搜档网
当前位置:搜档网 › CATIA__DMU机构运动分析

CATIA__DMU机构运动分析

CATIA__DMU机构运动分析
CATIA__DMU机构运动分析

DMU 机构运动分析

目录

1产品介绍3

2图标功能介绍(基本概念、基本界面介绍)3

2.1DMU运动仿真(DMU Simulation)工具条3

2.2DMU运动副创建工具条(Kinematics Joints)3

2.3DMU Generic Animation4

2.4机构刷新(DMU Kinematics Update)5

2.5干涉检查模式工具条(Clash Mode)5

2.6DMU 空间分析(DMU Space Analysis)5

3功能详细介绍5

3.1DMU运动仿真(DMU Simulation)工具条5

3.1.1用命令驱动仿真(Simulating with mands)5

3.1.2用规则驱动仿真(Simulating With Laws)7

3.1.3仿真感应器(Sensors)8

3.1.4机构修饰(Mechanism Dressup)10

3.1.5创建固定副(Fixed Part)10

3.1.6装配约束转换(Assembly Constraints Conver)11

3.1.7测量速度和加速度(Speeds and Accelerations)12

3.1.8机构分析(Mechanism Analysis)14

3.2DMU运动副创建工具条(Kinematics Joints)16

3.2.1创建转动副(Creating Revolute Joints)点击16

3.2.2创建滑动副(Creating Prismatic Joints)17

3.2.3同轴副(Creating Cylindrical Joints)18

3.2.4创建球铰连接(Creating Spherical Joints)19

3.2.5创建平动副(Creating Planar Joints)19

3.2.6创建刚性副(Rigid Joints)20

3.2.7点-线副(Point Curve Joints)21

3.2.8曲线滑动副(Slide Curve Joints)22

3.2.9点-面副(Point Surface Joints)22

3.2.10万向节(Universal Joints)22

3.2.11CV连接(CV Joints)23

3.2.12创建齿轮副(Gear Joints)24

3.2.13滑动-转动复合运动副(Rack Joints)26

3.2.14滑动-滑动复合运动副(Cable Joints)27

3.2.15用坐标系法建立运动副(Creating Joints Using Axis Systems)27 3.3DMU Generic Animation工具条29

3.3.1创建运动仿真记录(Simulation)29

3.3.2生成重放文件(Generate Replay)30

3.3.3重放(Replay)31

3.3.4仿真播放器(Simulation Player)31

3.3.5编辑序列(Edit Sequence)31

3.3.6包络体(Swept Volume)31

3.3.7生成轨迹线(Trace)31

3.4机构刷新(DMU Kinematics Update)32

3.4.1机构位置刷新(Update)32

3.4.2输入子机构(Import Sub-Mechanisms)32

3.4.3重设位置(Reset Positions)33

3.5干涉检查模式工具条(Clash Mode)34

3.5.1关闭干涉检查(Clash Detection(Off)34

3.5.2打开干涉检查(Clash Detection(On)34

3.5.3遇到干涉停止(Clash Detection(Stop)34

3.6DMU 空间分析(DMU Space Analysis)34

3.6.1干涉检查(Clash)34

3.6.2距离和距离带分析(Distance and band analysis)34

1产品介绍

DMU机构运动分析(Kin)是专门做DMU装配运动仿真的模块。针对大型产品如整车、飞机、轮船等的机构运动状态进行评价。

2图标功能介绍(基本概念、基本界面介绍)

2.1DMU运动仿真(DMU Simulation)工具条

命令驱动仿真(Simulating with mands)

规则驱动仿真(Simulating With Laws)

机构修饰(Mechanism Dressup)

创建固定副(Fixed Part)

装配约束转换(Assembly Constraints Conver)

测量速度和加速度(Speeds and Accelerations)

机构分析(Mechanism Analysis)

2.2DMU运动副创建工具条(Kinematics Joints)

创建转动副(Creating Revolute Joints)

创建滑动副(Creating Prismatic Joints)

创建同轴副(Creating Cylindrical Joints)

创建球铰连接(Creating Spherical Joints)

创建平动副(Creating Planar Joints)

创建刚性副(Rigid Joints)

点-线副(Point Curve Joints)

曲线滑动副(Slide Curve Joints)

点-面副(Point Surface Joints)

万向节(Universal Joints)

CV连接(CV Joints)

创建齿轮副(Gear Joints)

滑动-转动复合运动副(Rack Joints)

滑动-滑动复合运动副(Cable Joints)

用坐标系法建立运动副(Creating Joints Using Axis Systems)2.3DMU Generic Animation

创建运动仿真记录(Simulation)

生成重放文件(Generate Replay)

重放(Replay)

仿真播放器(Simulation Player)

编辑序列(Edit Sequence)

包络体(Swept Volume)

生成轨迹线(Trace)

2.4机构刷新(DMU Kinematics Update)

机构位置刷新(Update)

输入子机构(Import Sub-Mechanisms)

重设位置(Reset Positions)

2.5干涉检查模式工具条(Clash Mode)

关闭干涉检查(C lash Detection(Off))

打开干涉检查(C lash Detection(On))

遇到干涉停止(C lash Detection(Stop))

2.6DMU 空间分析(DMU Space Analysis)

干涉检查(Clash)

距离和距离带分析(Distance and band analysis)

3功能详细介绍

3.1DMU运动仿真(DMU Simulation)工具条

3.1.1用命令驱动仿真(Simulating with mands)

是用命令驱动的方式对已创建的机构进行运动仿真,这种方法比较直接、简便,但不能记录下来。

1).点击图标,出现定义对话框;

2).在Mechanism选项的下拉菜单里选择相应的机构;

3).在mand.1选项里是第一个驱动命令数值的界限,和在创建驱动副时设置的界限同步;

4).激活仿真感应器(Activate Sensors)选项,详见其有关运动仿真的后处理对话框;

5).当离开仿真对话框后,系统默认保留当前位置。点击Reset按钮返回到初始位置;

6).点击Analysis...按钮可以添加运动分析项目,比如距离、干涉检查等;

7.点击More按钮,展开对话框;

有两种仿真方式:a).Immediate直接模拟,用鼠标直接拖着驱动副上的绿色箭头线移动;

b).选择On request选项,下面的播放器按钮就会变亮,可以设置固定步幅数

(Number Of Steps)来进行仿真运动。

3.1.2用规则驱动仿真(Simulating With Laws)

对建立了规则关系的机构进行仿真,这种规则可以是驱动参数和运动时间的关系,在特征树上记录如下图:

1).点击图标,出现定义对话框;

2).在Mechanism选项的下拉菜单里选择相应的机构;

3).点击下图按钮位置上,可以修改运动时间;

4).中间是VCR按钮,下面的步长、Analysis按钮、Activate sensors选项等和命令驱动仿真方式用法相同。

3.1.3仿真感应器(Sensors)

在几种运动仿真命令里,都有激活感应器(Activate sensors)选项。主要作用是通过在仿真过程中观察运动副的数值、测量尺寸和运动副界限(已定义)等数据,提供非常有用的信息帮助检查机构设计。已创建的距离测量、干涉检查、速度或加速度等特征也会出现在感应器列表里。

1).选择需要观测的参数,在Sensor标签拦里Observed列出现Yes标志。也同步显示在instantaneous Values标签的列表里。

2).通过VCR按钮执行仿真运动,可以观测参数的变化;

3).还可设置仿真运动的干涉检查模式和界限模式;

4).观测的结果通过Graphics...按钮输出到图表中;

5).点击File…按钮把结果输出保存到外部文本中。

3.1.4机构修饰(Mechanism Dressup)

为了和ENOVIA VPM中机构运动分析集成(基于骨架的方式),我们建立在特征树上直接访问的Dress up,可以对它进行仿真,并保存在ENOVIA VPM中。

1).点击图标,出现对话框,然后点击新建按钮,选择已创建的机构;

2).在link栏里,选择需要修饰的零件。Graphic selection选项表示不能在特征树或图形区域上选择零件。

3).缺省Available products选项,表示在下面左边列表框里显示可能被绑定的零件。All products表示显示出所有零件。可以点击左边区域的零件到右边区域,和当前link的零件绑定在一起。

3.1.5创建固定副(Fixed Part)

命令给机构增加一个固定副。

1)点击图标,在对话框下拉菜单里选择或新建机构;

2)选择固定的零件;

3)零件被自动定义成固定副了,在树上显示如下图。

3.1.6装配约束转换(Assembly Constraints Conver)

把在做装配模块里(Assmebly Design)创建的装配约束通过此命令转换成DMU中的运动副关系。

模型如下图里的装配体及其特征树形式。

图a 装配产品图图b 装配产品特征树

注:此转换须在设计模式(Design Mode)下完成。

1).点击图标,出现对话框,选择或新建机构;

2).点击Auto Create自动在选择选择的机构对象里转换生成运动副;

3).打开More>>按钮,可根据需要自定义转换运动副,具体解释见下图说明;

4).转换完后的特征树如下图。

3.1.7测量速度和加速度(Speeds and Accelerations)

为了优化我们所做的机构设计,常需要考虑测量相关元素的加速度和速度。

1).选择机构;

2).点击,出现定义对话框;

3).命名该定义的名称;

4).选择参考的产品零件,选择做分析的参考点;

5).选择Main axis表示以当前装配的坐标系作为参考坐标系,或选择其他自定义的坐标系(Other axis)。

6).点击OK按钮,建立的速度和加速度关系图标就显示在特征树上。

7).可以通过用规则驱动仿真打开仿真感应器(Sensor)按钮,在定义对话框里选择观测的速度或加速度参数,如下图;

8).开始做机构运动,可以看到相应参数的变化,然后点击按钮Graphics...通过图表可以更形象地观察相关参数的变化规律。

3.1.8机构分析(Mechanism Analysis)

机构分析命令就是对所创建的机构进行可行性分析,包括运动副关系和零件自由度。基本定义对话框如下:

1).基本栏图解下图;

2).中间有两个选项,表示是否在图形中显示出运动副标志;

3).一个列表框显示所有运动副的定义关系(名称、命令副、类型、零件关系、备注信息),在Mechansim dressup information栏里显示机构修饰的信息;

4).以通过点击保存按钮将这个列表分析的信息保存成文本或表格格式的文件,如下图。

3.2DMU运动副创建工具条(Kinematics Joints)

3.2.1创建转动副(Creating Revolute Joints)点击

1).点击图标,出现定义对话框;

2).分别选择两零件的对应几何元素(直线和平面),设置约束;

3).点OK完成设置后,特征树如下图。

3.2.2创建滑动副(Creating Prismatic Joints)

1).点击图标,出现滑动副定义对话框;

2).选择两零件的对应几何元素(直线和平面);

3).点OK完成设置后,模型和特征树形式如下图。

3.2.3同轴副(Creating Cylindrical Joints)

同轴副对应于装配关系的同轴约束(Coincidence Constraint)。

1).定义时选择两零件对应的直线关系;

2).特征树结果如下图。

3.2.4创建球铰连接(Creating Spherical Joints)

1).点击图标,出现定义对话框;

2).分别在两零件上选取对应的两个点;

3).完成后,模型和特征树形式如下图。

3.2.5创建平动副(Creating Planar Joints)

1).点击图标,出现定义对话框;

2).在两个建立连接的零件上选取对应的两个平面(Plane);

3).完成后,模型和特征树形式如下图。

3.2.6创建刚性副(Rigid Joints)

通过创建刚性副命令,使两个零件间成为刚性体连接关系。

1).点击图标,出现定义对话框;

2 ).选择两个零件(Part 1);

3).结果特征树如下。

平面机构的运动分析答案

1.速度瞬心是两刚体上瞬时速度相等的重合点。 2.若瞬心的绝对速度为零,则该瞬心称为绝对瞬心; 若瞬心的绝对速度不为零,则该瞬心称为相对瞬心。 3.当两个构件组成移动副时,其瞬心位于垂直于导路方向的无穷远处。当两构件组成高副时,两个高副元素作纯滚动,则其瞬心就在接触点处;若两个高副元素间有相对滑动时,则其瞬心在过接触点两高副元素的公法线上。 4.当求机构的不互相直接联接各构件间的瞬心时,可应用三心定理来求。 5.3个彼此作平面平行运动的构件间共有 3 个速度瞬心,这几个瞬心必定位于一条直线上。 6.机构瞬心的数目K与机构的构件数N的关系是K=N(N-1)/2 。 7.铰链四杆机构共有 6 个速度瞬心,其中 3 个是绝对瞬心。 8.速度比例尺μ ν 表示图上每单位长度所代表的速度大小,单位为: (m/s)/mm 。 加速度比例尺μa表示图上每单位长度所代表的加速度大小,单位为 (m/s2)/mm。 9.速度影像的相似原理只能应用于构件,而不能应用于整个机构。 10.在摆动导杆机构中,当导杆和滑块的相对运动为平动,牵连运动为转动时(以上两空格填转动或平动),两构件的重合点之间将有哥氏加速度。哥氏加速度的大小为2×相对速度×牵连角速度;方向为相对速度沿牵连角速度的方向转过90°之后的方向。 二、试求出图示各机构在图示位置时全部瞬心的位置(用符号 ij P直接标注在图上)。 P 24)

