搜档网
当前位置:搜档网 › 印染工程染整工程毕业论文中英文资料对照外文翻译文献综述

印染工程染整工程毕业论文中英文资料对照外文翻译文献综述

印染工程染整工程毕业论文

中英文资料对照外文翻译文献综述

外文翻译

译文一

织物/服装湿传递性能不同测定方法的对比

摘要

现有几种测定织物/服装汽态水渗透或湿阻的方法,这些方法相互之间的区别与联系并没有得到明确提出,这引出了一个新的命题,即通过对比不同测定方法的结果,找出它们之间的区别与联系。本课题致力于调查4种典型测定方法,包括“湿传递测试法(模型CS-141)”、“ASTM(美国材料与试验协会,英文全称American Society for Testing and Materials)E96正立水杯法”、“新式热阻湿阻仪器测试法”和“出汗暖体人体模型(Walter)测试法”,所得到的结果相互之间的联系。实验结果表明,鉴于测试所用的针织物的透气性的差异范围,尽管这4种方法的结果由于在不同的环境下进行测试而存在些许差异,但它们仍然存在着密切联系。因此,不同测试方法的结果经过适当调整可以相互转换。

关键词:织物,汽态水传递比率,织物舒适性,湿阻

2.测试方法

2.1测试样品

此项实验的样品为8块功能性T恤面料商品,其中4块的织物组织为双罗纹,另外4块为平纹。这些样品代表了市场中典型的T恤面料。在模拟试穿者试穿效果的实验中,这些面料被缝制成了长袖T恤,穿在出汗暖体人体模型(Walter)身上。表1列出了实验所用面料的主要规格参数。

表1 T恤面料样品的主要规格参数

样品编号成分结构厚度(mm)平方米克重(gm-2)1

55% 40S/2 涤纶

45% 40S/2精梳棉

平纹(单面)0.696 199.3 2

63% 50S 极品特长绒棉

37% 涤纶

双罗纹抽条0.772 148.0

3 62% 40S 精梳棉

31% 尼龙

7% 莱卡

平纹(单面)0.832 284.2

4

59% 40S 精梳棉

41% 尼龙

双罗纹抽条0.955 184.3

5 100% 涤纶平纹(单面)0.644 193.4

6 100% 涤纶双罗纹0.555 121.8

7

44% 40S 精梳棉

45% 40S 涤纶短纤

11% 莱卡

平纹(单面)0.704 200.9

8

50% 40S 精梳棉

50% 30S 涤纶短纤

双罗纹 1.071 225.6 2.2 实验测量

2.2.1 水分传递测试法(模型CS-141)

此项测试所用的仪器水分传递测试仪由Ludlow公司开发。该公司声称这台仪器能够快速简便地测定织物水传递比率。此项测试是基于“气体渗透规律”进行的。这条规律是指质量传递比率与面料阻隔水分渗透的能力、面料上下两侧的压强差以及该面料的厚度相关。图1展示了水分传递测试仪的结构。小密闭水箱

两侧的夹子将面料样品夹在其垂直方向的正中间。面料下方是高度低于水槽一半的蒸馏水,上方是在测试开始时经过干燥剂干燥过的空气。水箱内水的表面至面料下表面的空气间隙的高度为10mm。这个水箱被放置在一个温度为20℃,相对湿度为65%的密室中。实验过程中,水汽从潮湿的一侧(面料下方)经面料样品传递至干燥的一侧(面料上方),湿度传感器保持着对水箱上半部分湿度变化的监测。在湿度从50%上升至60%这个时间段内,相对湿度的上升值每隔3分钟被记录一次。以g重计的每h每m2汽态水传递比率可通过将数据带入下列等式中计算得到。

T = (269 × 10?7)(Δ%RH × 60/t)(H)/(100 × 0.02252) (1)

