搜档网
当前位置:搜档网 › Clementine示例05-神经网络

Clementine示例05-神经网络

Clementine示例05-神经网络
Clementine示例05-神经网络

4、神经网络(goodlearn.str)

神经网络是一种仿生物学技术,通过建立不同类型的神经网络可以对数据进行预存、分类等操作。示例goodlearn.str通过对促销前后商品销售收入的比较,判断促销手段是否对增加商品收益有关。Clementine提供了多种预测模型,包括Nerual Net、Regression和Logistic。这里我们用神经网络结点建模,评价该模型的优良以及对新的促销方案进行评估。

Step 一:读入数据,本示例的数据文件保存为GOODS1n,我们向数据流程区添加Var. File结点,并将数据文件读入该结点。

Step 二、计算促销前后销售额的变化率向数据流增加一个Derive结点,将该结点命名为Increase。

在公式栏中输入(After - Before) / Before * 100.0以此来计算促销前后销售额的变化

Step 三:为数据设置字段格式添加一个Type结点到数据流中。由于在制定促销方案前我们并不知道促销后商品的销售额,所以将字段After的Direction属性设置为None;神经网络模型需要一个输出,这里我们将Increase字段的Direction设置为Out,除此之外的其它结点全设置为In。

Step 四:神经网络学习过程

在设置好各个字段的Direction方向后我们将Neural Net结点连接入数据流。

在对Neural Net进行设置时我们选择快速建模方法(Quick),选中防止过度训练(Prevent overtraining)。同时我们还可以根据自己的需要设置训练停止的条件。在建立好神经网络学习模型后我们运行这条数据流,结果将在管理器的Models栏中显示。选择查看该结果结点,我们可以对生成的神经网络各个方面的属性有所了解。

Step 四:为训练网络建立评估模型

4.1将模型结果结点连接在数据流中的Type结点后;

4.2 添加字段比较预测值与实际值向数据流中增加Derive结点并将它命名为ratio,然后将它连接到Increase结果结点。设置该结点属性,将增添的字段的值设置为(abs(Increase - '$N-Increase')

/Increase) * 100,其中$N-Increase是由神经网络生成的预测结果。通过该字段值的显示我们可以看出预测值与实际值之间的差异大小。

4.3 评价模型可以通过观察预测值与实际值之间的差异来评价模型的优劣。从Graph栏中选择histogram 结点连接到ratio结点。设置该结点,使其输出显示ratio的值(在field的下拉列表中选择ratio),输出结果如下图所示:

该图形的横坐标为ratio的值,纵坐标表示一共有多少个样本的ratio值落在相对应的横坐标上。从ratio 的定义公式我们知道ratio越小表明预测值与实际值的差别越小,所以我们希望更多的ratio值处于一个比较小的范围。因此由输出图形我们可以看出该模型达到了一定的精度。

Step五:模型预测

5.1预测模型建立

该模型的建立就是为了预测新样本。我们现将数据源的文件改为GOODS2n;然后按alt键双击Increase结点以此来绕过该结点;断开导出Increase结点与Ratio结点之间的连接,再增添一个Table结点观察Increase 结果结点的输出。在Type结点中我们只设置字段after的Direction属性为None,其余的都为In。通过这种方法建立好的数据流如下图所示:

右键单击Table结点,选择运行数据流。运行生成的结果如下,其中$N-Increase为预测结果:

5.2 输出规范化$N-Increase栏表示促销后销售额可能增减的比率。由于神经网络的最终输出需要规范到[0,1]区间,所以我们选择输出值在(0,1)内连续的S形函数将结果规范化。S型函数表达式为

f(x)=1/(1+exp(-x))。我们通过增加Derive结点将结果其规范化。

5.3选择促销方案根据神经网络模型的预测输出,我们可以选出GOODS2n文件中包含的可执行促销方案。假定预测结果经规范化后结值1的方案为可执行方案,我们需要增加一个结点来选出满足这些条件的结点。Clementine为我们提供了Select结点,它可以从数据集中筛选出满足预定条件的记录。从Record OPs栏内选择Select结点连接到Format结点后,在它的属性设置中选择包含format=1.000的结点,整个流程图由下所示:

运行数据流后我们将得到可用于促销的方案。结果图如下所示:

如果我们只需要得到这些方案的某些字段,而不想知道它的全部细节,则可以在Select和Table键中增设Filter结点,将不需要的字段过滤。

P.S. :在神经网络示例的学习中,我们用到了Neural Net、Select结点。

人工智能期末试题及答案完整版

xx学校 2012—2013学年度第二学期期末试卷 考试课程:《人工智能》考核类型:考试A卷 考试形式:开卷出卷教师: 考试专业:考试班级: 一单项选择题(每小题2分,共10分) 1.首次提出“人工智能”是在(D )年 A.1946 B.1960 C.1916 D.1956 2. 人工智能应用研究的两个最重要最广泛领域为:B A.专家系统、自动规划 B. 专家系统、机器学习 C. 机器学习、智能控制 D. 机器学习、自然语言理解 3. 下列不是知识表示法的是 A 。 A:计算机表示法B:“与/或”图表示法 C:状态空间表示法D:产生式规则表示法 4. 下列关于不确定性知识描述错误的是 C 。 A:不确定性知识是不可以精确表示的 B:专家知识通常属于不确定性知识 C:不确定性知识是经过处理过的知识 D:不确定性知识的事实与结论的关系不是简单的“是”或“不是”。 5. 下图是一个迷宫,S0是入口,S g是出口,把入口作为初始节点,出口作为目标节点,通道作为分支,画出从入口S0出发,寻找出口Sg的状态树。根据深度优先搜索方法搜索的路径是 C 。 A:s0-s4-s5-s6-s9-sg B:s0-s4-s1-s2-s3-s6-s9-sg C:s0-s4-s1-s2-s3-s5-s6-s8-s9-sg D:s0-s4-s7-s5-s6-s9-sg 二填空题(每空2分,共20分) 1.目前人工智能的主要学派有三家:符号主义、进化主义和连接主义。 2. 问题的状态空间包含三种说明的集合,初始状态集合S 、操作符集合F以及目标

状态集合G 。 3、启发式搜索中,利用一些线索来帮助足迹选择搜索方向,这些线索称为启发式(Heuristic)信息。 4、计算智能是人工智能研究的新内容,涉及神经计算、模糊计算和进化计算等。 5、不确定性推理主要有两种不确定性,即关于结论的不确定性和关于证据的不确 定性。 三名称解释(每词4分,共20分) 人工智能专家系统遗传算法机器学习数据挖掘 答:(1)人工智能 人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等 (2)专家系统 专家系统是一个含有大量的某个领域专家水平的知识与经验智能计算机程序系统,能够利用人类专家的知识和解决问题的方法来处理该领域问题.简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统 (3)遗传算法 遗传算法是一种以“电子束搜索”特点抑制搜索空间的计算量爆炸的搜索方法,它能以解空间的多点充分搜索,运用基因算法,反复交叉,以突变方式的操作,模拟事物内部多样性和对环境变化的高度适应性,其特点是操作性强,并能同时避免陷入局部极小点,使问题快速地全局收敛,是一类能将多个信息全局利用的自律分散系统。运用遗传算法(GA)等进化方法制成的可进化硬件(EHW),可产生超出现有模型的技术综合及设计者能力的新颖电路,特别是GA独特的全局优化性能,使其自学习、自适应、自组织、自进化能力获得更充分的发挥,为在无人空间场所进行自动综合、扩展大规模并行处理(MPP)以及实时、灵活地配置、调用基于EPGA的函数级EHW,解决多维空间中不确定性的复杂问题开通了航向 (4)机器学习 机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎 (5)数据挖掘 数据挖掘是指从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程,这些信息的表现形式为:规则、概念、规律及模式等。它可帮助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。数据挖掘的

神经网络例题汇总

一、名词解释(共5题,每题5分,共计25分) 1、泛化能力 答:泛化能力又称推广能力,是机器学习中衡量学习机性能好坏的一个重要指标。泛化能力主要是指经过训练得到的学习机对未来新加入的样本(即测试样本)数据进行正确预测的能力。 2、有监督学习 答:有监督学习又被称为有导师学习,这种学习方式需要外界存在一个“教师”,她可以对一组给定输入提供应有的输出结果,学习系统可根据已知输出与实际输出之间的差值来调节系统参数。 3、过学习 答:过学习(over -fitting ),也叫过拟和。在机器学习中,由于学习机器过于复杂,尽管保证了分类精度很高(经验风险很小),但由于VC 维太大,所以期望风险仍然很高。也就是说在某些情况下,训练误差最小反而可能导致对测试样本的学习性能不佳,发生了这种情况我们称学习机(比如神经网络)发生了过学习问题。典型的过学习是多层前向网络的BP 算法 4、Hebb 学习规则 答:如果两个神经元同时兴奋(即同时被激活),则它们之间的突触连接加强。如果用i v 、j v 表示神经元i 和j 的激活值(输出),ij ?表示两个神经元之间的连接权,则Hebb 学习规则可以表示为:ij i j w v v α?=,这里α表示学习速率。Hebb 学习规则是人工神经网络学习的基本规则,几乎所有神经网络的学习规则都可以看作Hebb 学习规则的变形。 5、自学习、自组织与自适应性 答:神经网络结构上的特征是处理单元的高度并行性与分布性,这种特征使神经网络在信息处理方面具有信息的分布存储与并行计算而且存储与处理一体化的特点。而这些特点必然给神经网络带来较快的处理速度和较强的容错能力。能力方面的特征是神经网络的自学习、自组织与自适应性。自适应性是指一个系统能改变自身的性能以适应环境变化的能力,它包含自学习与自组织两层含义。自学习是指当外界环境发生变化时,经过一段时间的训练或感知,神经网络能通过自动调整网络结构参数,使得对于给定输入能产生期望的输出。自组织是指神

