搜档网
当前位置:搜档网 › CAD继电器选型表

CAD继电器选型表

CAD继电器选型表

控制继电器型号含义

12-13

固态继电器介绍及工作原理

固态继电器介绍及工作原理(2) 收藏此信息打印该信息添加:用户发布来源:未知 固态继电器的控制信号所需的功率极低,因此可以用弱信号控制强电流。同时交流型的SSR采用过零触发技术,使SSR可以安全地用在计算机输出接口,不会像E MR那样产生一系列对计算机的干扰,甚至会导致严重当机。比较常用的是DIP封装的型式。控制电压和负载电压按使用场合可以分成交流和直流两大类,因此会有DC-AC、DC-DC、AC-AC、AC-DC四种型式,它们分别在交流或直流电源上做负载的开关,不能混用. 按负载电源的类型不同可将SSR分为交流固态继电器(AC—SSR)和直流固态继电器(DC—SSR)。AC—SSR是以双向晶闸管作为开关器件,用来接通或断开交流负载电源的固态继电器。AC—SSR的控制触发方式不同,又可分为过零触发型和随机导通型两种。过零触发型AC—SSR是当控制信号输入后,在交流电源经过零电压附近时导通,故干扰很小。随机导通型AC—SSR则是在交流电源的任一相位上导通或关断,因此在导通瞬间可能产生较大的干扰。 工作原理 过零触发型AC—SSR为四端器件,其内部电路如图1所示。1、2为输入端,3、4为输出端。R0为限流电阻,光耦合器将输入与输出电路在电气上隔离开,V1构成反相器,R4、R 5、V2和晶闸管V3组成过零检测电路,UR为双向整流桥,由V3和UR用以获得使双向晶闸管V4开启的双向触发脉冲,R3、R7为分流电阻,分别用来保护V3和V4,R8和C 组成浪涌吸收网络,以吸收电源中带有的尖峰电压或浪涌电流,防止对开关电路产生冲击或

干扰。 要指出的是所谓“过零”并非真的必须是电源电压波形的零处,而一般是指在10~25V或-(1 0~25)V区域内进行触发,如图2所示。图中交流电压分三个区域,Ⅰ区为-10V~+10V范围,称为死区,在此区域中加入输入信号时不能使SSR导通。Ⅱ区为10~25V和-(10~2 5)V范围,称为响应区,在此区域内只要加入输入信号,SSR立即导通。Ⅲ区为幅值大于2 5V的范围,称为抑制区在此区域内加入输入信号,SSR的导通被抑制。 当输入端未加电压信号时,光耦合器的光敏晶体管因未接收光而截止,V1饱和,V3和V4因无触发电压而截止,此时SSR关闭。当加入输入信号时,光耦合器中的发光二极管发光,光敏晶体管饱和,使V1截止。此时若V3两端电压在-(10~25)V或10~25V范围内时,只要适当选择分压电阻R4和R5,就可使V2截止,这样使V3触发导通,从而使V4的控制极上得到从R6→UR→V3→UR→R7或反方向的触发脉冲,而使V4导通,使负载接通交流电源。而若交流电压波形在图2中的Ⅲ区内时,则因V2饱和而抑制V3和V4的导通,而使SSR被抑制,从而实现了过零触发控制。由于10~25V幅值与电源电压幅值相比可近似看作“零”。因此,一般就将过零电压粗略地定义为0~±25V,即认为在此区域内,只要加入

热继电器型号表

热继电器型号表 型号 机型 额定 TK-E02A-C热过载继电器0.1-0.15ATK-E02B-C热过载继电器0.13-0.2ATK-E02C-C热过载继电器0.15-0.24ATK-E02D-C热过载继电器0.2-0.3ATK-E02E-C热过载继电器0.24-0.36ATK-E02F-C热过载继电器0.3-0.45ATK-E02G-C热过载继电器0.36-0.54ATK-E02H-C热过载继电器0.48-0.72ATK-E02J-C热过载继电器0.64-0.96ATK-E02K-C热过载继电器 0.8-1.2ATK-E02L-C热过载继电器0.95-1.45ATK-E02M-C热过载继电器 1.4- 2.2ATK-E02N-C热过载继电器 1.7-2.6ATK-E02P-C热过载继电器 2.2- 3.4ATK-E02R-C热过载继电器 2.8- 4.2ATK-E02S-C热过载继电器4-6ATK-E02T-C热过载继电器5-8ATK-E02U-C热过载继电器6-9ATK-E02V-C 热过载继电器7-11ATK-E02W-C热过载继电器9-13ATK-E02X-C热过载继电器12-18ATK-E02Q-C热过载继电器16-22ATK-E02Y-C热过载继电器20-25ATK-E2S-C热过载继电器4-6ATK-E2U-C热过载继电器5-8ATK-E2V-C热过载继电器6-9ATK-E2W-C热过载继电器7-11ATK-E2X-C热过载继电器9-13ATK-E2B-C热过载继电器12-18ATK-E2E-C热过载继电器24-36ATK-E2I-C 热过载继电器32-42ATK-E2H-C热过载继电器40-50ATK-E3V-C热过载继电器7-11ATK-E3W-C热过载继电器9-13ATK-E3X-C热过载继电器12-18ATK-E3B-C 热过载继电器18-26ATK-E3E-C热过载继电器24-36ATK-E3F-C热过载继电器28-40ATK-E3G-C热过载继电器34-50ATK-E3J-C热过载继电器45-65ATK-E3O-C热过载继电器48-68ATK-E3R-C热过载继电器64-80ATK-E3M-C热过载继电器65-95ATK-E3I-C热过载继电器85-105ATK-E5B-C热过载继电器18-26ATK-E5E-C热过载继电器24-36ATK-E5F-C热过载继电器28-40ATK-E5G-C热过载继电器34-50ATK-E5J-C热过载继电器45-65ATK-E5M-C热过载继电器65-95ATK-E5I-C热过载继电器85-105ATK-E6J-C热过载继电器45-65ATK-E6L-C热过载继电器53-80ATK-E6M-C热过载继电器65-95ATK-E6N-C热过载继电器85-125ATK-E6P-C热过载继电器110-160ATK-E6HJ-C热过载继电器45-65ATK-E6HL-C热过载继电器53-80ATK-E6HM-C热过载继电器65-95ATK-E6HN-C热过载继电器85-125ATK-E6HP-C热过载继电器110-160ATK-N8M-C热过载继电器65-95ATK-N8N-C热过载继电器85-125ATK-N8P-C热过载继电器110-160ATK-N8R-C热过载继电器125-185ATK-N10N-C热过载继电器85-125ATK-N10P-C热过载继电器110-160ATK-N10R-C热过载继电器125-185ATK-N10S-C热过载继电器160-240ATK-N10HN-C热过载继电器85-125ATK-N10HP-C热过载继电器110-160ATK-N10HR-C热过载继电器125-185ATK-N10HS-C热过载继电器160-240ATK-N12P-C热过载继电器110-160ATK-N12R-C热过载继电器125-185ATK-N12S-C热过载继电器160-240ATK-N12T-C热过载继电器200-300ATK-N12U-C热过载继电器240-360ATK-N12V-C热过载继电器300-450ATK-N12HP-C热过载继电器110-160ATK-N12HR-C热过载继电器125-185ATK-N12HS-C热过载继电器160-240ATK-N12HT-C热过载继电器200-300ATK-N12HU-C热过载继电器