式中:Δ%RH—上半层与下半层之间的相对湿度差值的平均值;t—两次成功读取数据的时间间隔(t=3min);H—水箱单位体积的水含量(H=45.74gm-3)。

图1 水传递性能测试仪结构

2.2.2. 美国材料与试验协会E96正立水杯法

此种方法是一种非常常用的测试织物水分传递性能的方法。在环境恒温恒湿和织物面积已知的条件下,这种方法可用于测定织物垂直方向汽态水传递的比率。图2展示了这种测试方法的原理。一个被织物样品覆盖住的装有蒸馏水的杯子被放置在温度20℃,相对湿度65%的可调节环境中。实验开始时,往杯子内倒入80g的水,这将面料下表面至水面的距离确定为19mm。这项测试长达5天,期间每个杯子质量变化都会每天记录一次。每小时每平方米的汽态水传递比率(WVTR)可以通过将数据带入以下等式中得到。

WVTR =G/tA(2)

式中:G—有织物覆盖住的杯子的重量变化值;t—杯子质量变化的时长,以h计;A—测试的织物样品的面积,以m2计。

图2 ATSM E96汽态水传递测试的原理

2.2.

3. 新式热阻湿阻仪器测试法

新式热阻湿阻仪器由Fan等人开发。这台仪器符合ISO(国际标准组织,英文全称International Organization for Standardization)11092中明确规定的测试要求。与传统的热阻湿阻仪器相比,它使对水分蒸发散热损失和水分蒸发损失这两者的模拟测试的同时进行成为可能。此外,这台仪器可以零下在温度的条件下运行。图3展示了该仪器的构造和工作原理。

图3 新式热阻湿阻仪器

通过对蒸发散热损失的测定可得知,放在多孔板、夹在人造皮肤和空气层之间的织物样品的总湿阻可通过将数据带入下列公式中得到。

e a

sa

ss

et H

) H

-P

A(P

=

R(3)

式中:R et—总湿阻;A—织物样品的覆盖面积(A=0.0444 m2);P ss—人体皮肤温度(被控制在35℃)条件下浸透水汽压强;P sa—环境温度条件下浸透水汽压强;

H a是环境相对湿度(%)。

实验中,首先在仪器上平铺5层同一品种的面料样品,等待稳定后第一次读取Ret值。然后取下一层面料,此时仪器上剩下4层面料,读取Ret值。依此推类,直到所有5层面料都被拿掉。接下来,将获得的Ret值参照读取时织物的层数绘制成统计图,再利用线性回归原理调整后绘制出近似原曲线的直线,这条直线的斜率就是每层织物样品的湿阻的大小。

2.2.4.出汗暖体人体模型(Walter)测试法

Walter是由Fan和他的同事研发的世界上第一种出汗暖体人体模型。图4展示了一个在测试中穿着T恤的出汗暖体人体模型。这项测试是在室温20.0±5℃,相对湿度65.0±2%,风速0.5±0.3ms-1的恒温恒湿实验室中进行的。

图4 出汗暖体人体模型(Walter )

八块面料样品被缝制成尺寸一样的服装。测试过程中,人体模特下半身穿着的裤子始终保持一致。总湿阻经过推算后可用以下方程式计算得到。

es e

a sa ss et -R H )

H -P A(P =

R (4)

式中:A —人体模型的表面积;P ss —人体皮肤温度条件下浸透水汽压强;P sa —环境温度条件下浸透水汽压强;H a —环境相对湿度(%),Res 代表事先矫正过的织物湿阻(R es =8.6m 2PaW -1);H e —水分蒸发热能损失(He 是通过将水分蒸发热量损失带入公式H e = λQ 得到的);λ—人体皮肤温度(34℃)条件下水分蒸发所吸收的热量(λ=0.67Whg -1);Q —每小时水分蒸发所损失的热量比率。 4.结论

