搜档网
当前位置:搜档网 › 数列与不等式的综合问题

数列与不等式的综合问题

数列与不等式的综合问题
数列与不等式的综合问题

数列与不等式的综合问题

测试时间:120分钟

满分:150分

解答题(本题共9小题,共150分,解答应写出文字说明、证明过程或演算步骤) 1.[2016·银川一模](本小题满分15分)在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为q (q ≠1),且b 2+S 2=12,q =S 2

b 2

.

(1)求a n 与b n ;

(2)证明:13≤1S 1

+1S 2

+…+1S n

<2

3.

解 (1)设{a n }的公差为d ,因为????

?

b 2+S 2=12,q =S 2

b 2,

所以?

???

?

q +6+d =12,q =6+d

q .解得q =3或q =-4(舍),d =3.(4分)

故a n =3+3(n -1)=3n ,b n =3n -

1.(6分) (2)证明:因为S n =n 3+3n 2,(8分)

所以1S n =2n 3+3n =23????1n -1n +1.(10分)

故1S 1+1S 2+…+1

S n

= 23????????1-12+????12-13+????13-14+…+????1n -

1n +1 =23??

?

?1-1n +1.(12分)

因为n ≥1,所以0<1n +1≤12,于是12≤1-1

n +1<1,

所以13≤23

??

??1-1n +1<23, 即13≤1S 1

+1S 2

+…+1S n

<2

3.(15分)

2.[2017·黄冈质检](本小题满分15分)已知数列{a n }的首项a 1=35,a n +1=3a n

2a n +1,n

∈N *.

(1)求证:数列?

???

??

1a n

-1为等比数列;

(2)记S n =1a 1

+1a 2

+…+1

a n

,若S n <100,求最大正整数n .

解 (1)证明:因为1a n +1=23+1

3a n

所以1a n +1-1=13a n

-13=13????1

a n -1. 又因为1a 1

-1≠0,所以1

a n

-1≠0(n ∈N *),

所以数列?

???

??

1a n

-1为等比数列.(7分)

(2)由(1),可得1a n -1=23×????13n -1

所以1

a n

=2×????13n +1. 所以S n =1a 1+1a 2+…+1a n =n +2????13+132

+…+13n =n +2×13-1

3n +11-

13

=n +1-1

3n ,

若S n <100,则n +1-1

3

n <100,所以最大正整数n 的值为99.(15分)

3.[2016·新乡许昌二调](本小题满分15分)已知{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=2,b 1=3,a 3+b 5=56,a 5+b 3=26.

(1)求数列{a n },{b n }的通项公式;

(2)若-x 2+3x ≤2b n

2n +1

对任意n ∈N *恒成立,求实数x 的取值范围.

解 (1)由题意,?

??

??

a 1+2d +

b 1·q 4=56,

a 1+4d +

b 1·q 2=26,

将a 1=2,b 1=3代入,得?

??

??

2+2d +3·q 4=56,

2+4d +3·q 2=26,

消d 得2q 4-q 2-28=0,∴(2q 2+7)(q 2-4)=0,

∵{b n }是各项都为正数的等比数列,∴q =2,所以d =3,(4分) ∴a n =3n -1,b n =3·2n -

1.(8分)

(2)记c n =3·2n -

1

2n +1

c n +1-c n =3·2n -

2n -1

2n +12n +3

>0

所以c n 最小值为c 1=1,(12分) 因为-x 2+3x ≤

2b n

2n +1

对任意n ∈N *恒成立, 所以-x 2+3x ≤2,解得x ≥2或x ≤1, 所以x ∈(-∞,1]∪[2,+∞).(15分)

4.[2016·江苏联考](本小题满分15分)在等差数列{a n }和等比数列{b n }中,a 1=1,b 1

=2,b n >0(n ∈N *),且b 1,a 2,b 2成等差数列,a 2,b 2,a 3+2成等比数列.

(1)求数列{a n }、{b n }的通项公式;

(2)设c n =abn ,数列{c n }的前n 项和为S n ,若S 2n +4n

S n +2n >a n

+t 对所有正整数n 恒成立,

求常数t 的取值范围.

