?(#41) 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?(9楼) 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?(7楼)

CFD 的Fluent后处理tecplot软件动画步骤方法

创〗tecplot 中动画制作方法。 [精华] 于 2005-11-09 09:41 个时间序列的数据读入以后利用tecplot 中的tool/Animate/选项可以创建动画。可以根据不同的需要选择contours 、zones 。在应用中一般选择zones 多一点。 主题相关图片如下: dreamoon 发帖: 13 于 2005-11-09 09:46 在zones 里有如下弹出窗口,选择起始zone 和结束zone ,然后输出即可。 此主题相关图片如下:

积分: 0 雪币: 13 dreamoon 发帖: 13 积分: 0 雪币: 13 于 2005-11-09 09:54 或者另外有一种更为方便的方法,该法可以不用一次将所有的数据文件读入,对内存和机子速度较慢的用户更实用: File/Export ,选择avi ,然后打开要输出的contour ,进行如图的操作: 此主题相关图片如下:

dreamoon 编辑于2005-11-09 10:01 dreamoon 发帖: 13 积分: 0 雪币: 13 于2005-11-09 09:56 然后: 此主题相关图片如下:

dreamoon 发帖: 13 积分: 0 雪币: 13 于2005-11-09 09:58 最后选择Finish Animation就可以了。 此主题相关图片如下:

东岸线 发帖: 361 积分: 0 雪币: 310 于2005-11-09 18:58 好 有机会试试

flyboys 发帖: 35 积分: 0 雪币: 35 于2005-11-10 22:02 楼主的数据源是来自 fluent计算获得的数据吧!我们没有用过fluent,根本不知道数据格式是什么?能否把你所作例子的数据格式呢?谢谢 dreamoon 发帖: 13 积分: 0 雪币: 13 于2005-11-11 07:32 我给的例子是一般性的数据;对于fluent 来说就是利用软件的自动编号过程将计算不同时间(或迭代步)的结果保存下来然后分别导入Tecplot就可以了,具体的方法可以参考fluent的帮助手册中关于文件的读写 的相关部分。 wilim 飞燕 发帖: 6 积分: 0 雪币: 6 于2005-11-16 20:49 直接在fluent里面做动画不就可以了,为何还要导出到tecplot中呢,不理解 dreamoon于2005-11-18 00:06

tecplot执行fluent后处理--截面云图显示

Fluent后处理——Tecplot截面云图显示 本部分介绍一下用tecplot进行fluent后处理(等值线云图制作和矢量图制作)的一些小经验,希望能帮到和我一样在fluent数据处理途中遇到小问题的同学。如有问题,请多指正。 1、将导入的三维数据通过slices工具切出截面,并读取该截面数据。 首先,在导入fluent数据时,选择的数据类型必须是Fluent Data Loader,同时选中fluent的cas和data文件进行导入;并且保证文件目录全是英文目录,否则容易出错。 对于已导入的三维cas和data文件,选中左侧的slices,并点击slices后面的details。 弹出slice Details对话框,在slice location后有下拉菜单,可以自定义切片位置,本文选择了Z-Planes,并将Show primary planes 下方的值设为0,代表切片为Z=0截面,如图中黄色截面表示切片位置。点击close。 点击如下图所示的data—extract—extract current slices。

弹出对话框,点击extract。 切片就会变为实体,如下图所示。

为了只显示切片,点击左侧栏中的zone style,在弹出的对话框中,将slice:Z=0上面的内容全部取消选择,如下图。 选中左侧栏中的contour,云图就会显示出来(vector同理)。视角可以自由调整。至此,读取切片数据完成。