热继电器的选择和计算

看一下本题就知了, 有一台三相异步电动机额定电压为380伏,容量为10千瓦,功率因数为0.85,效率为0.95,选择交流接触器、热继电器及整定值。 解:已知U=380V,P=10KW,cosφ=0.85,η=0.95 电流I=P/(√3*U*cosφ*η)=10/(1.732*0.38*0.85*0.95)≈20A 选择交流接触器KM=Ie×(1.3~2)=26~40(A),选CJ10-40的接触器 选择热继电器FR=Ie×(1.1~1.5)=22~25(A),选JR16-20/30热元件22A的热继电器。 热元件整定值等于电动机额定电流,整定20A 答:电动机电流为20A,选40A的交流接触器,选额定电流30A热元件22A的热继电器,整定值20A。 I=P/(√3*U*cosφ*η)=10/(1.732*0.38*0.85*0.95)≈20A 、有一台三相异步电动机额定电压为380伏,容量为14千瓦,功率因数为0.85,效率为0.95,计算电动机电流。 解:已知U=380(V),cosφ=0.85,η=0.95,P=14(KW) 电流 此主题相关图片如下: 答:电动机电流29安培。 2、有一台三相异步电动机额定电压为380伏,容量为10千瓦,功率因数为0.85,效率为0.95,选择交流接触器、热继电器及整定值。 解:已知U=380V,P=10KW,cosφ=0.85,η=0.95 电流 此主题相关图片如下: 选择交流接触器KM=Ie×(1.3~2)=26~40(A),选CJ10-40的接触器 选择热继电器FR=Ie×(1.1~1.5)=22~25(A),选JR16-20/30热元件22A的热继电器。 热元件整定值等于电动机额定电流,整定20A 答:电动机电流为20A,选40A的交流接触器,选额定电流30A热元件22A的热继电器,整定值

常用热继电器型号

NR2热继电器 NR2-11.5/Z 0.1-13A NR2热继电器 NR2-25G/Z 0.1-10A NR2热继电器 NR2-25G/Z 13-25A NR2热继电器 NR2-36G/Z 23-36A NR2热继电器 NR2-93G/Z 23-80A NR2热继电器 NR2-93G/Z 80-93A NR2热继电器 NR2-150/Z 80-150A NR2热继电器 NR2-200 80-200A NR2热继电器 NR2-630G 160-630A NR3热继电器 NR3-16 0.11-17.6A NR3热继电器 NR3-25 0.1-8.5A NR3热继电器 NR3-25 11-14A NR3热继电器 NR3-25 19-32A NR3热继电器 NR3-45 0.32-21A NR3热继电器 NR3-45 27-45A NR3热继电器 NR3-85 6-100A NR3热继电器 NR3-105 27-115 NR3热继电器 NR3-170 170-200A NR3热继电器 NR3-250 100-400A NR4热继电器 NR4-12.5/Z 0.1-14.5A NR4热继电器 NR4-25/Z 0.1-25A NR4热继电器 NR4-32/Z 4-36A NR4热继电器 NR4-45/Z 1-45A NR4热继电器 NR4-63/F 0.1-63A NR4热继电器 NR4-80/Z 12.5-88A NR4热继电器 NR4-180/F 80-180A 1 JR20-16 5.4-8A 热继电器 2 JR20-6 3 24-36A 热继电器 3 JR20-10 1.8-2.6A 热继电器 4 JR20-250L 170A 热继电器 5 JR20-63L 4U 56A 热继电器 6 JR20-16 10-14A 热继电器 7 JR20-10 8.6-11.6A 热继电器 8 JR20-16 3.6-5.4A 热继电器 9 JR20-16 8-12A 热继电器 10 JR20-16 12-16A 热继电器 11 JR20-16 14-18A 热继电器12 JR20-25 7.8-11.6A 热继电器 13 JR20-25 11.6-17A 热继电器 14 JR20-25 21-29A 热继电器 15 JR20-63 16-24A 热继电器 16 JR20-63 32-47A 热继电器 17 JR20-63 40-55A 热继电器18 JR20-63 47-62A 热继电器 19 JR20-63 55-71A 热继电器 20 JR20-160 33-47A 热继电器 21 JR20-160 47-63A 热继电器 22 JR20-160 63-84A 热继电器 23 JR20-160 74-98A 热继电器 24 JR20-160 85-115A 热继电器 25 JR20-160 100-130A 热继电器 26 JR20-160 130-170A 热继电器 27 JR20-160 144-176A 热继电器 28 JR20-250 130-195A 热继电器 29 JR20-250 167-250A 热继电器