解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q (q >0).

由题意,得?????

21+d =2+2q ,

2q

2

=1+d 3+2d ,

解得d =q =3.(3分)

∴a n =3n -2,b n =2·3n -

1.(5分)

(2)c n =3·b n -2=2·3n -2.(7分) ∴S n =c 1+c 2+…+c n =2(31+32+…+3n )-2n =3n +

1-2n -3.(10分)

∴S 2n +4n S n +2n =32n +

1-3

3n +1-3

=3n +1.(11分) ∴3n +1>3n -2+t 恒成立,即t <(3n -3n +3)min .(12分)

令f (n )=3n -3n +3,则f (n +1)-f (n )=2·3n -3>0,所以f (n )单调递增.(14分) 故t

5.[2016·天津高考](本小题满分15分)已知{a n }是各项均为正数的等差数列,公差为d .对任意的n ∈N *,b n 是a n 和a n +1的等比中项.

(1)设c n =b 2n +1-b 2n ,n ∈N *

,求证:数列{c n }是等差数列;

(2)设a 1=d ,T n =∑2n

k =1 (-1)k b 2k ,n ∈N *,求证:∑n

k =1

1T k <1

2d 2

. 证明 (1)由题意得b 2n =a n a n +1,有c n =b 2n +1-b 2

n =a n +1a n +2-a n a n +1=2da n +1,(3分)

因此c n +1-c n =2d (a n +2-a n +1)=2d 2,所以{c n }是等差数列.(6分)

(2)T n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )

=2d (a 2+a 4+…+a 2n ) =2d ·n a 2+a 2n 2

=2d 2n (n +1).(9分)

所以∑n

k =1 1T k =12d 2

∑n k =1 1k k +1

=12d 2∑n

k =1 ????1k -1k +1(12分)

=12d 2·??

?

?1-1n +1<12d 2.(15分)

6.[2016·德州一模](本小题满分15分)已知数列{a n }满足a 1+2a 2+3a 3+…+na n =n (n ∈N *).

(1)求数列{a n }的通项公式a n ;

(2)令b n ·2 1

a

n

=1a 2n -1

(n ∈N *),T n =b 1+b 2+…+b n ,写出T n 关于n 的表达式,并求

满足T n >5

2时n 的取值范围.

解 (1)∵a 1+2a 2+3a 3+…+na n =n ,

所以a 1+2a 2+3a 3+…+(n -1)a n -1=n -1(n ≥2). 两式相减得a n =1

n (n ≥2),(4分)

又a 1=1满足上式,∴a n =1

n (n ∈N *),(5分)

(2)由(1)知b n =2n -1

2n ,(6分)

T n =12+322+5

23+…+2n -12n ,

12T n =122+323+524+…+2n -12n +1. 两式相减得

12T n =12+2????122+123+…+12n -2n -12n +1, 12T n =1

2+2×122-12n ·

1

21-

12-2n -12

n +1,(9分) T n =1+4????12-12n -2n -12n =3-2n +32n ,(10分) 由T n -T n -1=3-2n +32n -? ?

???3-2n +12n -1=2n -12n ,

当n ≥2时,T n -T n -1>0,所以数列{T n }单调递增.(12分) T 4=3-1116=3716<5

2,

又T 5=3-2×5+325=8332>8032=5

2,

所以n ≥5时,T n ≥T 5>5

2, 故所求n ≥5,n ∈N *.(15分)

7.[2016·吉林二模](本小题满分20分)已知数列{a n }前n 项和S n 满足:2S n +a n =1. (1)求数列{a n }的通项公式; (2)设b n =

2a n +11+a n 1+a n +1

,数列{b n }的前n 项和为T n ,求证:T n <1

4.

