搜档网
当前位置:搜档网 › Nitrate removal in surface-flow constructed wetlands treating

Nitrate removal in surface-flow constructed wetlands treating

Nitrate removal in surface-flow constructed wetlands treating
Nitrate removal in surface-flow constructed wetlands treating

Ecological Engineering 35 (2009) 1538–1546

Contents lists available at ScienceDirect

Ecological

Engineering

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /e c o l e n

g

Nitrate removal in surface-?ow constructed wetlands treating dilute agricultural runoff in the lower Yakima Basin,Washington

Marc W.Beutel a ,?,Crystal D.Newton b ,Elaine S.Brouillard c ,Richard J.Watts d

a

Washington State University,Department of Civil and Environmental Engineering,Ecological Engineering Group,Pullman,WA 99164,United States b

Washington State University,Department of Earth and Environmental Sciences,Pullman,WA 99164,United States c

Roza-Sunnyside Board of Joint Control,Sunnyside,WA 98944,United States d

Washington State University,Department of Civil and Environmental Engineering,Pullman,WA 99164,United States

a r t i c l e i n f o Article history:

Received 15January 2009

Received in revised form 3July 2009Accepted 18July 2009

Keywords:

Constructed treatment wetland Agricultural runoff Nitrate

Denitri?cation

a b s t r a c t

Constructed treatment wetlands (CTWs)have been used effectively to treat a range of wastewaters and non-point sources contaminated with nitrogen (N).But documented long-term case studies of CTWs treat-ing dilute nitrate-dominated agricultural runoff are limited.This study presents an analysis of four years of water quality data for a 1.6-ha surface-?ow CTW treating irrigation return ?ows in Yakima Basin in central Washington.The CTW consisted of a sedimentation basin followed by two surface-?ow wetlands in parallel,each with three cells.In?ow typically contained 1–3mg-N/L nitrate and <0.4mg-N/L total Kjel-dahl N (TKN).Hydraulic loading was fairly constant,ranging from around 125cm/d in the sedimentation basin to 12cm/d in the treatment wetlands.Concentration removal ef?ciencies for nitrate averaged 34%in the sedimentation basin and 90–93%in the treatment wetlands.Total N removal ef?ciencies averaged 21%and 57–63%in the sedimentation basin and treatment wetlands,respectively.Area-based ?rst-order removal rate constants for nitrate in the wetlands averaged 142–149m/yr.Areal removal rates for nitrate in treatment wetlands averaged 139–146mg-N/m 2/d.Out?ow from the CTW typically contained <0.1mg-N/L nitrate and <0.6mg-N/L TKN.Rates of nitrate loss in wetlands were highly seasonal,generally peaking in the summer months (June–August).Nitrate loss rates also correlated signi?cantly with water temper-ature (positively)and dissolved oxygen (negatively).Based on the modi?ed Arrhenius relationship,?for nitrate loss in the wetlands was 1.05–1.09.The CTW also signi?cantly affected temperature and dissolved oxygen concentration in waters ?owing through the system.On average,the sedimentation basin caused an increase in temperature (+1.7?C)and dissolved oxygen (+1.5mg/L);in contrast the wetlands caused a decrease in temperature (?1.6?C)and dissolved oxygen (?5.0mg/L).Results show that CTWs with surface-?ow wetlands can be extremely effective at polishing dilute non-point sources,particularly in semi-arid environments where warm temperatures and low oxygen levels in treatment wetland water promote biological denitri?cation.

? 2009 Elsevier B.V. All rights reserved.

1.Introduction

Non-point sources account for approximately two-thirds of nutrient loading to the nation’s surface waters,and nitrate is a principal pollutant in non-point-source agricultural runoff (Poe et al.,2003;Mitsch et al.,2000).The primary source of nitrate in agricultural runoff is nitrogen (N)fertilizers.About half of applied N-fertilizer is typically taken up by crops,with the remaining N migrating via agricultural runoff into surrounding surface and ground waters,commonly in the form of nitrate (Howarth et al.,1996;Poe et al.,2003).Nitrate poses two key environmental

?Corresponding author.Tel.:+15093353721;fax:+15093357632.E-mail address:mbeutel@https://www.sodocs.net/doc/677654313.html, (M.W.Beutel).problems:eutrophication of surface waters and contamination of groundwater used for potable supply.Eutrophication is a partic-ular concern in N-limited coastal waters,where the frequency of hypoxic “dead zones”resulting from increased nutrient loading has increased worldwide (Daigle,2003;Weir,2005).A critical concern with contaminated groundwater is the toxicity of nitrate to infants (Horne,2001;USEPA,2002,1990).

Constructed treatment wetlands (CTWs)have been shown to be an effective,economical,and ecologically sustainable method to treat N-contaminated wastewaters and non-point sources (Kadlec and Knight,1996;Horne and Fleming-Singer,2005).The N bio-geochemical cycle within wetland ecosystems is complex and involves numerous transformations including ammonia volatiliza-tion,ammoni?cation,N ?xation,burial of organic N,ammonia sorption to sediments,nitri?cation,denitri?cation,anammox,and

0925-8574/$–see front matter ? 2009 Elsevier B.V. All rights reserved.doi:10.1016/j.ecoleng.2009.07.005

M.W.Beutel et al./Ecological Engineering35 (2009) 1538–15461539

assimilation(Vymazal,2007).The primary mechanism for the loss of nitrate in CTWs is denitri?cation,the microbial reduction of nitrate to dinitrogen gas,which is favored under the anaerobic con-ditions typically encountered in CTWs(Kadlec and Knight,1996). Denitri?cation typically accounts for60–95%of the nitrate removal in CTWs(Spieles and Mitsch,2000).

A range of environmental factors in?uence N transformations in wetland ecosystems,and understanding these factors is impor-tant to optimizing nitrate removal in CTWs.Three key factors include N loading,temperature,and dissolved oxygen(DO).Histor-ical observations at a range of CTWs show that levels of a number of pollutants,including nitrate,generally decrease with distance thor-ough CTWs,suggesting that pollutant removal in CTWs is?rst order in nature(Kadlec and Knight,1996).As areal nitrate loading(g-N/m2/d)increases areal removal rates tend to increase.However, as areal removal rates increase,percent removal of nitrate mass and concentration tends to decrease.This relationship has been well documented at a number of experimental wetlands treating nitrate-rich waters(Mitsch and Gosselink,2000).Since denitri-?cation is a biological process,rates of nitrate loss in CTWs are highly sensitive to temperature.Temperature also affects denitri-?cation by controlling rates of diffusion at the sediment–water interface in wetlands(Crumpton and Phipps,1992).Denitri?ca-tion rates in CTWs increase dramatically with temperature,within a lower and upper bounds of around5?C and70?C,respectively (Vymazal,2007).Sirivedhin and Gray(2006)documented a two-order of magnitude increase in denitri?cation rates in wetland sediments when temperature was increased from4?C to25?C. Being an anoxic process,biological denitri?cation is also sensi-tive to DO levels(Firestone,1982).However,denitri?cation has been observed in numerous CTWs with measurable levels of DO in wetland water(Kadlec and Knight,1996;Phipps and Crumpton, 1994).High DO gradients in organic-rich wetland muck and sur-?cial sediments tend to promote both oxic and anoxic biological processes,including denitri?cation,in close proximity to wetland surface waters.

The objective of this study was to document the effects of N loading,temperature,and DO on nitrate removal in a CTW based on a detailed evaluation of a four-year water quality database (2003–2006).The1.6ha vegetated surface-?ow CTW,located in the Yakima Basin in central Washington,is unique in that it treats dilute,nitrate-dominated agricultural return?ows with nitrate <3mg-N/L and total Kjeldahl N(TKN)<0.4mg-N/L.These in?u-ent N concentrations are far below those in many CTWs.A review of the North American Treatment Wetland Database(NATWD)by Bachand and Horne(2000a)reported average in?uent composi-tion to surface-?ow CTWs was48mg-N/L for TKN,24mg-N/L for ammonia,and9mg-N/L for nitrate.Results of the study expand the limited number of published case studies of surface-?ow CTWs treating low-nitrate agricultural runoff,a non-point source of growing concern and signi?cance.

2.Materials and methods

2.1.Study site

The Lower Yakima River Basin,located in central Washington, is a vast area stretching over340km from the eastside of the Cas-cade Mountains to the Columbia River.Approximately1900km2 of the basin are under agricultural development,much of it irri-gated with water distributed by the US Bureau of Reclamation from reservoirs on the upper Yakima River(Romey and Cramer, 2001).In2001the Roza and Sunnyside Irrigation Districts,which together serve71,500ha in the southeastern Yakima Basin,formed the Roza-Sunnyside Board of Joint Control(RSBOJC).The RSBOJC designed and constructed a pilot treatment wetland,funded as part of the State’s total maximum daily load program for the Yakima River,which is listed for sediment,turbidity,and the pesticide DDT (USEPA,2005).

The RSBOJC CTW has a total treatment area of16,300m2and consists of a sedimentation basin(SB)followed by two surface-?ow wetlands in parallel,each with three cells(north wetland:N1, N2and N3;south wetland:S1,S2and S3)(Fig.1and Table1).The north and south wetlands have an area of7950m2and6960m2, respectively.The wetlands,which were originally planted with 40,000cattails(Typha sp.)and soft stem bulrush(Scirpus sp.), currently include a complex mixture of wetland vegetation and open water.The CTW was designed to treat a constant?ow of 17L/s of water pumped from the JD26.6lateral of the Granger Drain,which transports runoff from irrigated agricultural and live-stock operations to the Yakima River.The total design hydraulic retention time(HRT)in the CTW was approximately eight days and the design hydraulic loading rate(q)to the wetlands was approximately10cm/d.The CTW is operated during the irriga-tion season from May to October.Waters in the JD26.6lateral contain moderate levels of pollutants typical of irrigation return ?ows including nitrate(2.0±0.9mg-N/L;average±standard devi-ation,2003–2006,n~30),TKN(0.4±0.1mg-N/L),total phosphorus (0.13±0.05mg-P/L),and turbidity(4.9±5.1NTU).Total N loading is around30kg-N/ha/d to the sedimentation basin and2.5kg-N/ha/d to the https://www.sodocs.net/doc/677654313.html,teral water temperatures typically range from10?C to22?C and DO levels range from7mg/L to10mg/L.