接触器与热继电器选型表--实用.docx

施耐德电动机接触器与热继电器选型表 序 直接启动星三角启动备注功率断路器 号 接触器热继电器整定值接触器 *2接触器热继电器整定值 10.15C65N 3P D16A LC1-D09M7C LRD04C 0.56A 0.63~1A 20.37C65N 3P D16A LC1-D09M7C LRD06C 1~1.6A 1.1A 30.55C65N 3P D16A LC1-D09M7C LRD07C 1.5A 1.6~ 2.5A 40.75C65N 3P D16A LC1-D09M7C LRD07C 2A 1.6~2.5A 5 1.1C65N 3P D16A LC1-D09M7C LRD08C 2.5~4A 2.8A 6 1.5C65N 3P D16A LC1-D09M7C LRD08C 2.5~4A 3.7A 7 2.2C65N 3P D16A LC1-D18M7C LRD10C 4~6 5.3A 83C65N 3P D16A LC1-D18M7C LRD12C 5.5~87A 9 3.7C65N 3P D16A LC1-D18M7C LRD14C 7~108A

10 5.5C65N 3P D20A LC1-D18M7C LRD16C 9~1312A 117.5C65N 3P D25A LC1-D18M7C LRD21C 12~1815A LC1-D12M7C LC1-D09M7C LRD14C 7~107A 129C65N 3P D25A LC1-D25M7C LRD22C 17~2418A LC1-D18M7C LC1-D09M7C LRD16C 9~139A 1311C65N 3P D32A LC1-D32M7C LRD22C 17~2423A LC1-D18M7C LC1-D09M7C LRD16C 9~1311A 1415NSE100N3P 50A MA LC1-D40M7C LRD33 53C 30A LC1-D25M7C LC1-D12M7C LRD21C 12~1814A 23~32 15 18.5NSE100N3P 50A MA LC1-D25M7C LC1-D12M7C LRD22 17~2518A 1622NSE100N3P 50A MA LC1-D32M7C LC1-D18M7C LRD-32 23~3221A 1730NSE100N3P 50A MA LC1-D38M7C LC1-D18M7C LRD-35 30~3829A 1837NSE100N 3P 100A LC1-D50M7C LC1-D25M7C LRD-33 57 40A MA30~40 1945NSE100N 3P 100A LC1-D65M7C LC1-D38M7C LRD-33 59 47A MA48~65 2055NSE160N 3P 150A LC1-D65M7C LC1-D38M7C LRD-33 59 58A MA48~65 2175NSE160N 3P 150A LC1-D95M7C LC1-D50M7C LRD-33 63 78A MA63~80 2290 NSE250N 3P 220A LC1-D115M7C LC1-D65M7C LRD-43 65 99A

固态继电器介绍及工作原理

固态继电器介绍及工作原理 1.什么是固态继电器,有什么优缺点? 固态继电器(亦称固体继电器)英文名称为Solid State Relay,简称SSR。它是用半导体器件代替传统电接点作为切换装置的具有继电器特性的无触点开关器件,单相SSR为四端有源器件,其中两个输入控制端,两个输出端,输入输出间为光隔离,输入端加上直流或脉冲信号到一定电流值后,输出端就能从断态转变成通态。 固态继电器工作可靠,寿命长,无噪声,无火花,无电磁干扰,开关速度快,抗干扰能力强,且体积小,耐冲击,耐振荡,防爆、防潮、防腐蚀、能与TTL、DTL、HTL等逻辑电路兼容,以微小的控制信号达到直接驱动大电流负载。主要不足是存在通态压降(需相应散热措施),有断态漏电流,交直流不能通用,触点组数少,另外过电流、过电压及电 压上升率、电流上升率等指标差。 2. 固态继电器可应用于哪些场合? 固态继电器目前已广泛应用于计算机外围接口装置,电炉加热恒温系统,数控机械,遥控系统、工业自动化装置;信号灯、闪烁器、照明舞台灯光控制系统;仪器仪表、医疗器械、复印机、自动洗衣机;自动消防,保安系统,以及作为电网功率因素补偿的电力电容的切换开关等等,另外在化工、煤矿等需防爆、防潮、防腐蚀场合中都有大量使用。 3.固态继电器可分为哪些类型? 交流固态继电器按开关方式分有电压过零导通型(简称过零型)和随机