解 (1)因为2S n +a n =1,所以2S n +1+a n +1=1. 两式相减可得2a n +1+a n +1-a n =0,即3a n +1=a n , 即

a n +1a n =1

3

,(4分) 又2S 1+a 1=1,∴a 1=1

3,

所以数列{a n }是公比为1

3的等比数列.(6分) 故a n =13·????13n -1=????13n

数列{a n }的通项公式为a n =????13n

.(8分) (2)证明:∵b n =

2a n +1

1+a n 1+a n +1

∴b n =2·3n 3n +1·3n +1

+1=13n +1-1

3n +1+1

,(11分) ∴T n =b 1+b 2+…+b n =????131+1-132+1+( 132

+1-133+1 )+…+????13n +1-13n +1+1 =14-13n +1+1<1

4,(18分)

∴T n <1

4.(20分)

8.[2016·浙江高考](本小题满分20分)设数列{a n }满足????a n -a n +12≤1,n ∈N *. (1)证明:|a n |≥2n -

1(|a 1|-2),n ∈N *;

(2)若|a n |≤????32n

,n ∈N *,证明:|a n |≤2,n ∈N *. 证明 (1)由???

?a n -a n +12≤1,得|a n |-12|a n +1|≤1,故

|a n |2n -|a n +1|2

n +1≤12n ,n ∈N *

,(3分) 所以|a 1|21-|a n |2n =????|a 1|21-|a 2|22+????|a 2|22-|a 3|23+…+? ????|a n -

1|2n -1-|a n |2n ≤121+122+ (12)

-1

<1,(6分)

因此|a n |≥2n -

1(|a 1|-2).(8分)

(2)任取n ∈N *,由(1)知,对于任意m >n ,

|a n |2n -|a m |2m =? ????|a n |2n -|a n +1|2n +1+? ????|a n +1|2n +1-|a n +2|2n +2+…+? ????|a m -1|2m -

1-|a m |2m ≤12n +12n +1+…+12m -1<1

2

n -1,(12分)

故|a n |

·2n

.(15分) 从而对于任意m >n ,均有 |a n |<2+????34m

·2n . ① 由m 的任意性得|a n |≤2.

否则,存在n 0∈N *

,有|an 0|>2,取正整数m 0>log34

|a n 0|-2

2 n 0

且m 0>n 0,则

2n 0·????34m 0<2n 0·????34 log34

|a n 0|-22 n 0

=|a n 0

|-2,

与①式矛盾,

综上,对于任意n ∈N *,均有|a n |≤2.(20分)

9.[2016·金丽衢十二校联考](本小题满分20分)设数列{a n }满足:a 1=2,a n +1=ca n

+1

a n

(c 为正实数,n ∈N *),记数列{a n }的前n 项和为S n .

(1)证明:当c =2时,2n +

1-2≤S n ≤3n -1(n ∈N *);

(2)求实数c 的取值范围,使得数列{a n }是单调递减数列.

解 (1)证明:易得a n >0(n ∈N *),由a n +1=2a n +1a n ,得a n +1a n =2+1

a n 2

>2,所以{a n }是递

增数列,

从而有a n ≥2,故a n +1a n ≤2+1

4<3,(2分)

由此可得a n +1<3a n <32a n -1<…<3n a 1=2·3n , 所以S n ≤2(1+3+32+…+3n -

1)=3n -1,(4分)

又有a n +1>2a n >22a n -1>…>2n a 1=2n +

1,

所以S n ≥2+22+…+2n =2n +

1-2,(6分)

所以,当c =2时,2n +

1-2≤S n ≤3n -1(n ∈N *)成立.(8分)

(2)由a 1=2可得a 2=2c +12<2,解得c <3

4,(10分) 若数列{a n }是单调递减数列,则a n +1a n =c +1

a n 2<1,

得a n >

11-c ,记t =1

1-c

,① 又a n +1-t =(a n -t )????c -1ta n ,因为a n -t (n ∈N *)均为正数,所以c -1ta n >0,即a n >1

tc .②

由①a n >0(n ∈N *)及c ,t >0可知a n +1-t

1(2-t )+t .③

由②③两式可得,对任意的自然数n ,1tc

1(2-t )+t 恒成立. 因为0

1-c ,

解得c >1

2

.(14分)

下面证明:当12

4时,数列{a n }是单调递减数列. 当c >12时,由a n +1=ca n +1a n 及a n =ca n -1+1a n -1(n ≥2),

两式相减得a n +1-a n =(a n -a n -1)???