2.2.Sampling and analysis

This study evaluated four years of water quality and hydraulic data(2003–2006)collected by water quality specialists with the RSBOJC.We omitted2001–2002,the?rst two years of CTW oper-ation,since the early water quality data set was somewhat spotty, and since ecosystem development in the initial years of CTW oper-ation typically results in unsustainably elevated nutrient uptake rates as wetland plant biomass is established(Kadlec,2002).Water quality was monitored at four primary stations:in?ow from the JD 26.6lateral to the sedimentation basin(In?ow),out?ow from the sedimentation basin(SB),out?ow from the last north wetland cell (N3),and out?ow from the last south wetland cell(S3).Monitor-ing took place approximately every two weeks during the irrigation season from May through October.DO and temperature were mea-sured using a handheld meter(Orion Model,1230).Nitrate and TKN samples were collected and shipped on ice to a state certi?ed lab(Paci?c Northwest Regional Laboratory,US Bureau of Reclama-tion Water Quality Lab,Boise,Idaho),where they were analyzed using standard method4500-NO3?E for nitrate(cadmium reduc-tion method,detection limit of0.01mg-N/L)and standard method 4500-N org B for TKN(macro-Kjeldahl method,detection limit of

0.1mg-N/L)(APHA,1998).Flow rate was measured once or twice

a month at three stations:out?ow from the sedimentation basin with a?ow meter attached to the pressurized discharge pipeline to the two wetlands,and out?ow from N3and S3cells with calibrated ?umes installed on each of the surface out?ows from the?nal cells of the north and couth wetlands.

2.3.Modeling

Rates of removal for nitrate and total N(calculated as nitrate plus TKN)based on the2003–2006data set were quanti?ed using three common approaches for CTWs(Kadlec and Knight,1996). First,we estimated an area-based?rst-order removal rate constant for nitrate(K N)and total N(K TN)using the K–C*model assuming

1540M.W.Beutel et al./Ecological Engineering

35 (2009) 1538–1546

Fig.1.Aerial view of the RSBOJC CTWs (prior to planting).The JD 26.6lateral ?ows from north to south between the north wetland cells (N1,N2and N3)and south wetland cells (S1,S2and S3).Water is diverted from the drain (In?ow)and pumped at a constant rate to a sedimentation basin (SB).The ?ow is then divided and pumped into the ?rst cell of each treatment wetland (N1and S1).The ?ow exits the last cell of each treatment wetland (N3and S3)back to the lateral by gravity.Sampling sites include SB in?ow,SB out?ow (same as wetland in?ow to N1and S1),N3out?ow and S3out?ow.

plug ?ow conditions:K =?q ×ln

C

out

?C ?C in ?C ?

(1)

where K is the ?rst-order removal rate constant (m/yr),q is the hydraulic loading rate (m/yr),C in and C out are the inlet and outlet concentrations of nitrate or total N (mg-N/L),and C *is the back-ground concentration (mg-N/L).The C *for nitrate was zero,and the C *for total N,based on out?ow data from the RSBJC CTW,was 0.3mg-N/L.K N values were normalized to 20?C (K N-20)based on Eq.(4)assuming a ?value of 1.09for denitri?cation in wetlands (Kadlec and Knight,1996).Second,we estimated the concentration removal ef?ciency (%):removal ef?ciency =

C in ?C out

C in

×100

(2)

Finally,we estimated the areal removal rate (mg-N/m 2/d):removal rate =q ×(C in ?C out )

(3)

The effect of temperature on the ?rst-order removal rate con-stant for nitrate was modeled based on the modi?ed Arrhenius relationship:K (t )=K (20)?(t ?20)

(4)

where K (t )and K (20)are the ?rst-order removal rate constants (m/yr),t is temperature (?C),and ?is an empirical temperature coef?cient (Kadlec and Knight,1996).A linearized form of Eq.(4)was used to estimate parameters of the model from our data set:log[K (t )]=log ?(t ?20)+log[K (20)]

(5)

Values of log[K (t )]versus (t ?20)were plotted and ?t with a linear regression.The resulting slope and intercept were equal to log ?and log [K (20)],respectively.2.4.Data and statistical analysis

The water quality data set consisted of temperature,DO,nitrate,and TKN for 2003–2006at four stations (In?ow,SB,N3and S3;n =30–35).Flowrate data were collected less frequently at three

Table 1

Site design characteristics for the RSBOJC constructed treatment wetlands.Cell

Length (m)

Width (m)Average depth (m)Area (m 2)Flow rate (L/s)q (cm/d)HRT (d)Sedimentation basin SB 61.023.0

1.7

1400

17

105

1.6

North wetland N161.030.50.301860N283.830.50.682560N3115.830.50.743530Total

7950

8.5

9.2

6.7

South wetland S176.230.50.752320S276.230.50.562320S376.230.50.692320Total

6960

8.5

10.6

6.3

M.W.Beutel et al./Ecological Engineering35 (2009) 1538–15461541

Table2

Summary of?ow rate,temperature and DO data for the RSBOJC constructed treatment wetlands.

In?ow rate(L/s)Out?ow rate(L/s)Average q(cm/d)Temperature(?C)DO(mg/L)

In Out Temp In Out DO

Sedimentation basin

20.0a20.0(7.8)123.516.1(2.5)17.7(3.4) 1.7(1.8)9.3(3.2)10.8(3.5) 1.5(3.5)

North wetland

10.0a 6.8(3.7)10.917.1(3.0)15.3(3.9)?1.8(2.2)11.1(3.7) 6.3(2.5)?5.0(4.0)

South wetland

10.0a9.1(5.5)12.417.4(3.1)15.9(4.0)?1.6(2.4)11.3(3.7) 6.4(2.2)?4.9(4.0)

Values are averages and standard deviations(in parentheses)for2003–2006data set;n=22–29for?ow rate;n=30–35for temperature and DO.

Sedimentation basin average q based on average out?ow rate;wetland average q values based on wetland in?ow rates.

a Assumed values.Out?ow from sedimentation basin is evenly split between the north and south wetlands.

stations(SB,N3and S3;n=22–29).While in?ow to each of the two treatment wetlands was not directly measured(i.e.,at N1and S1), the pipeline system was designed to evenly split sedimentation basin out?ow between the two wetlands.We estimated an aver-age q for the entire data set,and then applied that average q to the nitrate and total N concentration data sets to estimate the removal rates based on Eqs.(1)and(3)for the three treatment components of the CTW(sedimentation basin,north wetland and south wet-land).The average q to the sedimentation basin was estimated as the average out?ow(Table2)divided by the design area of the basin.The average q to the wetlands was based on half the sedi-mentation basin in?ow divided by the design area.To evaluate if the impacts of the sedimentation basin,the north wetland,and the south wetland on water quality(temperature,DO,nitrate and total N)were statistically signi?cant(p<0.05),a two-tailed t-test(paired two sample for means)was performed on inlet and outlet concen-trations for each of the three treatment components.In addition, a two-tailed t-test(two-sample assuming unequal variances)was performed on outlet concentrations(temperature,DO,nitrate and total N)of the two treatment wetlands to determine if the wetlands acted in a statistically similar fashion.To elucidate controlling fac-tors on nitrate removal in the CTW,a correlation matrix(r value of linear regression)was developed between K N,in?ow nitrate con-centration,in?ow temperature,out?ow temperature,in?ow DO, and out?ow DO for the three treatment components.

3.Results

3.1.Hydrology,temperature and DO

In?ow to the CTW for the four-year data set averaged20.0L/s (Table2),slightly higher than the design in?ow rate of17L/s (Table1).In?ow to each wetland,which was not measured directly, was estimated at10.0L/s,yielding an average q of10.9cm/d in the north wetland and12.4cm/d in the south wetland.The sedimenta-tion basin resulted in a statistically signi?cant increase in average temperature(+1.7?C)and DO(+1.5mg/L)(Table2).In contrast, both wetlands resulted in a signi?cant drop in average tempera-ture(?1.7?C)and DO(?5mg/L).Temperature and DO were not signi?cantly different in out?ow from the north and south wet-lands.Seasonal trends were apparent in wetland temperature and DO(Fig.2A and B).In?ow and out?ow temperatures increased from12–14?C in the spring,peaked to20–23?C in early July,then dropped back down to<15?C in the fall.Differences between in?ow and out?ow temperatures were most pronounced in the later part of the irrigation season(August–October).DO levels in wetland in?ow(same as sedimentation out?ow)were somewhat variable ranging from the extremes of3mg/L to18mg/L and averaging around11mg/L.DO levels in wetland out?ow tended to mirror, in an opposite fashion,those of temperature,particularly in2005and2006.In those years out?ow DO dropped from around10mg/L in the spring,to a minimum of~4–5mg/L in the summer,to around 8mg/L in the fall.Differences between in?ow and out?ow DO were most pronounced in the summer months.

3.2.Nitrate and total nitrogen concentrations

Average annual total N levels entering the CTW over the study period(2003–2006)varied from1.8mg-N/L to2.7mg-N/L,and were dominated by nitrate(76–86%)(Fig.3).Average annual total N levels in sedimentation basin out?ow and wetland out-?ow ranged from 1.3mg-N/L to 2.5mg-N/L and0.6mg-N/L to 1.0mg-N/L,respectively.Average annual nitrate levels in wetland out?ow were consistently<0.4mg-N/L.Waters were progressively enriched with organic N relative to nitrate as they?owed through the CTW;the average annual percent of TKN as total N increased from14–24%in in?ow,to20–44%in sedimentation basin out?ow, to61–94%in wetland out?ow.This phenomenon was a combined effect of increasing TKN concentrations and decreasing nitrate concentrations through the CTW(Fig.3).Total N and nitrate in wetland in?ow tended to decrease as the irrigation season pro-gressed(Fig.2C and D).Nitrate levels in2004,for example,dropped from around2mg-N/L in the spring to around0.5mg-N/L in the late summer and fall.Nitrate levels in wetland ef?uent were commonly below detection limit(0.01mg-N/L).Statistical analysis con?rmed that decreases in nitrate and total N through the sedimentation basin and both wetlands were signi?cant,and that there was no statistical difference between nitrate and total N levels in out?ow from the north and south wetlands.