12 三、 在图a 所示的四杆机构中, l AB =60mm,l CD =90mm ,l AD =l BC =120mm ,ω2=10rad/s ,试用瞬心法求: 1)当φ=165°时,点C 的速度v C ; 2)当φ=165°时,构件3的BC 线上速度最小的一点E 的位置及速度的大小; 3)当v C =0时,φ角之值(有两个解); 解:1)以选定的比例尺μl 作机构运动简图(图b )。 2)求v C ,定出瞬心P 13的位置(图b ) a ) (P 13) P P 23→∞

轿车后背门铰链机构的运动分析及修改设计

天津汽车 摘要 通过ADAMS建模对某轿车后背门开启机构做 运动分析,来解决后背门初开启阶段的干涉问题和完全开启时的漏雨问题。通过ADAMS的优化分析和运动分析,给出了解决问题的建议:调整相关点位置可以改善后背门与侧围的干涉现象,而且最佳的办法是将铰链机构整体前移;调整相关点位置或修改限位块尺寸可以改善后备门开启角度过大及行李箱漏雨的问题。 CAE在汽车工程中的效率和价值都得到了具体体现。 关键词 后背门铰链结构 运动分析 DOE AnalysisandDesignofPassengerCarBackDoorHinge Abstract:Theoperationmovementofopeningmechanismofcarbackdoorisanalyzedbybuildingamodelwith ADAMS,improvingtheinterferencebetweenbackdoorandsidepanelwhenbackdoorisopeningatthebeginningandresolvingleakrainproblemwhenbackdoorisinfull-sizeopening.SomesuggestionsareofferedaftertheoptimizationanalysisandoperationmovementanalysisarebothfinishedwithADAMS.Adjustingthepositionofrelativepointcanimprovetheinterferencebetweenbackdoorandsidepanel,furthermorethebestwayofadjustingistomovethewholehingemechanismforwardC adjustingthepositionofrelativepointandredesigninglimitingblockcanalsoimprovetheopeningangleofbackdoorandresolvetheproblemofleakrain.ThevalueandefficiencyofCAEinautomotiveengineeringisclearlypresentedinthispaper.Keywords:Hingemechanismofbackdoor OperationmovementanalysisDOE 张德超 杨亚娟 刘红领 陈伟 柳杨 (奇瑞汽车有限公司乘用车工程研究院CAE部) 车门是车身上重要部件之一,按其开启方式分 为顺开式、逆开式、水平移动式、上掀式和折叠式等几种。 轿车后背门主要有2种设计方案:第1种方案是典型两厢车的后备门,将后窗玻璃与后背门做成一个整体,也称掀背门,这种设计方案在三厢车及轻型货车等车型中也有广泛应用;另一种方案是将后窗玻璃与后背门做成分离的,其中后窗玻璃与车身是一个整体,2种方案的选择主要根据车身造型及布置来决定。 某轿车的后背门总成如图1所示。开启机构是由1个四连杆和1个气弹簧构成,如图2,左右两侧对称布置。在试制车间装车时,发现有2个问题,第 1个问题是后背门在初始开启阶段会与侧围发生干 涉,会损坏车身油漆;第2个问题是后背门完全打 开的时候,会有雨水漏入行李厢。 解决这2个问题最直接的办法是修改侧围的模具,但是修改量很大,成本很高,下面通过平面四连杆机构的运动分析,来解决这2个问题。 图1 后背门总成 图2 后背门开启机构轿车后背门铰链机构的运动分析及修改设计 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" !!" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" !!" 汽车技术

平面四杆机构的运动仿真模型分析

平面四杆机构的运动仿真模型分析 1前言 平面四杆机构是是平面连杆机构的基础,它虽然结构简单,但其承载能力大,而且同样能够实现多种运动轨迹曲线和运动规律,因而在工程实践中得到广泛应用。 平面四杆机构的运动分析, 就是对机构上某点的位移、轨迹、速度、加速度进行分析, 根据原动件的运动规律, 求解出从动件的运动规律。平面四杆机构的运动设计方法有很多,传统的有图解法、解析法和实验法。随着计算机技术的飞速发展,机构设计及运动分析已逐渐脱离传统方法,取而代之的是计算机仿真技术。本文在UG NX5环境下对平面四杆机构进行草图建模,通过草图中的尺寸约束、几何约束及动画尺寸等功能确定各连杆的尺寸,之后建立相应的连杆、运动副及运动驱动,对建立的运动模型进行运动学分析,给出构件上某点的运动轨迹及其速度和加速度变化规律曲线,文章最后简要分析几个应用于工程的平面四杆机构实例。 2平面四杆机构的建模 2.1问题的提出 平面四杆机构因其承载能力大,可以满足或近似满足很多的运动规律,所以其应用非常广泛,本文以基于曲柄摇杆机构的物料传送机构为例,讨论其建模及运动分析。 如图1所示,ABCD为曲柄摇杆机构,曲柄AB为主动件,机构在运动中要求连杆BC的延伸线上E点保持近似直线运动,其中直线轨迹为工作行程,圆弧轨迹为回程或空程,从而实现物料传送的功能。

2.2平面四杆机构的建模 由于物料传送机构为曲柄摇杆机构,所以它符合曲柄存在条件。根据机械原理课程中的应用实例[1],选取AB=100,BC=CD=CE=250,AD=200,单位均为毫米。 在UG NX5的Sketch环境里,创建如图2所示的草图,并作相应的尺寸约束和几何约束,其中EE'为通过E点的水平轨迹参考线,用以检验E点的工作行程运动轨迹。现通过草图里的尺寸动画功能,令AB与AD的夹角从0°到360°变化,可看到E点的变化轨迹为直线和圆弧,如图3所示为尺寸动画的四个截图,其中图3(a)中的E点为水平轨迹的起点,图3(b)中的E点为水平轨迹的中点,图3(c)中的E点为水平轨迹的终点,而图3(d)中的E点为圆弧轨迹(图中未画出)即回程的中点。 如E点轨迹不符合设计要求,则可适当调整各杆件的尺寸,再通过尺寸动画功能检验。

平面六杆机构的运动分析

机械原理大作业(一)平面六杆机构的运动分析 班级: 学号: 姓名: 同组者: 完成时间:

一.题目 1.1 说明 如图所示为一片面六杆机构各构件尺寸如表格1所示,又知原动件1以等角速度ω=1rad/s沿逆时针方向回转,试求各从动件的角位移、角加速度以及E点的位移、速度及加速度的变化情况。1.2 数据 组号L1L2L’2L3L4L5L6 x G y G 1-A 26.5 105.6 65.0 67.5 87.5 34.4 25.0 600 153.5 41.7 表格1 条件数据 1.3 要求 三人一组,编程计算出原动件从0~360o时(计算点数N=36)所要求各运动变量的大小,并绘制运动线图及点的轨迹曲线。

二.解题步骤 由封闭图形ABCD可得: 由封闭图形AGFECD可得 于是有: 112233 1122433 sin sin sin1 cos cos sin2 l l l l l l l θθθ θθθ +=-------- +=+----- / 1122225566 / 1122225566 cos cos sin cos cos153.53 sin sin cos sin sin41.74 l l l l l l l l l l θθθθθ θθθθθ +++=+---- +-+=+----- 对以上1到4导可得- 222333111 222333111 / 55566611122222 / 55566611122222 cos cos cos sin sin sin sin sin sin(sin cos) cos cos cos(cos sin) l l l l l l l l l l l l l l l l θωθωθω θωθωθω θωθωθωωθθ θωθωθωωθθ-+= -=- -=--- -=--+

(新)机构运动简图测绘与分析实验

实验一机构运动简图测绘与分析实验 一、实验目的 1.根据机构模型,掌握正确绘制平面机构运动简图的方法和技能。 2.验证和巩固机构自由度的计算,进一步理解机构自由度的概念。 3.应用机构自由度的计算方法,分析平面机构运动的确定性。 4.掌握平面机构的组成原理,能够对平面机构进行结构分析。 二、实验设备 1、机构模型(铆钉机构B1、简易冲床B 2、装订机机构B 3、鄂式破碎机B 4、步进输送机B 5、假肢膝关节机构B 6、机械手腕部机构B 7、抛光机B 8、牛头刨床B 9、制动机构B10等); 2.所用工具:钢板尺、游标卡尺、三角板、铅笔、圆规、橡皮、纸(除钢板尺和游标卡尺外,其余学生自备)。 三、实验内容 1. 选择5种机构模型进行测量,绘制机构运动简图; 2. 计算机构自由度,并注明其活动构件数、低副数、高副数,然后代入公式进行计算。 3.对所选择的机构进行结构分析,确定机构的级别。 四、实验原理、方法和手段 在对现有机械设备进行分析或设计新的机械设备时,都需要运用其机构运动简图。而机构各部分的运动是由其原动件的运动规律、该机构中各运动副的数目、类型,运动副相对位置和构件的数目来确定的,而与构件的外形、断面尺寸、组成构件的零件数目及运动副的具体构造等无关。所以,只要根据机构的运动尺寸,按一定的比例尺定出各运动副的位置,就可以用运动副的代表符号和简单的线条把机构的运动简图画出来。

常用符号见下表: 1、机构运动简图的概念 抛开构件的复杂外形和运动副的具体结构,利用简单的线条和规定的符号来代表每一个构件和运动副,并按一定的比例将机构的运动特征表达出来的简单图形称为机构运动简图。机构运动简图与原机构具有完全相同的运动特性,因而可以根据该图对机构进行运动分析和动力分析。 2、测绘方法 (1)分析运动情况。绘制机构运动简图时,首先要把该机器或模型的实际构造和运动情况搞清楚。为此,先应确定出原动件和从动件,再使被测机器或模型缓慢运动,然后按照运动的传递路线,把原动件和从动件之间的各构件的运动情况观察清楚,尤其应注意有微小

四连杆机构运动学分析——张海涛

四连杆机构运动学分析 使用ADAMS 建立如图1所示的四连杆机构,二杆长150mm ,三杆长500mm ,四杆长450mm ,二杆的转动速度为πrad/s ,二杆初始角度为90度。用Matlab 建立该系统的运动约束方程,计算结果,并与ADAMS 仿真结果进行对比。 图1 四杆机构 一、位置分析 1、由地面约束得到: {R x 1=0 R y 1=0θ1=0 2、由O 点约束得: { R x 2?l 22cos θ2=0R y 2?l 22 sin θ2=0 二杆 三杆 四杆 O 点 A 点 B 点 C 点

3、由A 点约束得: { R x 2+l 22cos θ2?R x 3+l 32cos θ3=0R y 2+l 22sin θ2?R y 3+l 32 sin θ3=0 4、由B 点约束得: { R x 3+l 32cos θ3?R x 4+l 42cos θ4=0R y 3+l 32sin θ3?R y 4+l 42 sin θ4=0 5、由C 点约束得: { R x 4+l 4cos θ4?l 5cos θ1=0R y 4+l 42 sin θ4?l 5sin θ1=0 6、由二杆驱动约束得: θ2?ω2=0 积分得: θ2?θ02?ω2t =0 由上面九个方程组成此机构的运动约束方程,用Matlab 表示为: fx=@(x)([x(1); x(2); x(3); x(4)-l2/2*cos(x(6)); x(5)-l2/2*sin(x(6)); x(4)+l2/2*cos(x(6))-x(7)+l3/2*cos(x(9)); x(5)+l2/2*sin(x(6))-x(8)+l3/2*sin(x(9)); x(7)+l3/2*cos(x(9))-x(10)+l4/2*cos(x(12)); x(8)+l3/2*sin(x(9))-x(11)+l4/2*sin(x(12)); x(10)+l4/2*cos(x(12))-x(1)-l5; x(11)+l4/2*sin(x(12))-x(2); x(6)-w*i-zhj0;]); x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10) x(11) x(12) 分别表示R x 1、R y 1、θ1、R x 2、R y 2、θ2、R x 3、R y 3、θ3、R x 4、R y 4、θ4。

常用的机构观察与运动分析

常用的机构观察与运动分析 一、实验目的 1、掌握平面运动副的分类及其表示方法; 2、结合实例加深理解平面连杆机构的基本类型、判别及其演化; 3、熟悉凸轮机构的分类、间歇机构的工作原理、螺旋机构的结构特点; 4、熟悉齿轮传动机构的类型及其特点。 二、实验设备及工具 1、机械原理陈列柜; 2、各种机构实物模型。 三、实验内容 1、平面运动副类型及其常用符号 (1)转动副,如图1所示。 (a)全为活动构件时 (b)构件1为机架时 图1 转动副 (2)移动副,如图2所示。 (a)全为活动构件时 (b)构件1为机架时 图2 移动副 (3)高副,如图3所示。 (a)全为活动构件时 (b)构件1为机架时 图3 高副 2、平面连杆机构的基本类型 1)全部用转动副组成的平面四杆机构称为铰链四杆机构,如图4所示。铰链四杆机构分