?c -1a n -1a n .

由a n +1=ca n +1a n 有a n ≥2c 成立,则a n -1a n >4c >1c ,即c >1

a n -1a n

.

又当c <3

4时,a 2-a 1<0成立,所以对任意的自然数n ,a n +1-a n <0都成立. 综上所述,实数c 的取值范围为12

4

.

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

数列与不等式知识点及练习唐

数列与不等式 一、看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=--②211-++=n n n a a a (2≥n )③b kn a n +=(k n ,为常数). 二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n ②112 -+?=n n n a a a (2≥n ,011≠-+n n n a a a ) (2)在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足?? ? ≤≥+0 01m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足?? ?≥≤+0 1m m a a 的项数m 使得m s 取最小值.在解含绝对 值的数列最值问题时,注意转化思想的应用。 四.数列通项的常用方法: (1)利用观察法求数列的通项.(2)利用公式法求数列的通项:①?? ?≥-==-) 2()111n S S n S a n n n (;② {}n a 等差、等比数列{}n a 公式.(3)应用迭加(迭乘、迭代)法求数列的通项:① )(1n f a a n n +=+;②).(1n f a a n n =+(4)造等差、等比数列求通项:q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ?+?=++12.第一节通项公式 常用方法题型1 利用公式法求通项 例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 2.已知n S 为数列{}n a 的前n 项和,求下列数列{}n a 的通项公式: ⑴ 1322 -+=n n S n ; ⑵12+=n n S .总结:任何一个数列,它的前n 项和n S 与通项n a 都存在关系: ???≥-==-)2()1(11n S S n S a n n n 若1a 适合n a ,则把它们统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项 例2:⑴已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式; ⑵已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ?=2 ,求数列{}n a 的通项公式. 总结:⑴迭加法适用于求递推关系形如“)(1n f a a n n +=+”; 迭乘法适用于求递推关系形如 “ ) (1n f a a n n ?=+“;⑵迭加法、迭乘法公式:① 1 1232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=-----

基本不等式完整版(非常全面)

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则2 2 2 2 2 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 222 222 2 1 2311 23112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知 c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:222 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证: abc c b a 8)1)(1)(1(≥--- 5、已知,,a b c R + ∈,且1a b c ++=,求证: 1111118a b c ??????---≥ ??????????? 6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知0>≥b a ,求证:b a ab b a 2 2 3 3 22-≥- 题型二:利用不等式求函数值域 1、求下列函数的值域 (1)2 2 21 3x x y += (2))4(x x y -=

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

数列与不等式的综合问题

数列与不等式的综合问题 测试时间: 120分钟 满分:150分 解答题(本题共9小题,共150分,解答应写出文字说明、证明过程或演算步骤 ) 1. [2016 ?银川一模](本小题满分15分)在等差数列{刘中,a i = 3,其前n 项和为S, 等比数 列{b n }的各项均为正数,b 1 = 1,公比为q (q z 1),且b 2+ S 2= 12, q = f 2. b 2 (1) 求 a n 与 b n ; …1 1 1 1 2 (2) 证明:3< S +§+…+ S <§. b 2 + S 2= 12 , 1 1 1 故 S +S +…+ s n = 1 —百.(12 1 1 因为n >2所以0<市三$于 1 2 1 2 所以21 —市<2, 1 1 1 1 2 即 3= S 1 + S 2+…+ s n <2.(15 分) 3 3a 2. [2017 ?黄冈质检](本小题满分15分)已知数列{◎}的首项a 1= , a n +1 = 二,n 5 2a n + 1 a 1 a 2 a n 2 1 1 (2) 记S = + — + ???+—,若$<100,求最大正整数 n . (1)设{a n }的公差为d ,因为 q + 6 + d = 12, 所以 6 + d q = 解得 q = 3 或 q =— 4(舍),d = 3.(4 分) 故 a n = 3+ 3( n — 1) = 3n , b n = 3n 1 .(6 分) ⑵证明:因为S n = n 3+ 3n (8分) 1 所以S n 3+ 3n 1 1 n n +1 .(10 分) 1 1 - 2 1 1 2- 3 1 1 3-4 + … + 1 1 n n +1

