搜档网
当前位置:搜档网 › 电化学牛人

电化学牛人

电化学牛人
电化学牛人

德州大学奥斯汀分校约翰·B。古迪纳夫(J B Goodenough )锂电课题组1.John B. Goodenough

锂电的元老级人物!

https://www.sodocs.net/doc/618683925.html,/john_b_goodenough.html

Arumugam Manthiram

德州大学奥斯汀校的锂电继承人,一个印度阿三。

https://www.sodocs.net/doc/618683925.html,/~manthiram/index.htm

2.法国的锂电-由于是法国的,找不到网站

M. Armand

是“摇椅式”电池概念的提出者,也是聚合物固体电解质概念的提出者。

J.M.Tarascon

在过渡金属负极材料和磷酸铁锂方面,都有突出贡献

3.Daniel Abraham; Khalil Amine; Jim Miller;

美国阿贡国家实验室的锂电三巨头

https://https://www.sodocs.net/doc/618683925.html,/expertsguide/tag/batteries/

Michael M. Thackeray(31楼提供)

美国阿贡国家实验室做锰酸锂的

https://www.sodocs.net/doc/618683925.html,/Science_and_Technology/Distinguished_Fellows/thackeray.html 4美国伯克利国家实验室锂电们

Venkat Srinivasan

https://www.sodocs.net/doc/618683925.html,/venkat/publications/

Thomas Richardson

https://www.sodocs.net/doc/618683925.html,/trichardson/publications/

Kristin Persson

https://www.sodocs.net/doc/618683925.html,/kpersson/publications/

Robert Kostecki

https://www.sodocs.net/doc/618683925.html,/rkostecki/latest-results-and-presentations/

John B. Kerr

https://www.sodocs.net/doc/618683925.html,/aet/kerr/kerr.html

Jordi Cabana

https://www.sodocs.net/doc/618683925.html,/jcabana/publications/

还有几个,但是感觉不牛或者和前面几个是一个课题组的,就略去了。

5.M. Stanley Whittingham

纽约州立的锂电牛人(20楼推荐)

https://www.sodocs.net/doc/618683925.html,/whittingham/whit.html

6. MIT的锂电

Prof. Gerbrand Ceder

MIT 锂电快速充放电的那个课题组不算很牛,算是新星吧!

https://www.sodocs.net/doc/618683925.html,/

Yet-Ming Chiang

https://www.sodocs.net/doc/618683925.html,/faculty/faculty/ychiang/

Yang Shao-Horn

MIT 锂空电池,燃料电池等,(被拍砖了,没人营救准备删了)

https://www.sodocs.net/doc/618683925.html,/eel/htms/publication.htm

7. 罗马大学Bruno Scrosati,。(44楼推荐)

http://www.chem.uniroma1.it/dina ... php?userid=scrosati

8. PSI 的Petr Novak,。(44楼推荐)

http://ecl.web.psi.ch/lithium/index.html

9.京都大学Z. Ogumi, 手下的T. Abe, Y. Iriyama,

M Inaba都很牛的。(44楼推荐)

http://lib.bioinfo.pl/auid:4929320,

10. Jeff Dahn

加拿大达尔豪斯大学的教授,还不错!(24楼推荐)

http://fizz.phys.dal.ca/~dahn/jeffDahn.html

11.Professor Peter G Bruce

苏格兰的顶级学府安德鲁斯大学的教授不错(12楼推荐),

https://www.sodocs.net/doc/618683925.html,/eastchem/profiles/sta/bruce.html

12.Doron Aurbach, Professor

以色列的巴伊兰大学的大牛。

http://www.ch.biu.ac.il/php/general/people.php?

13. L. F. Nazar 十六楼推荐的一个加拿大的课题组,貌似课题组的人比较少,但工作还是挺好的。

http://www.science.uwaterloo.ca/~lfnazar/

加州伯克利的Newman

Allen J. Bard-德州大学奥斯丁分校

斯坦福大学崔毅硅

6. MIT的锂电

Prof. Gerbrand Ceder

MIT 锂电快速充放电的那个课题组不算很牛,算是新星吧!

https://www.sodocs.net/doc/618683925.html,/

Yet-Ming Chiang

https://www.sodocs.net/doc/618683925.html,/faculty/faculty/ychiang/

Yang Shao-Horn

MIT 锂空电池,燃料电池等,(被拍砖了,没人营救准备删了)

https://www.sodocs.net/doc/618683925.html,/eel/htms/publication.htm

7. 罗马大学Bruno Scrosati,。(44楼推荐)

http://www.chem.uniroma1.it/dina ... php?userid=scrosati

8. PSI 的Petr Novak,。(44楼推荐)

http://ecl.web.psi.ch/lithium/index.html

9.京都大学Z. Ogumi, 手下的T. Abe, Y. Iriyama,

M Inaba都很牛的。(44楼推荐)