为三种基本型式:曲柄摇杆机构(如图4a 、b )、双曲柄机构(如图4c )和双摇杆机构(如图4d )。 c d 图4 变更机架后机构的演化 2)将4个构件以转动副和移动副连接成的平面四杆机构为移副四杆机构。单移副四杆机构有以下四种类型:滑快机构、导杆机构、摇块机构和定块机构(如图5所示)。 3、凸轮机构的组成及应用 凸轮机构应用广泛,类型很多,通常按如下方法分类: 1) 按凸轮的形状分为: (1)盘形凸轮;(2)移动凸轮;(3)圆柱凸轮。 图5 曲柄滑块机构向导杆机构的演化 a )曲柄滑块机构 b )导杆机构 c )摇块机构 d )定块机构 a b

图6 内燃机气门机构图图7移动凸轮图8 自动车床进刀机构中的凸轮 2)按从动件末端形状分为: (1)尖顶从动件如图9a、d所示;(2)滚子从动件如图9b、e所示;(3)平底从动件如图9c、f 所示。 a b c d e f 图9 从动件末端形状 4、间歇机构的工作原理 常见的间歇运动机构有:棘轮机构、槽轮机构等。 1)棘轮机构主要由棘轮、棘爪和机架组成(如图10所示)。 图10 棘轮机构图11 槽轮机构 2)槽轮机构主要由带圆销的主动拨盘,带径向槽的从动槽轮和机架组成(如图11所示)。 5、螺旋机构 螺旋机构由螺杆、螺母和机架组成(如图12所示)。 图12 螺旋机构 6、齿轮机构

公交车门运动机构原理分析及模型制作

公交车门运动机构原理分析及模型制作 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

公交车门运动机构原理分析及模型制作 材料科学与工程学院2011级卓越一班第2小组 组员:朱富慧、王文霞、徐潇、 赵洪阳 目录 一、车门机构数据采集 本组主要了解了k52路公交的车门构造,通过拍摄细节照片和录制视频收集数据,并分析其运动原理和利用solidworks软件制作其模型(该过程在保证机构正常运动前提下,仅做了少部分简化和优化,最大程度保持拟实性与美观性)。收集到的资料(视频资料参见附件)如下:

二、机构运动原理分析 车门运动机构简图 该运动机构包括5个构件,1、5为机架,2、3为杆件,4为滑块。 4个低副:3个转动副O 1、O 2 、O 3 和一个移动副。 自由度F=3n-2P L -P H =3×3-2×4-0=1,自由度为1,有确定的运动。 三、装配分析 该机构中,1、5为机架,连接在车体上; 杆件2:柱子、柱子扣、连杆组成的整体; 杆件3:车门; O 1 :机构与动力系统连接形成的转动副; O 2 :连杆与门连接形成的转动副; O 3 :门与滑块4连接形成的转动副。 四、运动过程分析 开门时,动力系统通过转动副O 1使杆件2顺时针转动,杆件2通过转动副O 2 及杆件3 (门)带动滑块向两侧滑动同时在O 3 作用下使之逆时针旋转。关门与开门工程相反。 五、装配效果图(另可参见附件2) 六、装配效果动画展示 参见附件3.

七、部分零件模型(另可参见附件2) 八、成果与收获 在本次公交车门运动机构原理分析及模型制作的协作中,我们实地收集资料、分析原理、制作模型,并成功利用模型模拟了车门机构的运动。从中我们也遇到许多配合和尺寸方面的问题,提升了综合分析问题的能力,对机构运动原理也有了更为深刻的认识。

机械原理课程设计六杆机构运动分析

机械原理 课程设计说明书 题目六杆机构运动分析 学院工程机械学院 专业机械设计制造及其自动化 班级机制三班 设计者秦湖 指导老师陈世斌 2014年1月15日

目录 一、题目说明??????????????????????????????????????????????????? 2 1、题目要求????????????????????????????????????????????? 3 2、原理图????????????????????????????????????????????? 3 3、原始数据????????????????????????????????????????????? 3 二、结构分析??????????????????????????????????????????????????? 4 三、运动分析????????????????????????????????????????????????? 5 1、D点运动分析?????????????????????????????????? 8 2、构件3运动分析??????????????????????????????????9 3、构件4运动分析??????????????????????????????????9 4、点S4运动分析??????????????????????????????????10 四、结论?????????????????????????????????????????????????????10 五、心得体会?????????????????????????????????????????????????????10 六、参考文献?????????????????????????????????????????????????????11

门机构运动仿真分析技术研究

门机构运动仿真分析技术研究 作者:上海飞机制造有限公司庞微卢鹄来源:航空制造技术 一架飞机有大小十几个舱门,包含登机门、服务门、货舱门、应急门等。舱门结构设计复杂,连杆、铰链数量众多,机构运动过程多阶段,运动关系复杂多变。由于舱门上的机构运动关系复杂,如何将这些舱门安装到位一直是飞机装配的一个难点。为了理清舱门各个机构运动的原理,指导现场工艺人员更好地进行工艺分析,采用CATIA的DMU模块对舱门进行运动机构仿真分析[1]。通过虚拟仿真技术的研究应用,验证舱门机构运动,找出机构中的可调节量,能指导工人现场安装调试,确保安装的顺利进行,缩短研制及安装周期[2]。 民用飞机舱门结构特点分析 民用飞机舱门:指民用飞机上带铰链机构,供人员进出或作为舱段主要维护通道的开口。完整的舱门包含的主要功能有:开关功能、应急开启功能、安全性功能、滑体预位功能、指示功能、辅助功能等。 民用飞机舱门结构一般采用金属材料。由于结构厚度较高,没有内蒙皮,采用连接角片连接横纵梁,采用预变形设计,飞行中正常飞行压差下为30% 压缩量,以保证良好的密封性能。 舱门结构方式主要有2种:外翻式打开方式与抛放式打开方式。外翻式,如ARJ的货舱门、大客的应急门等,重力方向与舱门运动方向一致;抛放式主要为ARJ的应急门、大客的登机门等,舱门提升后与机身平行沿航向前方打开,各位置垂直提升高度有所不同。 舱门的开启过程一般分为3个阶段:首先是对舱门进行解锁;然后对开启手柄进行提升;最后是将门推开的过程。在整个过程中包含的主要机构有:提升机构、导向机构、平移机构、内手柄及齿轮盒、外手柄机构、扭矩杆机构、阵风锁机构、外伸机构、增压预防、内外手柄机构、滑梯启动机构、驱动机构等。 舱门机构的简化 机构由若干个相互联接起来的构件组成。机构中两构件之间直接接触并能作相对运动的可