数列与不等式复习题

数列与不等式复习题(一) 1.数列 ,8,5,2,1-的一个通项公式为 ( ) A .43-=n a n B .43+-=n a n C .()43)1(--=n a n n D .()43) 1(1 --=-n a n n 2、在数列{}n a 中,122,211=-=+n n a a a ,则101a 的值为( ) A .49 B .50 C .51 D .52 3、已知等比数列{a n }的公比为2, 前4项的和是1, 则前8项的和为( ) A .15. B .17. C .19. D .21 4.不等式01 31 2>+-x x 的解集是 ( ) A .}21 31|{>-x x D .}3 1 |{->x x 5.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( ) A.5 B.4 C. 3 D. 2 6.数列 ,16 1 4 ,813,412,21 1前n 项的和为( ) A .2212n n n ++ B .122 12+++-n n n C .22 12n n n ++- D . 2 2121 n n n -+- + 7.f x ax ax ()=+-2 1在R 上满足f x ()<0,则a 的取值范围是( ) A .a ≤0 B .a <-4 C .-<<40a D .-<≤40a 8.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( ) (A)1 2 2n +- (B) 3n (C) 2n (D)31n - 9.已知在等比数列{}n a 中,各项均为正数,且,7,13211=++=a a a a 则数列{}n a 的通项公式是_________=n a . 10.若方程x x a a 2 2 220-+-=lg()有一个正根和一个负根,则实数a 的取值范围是 __________________.

基本不等式(很全面)

基本不等式 【知识框架】 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则22 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 2 2b a b a ab +≤ +≤≤+

6、柯西不等式 (1)若,,,a b c d R ∈,则2 2 2 2 2 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 【题型归纳】 题型一:利用基本不等式证明不等式 题目1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 题目2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222 题目3、已知1a b c ++=,求证:2 2 2 13 a b c ++≥

高等数学中不等式的证明方法

高等数学中不等式的证明方法 摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神, 创新思维,使一些较难的题目简单化、方便化。 关键词:高等数学;不等式;极值;单调性;积分中值定理 Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(https://www.sodocs.net/doc/665297910.html, 毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem . We can resolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient , Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean Value Theorem 文章来自:全刊杂志赏析网(https://www.sodocs.net/doc/665297910.html,) 原文地址: https://www.sodocs.net/doc/665297910.html,/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm 【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的 不等式试题,对一些常用的不等式证明方法进行总结。 【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西 施瓦茨;凹凸性 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不 等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证 明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