3.3.Nitrate and total nitrogen removal rates

Area-based?rst-order removal rates for nitrate averaged 187m/yr for the sedimentation basin,142m/yr in the north wet-land,and149m/yr in the south wetland(Table3).Average removal rates increased somewhat when they were normalized to20?C (K N-20).Average concentration removal ef?ciencies were relatively low in the sedimentation basin(34%)but high in the wetlands (90–93%);however,on an areal basis removal rates were higher in sedimentation basin(837mg-N/m2/d)compared to the wet-lands(139–146mg-N/m2/d).On average the CTW removed94%of nitrate on a concentration basis.Removal rates dropped when put in terms of total N,but removal trends in the sedimentation basin versus the wetlands were similar(Table4).For example,average total N concentration removal ef?ciencies were21%in the sedi-mentation basin,57–63%in the wetlands,and68%for the entire CTW.K N values showed a strong seasonal trend(Fig.4).Rates were generally lower in April and early May(<100m/yr),peaked in July (200–250m/yr),and then remained high or decreased somewhat

1542M.W.Beutel et al./Ecological Engineering

35 (2009) 1538–1546

Fig.2.Water quality (temperature,DO,total N and nitrate)in in?uent and ef?uent of the RSBOJC treatment wetlands.SB out?ow is from sedimentation basin to wetland cells N1and S1;N3out?ow is from last cell of north treatment wetlands back to JD 26.6lateral;S3out?ow is from last cell of south treatment wetlands back to JD 26.6lateral.

in September and October.Temperature dependency of K N in the north and south wetlands was modeled based on a linearized form of modi?ed Arrhenius relationship (Fig.5).The model had a fairly low r 2(0.25)but was statistically signi?cant (p <0.01).Based on the model,the ?value was 1.09and the K N-20was 175m/yr,which was similar in magnitude to the average K N-20estimated from the data set (196m/yr and 192m/yr;Table 3).Values of K N were found to correlate signi?cantly with a number of parameters (Table 5).In the sedimentation basin,K N corre-lated positively with out?ow temperature.A number of parameters covaried signi?cantly including in?ow and out?ow temperature and in?ow and out?ow DO.In?ow DO also negatively correlated with out?ow temperature.In the wetlands,K N correlated with in?ow temperature (positive)and out?ow DO (negative)(Table

5

Fig.3.Average annual concentrations of nitrate and TKN over the wetland operating months (May–October):In?ow (in?ow to sedimentation basin from JD 26.6drain);SB out?ow (out?ow from sedimentation basin to wetland cells N1and S1);N3out?ow (out?ow from last cell of north treatment wetlands back to JD 26.6drain);S3out?ow (out?ow from last cell of south treatment wetlands back to JD 26.6drain).

M.W.Beutel et al./Ecological Engineering 35 (2009) 1538–1546

1543

Table 3

Summary of nitrate removal in the RSBOJC constructed treatment wetlands.Nitrate

Concentration (mg-N/L)K N (m/yr)

K N-20(m/yr)

Removal ef?ciency (%)

Removal rate (mg-N/m 2/d)

In

Out

Sedimentation basin 2.0(0.86) 1.4(0.74)187(163)237(183)34(27)837(884)North wetland 1.4(0.73)0.1(0.32)142(54)196(80)93(14)139(75)South wetland 1.3(0.74)0.2(0.32)

149(68)

192(84)

90(15)

146(83)

Values are averages and standard deviations (in parentheses)for 2003–2006data set;n =30–35.K values estimated using average q values from Table 2.K N-20based in a ?value of 1.09.

Table 4

Summary of total nitrogen removal in the RSBOJC constructed treatment wetlands.Total nitrogen

Concentration (mg-N/L)K TN (m/yr)

Removal ef?ciency (%)

Removal rate (mg-N/m 2/d)

In

Out

Sedimentation basin 2.4(0.92) 2.0(0.96)112(130)21(26)631(1008)North wetland 2.1(0.95)0.7(0.47)73(44)63(18)148(92)South wetland 2.0(0.96)

0.8(0.45)

63(33)

57(22)

151(106)

Values are averages and standard deviations (in parentheses)for 2003–2006data set;n =30–35.K values estimated using average q values from Table 2.

and Fig.6).In?ow temperature was found to

correlate with out-?ow temperature (positive)and out?ow DO (negative).Out?ow temperature also appeared to correlate negatively with out?ow

DO.Unlike the sedimentation basin,in?ow and out?ow DO did not covary in the wetlands.Values of K N did not correlate with in?ow nitrate concentration,an analog for nitrate loading presuming low variation in q over time,in the sedimentation basin or the wetlands.

Fig.4.Seasonal pattern of K N in north and south treatment wetlands for 2004,2005and 2006.

Fig.5.K N dependence on temperature based on the modi?ed Arrhenius equation.Line is linear regression of data for both north and south constructed treatment wetlands for 2003–2006data set.Units of K N are m/yr.Slope equals log ?(?=1.09)and x -intercept equals log[K N (20)](K N (20)=175m/yr).

4.Discussion

4.1.Hydrology,temperature and DO

Average hydraulic loading to the wetlands,10.9cm/d in the north wetland and 12.4cm/d in the south wetland,was relatively high.Typical values for surface-?ow wetlands treating nitrate-dominant wastewaters are 1–10cm/d (Kadlec and Knight,1996).Mitsch and Gosselink (2000)reported a hydraulic loading rate of 5.4±1.7cm/d (average ±standard error)for over a dozen North American CTWs.Based on a comparison of in?ow and out?ow rates,average net water loss,which included evapotranspiration,bank losses,in?ltration and precipitation,was 3.5cm/d in the north wet-

1544M.W.Beutel et al./Ecological Engineering35 (2009) 1538–1546

Table5

Correlation matrix between K N and key water quality parameters for the RSBOJC constructed treatment wetlands.

K N In?ow nitrate In?ow temp Out?ow temp In?ow DO

Sedimentation basin

In?ow nitrate?0.14 1.00

In?ow temp0.32??0.06 1.00

Out?ow temp0.37*?0.260.86** 1.00

In?ow DO?0.160.21?0.06?0.40* 1.00

Out?ow DO0.10?0.090.210.090.43*

North wetland

In?ow nitrate0.02 1.00

In?ow temp0.44*?0.29 1.00

Out?ow temp0.33?0.030.83** 1.00

In?ow DO?0.13?0.010.040.03 1.00

Out?ow DO?0.61**0.28?0.53**?0.32?

0.20

South wetland

In?ow nitrate?0.15 1.00

In?ow temp0.66**?0.30 1.00

Out?ow temp0.55**0.140.79*** 1.00

In?ow DO?0.03?0.030.080.01 1.00 Out?ow DO?0.75**0.30??0.61**?0.52**0.20 Positive values indicate positive correlation;negative values indicate negative correlation.n~30.

?p<0.10.

*p<0.05.

**p<0.01.

land and1.1cm/d in the south wetland.These losses are higher than the average April–October net evaporative loss of0.4cm/d(80% of pan evaporation minus precipitation)calculated from historical meteorological data for the region.Thus both wetlands,particu-larly the north wetland,appeared to be losing water through bank loss and/or in?ltration.

In northern climates,the dominant processes controlling water temperature in wetlands are energy uptake from incidental solar

Fig.6.K N as a function of in?ow temperature(top)and out?ow DO(bottom)for the south constructed treatment wetland for2003–2006data set.Lines are linear regression of data.radiation,convective heat transfer from the atmosphere,and energy loss to the atmosphere through evaporation(Kadlec and Knight,1996).Because wetland plants shade water from incoming solar radiation and dissipate energy through transpiration,evapo-rative cooling dominates the water energy balance in wetlands.As a result,average daily out?ow temperatures are generally lower than in?ow temperatures,particularly in arid climates(Kadlec, 2006).Such was the case in the RSBOJC wetlands which on average showed a nearly2?C drop in temperature between in?ow and out-?ow(Table2).Temperature differential was as high as4–7?C in the fall of2004and2005(Fig.2A).The opposite dynamics were at work in the non-vegetated sedimentation basin with an uptake of solar radiation leading to an average increase in temperature between in?ow and out?ow of almost2?C.

Greater solar radiation input to the sedimentation basin also facilitated algal productivity and associated DO production dur-ing photosynthesis,resulting in the observed increase through the sedimentation basin to DO levels as high as18mg/L(Fig.2B).In the wetlands,microbial decay of organic matter in shaded and shallow waters led to elevated oxygen consumption and a decrease in DO concentration in wetland waters by an average5mg/L(Table2).A number of researchers have observed drops in DO in surface-?ow CTWs similar to those in this study.Bachand and Horne(2000b) found that mean DO dropped from9.6mg/L to5.2mg/L through replicate experimental macrocosm wetlands treating high-nitrate river water.Thullen et al.(2002)measured mean DO levels of 1–2mg/L in out?ow from vegetated cells and4–6mg/L in out?ow from hummock hemi-marsh cells(wetland plants grown on raised beds with around80%open water)in experimental wetlands treat-ing ammonia dominated secondary ef?uent;in?uent DO was not reported but was presumably near saturation(8–10mg/L).Corre-lation analyses also illustrated the contrasting in?uence that the sedimentation basin and wetlands had on water passing through the systems,particularly with respect to DO(Table5).In the sed-imentation basin,out?ow DO correlated signi?cantly with in?ow DO but not with in?ow or out?ow temperature.In the wetlands, with their longer residence time and high biological activity,the opposite was observed with out?ow DO correlating with temper-ature in in?ow and/or out?ow.