人工智能习题作业神经计算I习题答案

第五章 神经网络课后习题及答案 一、选择题: 1. 在BP算法中,设y=f(xi)为xi的平滑函数,想知道xi对y增大变化的情况, 我们可求 ,然后进行下列的哪一项? ( B ) A 取最小 B 取最大 C 取积分 D 取平均值 2. 对于反向传播学习,无论是在识别单个概念的学习或识别两个概念的学习中,都涉及到下列的哪一个操作? ( A ) A 权值的修正 B 调整语义结构 C 调整阀值 D 重构人工神经元 3. 根据Hopfield网络学习的特点,能实现联想记忆和执行线性和非线性规划等求解问题其应用没有涉及到下列的哪一个内容? ( D ) A 模糊推理模型 B 非线性辨认 C 自适应控制模型 D 图象识别 4. 对于神经网络的二级推理产生式规则由三个层次构成,它不含下列的哪一个层次? ( C ) A 输入层 B 输出层 C 中间层 D 隐层 5. 人工神经网络借用了生理神经元功能的一些描述方式,它涉及到下列的哪一些内容? ( ABC ) A 模拟神经元 B 处理单元为节点 C 加权有向图 D 生理神经元连接而成

6. 在应用和研究中采用的神经网络模型有许多种,下列的哪一些是具有代表性的? ( ABD ) A 反向传递(BP) B Hopfield网 C 自适应共振 D 双向联想存储器 7. 下列的哪一些内容与反向传播学习算法有关? ( ABCD ) A 选取比率参数 B 误差是否满足要求 C 计算权值梯度 D 权值学习修正 8. 构造初始网络后,要用某种学习算法调整它的权值矩阵,使NN在功能上满足样例集给定的输入一输出对应关系,并由此产生推理,该矩阵必须满足下列的哪一个性质? ( A ) A 收敛性 B 对称性 C 满秩性 D 稀疏性 9. 在人工神经元的功能描述中,往往会用一激发函数来表示输出,常用的一般非线性函数有下列的哪一些项? ( ABD ) A 阀值型 B 分段线性强饱和型 C 离散型 D S i gm oid型 10. 基于神经网络的推理,其应用中必须涉及到下列的哪一些内容? ( ACD ) A NN的结构模型 B NN的推理规则 C NN的学习算法 D 从NN到可解释的推理网 二、填空题: 1. 前馈网络是一种具有很强学习能力的系统,结构简单,易于编程。前馈网络通

《神经网络》试题

《神经网络》试题 (2004年5月9日) 张翼王利伟 一、填空 1.人工神经元网络(ANN)是由大量神经元通过极其丰富和完善 的连接而构成的自适应非线形动力学系统。 2.神经元(即神经细胞)是由细胞体、树突、轴突和突触四 部分构成。 3.大量神经元相互连接组成的ANN将显示出人脑的分布存储和容 错性、大规模并行处理、自学习、自组织和自适应性、复杂的非线形动态系统、处理复杂、不确定问题。 4.ANN发展大体可为早期阶段、过度期、新高潮、热潮。 5.神经元的动作特征主要包括空间性相加,时间性相加,阈值 作用,不应期,疲劳和可塑性。 6.神经元与输入信号结合的两种有代表的结合方式是粗结合和 密结合。 7.1943年由美国心理学家McCulloch和数学家Pitts提出的形式神经 元数学模型简称为MP 模型,它规定了神经元之间的联系方式只 有兴奋、抑制联系两种。 8.目前,神经网络模型按照网络的结构可分为前馈型和反馈型, 按照学习方式可分为有导师和无导师学习。 9.神经网络工作过程主要由学习期和工作期两个阶段组成。 10.反馈网络历经状态转移,直到它可能找到一个平衡状态,这个平

衡状态称为 吸引子 。 二、问答题 1.简述Hebb 学习规则。 Hebb 学习规则假定:当两个细胞同时兴奋时,它们之间的连接强度应该增强,这条规则与“条件反射”学说一致。 在ANN 中Hebb 算法最简单可描述为:如果一个处理单元从另一处理单元接受输入激励信号,而且如果两者都处于高激励电平,那么处理单元间加权就应当增强。用数学来表示,就是两节点的连接权将根据两节点的激励电平的乘积来改变,即 ()()i i n ij n ij ij x y ηωωω=-=?+1 其中()n ij ω表示第(n+1)是第(n+1)次调节后,从节点j 到节点i 的连接权值;η为学习速率参数;x j 为节点j 的输出,并输入到节点i ;i y 为节点i 的输出。 2、简述自组织特征映射网络的算法。 自组织特征映射网络的算法分以下几步: (1) 权连接初始化 就是说开始时,对所有从输入节点到输出节点的连接权值都赋以随机的小数。时间设置t=0。 (2) 网络输入模式为 ),,,(21n b x x x =X (3) 对X k 计算X k 与全部输出节点所连接权向量T j W 的距离

人工神经网络复习题

《神经网络原理》 一、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+△t)=v(t),(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1)、信息分布存储和容错性。 (2)、大规模并行协同处理。 (3)、自学习、自组织和自适应。 (4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1)、空间相加性;(2)、时间相加性;(3)、阈值作用;(4)、不应期;(5)、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x 的关系如下图,试述它们分别有几个平衡状态,是否为稳定的平衡状态? 答:在图(1)中,有两个平衡状态a 、b ,其中,在a 点曲线斜率|F ’(X)|>1,为非稳定平稳状态;在b 点曲线斜率|F ’(X)|<1,为稳定平稳状态。 在图(2)中,有一个平稳状态a ,且在该点曲线斜率|F ’(X)|>1,为非稳定平稳状态。