数列与不等式的综合问题突破策略1

数列与不等式的综合问题突破策略 类型1:求有数列参与的不等式恒成立条件下参数问题 求数列与不等式相结合恒成立条件下的参数问题主要两种策略:(1)若函数f (x )在定义域为D ,则当x ∈D 时,有f (x )≥M 恒成立?f (x )min ≥M ;f (x )≤M 恒成立?f (x )max ≤M ;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得. 【题1】 等比数列{a n }的公比q >1,第17项的平方等于第24项,求使a 1+a 2+…+a n > 1231111 n a a a a ++++……恒成立的正整数n 的范围. 【题1】 利用条件中两项间的关系,寻求数列首项a 1与公比q 之间的关系,再利用等比数列前n 项公式和及所得的关系化简不等式,进而通过估算求得正整数n 的取值范围. 【解】 由题意得:(a 1q 16)2=a 1q 23,∴a 1q 9=1. 由等比数列的性质知数列{ 1n a }是以11a 为首项,以1q 为公比的等比数列,要使不等式成立, 则须1(1)1n a q q -->111(1) 11n a q q --,把a 2 1=q -18代入上式并整理,得q -18(q n -1)>q (1-1n q ), q n >q 19,∵q >1,∴n >19,故所求正整数n 的取值范围是n ≥20. 【点评】 本题解答数列与不等式两方面的知识都用到了,主要体现为用数列知识化简,用不等式知识求得最后的结果.本题解答体现了转化思想、方程思想及估算思想的应用. 【题2】设数列{a n }的前n 项和为S n .已知a 1=a ,a n +1=S n +3n ,n ∈N *. (1)设b n =S n -3n ,求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 【题2】 第(1)小题利用S n 与a n 的关系可求得数列的通项公式;第(Ⅱ)小题将条件a n +1≥a n 转化为关于n 与a 的关系,再利用a ≤f (n )恒成立等价于a ≤f (n )min 求解. 【解】 (1)依题意,S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n , 由此得S n +1-3 n +1=2(S n -3n ). 因此,所求通项公式为b n =S n -3n =(a -3)2 n -1,n ∈N *, ① (2)由①知S n =3n +(a -3)2 n -1,n ∈N *, 于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2 n -1-3n -1-(a -3)2 n -2=2×3n -1+(a -3)2 n -2, a n +1-a n =4×3 n -1+(a -3)2 n -2=2 n -2·[12·(32 )n -2 +a -3], 当n ≥2时,a n +1≥a n ,即2 n -2·[12·(32)n -2+a -3]≥0,12·(32 )n -2 +a -3≥0, ∴a ≥-9, 综上,所求的a 的取值范围是[-9,+∞) 【点评】 一般地,如果求条件与前n 项和相关的数列的通项公式,则可考虑S n 与a n 的关系求解.本题求参数取值范围的方法也一种常用的方法,应当引起重视. 类型2:数列参与的不等式的证明问题 此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的. 【题3】 数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24. (1)求数列{a n }的通项公式; (2)设p 、q 都是正整数,且p ≠q ,证明:S p +q <1 2 (S 2p +S 2q ). 【题3】 根据条件首先利用等差数列的通项公式及前n 项公式和建立方程组即可解决第(1)小题;第(2)小题利用差值比较法就可顺利解决. 【解】 (1)设等差数列{a n }的公差是d ,依题意得,??? a 1+2d =74a 1+6d =24,解得??? a 1=3 d =2 ,

基本不等式完整版(非常全面)

2 8 基本不等式专题辅导 2 2 2、基本不等式一般形式(均值不等式) 若 a,b R ,则 a b 2 ab 3、基本不等式的两个重要变形 (1)若 a,b R *,则 2 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数 的和为定植时,它们的积有最小值; a b 6、柯西不等式 (1)若 a, b,c, d R ,则(a 2 b 2)(c 2 d 2) (ac bd )2 (2) 若 a 1, a 2, a 3, bi, b 2, b 3 R ,则有: 2 2 2 2 2 2 2 (a 1 a 2 a 3 )(柑 b ? b 3 ) (aQ a ?b 2 a s b s ) (3) 设a 1,a 2, ,a n 与 db, ,b 是两组实数,则有 2 2 2 p22 2 佝 a 2 a . )(0 b 2 b n )(日山 a 2b 2 a n b n ) 一、知识点总结 1、基本不等式原始形式 二、题型分析 题型一:利用基本不等式证明不等式 (1)若 a,b R ,则 a 2 b 2 2ab 1、设a,b 均为正数,证明不等式:、.ab 二 (2)右 a, b R ,则 ab a,b,c 为两两不相等的实数, (2)若 a, b R ,则 ab b 2 ab bc ca 4、求最值的条件:“一正, 二定,三相等” 5、常用结论 1 (1)若 x 0,则 x — 2 (当且仅当 x 1时取“=”) x 1 (2)若 x 0,则 X - 2 (当且仅当 x 1时取 “=”) X (3)若 ab 0,则-- 2 (当且仅当 a b 时取 “=”) b a 2 2 (4)若 a, b R ,则 ab ( 旦 b)2 a b 2 2 (5)若 a, b R ,贝U 1 . a ab b a 2 b 2 v ------ 1 1 2 2 (1 已知a a,b,c a )(1 1, 求证: b)(1 c) 8abc a, b, c R