导通型(简称随机型);按输出开关元件分有双向可控硅输出型(普通型)和单向可控硅反并联型(增强型);按安装方式分有印刷线路板上用的针插式(自然冷却,不必带散热器)和固定在金属底板上的装置式(靠散热器冷却);另外输入端又有宽范围输入(DC3-32V)的恒流 源型和串电阻限流型等。 4.过零型SSR与随机型SSR在用途上有什么区别? 过零型SSR用作“开关”切换(从“开关”切换功能而言即等同于普通的继电器或接触器),我们通常讲的固态继电器多数都为过零型(过零型 SSR只能“开关”不能“调压”)。 随机型SSR主要用于“斩波调压”(但随机型SSR的控制信号必须为与电网同步且上升沿可在0°-180°范围内改变的方波信号时才能实现调压,单一电压信号或0-5V的模拟信号并不能使其调压,从“调压”功能的角度讲随机型SSR完全不同于普通的继电器或接触器)。有一点必须强调,各类调压模块或固态继电器内部作为输出触点的器件均为可控硅,且都是依靠改变可控硅导通角来达到“调压”的目的,故输出的电压波形均为“缺角”的正弦波(不同于自耦调压器输出的完整正弦波),因此存在高次谐波,有一定噪音,电网有一定“污染”(国内外同类产品均相同, 这是由斩波调压原理决定的)。 固态继电器的分类与工作原理 固态继电器(Solid State Relays,缩写SSR)是一种无触点电子开关,由分立元器件、膜固定电阻网络和芯片,采用混合工艺组装来实现控制回路(输入电路)与负载回路(输出电路)的电隔离及信号耦合,由固态器件实现负载的通断切换功能,内部无任何可动部件。尽管市场上的固态继电器型号规格繁多,但它们的工作原理基本上是相似的。主要由输入(控制)电路,驱动电路和输出(负载)电路三部分组成。 固态继电器的输入电路是为输入控制信号提供一个回路,使之成为固态继电器的触发信号源。固态继电器的输入电路多为直流输入,个别的为交流输入。直流输入电路又分为阻性输入和恒流输入。阻性输入电路的输入控制电流随输入电压呈线性的正向变化。恒流输入电路,在输入电压达到一定值时,电流不再随电压的升高而明显增大,这种继电器 可适用于相当宽的输入电压范围。 固态继电器的驱动电路可以包括隔离耦合电路、功能电路和触发电路三部分。隔离耦合电路,目前多采用光电耦合器和高频变压器两种电路形式。常用的光电耦合器有光-三极管、光-双向可控硅、光-二极管阵列(光-伏)等。高频变压器耦合,是在一定的输入电压下,形成约10MHz的自激振荡,通过变压器磁芯将高频信号传递到变压器次级。功能电路可包括检波整流、过零、加速、保护、显示等各种功能电路。触发电路的作用是给输出器件提供触发信号。 固态继电器的输出电路是在触发信号的控制下,实现固态继电器的通断切换。输出电路主要由输出器件(芯片)和起瞬态抑制作用的吸收回路组成,有时还包括反馈电路。目前,各种固态继电器使用的输出器件主要有晶体三极管(Transistor)、单向可控硅(Thyristor或SCR)、双向可控硅(Triac)、MOS场效应管(MOSFET)、绝缘栅型双极晶体管(IGBT)等。固态继电器原理固态继电器(Solidstate Relay, SSR)是一种由固态电子组件组成的新型无触点开关,利用电子组件(如开关三极管、双向可控硅

热继电器型号大全

热继电器型号 热继电器的额定电流应大于电动机额定电流。然后根据该额定电流来选择热继电器的型号。热继电器的热元件的额定电流应略大于电动机额定电流。当电动机启动电流为其额定电流的6倍及启动时间不超过5S时,热无件的整定电流调节到等于电动机的额定电流;当电动机的启动时间较长、拖动冲击性负载或不允许停车时,热元件整定电流调节到电动机额定电流的1.1-1.15倍。 型号机型额定 TK-E02A-C热过载继电器0.1-0.15A TK-E02B-C热过载继电器0.13-0.2A TK-E02C-C热过载继电器0.15-0.24A TK-E02D-C热过载继电器0.2-0.3A TK-E02E-C热过载继电器0.24-0.36A TK-E02F-C热过载继电器0.3-0.45A TK-E02G-C热过载继电器0.36-0.54A TK-E02H-C热过载继电器0.48-0.72A TK-E02J-C热过载继电器0.64-0.96A TK-E02K-C热过载继电器0.8-1.2A TK-E02L-C热过载继电器0.95-1.45A TK-E02M-C热过载继电器1.4-2.2A TK-E02N-C热过载继电器1.7-2.6A TK-E02P-C热过载继电器2.2-3.4A TK-E02R-C热过载继电器2.8-4.2A TK-E02S-C热过载继电器4-6A TK-E02T-C热过载继电器5-8A TK-E02U-C热过载继电器6-9A TK-E02V-C热过载继电器7-11A TK-E02W-C热过载继电器9-13A TK-E02X-C热过载继电器12-18A TK-E02Q-C热过载继电器16-22A TK-E02Y-C热过载继电器20-25A TK-E2S-C热过载继电器4-6A TK-E2U-C热过载继电器5-8A TK-E2V-C热过载继电器6-9A TK-E2W-C热过载继电器7-11A TK-E2X-C热过载继电器9-13A TK-E2B-C热过载继电器12-18A TK-E2E-C热过载继电器24-36A TK-E2I-C热过载继电器32-42A TK-E2H-C热过载继电器40-50A TK-E3V-C热过载继电器7-11A TK-E3W-C热过载继电器9-13A TK-E3X-C热过载继电器12-18A