基于神经网络理论的系统安全评价模型

(神经网络,安全评价) 基于神经网络理论的系统安全评价模型 王三明 蒋军成 (南京化工大学,南京,210009) 摘要 本文阐述了人工神经网络基本原理,研究分析了BP神经网络模型的缺陷并提出了优化策略。在此基础上,将神经网络理论应用于系统安全评价之中,提出了基于此理论的系统安全评价模型、实现方法和优点;评价实例证明此方法的可行性。 关键词 神经网络 网络优化 安全评价  1. 引言 人工神经网络模拟人的大脑活动,具有极强的非线形逼近、大规模并行处理、自训练学习、自组织和容错能力等优点,将神经网络理论应用于系统安全评价之中,能克服传统安全评价方法的一些缺陷,能快速、准确地得到安全评价结果。这将为企业安全生产管理与控制提供快捷和科学的决策信息,从而及时预测、控制事故,减少事故损失。   2. 神经网络理论及其典型网络模型 人工神经网络是由大量简单的基本元件-神经元相互联结,模拟人的大脑神经处理信息的方式,进行信息并行处理和非线形转换的复杂网络系统。人工神经网络处理信息是通过信息样本对神经网络的训练,使其具有人的大脑的记忆、辨识能力,完成各种信息处理功能。人工神经网络具有良好的自学习、自适应、联想记忆、并行处理和非线形转换的能力,避免了复杂数学推导,在样本缺损和参数漂移的情况下,仍能保证稳定的输出。人工神经网络这种模拟人脑智力的特性,受到学术界的高度重视和广泛研究,已经成功地应用于众多领域,如模式识别、图象处理、语音识别、智能控制、虚拟现实、优化计算、人工智能等领域。 按照网络的拓扑结构和运行方式,神经网络模型分为前馈多层式网络模型、反馈递归式网络模型、随机型网络模型等。目前在模式识别中应用成熟较多的模型是前馈多层式网络中的BP反向传播模型,其模型结构如图1。 2.1 BP神经网络基本原理 BP网络模型处理信息的基本原理是:输入信号X i通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Y k,网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的联接强度取值W ij和隐层节点与输出节点之间的联接强度T jk以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和

零基础入门深度学习(5) - 循环神经网络

[关闭] 零基础入门深度学习(5) - 循环神经网络 机器学习深度学习入门 无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编程的你从零基础达到入门级水平。零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章。虽然文中会有很多公式你也许看不懂,但同时也会有更多的代码,程序员的你一定能看懂的(我周围是一群狂热的Clean Code程序员,所以我写的代码也不会很差)。 文章列表 零基础入门深度学习(1) - 感知器 零基础入门深度学习(2) - 线性单元和梯度下降 零基础入门深度学习(3) - 神经网络和反向传播算法 零基础入门深度学习(4) - 卷积神经网络 零基础入门深度学习(5) - 循环神经网络 零基础入门深度学习(6) - 长短时记忆网络(LSTM) 零基础入门深度学习(7) - 递归神经网络 往期回顾 在前面的文章系列文章中,我们介绍了全连接神经网络和卷积神经网络,以及它们的训练和使用。他们都只能单独的取处理一个个的输入,前一个输入和后一个输入是完全没有关系的。但是,某些任务需要能够更好的处理序列的信息,即前面的输入和后面的输入是有关系的。比如,当我们在理解一句话意思时,孤立的理解这句话的每个词是不够的,我们需要处理这些词连接起来的整个序列;当我们处理视频的时候,我们也不能只单独的去分析每一帧,而要分析这些帧连接起来的整个序列。这时,就需要用到深度学习领域中另一类非常重要神经网络:循环神经网络(Recurrent Neural Network)。RNN种类很多,也比较绕脑子。不过读者不用担心,本文将一如既往的对复杂的东西剥茧抽丝,帮助您理解RNNs以及它的训练算法,并动手实现一个循环神经网络。 语言模型 RNN是在自然语言处理领域中最先被用起来的,比如,RNN可以为语言模型来建模。那么,什么是语言模型呢? 我们可以和电脑玩一个游戏,我们写出一个句子前面的一些词,然后,让电脑帮我们写下接下来的一个词。比如下面这句:我昨天上学迟到了,老师批评了____。 我们给电脑展示了这句话前面这些词,然后,让电脑写下接下来的一个词。在这个例子中,接下来的这个词最有可能是『我』,而不太可能是『小明』,甚至是『吃饭』。 语言模型就是这样的东西:给定一个一句话前面的部分,预测接下来最有可能的一个词是什么。 语言模型是对一种语言的特征进行建模,它有很多很多用处。比如在语音转文本(STT)的应用中,声学模型输出的结果,往往是若干个可能的候选词,这时候就需要语言模型来从这些候选词中选择一个最可能的。当然,它同样也可以用在图像到文本的识别中(OCR)。 使用RNN之前,语言模型主要是采用N-Gram。N可以是一个自然数,比如2或者3。它的含义是,假设一个词出现的概率只与前面N个词相关。我