在这项研究中,4台仪器被用于测定功能型透气T 恤运动面料/服装的汽态水传递比率或湿阻。通过这项研究可以得知,对于典型的功能型T 恤面料,从4种测试方法,即 “湿传递测试法(模型CS-141)”、“ASTME96正立水杯法”、“新式热阻湿阻仪器测试法”和“出汗暖体人体模型(Walter )测试法”存在着密切联系。这项研究中的任何一种测试方法得到的结果可以通过使用关联趋势曲线与另一种方法得到的结果进行对比。关联度曲线中存在的一些误差可以解释为由面料种类和测试条件的不同所造成的。

作者:F Kar, J Fan and W Yu

国籍:香港(香港理工大学纺织与成衣制作系) 出处:《测量科技》杂志 2007年第18卷

原文1

Comparison of different test methods for the measurement of fabric or

garment moisture transfer properties

Abstract

Several test methods exist for determining the water vapour permeability or resistance of textile fabrics or garments. The differences and interrelationships between these methods are not always clear, which presents a problem in comparing results from different test methods. This study is aimed at investigating the relationships between the test results from four typical test methods, including the moisture transmission test (Model CS-141), ASTM E96 cup method, sweating guarded hot plate method (ISO11092) and the sweating fabric manikin (Walter). For the range of air permeable knitted fabrics tested, it was found that good interrelationships exist between the results from the four types of test methods, although some discrepancies exist between different tests due to differences in testing conditions. Test results from different moisture transfer test methods can therefore be convertible with due consideration.

Keywords: fabric, water vapour transmission rate, clothing comfort, water vapour resistance

2. Methods

2.1. Samples

Four interlock and four single jersey functional T-shirt fabrics were chosen from commercial sources for the experiment. The samples represent typical T-shirt fabrics in the market. The fabrics were sewn into long-sleeved T-shirts for the tests on the sweating fabric manikin (Walter) and the wearer trial experiments. Table 1 lists the characteristics of the fabrics used in this study.

Table1 Characteristics of T-shirt fabric samples

2.2. Objective physical measurements

2.2.1. Moisture transmission test (Model CS-141).

The moisture transmission tester was developed by Ludlow Corp., which was claimed to be a fast and simple method to measure the moisture transmission rate of the fabric materials. It is based on the application of the gas permeability law which proposes that the mass transfer rate is proportional to the permeability of the barrier, the pressure differential across the barrier and the reciprocal of the barrier thickness. The construction of the moisture transmission tester is shown in figure 1. Samples were clamped between two halves of a cell with the lower half of the cell containing distilled water and the upper half dried by a drying agent at the beginning of the test. The air gap between the water surface in the lower half of the cell and the lower fabric surface was 10 mm. The cell was placed in a controlled temperature and humidity chamber (20 ?C, 65% RH). Water vapour from the wet side transfers through the sample to the dry side. The humidity sensor detects the humidity changes in the upper half of the cell. The humidity rise was recorded every 3 min, when the humidity was from 50% to 60%. The moisture vapour transmission rate in grams per hour and per square metre was calculated by

T = (269 × 10?7)(Δ%RH × 60/t)(H)/(100 × 0.02252) (1)

where %RH is the average of the differences of relative humidity values between the lower and upper halves of the cell, t is the time between successive readings (t = 3 min) and H is the water content in the air at the cell temperature (H=45.74gm-3).

Figure1 Construction of the moisture transmission tester.

2.2.2. ASTM E96 water vapour transmission test

The ASTM E96 cup method is a very common method for testing the moisture transfer ability of fabrics. It is used to measure the rate of water vapour transmission perpendicularly through a known area of a fabric to a controlled atmosphere. In this method, as shown in figure 2, a sample covers a cup containing distilled water and placed in a controlled environment of 20℃,65% relative humidity. By adjusting the initial weight of water in the cup to 80 g, the air gap was set to 19 mm. The tests lasted for 5 days and the weight of each cup was recorded daily. The water vapour transmission rate (WVTR) in grams per hour and per square metre was calculated by the following equation:

WVTR =G/tA(2)

where G is weight change of the cup with fabric sample in grams, t is the time during which G occurred in hours and A is the testing area in square metres.