固态继电器型号重要

直流固态继电器产品型号 HFS32D 控制方式直流控制交流(DC-DC) 控制电压 5VDC、12VDC、24VDC、48VDC、60VDC 负载电流 3A、4A、5A 负载电压 24VDC、48VDC 输出器件 MOSFET 输出外观样式卧式、立式以上只是简单参数,欢迎来电话咨询。以下是我司其它固态继电器欢迎联系采购一、光继电器(光MOS): 击穿电压60V、100V、200V、350V、400 二、交流固态继电器(单向固态继电器): HFS20 负载电流:1.2A、1.5A 负载电压范围:48-280VAC。 HFS4\HFS5 负载电流:2A 负载电压范围:48-280VAC。 HFS40A 负载电流:2A、3A 负载电压范围:48-280V;48-440VAC。 HFS5427 负载电流:2A、3A 负载电压范围:48-280V;48-440VAC。HFS32 负载电流:1A、2A 负载电压范围:48-280V;48-440VAC。 HFS41 负载电流:3A、4A、5A 负载电压范围:48-280V;48-440VAC、48-530VAC。HFS15 负载电流:10A、15A、20A、25A、40A 负载电压范围:48-280V;48-440VAC。 HFS34 负载电流:10A、15A、20A、25A、40A、50A、60A、70A、80A、100A 负载电压范围:48-280V;48-440VAC、48-530VAC、48-660VAC。三、直流固态继电器(单向固态继电器): HFS40 负载电流:2A 负载电压范围:3-52.8VDC; 3-125VDC。 HFS27 负载电流:2A 负载电压范围:3-60VDC; 3-100VDC。 HFS32 负载电流:3A、4A、5A 负载电压范围:0-28.80VDC; 0-57.6VDC。 HFS33 负载电流:7A、10A、12A、20A、40A、50A、80A、100A 负载电压范围:30VDC、 50VDC、100VDC、150VDC、200VDC、400VDC、500VDC。四、双路出固态继电器 HFS28 负载电流:25A、40A、50A 负载电压范围::48-280V;48-440VAC。五、三相固态继电器: HFS24:负载电流:10A、15A、20A、25A、40A、60A 负载电压范围:48-440VAC、48-530VAC。 六、电机正反转固态继电器: HFS21:负载电流:10A、15A、20A、25A、40A 负载电压范围:48-440VAC。HFS32D/24D-24D4M-N(4A,24VDC) 输入电压 19.2-28.8VDC 输入电流 25mA 负载电压 0-28.8VDC 负载电流4A 触发形式过零型输出保护带极性保护安装方式 PCB 板安装安全认证 UL 与TTL、CMOS 驱动兼容应用于PLC 与外围负载的接口电路对应品牌 CRYDOM:CR TYCO:V23109 由于页面有限无法把所有的产品或参数全部都发布,如需以下产品或其它产品请来电咨询。一、光继电器(光MOS): 击穿电压60V、100V、200V、350V、400 二、交流固态继电器(单向固态继电器): HFS20 负载电流:1.2A、1.5A 负载电压范围:48-280VAC。 HFS4\HFS5 负载电流:2A 负载电压范围:48-280VAC。 HFS40A 负载电流:2A、3A 负载电压范围:48-280V;48-440VAC。 HFS5427 负载电流:2A、3A 负载电压范围:48-280V;48-440VAC。 HFS32 负载电流:1A、2A 负载电压范围:48-280V;48-440VAC。HFS41 负载电流:3A、4A、5A 负载电压范围:48-280V;48-440VAC、48-530VAC。HFS15 负载电流:10A、15A、20A、25A、40A 负载电压范围:48-280V;48-440VAC。 HFS34 负载电流:10A、15A、20A、25A、40A、50A、60A、70A、80A、100A 负载电压范围:48-280V;48-440VAC、48-530VAC、48-660VAC。三、直流固态继电器(单向固态继电器): HFS40 负载电流:2A 负载电压范围:3-52.8VDC; 3-125VDC。 HFS27 负载电流:2A 负载电压范围:3-60VDC; 3-100VDC。 HFS32 负载电流:3A、4A、5A 负载电压范围:0-28.80VDC; 0-57.6VDC。 HFS33 负载电流:7A、10A、12A、20A、40A、50A、80A、100A 负载电压范围:30VDC、 50VDC、100VDC、150VDC、200VDC、400VDC、500VDC。四、双路出固态继电器 HFS28 负载电流:25A、40A、50A 负载电压范围::48-280V;48-440VAC。五、三相固态继电器: HFS24:负载电流:10A、15A、20A、25A、40A、60A 负载电压范围:48-440VAC、 48-530VAC。 六、电机正反转固态继电器: HFS21:负载电流:10A、15A、20A、25A、40A 负载电压范围:48-440VAC。固态继电器业务员:李志昆厦门市宏发电声股份有限公司三相固态继电器HFS24 浏览原图发布时间:2009-7-2 详细信息三相固态继电器HFS24 一、输入参数 1 输入电压 4-32VDC 2 接通电压: 4VDC 3 确保关断电压: 1VDC 4.4 最大输入电流: 35mA 4.5 反极性电压: -32VDC 二、输出参数 1 输出电压: 48-440VAC、48-530VAC 2 负载电流: 10A、15A、25A、40A、60A 3 浪涌电流: 10A:100Apk、15A:150Apk、25A:250Apk、40A:400Apk、 60A:600Apk 4 输出漏电流: 10mA 5 最大瞬态电压: D380:800Vpk、D480:1200Vpk 6 最大输出电压降: 1.7VRMS 7 断态电压指数上升率(dv/dt): D380:200V/us;D480:500V/us 8 最小功率因数: 0.5 9 最小负载电流:100mA 三、其它参数 1 介质耐压(输入输出间): 4000Vrms,50Hz/60Hz,1min 2 绝缘电阻: 1000MΩ,500 Vd.c. 4 工作温度范围: -30℃ to +80 ℃ 5 贮存?1?7?1?7?1?7度范围: -30 ℃ to +100 ℃ 6 显度: 45%-85% RH 7 重量: 315g 安全认证: TUV、CE 对照型号:CRYDOM:D53TP 四、注意事项: 1、确认散热器表面清洁、平整。 2、固态继电器(SSR)的金属底板表面涂敷导热硅脂,将固态继电器