人工神经网络大作业

X X X X大学 研究生考查课 作业 课程名称:智能控制理论与技术 研究生姓名:学号: 作业成绩: 任课教师(签名) 交作业日时间:2010年12月22日

人工神经网络(artificial neural network,简称ANN)是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能元件(即人工神经元),按各种不同的联结方式组成的一个网络。模拟大脑的某些机制,实现某个方面的功能,可以用在模仿视觉、函数逼近、模式识别、分类和数据压缩等领域,是近年来人工智能计算的一个重要学科分支。 人工神经网络用相互联结的计算单元网络来描述体系。输人与输出的关系由联结权重和计算单元来反映,每个计算单元综合加权输人,通过激活函数作用产生输出,主要的激活函数是Sigmoid函数。ANN有中间单元的多层前向和反馈网络。从一系列给定数据得到模型化结果是ANN的一个重要特点,而模型化是选择网络权重实现的,因此选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法就能得到包含学习训练样本范围的输人和输出的关系。如果用于学习训练的样本不能充分反映体系的特性,用ANN也不能很好描述与预测体系。显然,选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法是ANN的重要研究内容之一,而寻求应用合适的激活函数也是ANN研究发展的重要内容。由于人工神经网络具有很强的非线性多变量数据的能力,已经在多组分非线性标定与预报中展现出诱人的前景。人工神经网络在工程领域中的应用前景越来越宽广。 1人工神经网络基本理论[1] 1.1神经生物学基础 可以简略地认为生物神经系统是以神经元为信号处理单元,通过广泛的突触联系形成的信息处理集团,其物质结构基础和功能单元是脑神经细胞即神经元(neu ron)。(1)神经元具有信号的输入、整合、输出三种主要功能作用行为。突触是整个神经系统各单元间信号传递驿站,它构成各神经元之间广泛的联接。(3)大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物,其变化是先天遗传信息确定的总框架下有限的自组织过程。 1.2建模方法 神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系,这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法:①神经生物学模型方法,即根据微观神经生物学知识的积累,把脑神经系统的结构及机理逐步解释清楚,在此基础上建立脑功能模型。②神经计算模型方法,即首先建立粗略近似的数学模型并研究该模型的动力学特性,然后再与真实对象作比较(仿真处理方法)。 1.3概念 人工神经网络用物理可实现系统来模仿人脑神经系统的结构和功能,是一门新兴的前沿交叉学科,其概念以T.Kohonen.Pr的论述最具代表性:人工神经网络就是由简单的处理单元(通常为适应性)组成的并行互联网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。 1.4应用领域 人工神经网络在复杂类模式识别、运动控制、感知觉模拟方面有着不可替代的作用。概括地说人工神经网络主要应用于解决下述几类问题:模式信息处理和模式识别、最优化问题、信息的智能化处理、复杂控制、信号处理、数学逼近映射、感知觉模拟、概率密度函数估计、化学谱图分析、联想记忆及数据恢复等。 1.5理论局限性 (1)受限于脑科学的已有研究成果由于生理试验的困难性,目前对于人脑思维与记忆机制的认识尚很肤浅,对脑神经网的运行和神经细胞的内部处理机制还没有太多的认识。 (2)尚未建立起完整成熟的理论体系目前已提出的众多人工神经网络模型,归纳起来一般都是一个由节点及其互连构成的有向拓扑网,节点间互连强度构成的矩阵可通过某种学

《人工神经网络原理与应用》试题

1 / 1 《人工神经网络原理与应用》试题 试论述神经网络的典型结构,常用的作用函数以及各类神经网络的基本作用,举例说明拟定结论。 试论述BP 算法的基本思想,讨论BP 基本算法的优缺点,以及改进算法的思路和方法。以BP 网络求解XOR 问题为例,说明BP 网络隐含层单元个数与收敛速度,计算时间之间的关系。要求给出计算结果的比较表格,以及相应的计算程序(.m 或者.c )试论述神经网络系统建模的几种基本方法。利用BP 网络对以下非线性系统进行辨识。 非线性系统 )(5.1) 1()(1)1()()1(22k u k y k y k y k y k y +-++-=+ 首先利用[-1,1]区间的随机信号u(k),样本点500,输入到上述系统,产生y(k), 用于训练BP 网络;网络测试,利用u(k)=sin(2*pi*k/10)+1/5*sin(2*pi*k/100),测试点300~500,输入到上述系统,产生y(k),检验BP 网络建模效果要求给出程序流程,matlab 程序否则c 程序,训练样本输入输出图形,检验结果的输入输出曲线。 试列举神经网络PID 控制器的几种基本形式,给出相应的原理框图。 试论述连续Hopfield 网络的工作原理,讨论网络状态变化稳定的条件。 谈谈学习神经网络课程后的心得体会,你准备如何在你的硕士(博士)课题中应用神经网络理论和知识解决问题(给出一到两个例)。《人工神经网络原理与应用》试题 试论述神经网络的典型结构,常用的作用函数以及各类神经网络的基本作用,举例说明拟定结论。 试论述BP 算法的基本思想,讨论BP 基本算法的优缺点,以及改进算法的思路和方法。以BP 网络求解XOR 问题为例,说明BP 网络隐含层单元个数与收敛速度,计算时间之间的关系。要求给出计算结果的比较表格,以及相应的计算程序(.m 或者.c )试论述神经网络系统建模的几种基本方法。利用BP 网络对以下非线性系统进行辨识。 非线性系统 )(5.1) 1()(1)1()()1(22k u k y k y k y k y k y +-++-=+ 首先利用[-1,1]区间的随机信号u(k), 样本点500,输入到上述系统,产生y(k), 用于训练BP 网络;网络测试,利用u(k)=sin(2*pi*k/10)+1/5*sin(2*pi*k/100),测试点300~500,输入到上述系统,产生y(k),检验BP 网络建模效果要求给出程序流程,matlab 程序否则c 程序,训练样本输入输出图形,检验结果的输入输出曲线。 试列举神经网络PID 控制器的几种基本形式,给出相应的原理框图。 试论述连续Hopfield 网络的工作原理,讨论网络状态变化稳定的条件。 谈谈学习神经网络课程后的心得体会,你准备如何在你的硕士(博士)课题中应用神经网络理论和知识解决问题(给出一到两个例)。