2、如何不让云图像蒙了一层雾一般,使其颜色更鲜艳?如下图,云图颜色不鲜亮。 取消下图中lighting选项,云图颜色恢复明亮。

基于FLUENT的离心风机性能优化

陈一晓?龚一艳?陈小兵?等.基于FLUENT的离心风机性能优化[J].江苏农业科学?2019?47(16):250-254. doi:10.15889/j.issn.1002-1302.2019.16.055 基于FLUENT的离心风机性能优化 陈一晓?龚一艳?陈小兵?张一晓?王一果?缪友谊?刘德江 (农业部南京农业机械化研究所?江苏南京210014) 一一摘要:机械化高效施药是目前对喷药机械的基本要求?风送植保机械被普遍使用?风机是其中的关键部件?因此风 机的性能直接决定了植保机械的性能?采用正交试验方法对影响风机的主要参数进行优化?在FLUENT中对各个正交试验方案进行分析得到?叶片数对风机性能的影响最大?叶片出口安装角对风机性能的影响最小?优化后的风机方案与原风机相比?风机流量增加了3.92%?效率提高了17.07%?采用FLUENT对离心风机进行性能分析可以为优化离心风机性能提供理论依据? 一一关键词:背负式喷雾喷粉机?离心风机?叶轮?FLUENT?流场分析?正交试验?优化性能?最优方案一一中图分类号:S49一一文献标志码:A一一文章编号:1002-1302(2019)16-0250-05收稿日期:2018-03-29 基金项目:国家重点研发计划(编号:2017YFD0200303)?江苏省重点研发计划(现代农业)(编号:BE2016303)?现代农业产业技术体系建设专项-西甜瓜产业技术体系(编号:CARS-25)? 作者简介:陈一晓(1989 )?女?山东德州人?硕士?研究实习员?主要从事植保施药技术与装备研究?E-mail:chenxiao6105@163.com?通信作者:龚一艳?硕士?研究员?主要从事植保施药技术与装备研究?Tel:(025)84346241?E-mail:nnnGongyan@qq.com? 一一背负式喷雾喷粉机是一种典型的小型植保机械?因其轻 便二灵活二效率高的特点已被广泛应用于水稻二棉花二玉米二小麦二果树等大面积农作物病虫害防治?背负式喷雾喷粉机的射程二雾化效果二喷量等关键指标主要取决于离心风机的性能?因此离心风机是背负式喷雾喷粉机的关键部件?它的功 用主要是产生高速气流?将药液破碎雾化或将药粉吹散?并将之送向远方[1]? 背负式喷雾喷粉机上所使用的离心风机均为小型高速离 心风机?风机是风送植保机械的核心部件?良好的风机性能能够提高雾滴喷洒的均匀性?提高沉积量?降低飘移量[2]?虽然目前存在的风送式植保机械种类众多?但是用于风送式植保机械的风机并没有统一标准?风送式植保机械具有射程远二雾化均匀二穿透性好二靶标性好二雾滴飘移少等特点?因此被广泛应用于大田二果园等农药喷洒中[3]?配合不同的地理 位置以及作物本身?风送植保机械存在不同的种类?用于背负式喷雾喷粉机上的小型离心风机由于转速高等特点?离心风机各个参数对其性能的影响并没有明确的理论依据?因此针对不同的小型离心风机进行流场分析以得到各个参数对风机性能影响的研究很有必要?1一离心风机流场数值模拟 所有的流动都必须满足三大物理定律?即质量守恒定律二动力守恒定律以及能量守恒定律?相对应地就可以得到对应的质量守恒方程二动量守恒方程以及能量守恒方程?由于在离心风机中不需要考虑传热问题?因此能量守恒方程不需要考虑在其中? FLUENT中提供的湍流模型种类很多?但是目前还没有 适用于各种流动的湍流模型?因此要根据实际解决的问题及其对精确度的要求选择合适的湍流模型?考虑到风机实际的工作情况?本研究的湍流模型选择为K-ε模型?K-ε模型又分为标准K-ε模型二重整化(RNG)K-ε模型以及可实现K-ε模型?综合考虑风机运动的实际情况?最终选择K-ε模型中的可实现K-ε模型为本研究所用的湍流模型? FLUENT中提供了多种壁面函数处理方法?例如标准壁 面函数法二非平衡壁面函数法以及增强壁面处理?标准壁面函数法利用对数校正法提供了所必需的壁面边界条件?考虑到离心风机内部的结构比较复杂?本研究选择标准壁面函数法作为分析方法? 在流体流动中建立的基本方程为偏微分方程?在理论上可以求得其解?但是由于问题本身的复杂性?并不易得到它们的解析解或者近似解析解?因此在FLUENT中出现了离散化的概念?离散化就是将无限空间中的有效个体映射到有限的空间中?离散化的目的是将连续的偏微分方程组及其定解条件按照特定的规则在计算区域的离散网格上转换为代数方程?以得到连续系统的离散数值逼近解?在FLUENT中可以将控制方程的离散方法分为有限差分法二有限元法和有限体积法?本研究选择的是有限体积法? SIMPLE算法在1972年被提出并得到广泛的应用?是计 算不可压流场的主要方法?是后来对其算法进行改进与发展的基础?SIMPLEC算法的基本思想与SIMPLE算法一致?但是对通量的修正方法进行了改进?加快了收敛速度?本研究中求解算法采用的是SIMPLEC算法? 在FLUENT中通常认为残差小于10-3时为收敛?因此在对离心风机的内部流场进行分析时?对变量的监控指标设定为10-3? 2一离心风机内部流场模拟结果分析2.1一离心风机模型的建立 本研究的离心风机主要被应用在背负式喷雾喷粉机上? 因此采用前向叶轮和前弯式叶片?在Pro/ENGINEER软件 052 江苏农业科学一2019年第47卷第16期

相关主题