如何合理选择固态继电器的型号和规格

众所周知固态继电器SSR是一种无触点通断电子开关,四端为有源器件。其中两个端子为输入控制端,另外两端为输出受控端,中间采用光电隔离,作为输入输出之间电气隔离(浮空)。在输入端加上直流或脉冲信号,输出端就能从关断状态转变成导通状态(无信号时呈阻断状态),从而控制较大负载。整个器件无可动部件及触点,可实现相当于常用的机械式电磁继电器一样的功能。由于固态继电器是由固体元件组成的无触点开关元件,所以与电磁继电器相比具有工作可靠、寿命长,对外界干扰小,能与逻辑电路兼容、抗干扰能力强、开关速度快和使用方便等一系列优点,因而具有很宽的应用领域,亦有逐步取代传统电磁继电器之势。那我们应该如何合理选择固态继电器的型号和规格呢?1. 在选用小电流规格印刷电路板使用的固态继电器时,因引线端子为高导热材料制成,焊接时应在温度小于250℃、时间小于10S的条件下进行,如考虑周围温度的原因,必要时可考虑降额使用,一般将负载电流控制在额定值的1/2以内使用。2. 各种负载浪涌特性对固态继电器SSR的选择被控负载在接通瞬间会产生很大的浪涌电流,由于热量来不及散发,很可能使SSR 内部可控硅损坏,所以用户在选用继电器时应对被控负载的浪涌特性进行分析,然后再选择继电器。使继电器在保证稳态工作前提下能够承受这个浪涌电流。在低电压要求信号失真小可选用采用场效应管作输出器件的直流固态继器;如对交流阻性负载和多数感性负载,可选用过零型继电器,这样可延长负载和继电器寿命,也可减小自身的射频干扰。如作为相位输出控制时,应选用随机型固态继电器。3. 使用环境中温度的影响对固态继电器的负载能力、受环境温度和自身温升的影响较大,在安装使用过程中,应保证其有良好的散热条件,额定工作电流在10A以上的产品应配散热器,100A以上的产品应配散热器加风扇强冷。在安装时应注意继电器底部与散热器的良好接触,并考虑涂适量导热硅脂以达到最佳散热效果。如继电器长期工作在高温状态下(40℃~80℃)时,用户可根据厂家提供的最大输出电流与环境温度曲线数据,考虑降额使用来保证正常工作。4. 过流、过压保护措

电动机保护用热继电器的合理选择与使用

电动机保护用热继电器的合理选择与使用 1.前言 热继电器是一种传统的保护电动机的电器,它具有与电动机容许过载特性相同的反时限动作特性,主要用于三相交流电动机的过载保护与断相保护。从目前的情况来看,由于没有选择与使用好热继电器而引起电动机烧毁的事故,仍然时有发生。如何合理地选择与使用热继电器,也仍是一个值得关注的问题。我们从长期的实际工作中,全面总结出了这方面的经验,供大家参考。 2.热继电器类型的选择 从结构上来说,热继电器分为两极型和三极型,其中三极型又分为带断相保护和不带断相保护两种,其型号及其意义如下。 另外,从热继电器的产品目录上还有额定电压、额定频率、额定工作制、使用温度范围、安装类别、防护等级等有关数据。 三极型的热继电器主要用于三相交流电动机的过载与断相保护。当电动机定子绕组为星形接法时,可以选用一般的三极型热继电器。因为星形接法的电动机,相电流等于线电流,无论电动机是过载运行还是断相运行,串接在主回路中的热元件都会因电流过大而使热继电器触头动作,保护电动机;如果电动机定子绕组为三角形接法,一般需要选用带断相保护的热继电器。因为三角形接法的电动机,当其引出线上发生一相断线(常见的是熔断器熔断)而缺相运行时,线电流I L等于电机相电流I P的1.5倍(如图1),不再是倍的关系,使得线电流不能正确反映出相电流,即串接在主回路中的热元件不能准确反映电机绕组是否真正过载,此时如果选用不带断相保护的热继电器,就不能很好地起到保护作用。 图1 热继电器产品目录上的其它数据,在类型选择时,考虑一下与热继电器实际使用情况相一致就行。

图2 除了上述通用型热继电器的选择外,还有些专用型热继电器。如大容量电动机用的自带专用互感器的JR20-160及以上的热继电器;重载起动的电动机用的3VA型热继电器等等。只要按它们各自适用的情况选择就行了。 值得提醒的是,有些类型的热继电器,如JR0、JR9、JRl4、JRl5、JRl6—A、B、C、D 等,国家已下令淘汰,选择时就不应再考虑了。 3.热继电器电流的选择 热继电器电流的选择包括热继电器额定电流的选择与热元件额定电流的选择两个方面。 1)热继电器的额定电流,选择时一般应等于或略大于电动机的额定电流;对于过载能力较弱且散热较困难的电动机,热继电器的额定电流为电机额定电流的70%左右。如果热继电器与电动机的使用环境温度不一致时,应对其额定电流作相应调整:当热继电器使用的环境温度高于被保护电动机的环境温度15℃以上时,应选择大一号额定电流等级的热继电器;当热继电器使用的环境温度低于被保护电动机的环境温度15℃以上时,应选择小一号额定电流等级的热继电器。 2)热元件的额定电流,选择时一般应略大于电动机的额定电流,取1.1~1.25倍,对于反复短时工作、操作频率高的电动机取上限。如果是过载能力弱的小功率电机,由于其绕组的线径小,过热能力差,应选择其额定电流等于或略小于电动机的额定电流。如果热继电器与电动机的环境温度不一致(如两者不在同一室内),热元件的额定电流同样要作调整,调整的情况与上述热继电器额定电流的调整情况基本相同。 4.热继电器质量的检查 在确定了热继电器的类型与电流等级之后,购买热继电器时要对其质量进行检查。我们对热继电器进行了过流试验,发现有些热继电器的热元件动作不符合所要求的安秒特性;有些构件的配合间隙过大,当双金属片过热弯曲时不能推动导板使动断触头打开;还有些制造工艺较差,构件上存在着毛刺或凹凸不平的现象,使得动断时运动受阻。因此购买热继电器时不仅只作外观检查,还要看其内部的构件配合是否合理,动作是否灵活,电流调节旋钮是否起作用,连接片是否焊牢等;然后进行校验,即按技术要求给热继电器的热元件通以L 2、1.5或2倍的额定电流,看其动作是否符合技术性能的要求,校验的具体方法按相关资料或产品说明书进行。