2008年研究生神经网络试题A卷参考答案

研究生神经网络试题A卷参考答案 一、名词解释(共5题,每题5分,共计25分) 1、泛化能力 答:泛化能力又称推广能力,是机器学习中衡量学习机性能好坏的一个重要指标。泛化能力主要是指经过训练得到的学习机对未来新加入的样本(即测试样本)数据进行正确预测的能力。 2、有监督学习 答:有监督学习又被称为有导师学习,这种学习方式需要外界存在一个“教师”,她可以对一组给定输入提供应有的输出结果,学习系统可根据已知输出与实际输出之间的差值来调节系统参数。 3、过学习 答:过学习(over-fitting),也叫过拟和。在机器学习中,由于学习机器过于复杂,尽管保证了分类精度很高(经验风险很小),但由于VC维太大,所以期望风险仍然很高。也就是说在某些情况下,训练误差最小反而可能导致对测试样本的学习性能不佳,发生了这种情况我们称学习机(比如神经网络)发生了过学习问题。典型的过学习是多层前向网络的BP算法 4、Hebb学习规则 答:如果两个神经元同时兴奋(即同时被激活),则它们之间的突触连接加强。如果用、表示神经元i和j的激活值(输出),表示两个神经元之间的连接权,则Hebb学习规则可以表示为:,这里表示学习速率。Hebb 学习规则是人工神经网络学习的基本规则,几乎所有神经网络的学习规则都可以看作Hebb学习规则的变形。

5、自学习、自组织与自适应性 答:神经网络结构上的特征是处理单元的高度并行性与分布性,这种特征使神经网络在信息处理方面具有信息的分布存储与并行计算而且存储与处理一体化的特点。而这些特点必然给神经网络带来较快的处理速度和较强的容错能力。能力方面的特征是神经网络的自学习、自组织与自性适应性。自适应性是指一个系统能改变自身的性能以适应环境变化的能力,它包含自学习与自组织两层含义。自学习是指当外界环境发生变化时,经过一段时间的训练或感知,神经网络能通过自动调整网络结构参数,使得对于给定输入能产生期望的输出。自组织是指神经系统能在外部刺激下按一定规则调整神经元之间的突触连接,逐渐构建起神经网络。也就是说自组织神经元的学习过程,完全是一种自我学习的过程,不存在外部教师的示教。 二、问答题(共7题,每题8分,共计56分) 1、试述遗传算法的基本原理,并说明遗传算法的求解步骤。 答:遗传算法的基本原理如下:通过适当的编码方式把问题结构变为位串形式(染色体),在解空间中取一群点作为遗传开始的第一代,染色体的优劣程度用一个适应度函数来衡量,每一代在上一代的基础上随机地通过复制、遗传、变异来产生新的个体,不断迭代直至产生符合条件的个体为止。迭代结束时,一般将适应度最高的个体作为问题的解。 一般遗传算法的主要步骤如下: (1) 随机产生一个由确定长度的特征字符串组成的初始群体。 (2) 对该字符串群体迭代的执行下面的步 (a) 和 (b) ,直到满足停止标准: (a) 计算群体中每个个体字符串的适应值; (b) 应用复制、交叉和变异等遗传算子产生下一代群体。 (3) 把在后代中出现的最好的个体字符串指定为遗传算法的执行结果,这个结果可以表示问题的一个解。 2、什么是进化计算?它包括哪些内容?它们的出发点是什么?

循环神经网络(RNN, Recurrent Neural Networks)介绍

循环神经网络(RNN, Recurrent Neural Networks)介绍 标签:递归神经网络RNN神经网络LSTMCW-RNN 2015-09-23 13:24 25873人阅读评论(13) 收藏举报分类: 数据挖掘与机器学习(23) 版权声明:未经许可, 不能转载 目录(?)[+]循环神经网络(RNN, Recurrent Neural Networks)介绍 这篇文章很多内容是参考: https://www.sodocs.net/doc/672996945.html,/2015/09/recurrent-neural-networks-tutorial-part-1-introd uction-to-rnns/,在这篇文章中,加入了一些新的内容与一些自己的理解。 循环神经网络(Recurrent Neural Networks,RNNs)已经在众多自然语言处理(Natural Language Processing, NLP)中取得了巨大成功以及广泛应用。但是,目前网上与RNNs有关的学习资料很少,因此该系列便是介绍RNNs的原理以及如何实现。主要分成以下几个部分对RNNs进行介绍: 1. RNNs的基本介绍以及一些常见的RNNs(本文内容); 2. 详细介绍RNNs中一些经常使用的训练算法,如Back Propagation Through Time(BPTT)、Real-time Recurrent Learning(RTRL)、Extended Kalman Filter(EKF)等学习算法,以及梯度消失问题(vanishing gradient problem) 3. 详细介绍Long Short-Term Memory(LSTM,长短时记忆网络);