M.W.Beutel et al./Ecological Engineering35 (2009) 1538–15461545

4.2.Nitrogen removal rates

Area-based?rst-order removal rates estimated for the treat-ment wetlands were high compared to values reported in the literature.Average values for K N and K TN were around145m/yr and68m/yr,respectively(Table3).Typical values for surface-?ow CTWs with similar nitrate concentration in in?ow reported by Kadlec and Knight(1996)range from10m/yr to60m/yr for K N and5m/yr to20m/yr for K TN.Removal ef?ciencies of>90% for nitrate and~60%for total nitrogen,and areal removal rates of100–200mg-N/m2/d for nitrate,were comparable to those reported for other surface-?ow CTWs treating nitrate-dominated wastewaters in semi-arid climates.Pilot-scale testing in the Prado Wetlands in Southern California measured around80%nitrate removal ef?ciencies during summer operations;average areal removal rates for nitrate were around500mg-N/m2/d(Horne, 2001;Reilly et al.,2000).In the San Joaquin Marsh,a pond/marsh CTW in Southern California,removal ef?ciencies averaged80%for nitrate and60%for total N,and areal removal rates were around 300mg-N/m2/d(Fleming-Singer and Horne,2006;Horne,2001). This areal removal rate was similar to average rates measured at the RSBOJC CTW,particularly when they were estimated for the composite sediment basin/wetland system(240–260mg-N/m2/d). As observed at the RSBOJC CTW,out?ow from the San Joaquin Marsh was also enriched with organic N,supporting the generally accepted fact that wetlands are sinks for inorganic nutrients(e.g., nitrate)but sources of organic material(e.g.,organic N)(Mitsch and Gosselink,2000).Nitrate removal rates observed in the RSBOJC wetlands were higher than those predicted by an empirical nitrate retention model developed for river-fed CTWs in the Midwest-ern US(Mitsch and Gosselink,2000).The RSBOJC wetlands were loaded with around40g-N/m2/yr of nitrate.At this loading rate the model predicted a concentration removal ef?ciency of55%and an areal removal rate of16g-N/m2/yr.Actual removal rates were>90% and around25g-N/m2/yr.The underestimate was likely a result of the warmer temperatures and non-winter operation at the RSBOJC wetlands.

4.3.In?uence of nitrate concentration,temperature and oxygen

on nitrogen removal

Numerous studies have shown that denitri?cation rates in CTWs increase with increasing nitrate concentration in in?ow, and nitrate removal in wetlands is typically modeled as a?rst-order process relative to in?owing nitrate concentration(Kadlec and Knight,1996).Some studies have not found this relationship, arguing that kinetic predictions show that biological denitri?ca-tion is not limited at the nitrate levels typical of CTWs(Bachand and Horne,2000b).In our study,values of K N in wetlands did not correlate with in?ow nitrate concentration.However,the range in in?ow concentrations was small,typically from around1mg-N/L to3mg-N/L,and this may have masked a potential relation-ship between in?owing nitrate concentration and nitrate removal rates.

While K N in wetlands showed no correlation with in?ow nitrate concentration,there was a signi?cant correlation with in?ow and/or out?ow temperature(Table5).This was to be expected, since biological denitri?cation is strongly affected by temperature. Results from our modeling of temperature effects on area-based ?rst-order removal yielded a higher K N-20(175m/yr)than the‘cen-tral tendency’value for surface-?ow CTWs(35m/yr)reported by Kadlec and Knight(1996).But our?value for nitrate removal (1.09)was similar to values for denitri?cation in treatment wet-lands reported by Kadlec and Knight(1996)(1.09)and Bachand and Horne(2000b)(1.15–1.18).Our temperature model appeared to overestimate K N for a handful of data from a particularly cool early spring in2004(four data points in the lower left-hand section of Fig.5).However,the model did predict removal rates well during cold fall weather.Clearly some other environmental factor(s)was limiting nitrate removal during spring2004.DO was extremely ele-vated in both wetland in?ow and out?ow during this period with some of the highest values recorded for the entire2003–2006data set(12–16mg/L in late April,2004;8–15mg/L in early May,2004). These high DO conditions may have constrained nitrate removal by robbing the wetlands of the anoxic conditions that favor biological denitri?cation.Carbon limitation has also been shown to limit deni-tri?cation in CTWs(Bachand and Horne,2000b;Reilly et al.,2000), and this too may have played a role in limiting nitrate removal rates early in the growing season.Excluding the spring2004data points yielded a?of1.05,a value somewhat closer to those sited by Crumpton and Phipps(1992)(1.07)and Fleming-Singer and Horne (2006)(1.04–1.07).

As noted by Spieles and Mitsch(2000),few studies have eval-uated how DO in wetland water regulates denitri?cation since nitrate loss in wetlands has been observed in CTWs under well oxygenated conditions.A more important driver of denitri?cation is the presence of an anoxic muck layer rich in bioavailable car-bon(Sirivedhin and Gray,2006;Fleming-Singer and Horne,2006). Our data set allowed for a comparison of DO and nitrate removal in wetlands,and of the environmental factors we evaluated,K N most strongly correlated(negatively)with DO in out?ow(Table5). This contrasts with observations by Bachand and Horne(2000a,b) who found that rates of denitri?cation did not correlate with DO in pilot-scale surface-?ow wetlands treating nitrate-dominated waters.This discrepancy may be related to the high hydraulic load-ing rates used in their study(28–167cm/d).How important bulk DO concentration in wetland water is as a driver of denitri?cation in the wetlands is uncertain.In the RSBOJC wetlands,DO in out-?ow also signi?cantly covaried(negative)with in?ow and out?ow temperature,which is a strong controller of denitri?cation rates. We hypothesize that high water temperatures enhanced rates of microbial oxygen uptake while lowering DO solubility,and the combination of high temperatures and low DO together result in enhanced rates of nitrate removal in the wetlands during warm summer months(Fig.4).

5.Conclusion

Based on a detailed evaluation of a four-year water quality data set,we formulated the following four key conclusions:

(1)Even at relatively low in?uent nitrate levels(<3mg-N/L),CTWs

can be extremely effective in removing N pollution,though areal removal rates may be comparatively low.Concentra-tion removal ef?ciencies in treatment wetlands consistently exceeded90%for nitrate and60%for total N.Average areal removal rates for nitrate and total N were100–200mg-N/m2/d.

While nitrate areal removal rates were comparable to typical CTWs,total N areal removal rates were far lower.For example, areal removal rates for CTWs in the North American Treatment Wetland Database averaged125mg-N/m2/d(n=51)for nitrate and513mg-N/m2/d(n=37)for total N(Bachand and Horne, 2000a).

(2)Sedimentation basins,while primarily designed to capture sus-

pended solids and prevent excessive sediment build-up in treatment wetland,yielded removal of nitrate and total N in the range of20–30%on a concentration basis.With their small sur-face area,this translated to relatively high N removal rates on an areal basis(600–800mg-N/m2/d).However,like wetlands,

1546M.W.Beutel et al./Ecological Engineering35 (2009) 1538–1546

at times the sedimentation basin acted as a source of organic N.

(3)Nitrate removal rates were highly sensitive to temperature

and exhibited seasonal trends.Removal rates in warm summer months(June–August)were2–4times higher than in cooler months.Lowest rates were observed in the spring.Tempera-ture effects on the area-based?rst-order removal rate constant for nitrate in treatment wetlands,estimated using the modi?ed Arrhenius equations,resulted in a?value of1.05–1.09.

(4)CTW unit processes affected water temperature and DO in

differing ways.Sedimentation basins tended to increase tem-perature and DO,while vegetated wetlands tended to decrease temperature and DO.In addition,temperature and DO levels in out?ow correlated more closely to in?ow conditions in sedi-mentation basins compared to treatment wetlands.

Acknowledgements

This project was funded in part by the Department of the Inte-rior,U.S.Geological Survey,through the State of Washington Water Research Center,Grant Agreement No.06HQGR0126.We would like to thank the anonymous reviewers for their constructive com-ments on the manuscript.

References

American Public Health Association(APHA),1998.Standard Methods for the Exam-ination of Water and Wastewater,20th ed.American Public Health Association, Washington,DC.

Bachand,P.A.M.,Horne,A.J.,2000a.Denitri?cation in constructed free-water surface wetlands:I.Very high nitrate removal rates in a macrocosm study.Ecol.Eng.14, 9–15.

Bachand,P.A.M.,Horne,A.J.,2000b.Denitri?cation in constructed free-water surface wetlands:II.Effects of vegetation and temperature.Ecol.Eng.14,17–32. Crumpton,W.G.,Phipps,R.,1992.Fate of nitrogen loads in experimental wetlands.

In:The Des Plaines River Wetlands Demonstration Project.Wetlands Research, Inc.,Chicago,IL.

Daigle,D.,2003.Dead seas:nutrient pollution in coastal waters.Multinatl.Monit.

24(9),147–166.

Firestone,M.K.,1982.Biological denitri?cation.In:Nitrogen in Agricultural Soils, pp.289–326(Agronomy Monograph No.22).

Fleming-Singer,M.,Horne,A.J.,2006.Balancing wildlife needs and nitrate removal in constructed wetlands:the case of the Irvine Ranch Water District’s San Joaquin Wildlife Sanctuary.Ecol.Eng.26,147–166.Horne,A.J.,2001.Potential value of constructed wetlands for nitrate removal along some large and small rivers.Verh.Int.Verein.Limnol.24,1–6.

Horne,A.J.,Fleming-Singer,M.,2005.Phytoremediation using constructed treat-ment wetlands:an overview.In:Fingerman,M.,Nagabhushanam,R.(Eds.), Bioremediation of Aquatic and Terrestrial Ecosystems.Science Publishers,Ply-mouth,UK.