Figure2 The principle of the ASTM E96 water vapour transmission test.

2.2.

3. Sweating guarded hot plate

This instrument was developed by Fan et al. It meets the requirements specified in the testing

method of ISO 11092. Compared with conventional sweating guarded hot plates, it allows simultaneous measurement of evaporative heat loss and water loss. The instrument can also be placed in subzero conditions for testing. Figure 3 shows the schematic diagram and the apparatus of the instrument.

Figure3 Sweating guarded hot plate

From the measurement of the evaporative heat loss, the total moisture vapour resistance of the fabric sample on the plate together with the manmade skin and the surface air layer can be calculated by

e a

sa

ss

et H

) H

-P

A(P

R=(3)

where Ret is the total moisture vapour resistance, A is the sample covering area (A = 0.0444 m2), Pss is the saturated vapour pressure at the skin temperature (controlled at 35 ℃), Psa is the saturated vapour pressure at the ambient temperature and Ha is the ambient relative humidity (%).

During the testing, five layers of fabric samples were first placed on the instrument. After stabilization, the Ret value, when five layers of fabric samples were placed, was measured. Then one layer of fabric sample was taken off and the Ret value, when four layers of fabric samples were placed, was measured. The experiment continued with the Ret value for one, two, three, four and five layers of samples being obtained. The Ret value was then plotted against the number of

layers in a graph. After fitting the data with a straight line by linear regression, the slope of the line is then the moisture vapour resistance of a single layer of the fabric sample. 2.2.4. Sweating fabric manikin (Walter)

Sweating fabric manikin (Walter) is the first sweating fabric manikin developed by Fan and his co-workers. Figure 4 shows the manikin wearing a T-shirt during the test. The experiment was carried out in a climatic chamber at 20.0 ± 0.5℃ and 65.0 ± 2% RH with an air velocity of 0.5 ± 0.3 m s ?1.

Figure4 Sweating fabric manikin (Walter)

The T-shirts made of the eight fabrics were all in the same size. During the tests, the pants were kept the same for all T-shirt samples. The total moisture vapour resistance was calculated using the following formula:

es e

a sa ss et -R H )

H -P A(P R =

(4)

where A is the surface area of the manikin, Pss is the saturated vapour pressure at the skin temperature, Psa is the saturated vapour pressure at the ambient temperature and Ha is the ambient relative humidity (%), and Res is the moisture vapour resistance of the fabric skin which was calibrated in advance (Res=8.6m2PaW-1, He is the evaporative heat loss. He was calculated from

the measurement of evaporative water loss, He = λQ, where λ is the heat of evaporation of water at the skin temperature (λ=0.67Whg-1 at 34 ℃), Q is the rate of evaporative water loss per hour.

4. Conclusions

In this study, four instruments were used to evaluate the water vapour transmission rate or moisture vapour resistance of air permeable functional T-shirt fabrics/garments. It can be concluded from this investigation that, for typical functional T-shirt fabrics, the test results from the four test methods, namely themoisture transmission test (ModelCS-141),ASTM E96 cup method, novel sweating guarded hot plate and the sweating fabric manikin (Walter) correlate well. The results from each of these tests can be compared with those from another test using the correlation trend lines found in this study. Some deviations from the correlation trend lines can be explained by the effect of the different testing conditions on the different types of fabrics.