固态继电器的技术参数及选型

固态继电器的技术参数及选用 一、固态继电器的技术参数 1、输入电压范围:在环境温度25'c下,固态继电器能够工作的输入电压范围。 2、输入电流:在输入电压范围内某一特定电压对应的输入电流值。 3、接通电压:在输入端加该电压或大于该电压值时,输出端确保导通。 4、关断电压:在输入端加该电压或小于该电压值时,输出端确保导通。 5、反极性电压:能够加在继电器输入端上,而不应起永久性破坏的最大允许反向电压。 6、额定输出电流:环境25'C时的最大稳态工作电流。 7、额定输出电压:能够承受的最大负载工作电压。 8、输出电压降:当继电器处于导通时,在额定输出电流下测得的输出端电压。 9、输出漏电流:当继电器处于关断状态施加额定输出电压时,流经负载的电流值。 10、接通时间:当继电器接通时,加输入电压到接通电压开始至输出达到其电压最终变化的90%为止之间的时间间隔。 11、关断时间:当继电器关断时,切除输入电压到关断电压开始至输出达到其电压最终变化的10%为止之间的时间间隔。 12、过零电压:对交流过零型固态继电器,输入端加入额定电压,能使继电器输出端导通的最大起始电压。 13、最大浪涌电压:继电器能承受的而不致造成永久性损坏的非重复浪涌(或过载)电流。 14、电器系统峰值:在继电器工作状态继电器输出端能够承受的最大迭加的瞬时峰值击穿电压。 15、电压指数上升率dv/dt:继电器的输出元件能够承受的不使其导通的电压上升率。

16、工作温度:继电器安规范安装或不安装散热板时,其正常工作的环境温度范围。 二、固态继电器的选用 1、输入特性 (1)为了保证固态继电器的正常工作,必须考虑输入条件,通常输入电压为阶跃函数,然而,如果输入电压是斜坡,就会出现半周循环现象,出现这种现象是由于开关半导体器件在正,反触发时不完全对称,因此,如果输入电压斜坡上升,这种开关在负载为某一极性时就可能处罚,而当负载电压为反极性时就可能不处罚,而出现半周导通现象,这种现象将持续到输入量足以使输出完全导通为止。(2)输入端出现的瞬态,可以使继电器误动,尤其是当继电器响应时间等于或小于噪声脉冲持续时间时,继电器就会导通,对输入信号进行滤波有助于减少这种现象。 (3)当反极性(反向输入)电压适用时,继电器输入端可以承受最大输入电压值或其它规定值的反极性电压,超过该值,可能造成SSR的永久性破坏,当反极性电压不适用时,或继电器规定不能反向施加输入电压时,使用时一定注意,不能使输入电压反向。 2 输出特性 (1)SSR给出的最大额定输出电流一般指常温下或常温到高温下的最大额定输出电流而且对大于10A的继电器还指带有规定散热器时的最大额定输出电流。对功率SSR,当工作温度上升或不带散热器时,最大输出电流相应下降。对此,各SSR均给出不带散热带规定散热器的输出电流与环境温度的关系曲线。这曲线又叫热降额曲线。 图1为某一典型继电器的热降额曲线。

固态继电器选型步骤

SSR继电器选型步骤: 1.(按输出端的电压来区分) 2. 2-1阻性负载-----电加热器控制,舞台灯光控制 KS41(可选内置RC回路)、S15(内置RC回路)、KS34 和KS28 2-2感性负载-----电机、电磁阀控制。 KS4、KS20、KS41、KS15、KS34、KS28、KS24 和KS21 固态继电器的输出为功率器件,它具有一定阻断能力,当外加电压超过其阻断时,将可能因过压而损坏。因此,任何情况下,施加于继电器输出两端的电压不能超过其标称的阻断电压。 直流型固态继电器(KS33)带感性负载时,负载一定要并联续流二极管,否则继电器很可能会被关断时负载产生的逆变电压击穿而损坏 例如,感性负载的电流10A在关断后还会存在很短的时间,如没有二极管组成回路,就会形成输出端电压,造成过压破坏SSR。 直流感性负载直流感性负载交流负载交流负载 2-3容性负载-----容性负载在导通时有20~50倍额定电流的冲击电流,会损坏SSR,一般不建议采用容性负载。