Howarth,R.,Billen,G.,Swany,D.,Townsend,A.,Jaworski,N.,Lajtha,K.,Down-ing,J.,Elmgren,R.,Caraco,N.,Jordan,T.,Berendse,F.,Freney,J.,Kudeyarov, V.,Murdoch,P.,Zhao-Liang,Z.,1996.Regional nitrogen budgets and riverine N and P?uxes for the drainages to the North Atlantic Ocean:natural and human in?uences.Biogeochemistry35,75–139.

Kadlec,R.H.,2006.Water temperature and evapotranspiration in surface?ow wet-lands in hot arid climate.Ecol.Eng.26,328–340.

Kadlec,R.H.,2002.Pond and wetland treatment.Water Sci.Technol.48,1–8. Kadlec,R.H.,Knight,R.L.,1996.Treatment Wetlands.CRC Lewis Publishers,Boca Raton,FL.

Mitsch,W.J.,Gosselink,J.G.,2000.Wetlands,3rd ed.John Wiley&Sons,Inc.,New York.

Mitsch,W.J.,Horne,A.J.,Nairn,R.W.,2000.Nitrogen and phosphorus retention in wetlands—ecological approaches to solving excess nutrient problems.Ecol.Eng.

14,1–7.

Phipps,R.G.,Crumpton,W.G.,1994.Factors affecting nitrogen loss in experimental wetlands with different hydrologic loads.Ecol.Eng.3,399–408.

Poe,A.C.,Piehler,M.F.,Thompson,S.P.,Paerl,H.W.,2003.Denitri?cation in a con-structed wetland receiving agricultural runoff.Wetlands23,817–826.

Reilly,J.F.,Horne,A.J.,Miller,C.D.,2000.Nitrate removal from a drinking water sup-ply with large free-surface constructed wetlands prior to groundwater recharge.

Ecol.Eng.14,33–47.

Romey,B.,Cramer,S.P.,2001.Aquatic Habitat Survey of Irrigation Drainage Net-works Lower Yakima River Basin.Report to Roza-Sunnyside Board of Joint Control and United States Bureau of Reclamation.Cramer and Associates Inc., Yakima,WA.

Sirivedhin,T.,Gray,K.A.,2006.Factors affecting denitri?cation rates in experimental wetlands:?eld and laboratory studies.Ecol.Eng.26,167–181.

Spieles,D.J.,Mitsch,W.J.,2000.The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands:a comparison of low-and high-nutrient riverine systems.Ecol.Eng.14,77–91.

Thullen,J.S.,Sartoris,J.J.,Walton,W.E.,2002.Effects of vegetation management in constructed wetland treatment cells on water quality and mosquito production.

Ecol.Eng.18,441–457.

United States Environmental Protection Agency(USEPA),2005.Section319: Nonpoint Source Program Success Story.EPA841-F-05-004V.Washington, DC.

United States Environmental Protection Agency(USEPA),2002.Drinking Water from Household Wells.EPA816-K-02-003.Washington,DC.

United States Environmental Protection Agency(USEPA),1990.Estimated National Occurrence and Exposure to Nitrate/Nitrite in Public Drinking Water Supplies.

Washington,DC,pp.2–32.

Vymazal,J.,2007.Removal of nutrients in various types of constructed wetlands.

Sci.Total Environ.380,48–65.

Weir,K.,2005.Dead in the water.Curr.Sci.90,10–12.

连连看游戏--详细设计说明书

基于FLEX开发的连连看游戏详细设计说明书 [V1.1.0] 学院名称:湖南软件职业学院 专业名称:软件技术专业 组员:虢威、孙庆龙、段志辉、罗奇 指导老师:危孟君

1引言 (3) 1.1编写目的 (3) 1.2背景 (3) 1.3定义 (3) 1.4参考资料 (3) 2程序系统的结构 (3) 3程序(标识符)设计说明 (4) 3.1程序描述 (4) 3.2功能 (4) 3.3性能 (5) 3.3.1精度 (5) 3.3.2时间特性要求 (5) 3.3.3灵活性 (5) 3.4算法 (5) 3.4.1地图的生成 (5) 3.4.1寻路算法 (7) 3.5流程逻辑 (12) 3.6接口 (13) 3.7注释设计 (14) 3.9限制条件 (14) 3.10尚未解决的问题 (14)

详细设计说明书 1引言 1.1编写目的 详细设计说明书对连连看游戏的总体设计和各个模块的功能、性能、输入输出、算法、接口、程序逻辑、存储分配及其它给出了详细的设计方案,为软件开发制定详细的计划,同时也提交系统分析员,由其提出意见。这是程序员开发及未来测试烦人重要文档资料。 1.2背景 a.开发软件名称:基于FLEX开发的连连看 b.项目开发小组成员:虢威、孙庆龙、段志辉、罗奇 c.用户:所有喜欢玩这个游戏的玩家 d.项目开发环境:Windows XP + Flash Builder4 + ActionScript 3.0。 1.3定义 连连看项目详细设计方案。 1.4参考资料 (1)《软件工程案列开发与实践》,刘竹林等,清华大学出版社 (2)《IT项目管理》,曾鸿、毛志雄等,中国铁道出版社 (3)《ActionScript 3.0编程精髓》,Colinn Moock(美),机械工业出版社 (4)《Flex 3 Cookbook》,(美)诺布尔(美)安德森,电子工业出版社 2程序系统的结构 本次所设计连连看游戏的程序主结构如图2-1所示。

10KV电气设备调试方案

4.3调试方法 高压系统电气调试流程图: 4.3.1调试准备:根据具体工况配备调试技术人员,检查试验仪表性能,准备好施工记录、试验报告。清理施工现场,规范照明、安全、应急措施。保证试验人员、安全人员和管理人员的通讯畅通。 4.3.2设备检查:核查现场设备的规格、型式、容量、电压等级等项目。检查运输、安装过程中设备有无损伤,并做好记录。解除运输过程中的临时固

定措施,清除柜内除湿袋等异物。 4.3.3配线检查:校对开关柜、盘箱内设备仪表的连接线,将配线号编译成图纸号。检查控制回路、信号回路的绝缘,不良者应采取干燥措施。检查、确认接地装置的安装应符合规范要求。 4.3.4施工电源:建立容量、电压等级符合要求的临时电源,对于电压波动大的施工电源应采取稳压措施。确保临时电源的安全使用,包括用电申请、挂牌、漏电保护等。 4.3.5直流电源建立:依据制造厂原理图、对直流盘进行校线、检查。 调整整流装置对蓄电池的充电电流,检查蓄电池的放电容量。直流盘内引入正式或临时电源,建立直流电源系统。 4.3.6保护继电器检验及整定:目前在电气供电系统中广泛采用了微机继电保护器,取代了机械式和晶体管及电子式继电器。微机继电保护仪精度高、功能强大,可以集多种保护于一台仪器上且性能稳定,更重要的是微保具有通讯功能,为上位计算机后台监视、操控、管理开关柜提供了服务平台。 保护继电器调试方法如下图:

4.3.7电力变压器调试调试方法如下图:

4.3.8互感器(CT、PT)的调试: 互感器调试应按照流程图所示方法进行:

4.3.9断路器调试: 高压开关选用真空断路器,开关柜采用抽屉式, 调试流程图如下: 7.3.10电力电缆调试:测量每根电缆绝缘电阻;进行直流耐压试验及泄漏电

连连看游戏设计

中南林业科技大学 《数据结构课程设计》报告必做题:连连看游戏 选做题: 姓名: 学号: 专业班级:软件工程1班 学院:计算机与信息工程学院 指导老师:

签名: 2017年1 月10 日 目录 一、连连看问题.............................. 错误!未定义书签。 1.1需求分析.................................... 错误!未定义书签。 ............................................. 错误!未定义书签。 ............................................. 错误!未定义书签。 1.2系统设计.................................... 错误!未定义书签。 1.2.1 程序流程图 ............................. 错误!未定义书签。 1.2.2 程序组成 ............................... 错误!未定义书签。 1.3调试测试.................................... 错误!未定义书签。 1.3.1测试用例................................ 错误!未定义书签。 1.3.2测试结果................................ 错误!未定义书签。 1.3.3存在问题................................ 错误!未定义书签。 1.3.4改进设想................................ 错误!未定义书签。

10kV开关电气控制回路图

检修部员工培训模块 TDJXGYAQ 5.4.1.11 设备检修工艺、方法—电气 10kV开关电气控制回路图 2017-09-30发布 2017-12-01实施大唐国际托克托发电有限责任公司检修部

目录 1、符号及说明 (3) 2、断路器的控制回路的基本要求 (3) 3、断路器控制回路详解 (4)

编制人:张志峰主讲人:张志峰 10kV开关电气控制回路图 1、符号及说明 1.1 如图所示为托克托发电厂五期10kV开关VBG-12P的电气原理图。 1.2 图中操作电源选用AC/DC110V。 图1手车式电气原理图 1.3 图中:HQ:合闸线圈;TQ:分闸线圈;M:储能电机;R0:电阻;S8:辅助开关(当手车在试验位置切换); S9:辅助开关(当手车在工作位置切换);SP5:合闸闭锁用电磁铁辅助开关;S2:微动开关;DL:辅助 开关;U:桥式整流器(直流时取消2U~4U);K1:合闸闭锁线圈;K0:防跳继电器;Y7~Y9:过流脱扣 器;X:航空插头;L1~L10:连接线;PCB:线路板。 1.4 图中包括电机回路、合闸回路、闭锁回路、分闸回路、辅助回路。 2、断路器的控制回路的基本要求 2.1、应能监视控制电源及跳、合闸回路的完好性:断路器的控制电源最为重要,一旦失去电源断路器便无法操作。 因此,无论何种原因,当断路器控制电源消失时,应发出声、光信号,提示值班人员及时处理。 2.2、具有防止多次合、跳闸的“跳跃”闭锁装置。断路器的“跳跃”现象一般是在跳闸、合闸回路同时接通时才 发生。发生“跳跃”对断路器是非常危险的,容易引起机构损伤,甚至引起断路器的爆炸,故必须采取闭锁