人工神经网络作业-单层感知器

3.5单层感知器 # include # include # define N 100 int sgn(double x) //符号运算函数 { int y; if(x>0||x==0) y=1; else y=-1; return y; } void main() { double W[4]={0.0,0.0,0.0,0.0},X[6][4]={{-1,0.8,0.5,0},{-1,0.9,0.7,0.3},{-1,1,0.8,0.5}, {-1,0,0.2,0.3},{-1,0.2,0.1,1.3},{-1,0.2,0.7,0.8}}; int err,o[6],i,j,k,num,d[6]={1,1,1,-1,-1,-1}; double n,WX; n=1.0; k=0; do { k++; num=0; for(i=0;i<6;i++) { WX=0.0; for(j=0;j<4;j++) WX=WX+W[j]*X[i][j]; o[i]=sgn(WX); err=d[i]-o[i]; for(j=0;j<4;j++) W[j]=W[j]+n*err*X[i][j]; if(err==0) num++; } }while(num!=6); printf("调整后的权值矩阵为:\n"); for(j=0;j<4;j++) printf("%f\n",W[j]); printf("分类结果为:\n"); for(i=0;i<6;i++) printf("%d\n",o[i]);

} 3.6单次训练的结果 # include # include double Sig(double x) //单极性函数 { double y; y=1.0/(1.0+exp(-x)); return y; } void main() { double x[3]={-1,1,3},V[3][3]={{0,3,-1},{0,1,2},{0,-2,0}},W[3][3]={{0,2,3},{0,1,1},{0,0,-2}}; double d[3]={0,0.95,0.05},nety[3],neto[3],Y[3],O[3],dety[3],deto[3]; double D,yita; int i,j; yita=1.0; FILE *fp; fp=fopen("out.txt","w"); fprintf(fp,"初始W矩阵:\n"); for(i=0;i<3;i++) { for(j=1;j<3;j++) fprintf(fp,"%f ",W[i][j]); fprintf(fp,"\n"); } fprintf(fp,"初始V矩阵:\n"); for(i=0;i<3;i++) { for(j=1;j<3;j++) fprintf(fp,"%f ",V[i][j]);

多层循环神经网络在动作识别中的应用

Computer Science and Application 计算机科学与应用, 2020, 10(6), 1277-1285 Published Online June 2020 in Hans. https://www.sodocs.net/doc/672996945.html,/journal/csa https://https://www.sodocs.net/doc/672996945.html,/10.12677/csa.2020.106132 Multilayer Recurrent Neural Network for Action Recognition Wei Du North China University of Technology, Beijing Received: Jun. 8th, 2020; accepted: Jun. 21st, 2020; published: Jun. 28th, 2020 Abstract Human action recognition is a research hotspot of computer vision. In this paper, we introduce an object detection model to typical two-stream network and propose an action recognition model based on multilayer recurrent neural network. Our model uses three-dimensional pyramid di-lated convolution network to process serial video images, and combines with Long Short-Term Memory Network to provide a pyramid convolutional Long Short-Term Memory Network that can analyze human actions in real-time. This paper uses five kinds of human actions from NTU RGB + D action recognition datasets, such as brush hair, sit down, stand up, hand waving, falling down. The experimental results show that our model has good accuracy and real-time in the aspect of monitoring video processing due to using dilated convolution and obviously reduces parameters. Keywords Action Recognition, Dilated Convolution, Long Short-Term Memory Network, Deep Learning 多层循环神经网络在动作识别中的应用 杜溦 北方工业大学,北京 收稿日期:2020年6月8日;录用日期:2020年6月21日;发布日期:2020年6月28日 摘要 人体动作识别是目前计算机视觉的一个研究热点。本文在传统双流法的基础上,引入目标识别网络,提出了一种基于多层循环神经网络的人体动作识别算法。该算法利用三维扩张卷积金字塔处理连续视频图

人工神经网络大作业

X X X X 大学 研究生考查课 作业 课程名称:智能控制理论与技术 研究生姓名:学号: 作业成绩: 任课教师(签名) 交作业日时间:2010 年12 月22 日