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

2019高考数学二轮复习专题三数列与不等式第1讲等差数列与等比数列学案

第1讲 等差数列与等比数列 [考情考向分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.等差、等比数列的判定及综合应用也是高考考查的重点,注意基本量及定义的使用,考查分析问题、解决问题的综合能力. 热点一 等差数列、等比数列的运算 1.通项公式 等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n -1 . 2.求和公式 等差数列:S n = n (a 1+a n ) 2 =na 1+ n (n -1) 2 d ; 等比数列:S n =????? a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1),na 1(q =1). 3.性质 若m +n =p +q , 在等差数列中a m +a n =a p +a q ; 在等比数列中a m ·a n =a p ·a q . 例1 (1)(2018·全国Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5等于( ) A .-12 B .-10 C .10 D .12 答案 B 解析 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4, 得3???? ??3a 1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d ,将a 1=2代入上式,解得d =-3, 故a 5=a 1+(5-1)d =2+4×(-3)=-10.故选B. (2)(2018·杭州质检)设各项均为正数的等比数列{a n }中,若S 4=80,S 2=8,则公比q =________,a 5=________. 答案 3 162

2017高考数列与不等式

2017高考数列与不等式 1.【2017课标1,文7】设x,y满足约束条件 33, 1, 0, x y x y y +≤ ? ? -≥ ? ?≥ ? 则z=x+y的最大值为 A.0 B.1 C.2 D.3 2.【2017课标II,文7】设,x y满足约束条件 2+330 2330 30 x y x y y -≤ ? ? -+≥ ? ?+≥ ? ,则2 z x y =+的最小值是 A.15 - B.9- C.1 D 9 3.【2017课标3,文5】设x,y满足约束条件 3260 x y x y +-≤ ? ? ≥ ? ?≥ ? ,则z x y =-的取值范围是() A.[–3,0] B.[–3,2] C.[0,2] D.[0,3] 4.【2017北京,文4】若,x y满足 3, 2, , x x y y x ≤ ? ? +≥ ? ?≤ ? 错误!未找到引用源。则2 x y +的最大值为 (A)1(B)3 (C)5 (D)9 5.【2017山东,文3】已知x,y满足约束条件 250 30 2 x y x y -+≤ ? ? +≥ ? ?≤ ? ,则z=x+2y的最大值是 A.-3 B.-1 C.1 D.3 6.【2017浙江,4】若x,y满足约束条件 30 20 x x y x y ≥ ? ? +-≥ ? ?-≤ ? ,则y x z2 + =的取值范围是 A.[0,6] B.[0,4] C.[6,)∞ +D.[4,)∞ + 7.【2017浙江,6】已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4 + S6>2S5”的A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件

不等式的证明方法习题精选精讲

不等式性质的应用 不等式的性质是解不等式、证明不等式的基础和依据。教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。只有理解好,才能牢固记忆及正确运用。 1.不等式性质成立的条件 运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。 例1:若0< B .a b a 11>- C .||||b a > D .22b a > 解:∵0<->-b a 。 由b a -< -11,b a 11>,∴(A )成立。 由0<< b a ,||||b a >,∴(C )成立。 由0>->-b a ,2 2 )()(b a ->-,2 2b a >,∴(D )成立。 ∵0<->-a b a , )(11b a a --<-,b a a ->11,∴(B )不成立。 故应选B 。 例2:判断下列命题是否正确,并说明理由。 (1)若0<c ,在2 2c b c a >两边同乘以2 c ,不等式方向不变。∴b a >。 (3)错误。b a b a 1 1,成立条件是0>ab 。 (4)错误。b a >,bd ac d c >?>,当a ,b ,c ,d 均为正数时成立。 2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232 >-+x x 与0432 >-+x x (2)13 8112++ >++ x x x 与82>x (3)35 7354-+>-+x x x 与74>x (4) 023 >-+x x 与0)2)(3(>-+x x A .(2) B .(3) C .(4) D .(2)(3) 解:(1)0432232 2 >-+?>-+x x x x 。 (2)482>?>x x ,44,11 3 8112>?>-≠?++>++ x x x x x x 。