10kV开关电气控制回路图

检修部员工培训模块 TDJXGYAQ 设备检修工艺、方法一电气 10kV开关电气控制回路图 2017-09-30 发布2017-12-01实施

大唐国际托克托发电有限责任公司检修部 目录 1、符号及说明 ................................... 错误!未定义书 签 2、断路器的控制回路的基本要求................... 错误!未定义书 签 3、断路器控制回路详解 ........................... 错误!未定义书 签

10kV 开关电气控制回路图 1、 符号及说明 1.1 如图所示为托克托发电厂五期10kV 开关VBG-12P 的电气原理图 1.2 图中操作电源选用 AC/DC110V 电机回磴 团鞘回蹈 分闸回路 辑朋回遷 6 备强 手车武电 图1手车式电气原理图 1.3 图中:HQ :合闸线圈;TQ :分闸线圈;M :储能电机;R0 :电阻;S8 :辅助开关(当手车在试验位置切换): S9 :辅助开关(当手车在工作位置切换); SP5 :合闸闭锁用电磁铁辅助开关;S2 :微动开关;DL :辅助 开关;U :桥式整流器(直流时取消2U ?4U ); K1:合闸闭锁线圈;K0:防跳继电器;Y7?Y9 :过流脱扣 器;X : 航空插头;L1?L10 :连接线;PCB :线路板。 1.4 图中包括电机回路、合闸回路、闭锁回路、分闸回路、辅助回路。 2、 断路器的控制回路的基本要求 2.1、 应能监视控制电源及跳、合闸回路的完好性:断路器的控制电源最为重要,一旦失去电源断路器便无法操作。 因 此,无论何种原因,当断路器控制电源消失时,应发出声、光信号,提示值班人员及时处理。 2.2、 具有防止多次合、跳闸的“跳跃”闭锁装置。断路器的“跳跃”现象一般是在跳闸、合闸回路同时接通时才 发生。发生“跳跃”对断路器是非常危险的,容易引起机构损伤,甚至引起断路器的爆炸,故必须采取闭锁 措施。 编制人:张志峰 主讲人:张志峰 4- -3 {:相 日相 OV7 GJ ¥6 EJY9

连连看游戏的设计与实现

苏州高博软件技术职业学院学生毕业设计(论文)报告 系别计算机科学技术 专业计算机应用 班级1310计应YZ 姓名支峰 学号013321018 设计(论文)题目连连看游戏的设计与实现 指导教师贺雪梅 起迄日期2015年10月16日-2016年4月25日

连连看游戏的设计与实现 摘要本文用VisualC++来设计与实现简单的连连看游戏的基本功能,玩家可以在游戏区域中通过键盘控制来选取相同的两个物件,采用特定的消除规则对它们进行消除的操作,当游戏区域中的所有方块对都被消除后玩家即可胜利。本次课程设计对该游戏的算法以及游戏图案的绘制进行详细的介绍。运用连线相消的方法完成了连连看游戏。 关键词:VisualC++6.0;连连看;游戏;3D绘图 1 引言 1.1连连看游戏介绍 游戏“连连看”顾名思义就是找出相关联的东西,它来源于街机游戏《四川麻将》和《中国龙》,是给一堆图案中的相同图案进行配对的简单游戏,在2003年,一个叫做朱俊的网友将这种形式搬到了PC上,立刻成为办公一族的新宠,并迅速传遍了世界各地。饱受工作压力的人们没有太多的时间进行复杂的游戏,而对于这种动动鼠标就能过关的游戏情有独钟。之后村子的连连看风靡版,阿达的连连看奥运版,连连看反恐版,还有敏敏连连看,水晶连连看等遍地开花,造就了一个连连看的新世界。连连看游戏有多种地图样式和道具系统、大大加强了游戏的可玩性,是一款老少皆宜的休闲佳品。 1.2课程设计的目的 网络小游戏制作的目的是满足了人们休闲的需要,在紧张工作之余休闲类的小游戏能够给人带来最大程度的放松,也可以增进人们之间的交流,沟通,通过游戏还可以认识更多的朋友,也可以到达跨省、跨市,甚至跨国间人们互相娱乐的目的。 另外也想通过本次课程设计将三年来所学的专业知识和其他方面的知识融入到实际应用中。

QT版连连看制作的实验报告

一.游戏概述 1.1游戏简介 游戏“连连看”顾名思义就是找出相关联的东西,这个连连看在网上基本是用在小游戏中,就是找出相同的两样东西,在一定的规则之内可以做为相关联处理。“连连看”的发展经历了从桌面游戏、在线游戏、社交游戏三个过程。 游戏“连连看”是源自台湾的桌面小游戏,自从流入大陆以来风靡一时,也吸引众多程序员开发出多种版本的“连连看”。这其中,顾方编写的“阿达连连看”以其精良的制作广受好评,这也成为顾方“阿达系列软件”的核心产品。并于2004年,取得了国家版权局的计算机软件著作权登记证书。 随着Flash应用的流行,网上出现了多种在线Flash版本“连连看”。如“水晶连连看”,“果蔬连连看”等,流行的“水晶连连看”以华丽界面吸引了一大批的女性玩家。 2008年,随着社交网络的普及和开放平台的兴起,“连连看”被引入了社交网络。“连连看”与个人空间相结合,被快速的传播,成为一款热门的社交游戏,其中以开发者Jonevey在Manyou开放平台上推出的“宠物连连看”最为流行。 1.2游戏功能 本次设计连连看主要是在原连连看对战的基础上设计挑战模式,具体的功能如下所述: ●游戏运行界面简单美观,操作简单,运行稳定; ●能够根据不同的等级模式播放不同的游戏背景音乐,包括操作方向 键、消行时的声音,音量由玩家操作控制; ●设计不同的游戏难度,当玩家达到一定的积分,可以进入相关难度 的等级; 玩家可直接操作界面上的相关按钮来控制游戏的开始、暂停、设置、退出等功能。

二.需求分析 2.1开发的需求 2.1.1 C++ C/C++的哲学就不一样了,同一份程序代码,只要在该平台重新Compile成该平台的执行档,就能在该平台执行,若文字模式下的程序,的确可以跨平台,程序完全不需修改,但GUI盛行以后,由于各GUI的Library都不一样且没有标准,所以GUI程序并没办法跨平台Compile,因为各平台都有专属的Library。但是C/C++优势就是执行速度快,若能解决GUI Library的问题,则跨平台即可解决。 除了GUI Library需要统一外,还得看该Library设计的好不好才行,Linux GUI我没写过就不说了,若在Windows平台,Borland的C++ Builder使用Delphi的VCL Library,Microsoft的Visual C++可以用MFC和.NET Framework,首先来看Borland的C++ Builder,它使用标准的ANSI C++语言开发,利用VCL写出来的程序也算蛮漂亮的,执行速度很快,比较麻烦的是C++Builder当初为了缩短上市时间,并没有设计自己的Library,而是藉用Delphi的Library,导致C++ Builder在Compile时,是先用Delphi的Compiler将VCL compile成object file 后,再用C++ Builder将你写的C++程序compile成object file,最后再用Linker将所有的object file link起来,由于这都是IDE在做,对程序设计师似乎影响不大,但VCL由于是Delphi的Library,所以若想深入研究VCL的source code时,则必须学Delphi的Pascal才行,否则看不懂VCL source code,这也是很多人对C++ Builder却步的原因。 再来看Microsoft的Visual C++,MFC用的是完整的ANSI C++语言,所以语言部分不是问题,但若你看过用MFC写的程序,你一定会惊讶为什么这么复杂,程序代码非常冗长不好看,且MFC是有名的难学,若Visual C++搭配.NET Framrwork,则无法使用ANSI C++,得用其.NET 平台版本的C++/CLI,相信这点很多人就有意见了,不过.NET

连连看游戏操作手册

用户操作手册 目录 1.引言 (2) 1.1编写目的 (2) 1.2项目背景 (2) 1.3定义 (2) 1.4参考资料 (2) 2.软件概述 (2) 2.1目标 (2) 2.2功能 (2) 2.3性能 (3) 3.运行环境 (3) 3.1硬件 (3) 3.2支持软件 (3) 4.使用说明 (3) 4.1安装和初始化 (3) 4.2输入 (4) 4.3输出 (4) 4.4出错和恢复 (4) 4.5求助查询 (4) 5.运行说明 (5) 5.1运行表 (5) 5.2运行步骤 (9) 6.程序文件(或命令文件)和数据文件一览表 (14)

1.引言 1.1编写目的 本文档将对连连看游戏的使用,操作以及维护进行描述,使用户(或潜在用户)能够通过本手册了解本软件的用途,并且知道在什么情况下,能够正确的使用它,本文档的使用者是用户。 1.2项目背景 a.项目名称:基于Android平台的连连看游戏 b.项目小组开发人员:姚富贵,张峥华,兰雨峰,兰雪峰,蒙本贵,刘刚,李尚萍 c.用户:将要使用本游戏的用户 d.项目开发环境:WindowsXP+Eclipse+AndroidSDK 1.3定义 连连看游戏用户手册 1.4参考资料 a.《需求规格说明书》 b.《概要设计说明书》 c.《详细设计说明书》 d.《Android应用开发揭秘》杨丰盛*著机械工业出版社 e.《深入浅出Android》 Gasolin著 2.软件概述 2.1目标 本项目力争成为能让玩家喜欢的一个放松休闲的小游戏,在使用过程中流畅没有错误,并具有一定的娱乐性。 2.2功能 本软件为游戏软件,纯做娱乐,该游戏属于敏捷类游戏,考验游戏玩家的反应速度以及

连连看游戏需求分析报告

楚雄师范学院 计科系本科生毕业设计文档(1) 题目:《基于安卓系统的趣味连连看游戏设计与实 现》需求分析报告 专业:网络工程(非师范) 学号:2010108210 3 学生姓名:朱晓明 指导教师:秦海菲职称:讲师 论文字数:3570 完成日期: 2014 年 5 月 教务处印制