3. 输入输出参数 3-1(3~32VDC)。 3-2 3-2-1. 交流和直流两种。 注:某些特殊情况下(比如电源的波动较大、电磁环境复杂等),则建议选择更高电压规格的产品,以确保可靠性。 b. 直流固态继电器: 对于直流固态继电器,其标称的额定电压为其阻断电压。因此,使用中继电器输出两端的电压一定不能超过其标称的额定电压。下表的选型供参考:

注:以上选型供参考,可根据实际应用灵活选用。原则是任何情况下,继电器两端的电压(包含瞬态电压)不能超过其额定电压。 3-2-2. : 原则是: 稳态电流≤继电器标称额定电流 浪涌电流≤继电器标称浪涌电流 在可靠性要求较高的场合,建议留有一定的余量,以防止意外的电流冲击,提高产品的可靠性。例如:对于直流固态继电器KS33,同样的负载条件下,30D100M发热量=30D50M发热量的一半。

固态继电器的基本工作原理及应用时的测试和故障

固态继电器的基本工作原理及应用时的测试和故障 固态继电器(Solid State Relay,缩写SSR),是由微电子电路,分立电子器件,电力电子功率器件组成的无触点开关。用隔离器件实现了控制端与负载端的隔离。固态继电器的输入端用微小的控制信号,达到直接驱动大电流负载。 1 、典型交流固态继电器的工作原理 固态继电器(Solid State Relay,SSR)是一种有继电特性的无触点式电子开关。具有寿命长、可靠性高、开关速度快、电磁干扰小、无噪声、无火花等特点。 交流固态继电器(过零型)的原理见图1。固态继电器由三部分组成:输进电路、隔离(耦合)和输出电路,在输进电路控制端加进信号后,IC1光电耦合器内光敏三极管呈导通状态,R1串接电阻对输进信号进行限流,以保证光耦合器不致损坏。发光二极管LED指示输进端控制信号,二级管VD1可防止输进信号正负极性接反时对光耦IC1造成的损坏。 传奇商城 v1在线路中起到交流电压检测作用,使固态继电器在电压过零时开启、负载电流过零时关断。当IC1光敏三极管截止时(控制端无信号输进时),V1通过R2获得基极电流使之饱和导通,从而使SCR可控硅门极触发电压UGT被箝在低电位而处于关断状态,终极导致BTA 双向可控硅在门极控制端R6上无触发脉冲而处于关断状态。 当IC1光敏三极管导通时(控制端有信号输进),SCR可控硅的工作状态由交流电压零点检测三极管V1来确定。如电源电压经R2与R3分压,A处电压大于过零电压时(VA>VBE1),V1处饱和导通状态,SCR、BTA可控硅都处于关断状态;如电源电压经R2与R3分压,A处电压小于过零电压时(VA 交流过零型固态继电用具有电压过零时开启、负载电流过零时关断的特性。它的最大接通、关断时间是半个电源周期,在负载上可得到一个完整的正弦波形,也相应减少了对负载的冲击。而在相应的控制回路中产生的射频干扰也大大减少。 三相固态继电器(SSR)可直接用于三相电机的控制。最简单的方法是采用2只SSR作电机通断控制,4只SSR作电机换相控制,第三相不控制。固态继电器与常规电磁继电器优缺点比较见表1。

热继电器选型及整定原则

https://www.sodocs.net/doc/652174093.html,/viewDiary.html?ownerid=18161&id=113641 热继电器选型及整定原则 热继电器是电流通过发热元件产生热量,使检测元件受热弯曲而推动机构动作的一种继电器。由于热继电器中发热元件的发热惯性,在电路中不能做瞬时过载保护和短路保护。它主要用于电动机的过载保护、断相保护和三相电流不平衡运行的保护及其它电气设备状态的控制。 一、热继电器的工作原理及结构: 1、热继电器的作用和分类 在电力拖动控制系统中,当三相交流电动机出现长期带负荷欠电压下运行、长期过载运行以及长期单相运行等不正常情况时,会导致电动机绕组严重过热乃至烧坏。为了充分发挥电动机的过载能力,保证电动机的正常启动和运转,而当电动机一旦出现长时间过载时又能自动切断电路,从而出现了能随过载程度而改变动作时间的电器,这就是热继电器。显然,热继电器在电路中是做三相交流电动机的过载保护用。但须指出的是,由于热继电器中发热元件有热惯性,在电路中不能做瞬时过载保护,更不能做短路保护。因此,它不同于过电流继电器和熔断器。 按相数来分,热继电器有单相、两相和三相式共三种类型,每种类型按发热元件的额定电流又有不同的规格和型号。三相式热继电器常用于三相交流电动机,做过载保护。 按职能来分,三相式热继电器又有不带断相保护和带断相保护两种类型。 2、热继电器的保护特性和工作原理 1)热继电器的保护特性 因为热继电器的触点动作时间与被保护的电动机过载程度有关,所以在分析热继电器工作原理之前,首先要明确电动机在不超过允许温升的条件下,电动机的过载电流与电动机通电时间的关系。这种关系称为电动机的过载特性。 当电动机运行中出现过载电流时,必将引起绕组发热。根据热平衡关系,不难得出在允许温升条件下,电动机通电时间与其过载电流的平方成反比的结论。根据这个结论,可以得出电动机的过载特性,具有反时限特性,如图l中曲线1所示。 图1:电动机的过载特性和热继电器的保护特性及其配合 为了适应电动机的过载特性而又起到过载保护作用,要求热继电器也应具有如同电动机过载特性那样的反时限特性。为此,在热继电器中必须具有电阻发热元件,利用过载电流通过电阻发热元件产生的热效应使感测元件动作,从而带动触点动作来完成保护作用。热继电器中通过的过载电流与热继电器触点的动作时间关系,称为热继电器的保护特性,如图1中曲

相关主题