四连杆机构运动分析

游梁式抽油机是以游梁支点和曲柄轴中心的连线做固定杆,以曲柄,连杆和游梁后臂为三个活动杆所构成的四连结构。 1.1四连杆机构运动分析: 图1 复数矢量法: 为了对机构进行运动分析,先建立坐标系,并将各构件表示为杆矢量。结构封闭矢量方程式的复数矢量形式: 3121234i i i l e l e l e l ???+=+ (1) 应用欧拉公式cos sin i e i θθθ=+将(1)的实部、虚部分离,得 1122433112233cos cos cos sin sin sin l l l l l l l ??????+=+? ?+=? (2) 由此方程组可求得两个未知方位角23,??。 当要求解3?时,应将2?消去可得 2222234134313311412cos 2cos()2cos l l l l l l l l l l ????=++---- (3) 解得 3tan(/2)(/()B A C ?=- (4) 33 233 sin arctan cos B l A l ???+=+ (5) 其中:411 11 2222 32 3 cos sin 2A l l B l A B l l C l ??=-=-++-= (4)式中负号对应的四连杆机构的图形如图2所示,在求得3?之后,可利用(5)求得2?。

图2 由于初始状态1?有个初始角度,定义为01?,因此,我们可以得到关于011t ??ω=+, ω是曲柄的角速度。而通过图形3分析,我们得到OA 的角度0312 π θ??=- -。 因此悬点E 的位移公式为||s OA θ=?,速度||ds d v OA dt dt θ = =,加速度2222||dv d s d a OA dt dt dt θ===。 图3 已知附录4给出四连杆各段尺寸,前臂AO=4315mm ,后臂BO=2495mm , 连杆BD=3675mm ,曲柄半径O ’D=R=950mm ,根据已知条件我们推出''||||||||OO O D OB BD +>+违背了抽油系统的四连结构基本原则。为了合理解释光杆悬点的运动规律,我们对四连结构进行简化,可采用简谐运动、曲柄滑块结构进行研究。 1.2 简化为简谐运动时的悬点运动规律 一般我们认为曲柄半径|O ’D|比连杆长度|BD|和游梁后臂|OA|小很多,以至于它与|BD|、|OA|的比值可以忽略。此时,游梁和连杆的连接点B 的运动可以看为简谐运动,即认为B 点的运动规律和D 点做圆周运动时在垂直中心线上的投影的运动规律相同。则B 点经过时间t 时的位移B s 为

公交车门运动机构原理分析及模型制作

公交车门运动机构原理分析及模型制作 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

公交车门运动机构原理分析及模型制作 材料科学与工程学院2011级卓越一班第2小组 组员:朱富慧、王文霞、徐潇、 赵洪阳 目录 一、车门机构数据采集 本组主要了解了k52路公交的车门构造,通过拍摄细节照片和录制视频收集数据,并分析其运动原理和利用solidworks软件制作其模型(该过程在保证机构正常运动前提下,仅做了少部分简化和优化,最大程度保持拟实性与美观性)。收集到的资料(视频资料参见附件)如下:

二、机构运动原理分析 车门运动机构简图 该运动机构包括5个构件, 1、5为机架,2、3为杆件,4为滑块。 4个低副:3个转动副O 1、O 2 、O 3 和一个移动副。 自由度F=3n-2P L -P H =3×3-2×4-0=1,自由度为1,有确定的运动。 三、装配分析 该机构中,1、5为机架,连接在车体上; 杆件2:柱子、柱子扣、连杆组成的整体; 杆件3:车门; O 1 :机构与动力系统连接形成的转动副; O 2 :连杆与门连接形成的转动副; O 3 :门与滑块4连接形成的转动副。 四、运动过程分析 开门时,动力系统通过转动副O 1使杆件2顺时针转动,杆件2通过转动副O 2 及杆件3 (门)带动滑块向两侧滑动同时在O 3 作用下使之逆时针旋转。关门与开门工程相反。 五、装配效果图(另可参见附件2) 六、装配效果动画展示 参见附件3.

七、部分零件模型(另可参见附件2) 八、成果与收获 在本次公交车门运动机构原理分析及模型制作的协作中,我们实地收集资料、分析原理、制作模型,并成功利用模型模拟了车门机构的运动。从中我们也遇到许多配合和尺寸方面的问题,提升了综合分析问题的能力,对机构运动原理也有了更为深刻的认识。

平面四杆机构的运动仿真模型分析

平面四杆机构的运动仿真模型分析1前言 平面四杆机构是是平面连杆机构的基础,它虽然结构简单,但其承载能力大,而且同样能够实现多种运动轨迹曲线和运动规律,因而在工程实践中得到广泛应用。 平面四杆机构的运动分析, 就是对机构上某点的位移、轨迹、速度、加速度进行分析, 根据原动件的运动规律, 求解出从动件的运动规律。平面四杆机构的运动设计方法有很多,传统的有图解法、解析法和实验法。随着计算机技术的飞速发展,机构设计及运动分析已逐渐脱离传统方法,取而代之的是计算机仿真技术。本文在UG NX5环境下对平面四杆机构进行草图建模,通过草图中的尺寸约束、几何约束及动画尺寸等功能确定各连杆的尺寸,之后建立相应的连杆、运动副及运动驱动,对建立的运动模型进行运动学分析,给出构件上某点的运动轨迹及其速度和加速度变化规律曲线,文章最后简要分析几个应用于工程的平面四杆机构实例。 2平面四杆机构的建模 问题的提出 平面四杆机构因其承载能力大,可以满足或近似满足很多的运动规律,所以其应用非常广泛,本文以基于曲柄摇杆机构的物料传送机构为例,讨论其建模及运动分析。 如图1所示,ABCD为曲柄摇杆机构,曲柄AB为主动件,机构在运动中要求连杆BC的延伸线上E 点保持近似直线运动,其中直线轨迹为工作行程,圆弧轨迹为回程或空程,从而实现物料传送的功能。