数列与不等式的综合问题

数列与不等式的综合问题

数列与不等式的综合问题 测试时间:120分钟 满分:150 分 解答题(本题共9小题,共150分,解答应写出文字说明、证明过程或演算步骤) 1.[2016·银川一模](本小题满分15分)在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为 q (q ≠1),且b 2+S 2=12,q =S 2 b 2 . (1)求a n 与b n ; (2)证明:13≤1S 1+1S 2+…+1S n <2 3 . 解 (1)设{a n }的公差为d ,因为 ???? ? b 2+S 2=12,q =S 2 b 2 ,

所以? ???? q +6+d =12,q =6+d q .解得q =3或q = -4(舍),d =3.(4分) 故a n =3+3(n -1)=3n ,b n =3n -1 .(6分) (2)证明:因为S n = n 3+3n 2 ,(8分) 所以1 S n =2n 3+3n =23? ?? ??1 n - 1n +1.(10分) 故1 S 1+1 S 2+…+1 S n = 23???? ??? ????1-12+? ????12-13+? ???? 13-14+…+? ????1n -1n +1 =23? ? ???1- 1n +1.(12分) 因为n ≥1,所以0<1n +1≤12,于是1 2≤1- 1 n +1 <1,

所以13≤23? ? ???1- 1n +1<23, 即13≤1S 1+1S 2+…+1S n <2 3 .(15分) 2.[2017·黄冈质检](本小题满分15分)已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1 ,n ∈N *. (1)求证:数列???? ?? 1a n -1为等比数列; (2)记S n =1a 1+1a 2+…+1 a n ,若S n <100,求最 大正整数n . 解 (1)证明:因为1 a n +1=23+1 3a n , 所以1 a n +1-1=13a n -13=13? ?? ??1 a n -1. 又因为1a 1-1≠0,所以1 a n -1≠0(n ∈N * ), 所以数列???? ?? 1a n -1为等比数列.(7分)

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong (数学之家) 本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了 n n n x x x n x x x ......2121≥ +++ 我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出: 8444844)()(: 4422)()(abcdefgh efgh abcd h g f e d c b a abcd abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时: 这样的步骤重复n 次之后将会得到 n n n x x x x x x n 2 221221 (2) ...≥ +++ 令A n x x x x x x x x x x n n n n n n =+++= =====++......;,...,2122111 由这个不等式有 n n n n n n n n n n A x x x A x x x A n nA A 2 121 212 221)..(..2 )2(- -=≥ -+= 即得到 n n n x x x n x x x ......2121≥ +++ 这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子: 例1: 1 1 12101(1,2,...,)11(...)n i i i n n n a i n a a a a =<<=≥ --∑ 若证明 例2:

1 1 1211(1,2,...,)1 1(...)n i i i n n n r i n r r r r =≥=≥ ++∑ 若证明 这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法: 给出例1的证明: 12121 2 212 2 123 4 211(1)2(1)(1) 11,(1)(2)2(1) 22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+ ≥ ?- --≥----=+= ?--≥-+?-+≥?+≥+?≥+ + + ≥+ ----≥ 当时设,而这是元均值不等式因此此过程进行下去 因2 1 1 2 1221 1212221 12 2 1 1 2 11(...)...(...)112 2 (2) 1111() 111n n n n n n n n i i n n n n n n n n n i i n n i i a a a a a a a a a a G n a G G G G n a G =++-==≥ --=====+-≥ = ----≥ --∑ ∑ ∑ 此令有即 例3: 1 115,,,,1(1),,111,,11( )( ) 1 1 n n i i i i i i i i i n n n i i i i i i n n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v R ST U V r s t u v R ST U V =>≤≤== = = = ++≥--∑∑∑∑∑∏ 已知个实数都记,求证下述不等式成立: 要证明这题,其实看样子很像上面柯西的归纳使用的形式