目录 第一章引言 (1) 1.1编写目的 (1) 1.2项目背景 (1) 第二章系统调研 (2) 2.1社会可行性分析 (2) 2.2技术可行性分析 (2) 2.3经济可行性分析 (2) 第三章开发目标 (2) 3.1开发意图 (2) 3.2开发环境 (2) 3.3 应用目标 (3) 3.4 作用范围 (3) 第四章游戏流程介绍 (3) 4.1欢迎界面 (3) 4.2开始游戏界面 (3) 4.3游戏设置界面 (4) 4.4关于游戏界面 (5) 4.5蓝牙对战界面 (6) 4.6退出游戏 (6)

第一章引言 1.1编写目的 编写本游戏设计与实现的需求分析报告,是为了以书面形式把用户对《基于安卓系统的趣味连连看游戏设计与实现》使用的要求全面地描述出来,以作为下一步游戏开发设计的依据。该游戏的设计主要是减轻各类人群的生活、学习、工作压力。使人心情舒畅,提升工作效率等。 1.2项目背景 安卓系统,也称安致系统是Android Operating system(Google公司开发的操作系统)的中文名称。 Android是一套开放源码的基于Linux的操作系统,最初是针对手机的一款智能操作系统,现在已经被用于各种电子设备,比如平板电脑、电子书阅读器、智能电视、智能手表等设备,现在安卓是属于“开放式手持设备联盟”的操作系统。目前已经占据智能设备操作系统使用率首位。要想更多人知道、了解程序员的成果就必须开发安卓版本的程序。 安卓系统已经是大势所趋。开发安卓版游戏也将是游戏开发者的重中之重。所以我选择试做一个安卓游戏来做我的毕业设计。 参考资料 [1].李宁编著. 《Android/Ophone开发完全讲义》. 中国水利水电出版社 [2].陈会安著. 《Android/SDK程序设计与开发范例》. 清华大学出版社 [3].汤小丹梁红兵编著《计算机操作系统》(第三版)西安电子科技大学出版社 [4].(英)Ian Sommerville 程成译《软件工程(原书第9版)》机械工业出版社

10kV及以下供配电设计与安装图集

10kV及以下供配电设计与安装图集(上册)1.pdf 110~500KV变电所总布置设计规程.pdf 35KV及以下架空电力线路施工及验收规范.pdf 35KV无人值班变电所典型方案设计.pdf 35~110KV小型化无人值班变电站标准工程图集:设计、加工安装、设备材料、概算.pdf GB 2682-1981电工成套装置中的指示灯和按钮的颜色.pdf GB50045.CHM GB50054-95低压配电设计规范.chm GB50096-1999住宅设计规范.chm GB50116-98火灾自动报警系统设计规范.chm GB50116-98自动报警设计规范.chm GB50194-1993建设工程施工现场供用电安全规范.pdf GB50261-96自动喷水灭火系统施工及验收规范.pdf GB50303-2002《建筑电气工程施工质量验收规范》.pdf GB50343-2004.pdf _新编电气工程师实用手册(上、下册) 《电气制图与读图手册》.pdf 《电气装置安装工程施工及验收规范》汇编.pdf 《建筑电气专业设计技术措施》..pdf 常用低压设备供配电设备选型与安装技术手册.pdf 电缆计算程序V1.1.zip 电气符号00DX001.dwg 电气设备实用手册(上下册).rar 电气设计安装技术实用手册 电气设计规范大全.chm 电气设计数据查询.chm 防雷计算软件.exe 建筑安装工程质量工程师手册 建筑电气工程施工质量验收表格 建筑电气数据软件版 建筑灭火器配置设计计算程序.exe 建筑弱电工程设计手册 建筑物电子信息系统防雷技术规范.txt 民用建筑电气设计手册 民用建筑电气设计资料集办公、住宅 实用电工计算手册 实用电工计算手册2 实用节电技术与方法 需要系数法负荷计算.exe 照度计算 整定保护.exe 注册考试用规范目录.txt 电力系统继电保护最新实用技术及检验标准规程规范实用手册.rar

连连看游戏的设计与实现

连连看游戏的设计与实现 学生姓名:蔡艳芳指导老师:邓广慧 摘要本文用VisualC++来设计与实现简单的连连看游戏的基本功能,玩家可以在游戏区域中通过键盘控制来选取相同的两个物件,采用特定的消除规则对它们进行消除的操作,当游戏区域中的所有方块对都被消除后玩家即可胜利。本次课程设计对该游戏的算法以及游戏图案的绘制进行详细的介绍。运用连线相消的方法完成了连连看游戏。 关键词:VisualC++6.0;连连看;游戏;3D绘图

1 引言 1.1连连看游戏介绍 游戏“连连看”顾名思义就是找出相关联的东西,它来源于街机游戏《四川麻将》和《中国龙》,是给一堆图案中的相同图案进行配对的简单游戏,在2003年,一个叫做朱俊的网友将这种形式搬到了PC上,立刻成为办公一族的新宠,并迅速传遍了世界各地。饱受工作压力的人们没有太多的时间进行复杂的游戏,而对于这种动动鼠标就能过关的游戏情有独钟。之后村子的连连看风靡版,阿达的连连看奥运版,连连看反恐版,还有敏敏连连看,水晶连连看等遍地开花,造就了一个连连看的新世界。连连看游戏有多种地图样式和道具系统、大大加强了游戏的可玩性,是一款老少皆宜的休闲佳品。 1.2课程设计的目的 网络小游戏制作的目的是满足了人们休闲的需要,在紧张工作之余休闲类的小游戏能够给人带来最大程度的放松,也可以增进人们之间的交流,沟通,通过游戏还可以认识更多的朋友,也可以到达跨省、跨市,甚至跨国间人们互相娱乐的目的。 另外也想通过本次课程设计将三年来所学的专业知识和其他方面的知识融入到实际应用中。 1.3主要问题 开始制作游戏时,主要要解决的问题有以下几个方面:如何设置整个游戏的界面;如何控制连连看游戏中随机图片的生成且每种图片必须为偶数个;游戏开始后,判断鼠标两次点击的图片能否消去,即图片是否相同且图片之间路径的判断。 1.4课题实现技术的简要说明 Visual C++是一个功能强大的可视化软件开发工具,Visual C++6.0不仅是一

连连看小游戏设计说明文档

连连看小游戏设计说明文档 1.引言 1.1编写目的: 本文围绕Java编程语言在网络编程方面的具体应用,论述了连连看的整体开发,对连连看小游戏程序进行需求分析、概要设计、详细设计,最后Java编程实现的全过程。 1.2项目背景: 项目名称: 基于Android平台的连连看游戏。 小组成员: 组长:王玉 组员:董文静、李冬、李明、廉瑞婕、刘宇 2.软件概述 2.1目标: 本项目力争成为能让玩家喜欢的一个放松休闲的小游戏,在使用过程中流畅没有错误,并具有一定的娱乐性。 2.2功能: 本软件为游戏软件,纯做娱乐,该游戏属于敏捷类游戏,考验游戏玩家的反应速度以及观察能力,手眼协调一致的能力。 2.3游戏规则:

游戏规则是需选择一对相同的牌连线,但此连线是在避开其他牌子后,呈现的路径以不超过二转弯为主,如符合规定则消除此一对牌。当有一家消除所有牌或有一家认输,游戏结束。 2.4设计结构介绍: 本程序分为主控区,上、下两个分面板,玩家名称文本区域,玩家记分系统。辅助功能有背景音乐,还有背景图片的添加。 1.主控区是核心部分,是含有图片的连连看主程序。 2.上面板记录着鼓励信息,以及玩家游戏过程中产生的分数。 3.下面板含有三个按钮,退出,重列,再来一次。 (a)退出按钮实现退出游戏功能 (b)重列会将图片重列 (c)再来一局按钮将实现重新进行游戏的功能 4.菜单栏里有音效和帮助按钮。 (d)音效按钮可以实现按钮的关停 (e)帮助按钮可以提供帮助信息 2.5运行环境: 安装Android2.2操作系统的手机均可。 3.目录 3.1设计内容: 使用eclipse软件编写连连看小游戏。 3.2设计过程: 3.2.1设计准备:

Java课程设计连连看游戏(含代码)

Java程序课程设计任务书 一、主要任务与目标 1、了解图形用户界面的概念; 2、了解AWT的基本体系结构,掌握窗口的基本原理; 3、掌握几种布局管理器的使用方法; 4、掌握java的事件处理机制; 5、了解Swing的基本体系结构,掌握Swing组件的使用方法; 6、掌握java小程序的工作原理和使用方法; 7、该游戏还将设置退出,再来一局按钮,并实现相应的功能。 8、设计一个用户注册登录界面 二、主要内容与基本要求 游戏规则是模仿网络上普通的连连看游戏,主要是鼠标两次点击的图片能否消去的问题。当前,前提是点击两张相同的图片,若点击的是同一张图片或者两张不同的图片,则不予处理。在两张想同图片所能连通的所有路径中,如果存在一条转弯点不多于两个的路径,就可以消去;如果没有,则不予处理。 该游戏由30张不同的图片组成,游戏开始将会出现30张随机组合的图片,在规则下点击两张相同的图片后图片将会消失。图片全部消完为游戏成功。游戏还将设置退出,再来一局的按钮,和倒计时的功能,方便用户进行操作。并且有一个用户登录注册界面,玩家必须登录以后才可以进行游戏。 三、计划进度 12月28日~ 12月29日:课程设计选题,查找参考资料 12月30日~ 12月31日:阅读参考书籍,收集资料,完成需求分析 1月1日~ 1月3日:系统的代码设计及实现,数据库设计与实现 1月4日~ 1月5日:系统的调试,修改,完善 1月6日~ 1月7日:完成课程设计报告,准备答辩 四、主要参考文献