平面四杆机构的建模 由于物料传送机构为曲柄摇杆机构,所以它符合曲柄存在条件。根据机械原理课程中的应用实例[1],选取AB=100,BC=CD=CE=250,AD=200,单位均为毫米。 在UG NX5的Sketch环境里,创建如图2所示的草图,并作相应的尺寸约束和几何约束,其中EE'为通过E点的水平轨迹参考线,用以检验E点的工作行程运动轨迹。现通过草图里的尺寸动画功能,令AB与AD 的夹角从0°到360°变化,可看到E点的变化轨迹为直线和圆弧,如图3所示为尺寸动画的四个截图,其中图3(a)中的E点为水平轨迹的起点,图3(b)中的E点为水平轨迹的中点,图3(c)中的E点为水平轨迹的终点,而图3(d)中的E点为圆弧轨迹(图中未画出)即回程的中点。

四种门机构的运动分析

四种门机构的运动分析 Student:XXX Course: 工程概论 Instructor: XXX Date:201X年X月Course Paper Grade 201X

摘要:门机构为生产生活中一种广泛应用的装置。门是分割有限空间的一种实体,作用是连接和关闭两个或多个空间的出入口①。在不同场合中,为适应不同生产生活的需要,门机构演变出诸多类型,分别具有不同的原理和功能。本文对生产生活中四种常见门机构——推拉门、卷帘门、旋转门、伸缩门等的工作和运动机制进行了详尽而深入的分析。 关键词:门机构;机械原理;运动分析 Motion Analysis ofFourKinds of Mechanical Structure ofDoors Anonymous (XXXUniversity,Chengdu 61XXXX,China) Abstract: Mechanical structures ofdoorsarewidely useddevices installed at the entrance of structurefor production and living. Door is a kind of entity and segmentation oflimited space. Its function is to connect or shutthe entrance oftwo or more spaces. On different occasions, in order to adapt to theneeds of production and living, mechanical structures ofdoors have developed intomany types, each with different principles and functions. This article looks through fourkinds of common door structure in production and living--sliding door, rolling door, revolving door, retractable doorand analyzestheir motion mechanism. Keywords:Mechanical structures ofdoors; Principle of machinery; Motion analysis 1 Net: 门(汉语汉字), 2016年2月18日 https://www.sodocs.net/doc/6710189872.html,/subview/13543/7943569.htm#viewPageContent

实验一机构运动简图的测绘及分析

实验一机构运动简图的测绘及分析 一、实验目的: 1、掌握机构运动简图测绘的基本方法; 2、巩固机构自由度的计算。并验证机构具有确定运动的条件; 3、通过对机构进行结构分析,了解结构的组成原理 二、设备和工具 机器和机构模型量具铅笔橡皮和草稿纸 三、实验原理 机构运动与机构中的构件的数目、构件组成运动副的形式以及各运动副的相对位置有关,而与构件的复杂外形和运动副的具体结构无关,因此,在工程上对 机构进行结构分析、运动分析和力分析时可以用机构运动简图来进行。 机构运动简图既简单又能正确地反映一部机器的运动特征,因此,正确地测量和绘制机构运动简图是机械设计的重要组成部分、 四、实验方法与步骤 1、观察机构的运动,弄清构件的数目 缓慢移动被测的及其或机构模型,从原动件开始,根据运动传递路线,仔细观察相连接的两构件是否有相对运动,特别要注意那些运动很微小的构件,从而弄清楚组成机构的构件数目。 2、判别运动副类型 一般,从原动件开始,遵循运动传递的顺序,仔细观察各相邻构件之间的相对运动性质。由此确定机构中运动副的类型、数目 3、合理选择视图 一般选择与机构的多数构件运动平面平行的平面作为投影面。必要时也可以

就机构的不同部分选择两个或者两个以上的投影面,然后展开到一张图面上。或者把主运动简图上难于表示清楚的部分,另绘一张局部简图。 对于齿轮机构则可选择与运动平面相垂直的平面作为投影面。总之,以简单清楚的把机构的运动情况表示出来为原则。 4、画出机构运动简图的草图,计算机构的自由度。 将原动件转到某一位置(即可看清多数活动构件和运动副的位置)。在草稿纸上按照规定的符号,目测尺寸使实物与图形大致成比例,徒手画出机构运动简图的草图,然后计算机构的自由度,并将草图与实物对照,观察是否和实物相符合。 5、画正式的机构运动简图。 确定尺寸比例尺,认真测量机构各运动副之间的相对位置参数,在实验报告纸上用三角板和圆规,将上述草图按照选定的比例尺卩1(构件的真实长度与图示长度的比值,单位为m/mn或mm/mn画出正式的机构运动简图。 注:对于某些不便直接测定的机构尺寸,可首先分析其机构的性质,采用间接测量的办法。

四连杆机构分析代码动力学--精简

平面连杆机构的运动分析和动力分析 1.1 机构运动分析的任务、目的和方法 曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。 对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。还可以根据机构闭环矢量方程计算从动件的位移偏差。上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。 机构运动分析的方法很多,主要有图解法和解析法。当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。 1.2 机构的工作原理 在平面四杆机构中,其具有曲柄的条件为: a.各杆的长度应满足杆长条件,即: 最短杆长度+最长杆长度≤其余两杆长度之和。 b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。 第一组(2代一套)四杆机构L1=125.36mm,L2=73.4mm,L3=103.4mm,L4=103.52mm 最短杆长度+最长杆长度(125.36+73.4) ≤其余两杆长度之和(103.4+103.52) 最短杆为连架杆,四杆机构为曲柄摇杆机构 第二组(2代二套)四杆机构L1=125.36mm,L2=50.1mm,L3=109.8mm,L4=72.85mm 最短杆长度+最长杆长度(125.36+50.1) ≤其余两杆长度之和(109.8+72.85) 最短杆为连架杆,四杆机构为曲柄摇杆机构 第三组(3代)四杆机构L1=163.2mm,L2=61.6mm,L3=150mm,L4=90mm 最短杆长度+最长杆长度(163.2+61.6) ≤其余两杆长度之和(150+90) 最短杆为连架杆,四杆机构为曲柄摇杆机构 在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。 1.3 机构的数学模型的建立