Author:F Kar, J Fan and W Yu

Nationality:Hong Kong (Institute of Textiles and Clothing, The Hong Kong Polytechnic University)

Originate from:MEASUREMENT SCIENCE AND TECHNOLOGY. 18 (2007)

译文二

测定织物液态水动态传递的新测试方法的精度

摘要

一项由AATCC(American Association of Textile Chemists and Colorists,美国纺织化学师与印染师协会)最近提出的测试法解决了测试纺织面料和其他多孔材料的吸湿导汗性能这一难题。这项测试方法和依照这项方法设计的仪器,吸湿导汗性能测试仪(MMT),以及评估指标的定义和等级,连同织物吸湿导汗性能的分级方法都得到了改进。此项测试的样品为8块面料。这8块面料的结构特征、材料各不相同,其中部分面料所使用的染整工艺不同。本文还对此方法与其他测试方法的联系进行了分析。根据在实验室内进行的实验,笔者对数据进行了变异数分析,以确定此项测试方法的精度。

关键词:液态,精度,吸湿导汗性能测试仪(MMT),测试方法,水传递

评价指标

根据测试数据和统计曲线,笔者定义了一系列用于表征样品液态水吸收和传递性能的指标。这些指标如表1所示。

液态水传递综合指数(OMMC)可通过公式1计算都得到。

OMMC = C1* AR B_ndv+ C2*R ndv+C3*SS B_ndv(公式1)式中C1、C2、C3代表非因次值所占的权重,AR B_ndv、R ndv和SS B_ndv分别代表“吸湿率”、“单向液态水传递指数”和“液态水传递速度”这三项指标。

表1 织物吸湿导汗性能指标含义及符号

指标单位

顶部WTT s

加湿时间

底部WTB s

顶部ART %/s

吸湿比率

底部ARB %/s

顶部MWRT mm 最大加湿范围的半径

底部MWRB mm

顶部SST mm/s 液态水传递速度

底部SSB mm/s

累计单向传递能力R %

液态水传递综合指数OMMC

实验论证

此次MMT测试的样品为8块从百货大楼购得的由品牌厂家生产的机织物。根据标准ASTM D1776,测试需在环境温度为20.0±5℃,相对湿度为65.0±2%的环境可调节实验室内进行。首先将每块织物裁剪成8×8cm大小的样品,然后将其放置在环境可调节实验室内24小时。

在测试过程中,测试溶液(人造汗液)由MMT从织物的上表面导入织物。此外,同样重量(0.22g①)的测试溶液被MMT自动注射入织物中。测试所用的织物的重要结构参数如表4所示。使用专业统计软件包SPSS(Statistical Product and Service Solutions,社会科学统计软件包)对结果进行单向变异数分析,证实了不同织物之间的吸湿导汗性能存在着明显差异。表5是包含了10项吸湿导汗性能指数的单变量方差分析表。

①译者注:人体无感出汗产生的汽相水每小时约向外界散发水分22~23g(李典英,钱晓明:《织物湿传递测试方法评述》)。

表4 织物重要结构参数

样品编号

平方米克重

(g/m2)

厚度

(mm)

成分结构

1 120.0 0.75 100%聚酯纤维(涤纶)针织

2 204.0 0.94 100%聚酯纤维(涤纶)针织

3 214.0 0.83 100%棉针织

4 60.0 0.14 100%聚酯纤维(涤纶)机织

5 183.0 0.77 100%棉针织

6 136.0 0.56 100%聚酯纤维(涤纶)针织

7 180.0 0.86 70%棉+30%聚酯纤维(涤纶)单面针织

8 142.0 0.75 100%聚酯纤维(涤纶)针织

表5 织物吸湿导汗性能单变量ANOV A分析表

指标极差平方和均方F①P②(sig.)

WT T 组间7 482.471 68.924 466.927 0.000 组内32 4.724 0.148

全部39 487.194

WT B 组间7 58881.425 8411.632 370493.2 0.000 组内32 0.727 0.023

全部39 5882.152

AR T 组间7 726943.279 103849.040 2655.833 0.000 组内32 1251.272 39.102

全部39 728194.551

AR B 组间7 18453.350 2636.193 326.110 0.000 组内32 258.680 39.102

全部39 18712.030

①译者注:F代表“相应显著水平下的临界值”。

②译者注:P代表“显著性检验水平”。

相关主题