[1] 刘宝林.Java程序设计与案例习题解答与实验指导[M]. [2] 王鹏何云峰.Swing图形界面开发与案例分析[M]. [3](美)Karl Avedal , Danny Ayers, Timothy Briggs. JSP编程指南[M]. 电子工业 出版社, 2004,47-125. [4](美)Mark Linsenbardt. JSP在数据库中的应用与开发[M]. 希望电子出版社, 2005,210-236. [5] Dianne Phelan,Building a simple web database application[C].IEEE International Professional Communication Conference, 2004, 79-86. [6](美)Karl Avedal,Danny Ayers,Timothy Briggs.JSP编程指南[M].电子工业出版 社,2006,47-125. [7] Dianne Phelan,Building a simple web database application[C].IEEE International Professional Communication Conference, 2005, 79-86. [8] Altendorf. Eric, Hohman. Moses, Zabicki. Roman. Using J2EE on a large, web-based project[J]. IEEE Software.2002,19(02):81-89. 摘要 当今社会,休闲型游戏越来越得到人们的喜爱,我所做的毕业设计实例“连连看游戏的设计与实现”是近几年来网络上非常流行的一种二维休闲游戏,它对电脑配置要求不高,娱乐性强,易于上手。 I

基于Android平台的连连看游戏的开发与实现【毕业作品】

BI YE SHE JI (20 届) 基于Android平台的连连看游戏的开发与实 现

摘要 手机游戏是消费者利用随身携带的智能移动终端设备能随时随地来进行的游戏。近年来,随着移动互联网和电子信息技术的迅猛发展,手机游戏市场亦得到了很大的发展。Android是在手机应用市场和移动互联网迅猛发展的形势下应运而生的,它是由Google公司推出的一款基于Linux内核的开源手机操作系统,由于其具有开放性、不受运营商的束缚、丰富的硬件选择、开发商不受任何限制和能无缝结合优秀的Google应用的特点,很快就称霸智能机平台系统领域。进行Android平台手机游戏的研究与开发,成为一个非常有趣而又有很大发展空间的领域。 本文通过对Android应用开发的初步研究,设计出了一款基于Android平台的连连看小游戏。在对系统进行详细需求分析的基础上,确定了系统的基本功能要求,对游戏的关卡设置、菜单界面、音效和动画、、时间控制、屏幕绘制、连通算法和布局算法进行了设计,并最终实现了一款风格清新可爱、娱乐体验丰富且性能高效稳定的手机连连看小游戏,它很好地缓冲了当今人们的紧张生活节奏,为一些枯燥时刻带来另样而欢快的享受。 关键词:手机游戏 Android 连连看

ABSTRACT Mobile games are the games which consumers can use portable smart mobile devices anytime, anywhere. In recent years, as the mobile Internet and electronic information technology rapidly developing, mobile games market has also been a great development. The mobile application market and the rapid development of mobile Internet situation make Android came into being, it is by Google Inc. launched a Linux-based open source mobile operating system kernel, because of its openness, free from the shackles of operators, rich hardware options, developers without any restrictions and can seamlessly integrate Google Apps excellent characteristics, soon dominate the smartphone platform system fields. Conduct research and development of the Android platform mobile games, having become a very interesting area of great development space. Based on the preliminary study on Android Application Development, a model based on the Android platform Lianliankan game has been designed succeed. In the system, based on detailed needs analysis to determine the basic functional requirements of the system, set up checkpoints on the game, the menu interface, sound and animation, and time control, screen drawing, connectivity and layout algorithms algorithm design, and ultimately achieve a fresh style cute, rich entertainment experience and the performance stable and efficient mobile Lianliankan game, it is well cushioned the pace of life today, tension, as some of the boring moments brings another kind and cheerful enjoyment. KEY WORDS: Mobile games Android Lianliankan

连连看游戏设计文档

嵌入式系统课程设计连连看游戏设计与分析 作者姓名: 专业、班级: 学号: 指导教师: 完成日期:

目录 引言…………………………………………………………………………………….. 1. 系统分析与总体设计 (1) 1.1 项目概述………………………………………………………………………. 1.1.1 项目概要………………………………………………………………….. 1.1.2项目的意义………………………………………………………………... 1.2.3主要问题…………………………………………………………………... 1.2 总体设计………………………………………………………………………. 1.2.1总体结构图………………………………………………………………... 1.2.2系统功能…………………………………………………………………... 1.2.3系统结构及相关模块…………………………………………………….. 2. 系统的详细设计…………………………………………………………………. 2.1初始化游戏界面……………………………………………………………. 2.2 图片的选择……………………………………………………………………. 2.3 图片的判断与消除……………………………………………………………. 2.4 游戏的结果……………………………………………………………………. 3.系统的实现与调试…………………………………………………………………. 3.1 调试过程………………………………………………………………………. 3.2运行结果………………………………………………………………………..

java小游戏连连看源代码[教学]

java小游戏连连看源代码[教学] Java小游戏——连连看源码 连连看java源代码 import javax.swing.*; import java.awt.*; import java.awt.event.*; public class lianliankan implements ActionListener { JFrame mainFrame; //主面板 Container thisContainer; JPanel centerPanel,southPanel,northPanel; //子面板 JButton diamondsButton[][] = new JButton[6][5];//游戏按钮数组 JButton exitButton,resetButton,newlyButton; //退出,重列,重新开始按钮 JLabel fractionLable=new JLabel("0"); //分数标签 JButton firstButton,secondButton; //分别记录两次被选中的按钮 int grid[][] = new int[8][7];//储存游戏按钮位置 static boolean pressInformation=false; //判断是否有按钮被选中 int x0=0,y0=0,x=0,y=0,fristMsg=0,secondMsg=0,validateLV; //游戏按钮的位置坐标 int i,j,k,n;//消除方法控制 public void init(){ mainFrame=new JFrame("JKJ连连看");

连连看游戏分析设计与实现

连连看游戏分析设计与实现 1.连连看()游戏简介 连连看游戏界面上均匀分布2N个尺寸相同的图片,每张图片在游戏中都会出现偶数次,游戏玩家需要依次找到两张相同的图片,而且这两张图片之间只用横线、竖线相连(连线上不能有其他图片),并且连线的条数不超过3条,那么游戏会消除这两个图片。连连看是一款广受欢迎的小游戏,它具有玩法简单、耗时少等特征,尤其适合广大白领女性在办公室里休闲、放松。 2.分析连连看 连连看是一个小的、简单的游戏程序,所以不需要大量的分析。首先,我们列出用例。用例不多。有:用户开始游戏,用户进行配对图片。 图1.连连看用例图 下一步就是为每个用例和相关场景写一个文本描述。连连看相当简单,只有一个参与者,就是游戏玩家。在使用这个程序的过程中也不会碰到出错的情况,所以场景也很短。 开始游戏的场景: 玩家打开应用程序,点击“开始”按钮,会生成三种不同的图片排列方式(矩阵、竖向、横向排列)。 配对图片的场景: 玩家对图片进行配对,配好后会消除这对图片。当在规定的时间内配对完所有图片时,弹出胜利对话框,否则弹出失败对话框。 尽管只有2个简单用例,但它们确实揭示了我们所需完成的任务的重要方面。大的应用程序会有更多的用例,有些更为复杂,有些一样简单。用例导致了场景。场景通常要比这个例子中的复杂,反映了在某项特征或功能上,用户和开发者之间的更为细节化的合约。每个场景所需的细节程序取决于许多方面,但将场景写下来有助于确保每个人理解系统应该完成什么任务。 我们在连连看的用例和场景的呈现上不是太正规。有时,这种非正规的方式和几张纸或白板就足够了。更为正规的面向对象方法学在确定用例及相应场景方面有更正规的做法,也提供了特定的软件来创建和跟踪用例和场景。 3.(分析阶段)发现对象、属性和操作 通过阅读问题描述以及实际情况,我们得到以下名词清单:图片,游戏视图,图片的排列方式,服务组件。

软件工程毕业设计_连连看小游戏设计

河北农业大学现代科技学院 毕业论文(设计) 题目:连连看小游戏设计 摘要 游戏“连连看”,只要将相同花色的两张牌用三根以内的直线连在一起就可以消除,规则简单容易上手。这个程序的界面使用Jframe框架,主程序窗口包含一个主面板,其中包含两个子面板,左边一层子面板是游戏窗口,符合我们玩游戏的习惯,包含连连看游戏的图片元素,用户进行游戏能找到32对图片;右边一层用来实现游戏控制,有开始、刷新、选择难度、显示分数、进度条等功能选项。结合Java 编程语言的简单、面向对象、分布式、解释性、健壮、安全与系统无关、可移植、高性能、多线程、动态和连连看游戏的休闲、趣味、益智加上美观的界面设计和秀色可餐的水果蔬菜游戏图片元素,使这款连连看游戏成为现代都市人们打发无聊,放松身心的好帮手。加入了游戏时间控制和过关控制及进度条提示功能使游戏速度节奏快,画面清晰可爱,老少皆宜。通过ActionEvent 组件进行动作事件的监听和处理。游戏通过定义数组,根据一定的算法实现规定的路径判断。 关键字: Java连连看;Jframe;数组;路径判断

Abstract The game "lianliankan", as long as the two cards with the same suit straight up to three connected can be eliminated, rules are easy. This program of interface using Jframe framework, main program window contains a a main panel, which contains two a child Panel, left a layer child Panel is game window, meet we playing game of habits, contains fest see game of pictures element, user for game can found 32 on pictures; right a layer used to achieved game control, has began, and refresh, and select difficulty, and displayed score, and progress article, features option. Combines a simple Java programming language, object-oriented, distributed, interpreted, robust, secure system-independent, portable, high-performance, multithreaded, dynamic and lianliankan games, leisure, fun, puzzle together with attractive interface design and appetizing fruit vegetables picture elements, makes this lianliankan games become the modern city spending tedious, relaxed and good help. Joined the playing time control and border control and progress bar prompts make the game faster tempo, clear picture and lovely, both young and old. Action through the ActionEvent component event listening and handling. Games by defining an array according to certain algorithms provide path of judgment. Key words: Java Lianliankan ; Jframe ; array ; approaches

相关主题