人工神经网络(artificial neural network,简称ANN)是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能元件(即人工神经元),按各种不同的联结方式组成的一个网络。模拟大脑的某些机制,实现某个方面的功能,可以用在模仿视觉、函数逼近、模式识别、分类和数据压缩等领域,是近年来人工智能计算的一个重要学科分支。 人工神经网络用相互联结的计算单元网络来描述体系。输人与输出的关系由联结权重和计算单元来反映,每个计算单元综合加权输人,通过激活函数作用产生输出,主要的激活函数是Sigmoid函数。ANN有中间单元的多层前向和反馈网络。从一系列给定数据得到模型化结果是ANN的一个重要特点,而模型化是选择网络权重实现的,因此选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法就能得到包含学习训练样本范围的输人和输出的关系。如果用于学习训练的样本不能充分反映体系的特性,用ANN也不能很好描述与预测体系。显然,选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法是ANN的重要研究内容之一,而寻求应用合适的激活函数也是ANN研究发展的重要内容。由于人工神经网络具有很强的非线性多变量数据的能力,已经在多组分非线性标定与预报中展现出诱人的前景。人工神经网络在工程领域中的应用前景越来越宽广。 1人工神经网络基本理论[1] 1. 1神经生物学基础 可以简略地认为生物神经系统是以神经元为信号处理单元, 通过广泛的突触联系形成的信息处理集团, 其物质结构基础和功能单元是脑神经细胞即神经元(neu ron)。(1) 神经元具有信号的输入、整合、输出三种主要功能作用行为。突触是整个神经系统各单元间信号传递驿站, 它构成各神经元之间广泛的联接。(3) 大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物, 其变化是先天遗传信息确定的总框架下有限的自组织过程。 1. 2建模方法 神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系, 这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法: ①神经生物学模型方法, 即根据微观神经生物学知识的积累, 把脑神经系统的结构及机理逐步解释清楚, 在此基础上建立脑功能模型。②神经计算模型方法, 即首先建立粗略近似的数学模型并研究该模型的动力学特性, 然后再与真实对象作比较(仿真处理方法)。 1. 3概念 人工神经网络用物理可实现系统来模仿人脑神经系统的结构和功能, 是一门新兴的前沿交叉学科, 其概念以T.Kohonen. Pr 的论述最具代表性: 人工神经网络就是由简单的处理单元(通常为适应性) 组成的并行互联网络, 它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。 1. 4应用领域 人工神经网络在复杂类模式识别、运动控制、感知觉模拟方面有着不可替代的作用。概括地说人工神经网络主要应用于解决下述几类问题: 模式信息处理和模式识别、最优化问题、信息的智能化处理、复杂控制、信号处理、数学逼近映射、感知觉模拟、概率密度函数估计、化学谱图分析、联想记忆及数据恢复等。 1. 5理论局限性 (1) 受限于脑科学的已有研究成果由于生理试验的困难性, 目前对于人脑思维与记忆机制的认识尚很肤浅, 对脑神经网的运行和神经细胞的内部处理机制还没有太多的认识。 (2) 尚未建立起完整成熟的理论体系目前已提出的众多人工神经网络模型,归纳起来一般都是一个由节点及其互连构成的有向拓扑网, 节点间互连强度构成的矩阵可通过某种学

几种神经网络模型及其应用

几种神经网络模型及其应用 摘要:本文介绍了径向基网络,支撑矢量机,小波神经网络,反馈神经网络这几种神经网络结构的基本概念与特点,并对它们在科研方面的具体应用做了一些介绍。 关键词:神经网络径向基网络支撑矢量机小波神经网络反馈神经网络Several neural network models and their application Abstract: This paper introduced the RBF networks, support vector machines, wavelet neural networks, feedback neural networks with their concepts and features, as well as their applications in scientific research field. Key words: neural networks RBF networks support vector machines wavelet neural networks feedback neural networks 2 引言 随着对神经网络理论的不断深入研究,其应用目前已经渗透到各个领域。并在智能控制,模式识别,计算机视觉,自适应滤波和信号处理,非线性优化,语音识别,传感技术与机器人,生物医学工程等方面取得了令人吃惊的成绩。本文介绍几种典型的神经网络,径向基神经网络,支撑矢量机,小波神经网络和反馈神经网络的概念及它们在科研中的一些具体应用。 1. 径向基网络 1.1 径向基网络的概念 径向基的理论最早由Hardy,Harder和Desmarais 等人提出。径向基函数(Radial Basis Function,RBF)神经网络,它的输出与连接权之间呈线性关系,因此可采用保证全局收敛的线性优化算法。径向基神经网络(RBFNN)是 3 层单元的神经网络,它是一种静态的神经网络,与函数逼近理论相吻合并且具有唯一的最佳逼近点。由于其结构简单且神经元的敏感区较小,因此可以广泛地应用于非线性函数的局部逼近中。主要影响其网络性能的参数有3 个:输出层权值向量,隐层神经元的中心以及隐层神经元的宽度(方差)。一般径向基网络的学习总是从网络的权值入手,然后逐步调整网络的其它参数,由于权值与神经元中心及宽度有着直接关系,一旦权值确定,其它两个参数的调整就相对困难。 其一般结构如下: 如图 1 所示,该网络由三层构成,各层含义如下: 第一层:输入层:输入层神经元只起连接作用。 第二层:隐含层:隐含层神经元的变换函数为高斯核. 第三层:输出层:它对输入模式的作用做出响应. 图 1. 径向基神经网络拓扑结构 其数学模型通常如下: 设网络的输入为x = ( x1 , x2 , ?, xH ) T,输入层神经元至隐含层第j 个神经元的中心矢 为vj = ( v1 j , v2 j , ?, vIj ) T (1 ≤j ≤H),隐含层第j 个神经元对应输入x的状态为:zj = φ= ‖x - vj ‖= exp Σx1 - vij ) 2 / (2σ2j ) ,其中σ(1≤j ≤H)为隐含层第j个神

相关主题