机构运动简图的测绘和分析试验报告

实验一机构运动简图的测绘和分析 一.实验目的 1.学会根据各种机械实物或模型,绘制机构运动简图; 2.分析和验证机构自由度,进一步理解机构自由度的概念,掌握机构自由度的计算方法; 3.加深对机构结构分析的了解。 二.设备和工具 1.各类典型机械的实物(如:缝纫机等) 2.各类典型机械的模型(如:内燃机模型、牛头刨床等); 3.钢皮尺,内外卡钳,量角器(根据需要选用); 4.三角板,铅笔,橡皮,稿纸(自备)。 三.原理和方法 1.原理 由于机构和运动仅与机构中所有的构件的数目的构件所组成的运动副的数目、类型、相对位置有关,因此,在绘制机构运动简图时,可以撇开构件的形状和运动副的具体构造,而用一些简略的符号(如教科书和机械设计手册中有关“常用构件的运动副简图符号”的规定)来代替构件和运动副,并按一定的比例尺表示运动副的相对位置,以此表明机构的运动特征。表1-1为常用符号示例。 2.方法 (1)确定组成机构的构件数目 测绘时使被测绘机械缓慢运动,仔细观测机构的运动,区分各个运动单元,从而确 定组成机构的构件数目,找出原动件。 (2)测绘运动副的种类、数目 根据相联接两构件的接触情况及相对运动的特点,确定各个运动副的种类。(3)合理选择投影面,坐标和原动件位置 选与机构的各个构件上的点运动平面皆平行的平面,或选能反映机构运动特征的其 他平面做投影面。 转动(或移动)原动件,找出每个构件都能表达清楚的原动件位置。 (4)绘机构运动简图的示意图 徒手按规定的符号,凭目测,使图与实物大致成比例(转动副位置、移动副导路方

位,高副接触点及曲率),从原动件开始,依构件的连接次序,逐渐画出机构运动 简图的示意图。用数字1、2、3……区分构件,用字母A、B、C……区分运动副。(5)绘正式机构运动简图 仔细测量与机构运动有关的尺寸,即转动副间的中心距和移动导路的方向等,按适 当的比例尺画出正式机构运动简图。 四.步骤和要求 1.对指定绘制的几种机器或机构运动简图,其中至少有一种需按确定的比例尺绘制,其余的可凭目测,使图与实物大致成比例,这种不按比例尺绘制的简图通常称为机构示意图。

机械原理课程设计六杆机构运动与动力分析

目录 第一部分:六杆机构运动与动力分析 一.机构分析分析类题目 3 1分析题目 3 2.分析内容 3 二.分析过程 4 1机构的结构分析 4 2.平面连杆机构运动分析和动态静力分析 5 3机构的运动分析8 4机构的动态静力分析18 三.参考文献21 第二部分:齿轮传动设计 一、设计题目22 二、全部原始数据22 三、设计方法及原理22 1传动的类型及选择22 2变位因数的选择22 四、设计及计算过程24 1.选取两轮齿数24 2传动比要求24 3变位因数选择24

4.计算几何尺寸25 五.齿轮参数列表26 六.计算结果分析说明28 七.参考文献28 第三部分:体会心得29

一.机构分析类题目3(方案三) 1.分析题目 对如图1所示六杆机构进行运动与动力分析。各构件长度、构件3、4绕质心的转动惯量如表1所示,构件1的转动惯量忽略不计。构件1、3、4、5的质量G1、G3、G4、G5,作用在构件5上的阻力P工作、P空程,不均匀系数δ的已知数值如表2所示。构件3、4的质心位置在杆长中点处。 2.分析内容 (1)对机构进行结构分析; (2)绘制滑块F的运动线图(即位移、速度和加速度线图); (3)绘制构件3角速度和角加速度线图(即角位移、角速度和角加速度线图); (4)各运动副中的反力; (5)加在原动件1上的平衡力矩; (6)确定安装在轴A上的飞轮转动惯量。 图1 六杆机构

二.分析过程: 通过CAD制图软件制作的六杆机构运动简图: 图2 六杆机构 CAD所做的图是严格按照题所给数据进行绘制的。并机构运动简图中活动构件的序号从1开始标注,机架的构件序号为0。每个运动副处标注一个字母,该字母既表示运动副,也表示运动副所在位置的点,在同一点处有多个运动副,如复合铰链处或某点处既有转动副又有移动副时,仍只用一个字母标注。见附图2所示。 1.机构的结构分析 如附图1所示,建立直角坐标系。机构中活动构件为1、2、3、4、5,即活动构件数n=5。A、B、C、D、F处运动副为低副(5个转动副,2个移动副),共7个,即P l=7。则机构的自由度为:F=3n-2P l=3Χ5-2Χ7=1。 ,转速为n1,如附图3-a所示;(2)拆基本杆组:(1)标出原动件1,其转角为φ 1, 试拆出Ⅱ级杆组2—3,为RPR杆组,如附图3-b所示;(3)拆出Ⅱ级杆组4—5,为RRP 杆组,如附图3-c所示。由此可知,该机构是由机架0、原动件1和2个Ⅱ级杆组组成,故该机构是Ⅱ级机构。

公交车门运动机构原理分析及模型制作

公交车门运动机构原理分析及模型制作 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

公交车门运动机构原理分析及模型制作 材料科学与工程学院2011级卓越一班第2小组 组员:朱富慧、王文霞、徐潇、 赵洪阳 目录 一、车门机构数据采集 本组主要了解了k52路公交的车门构造,通过拍摄细节照片和录制视频收集数据,并分析其运动原理和利用solidworks软件制作其模型(该过程在保证机构正常运动前提下,仅做了少部分简化和优化,最大程度保持拟实性与美观性)。收集到的资料(视频资料参见附件)如下: 二、机构运动原理分析 车门运动机构简图

该运动机构包括5个构件,1、5为机架,2、3为杆件,4为滑块。 4个低副:3个转动副O1、O2、O3和一个移动副。 自由度F=3n-2P L-P H=3×3-2×4-0=1,自由度为1,有确定的运动。 三、装配分析 该机构中,1、5为机架,连接在车体上; 杆件2:柱子、柱子扣、连杆组成的整体; 杆件3:车门; O1:机构与动力系统连接形成的转动副; O2:连杆与门连接形成的转动副; O3:门与滑块4连接形成的转动副。 四、运动过程分析 开门时,动力系统通过转动副O1使杆件2顺时针转动,杆件2通过转动副O2及杆件3(门)带动滑块向两侧滑动同时在O3作用下使之逆时针旋转。关门与开门工程相反。 五、装配效果图(另可参见附件2) 六、装配效果动画展示 参见附件3.

七、部分零件模型(另可参见附件2) 八、成果与收获 在本次公交车门运动机构原理分析及模型制作的协作中,我们实地收集资料、分析原理、制作模型,并成功利用模型模拟了车门机构的运动。从中我们也遇到许多配合和尺寸方面的问题,提升了综合分析问题的能力,对机构运动原理也有了更为深刻的认识。

相关主题