http://lib.bioinfo.pl/auid:4929320,

2020届高考化学二轮复习新型电化学装置的原理分析专题卷

新型电化学装置的原理分析 1.用粗硅做原料,熔融盐电解法制取硅烷的原理如图。下列叙述正确的是( ) A.电源的B极为负极 B.可选用石英代替粗硅 C.电解时,熔融盐中Li+向粗硅移动 D.阳极反应:Si+4H--4e-SiH4↑ D【微探究】根据装置图可知,该装置为电解池,总反应为Si+2H2SiH4。H2生成H-,发生还 原反应,Si发生氧化反应。根据电解池原理,阴极发生还原反应,阳极发生氧化反应,故通入H2的那一极是阴极,故A极是负极,B极是正极,A项错误;阳极粗硅失电子,若换成石英,即SiO2,SiO2中Si 已经是+4价,无法再失电子,B项错误;电解时,熔融盐中Li+向阴极移动,C项错误;阳极粗硅生成SiH4,故电极反应为Si+4H--4e-SiH4↑,D项正确。 [微纠错] 易错点一:原电池和电解池没有正确区分,此装置有外接电源,属于电解池;易错点二:受思维定势影响,不能注意到此电解池的工作环境是非水体系;易错三:不能正确判断电解质中传导的带电粒子,电子不能直接通过熔融电解质或电解质溶液,此装置中电解质中存在的可以自由移动的离子有Li+、Cl-、H-。 2.纳米氧化亚铜在制作陶瓷等方面有广泛应用。利用电解的方法可得到纳米Cu2O,电解原理如图所示。下列有关说法不正确的是( ) A.b极为负极 B.铜极的电极反应式为2Cu-2e-+2OH-Cu2O+H2O C.钛极附近逸出O2

D.每生成1 mol Cu2O,理论上有2 mol OH-从离子交换膜左侧向右侧迁移 C【微探究】铜为阳极,钛为阴极,阴极与负极相连,所以b极为负极,A项正确;铜极上发生氧化反应生成氧化亚铜,B项正确;C项,钛极的电极反应式为2H2O+2e-2OH-+H2↑,C项错误;左侧生成OH-,右侧消耗OH-,且每生成1 mol Cu2O时,消耗2 mol OH-,为维持电荷平衡,则理论上有2 mol OH-从离子交换膜左侧向右侧迁移,D项正确。 3.研究人员研制出一种可快速充、放电的超性能铝离子电池,其中Al、C n为电极,由有机阳离子与阴离子(AlC l4-、Al2C l7-)组成的离子液体为电解质。如图为该电池放电过程示意图。下列说法错误的是( ) A.充电时,Al做阴极,C n做阳极 B.充电时,每生成1 mol铝,同时消耗4 mol Al2C l7- C.放电时,电解质中的有机阳离子向铝电极移动 D.放电时,正极反应式为C n[AlCl4]+e-C n+AlC l4- C【微探究】由图示可知,该电池放电时,Al做负极,C n做正极,因此充电时,Al做阴极,C n做阳极,A项正确;充电时,阴极反应式为4Al2C l7-+3e-Al+7AlC l4-,B项正确;放电时,电解质中的有机阳离子向正极(C n电极)方向移动,C项错误;放电时,正极反应式为C n[AlCl4]+e-C n+AlC l4-,D项正确。 4.如图所示是一种以液态肼(N2H4)为燃料,氧气为氧化剂,某固体氧化物为电解质的新型燃料电池。该固体氧化物电解质的工作温度在700~900 ℃时,O2-可在该固体氧化物电解质中自由移动,反应产物均为无毒无害的物质。下列说法正确的是( )

电化学 循环水处理工艺介绍

项目概述 ***********厂内现有部分循环水排污水。 为了节约用水,减少排放,实现水资源再利用,公司拟对厂内的上述各系统循环水排污水进行处理后回用于厂内循环水系统作为补水,代替新鲜水的使用。设计处理水量为200m3/h。 一.设计基础 1.水质情况 1.1水质指标 注:混合污水水质即为经计算后原水水质指标。 1.2水质分析 由以上数据表可以看出,将几股循环水排污水及浓水混合后,其水质的主要问题是电导率、总硬度、总碱度较高,需要进行降低去除处理。

而对于水中含盐量的降低去除则必然涉及到膜法除盐技术,而膜脱盐设备对于进水水质有一定的要求标准,从上述水质表分析,其水质总硬度、总碱度等指标较高,均超过膜脱盐设备的进水要求,原水的结垢性较强,易在膜过滤过程中形成垢类物质沉积在膜表面,影响膜的正常运行。所以必需对原水进行预处理,降低水质的总硬度、总碱度等指标,使处理出水达到膜脱盐设备的进水要求,才能进入脱盐设备进行脱盐处理。 本方案设计工艺分为两部分,一部分是预处理,一部分是脱盐处理。预处理主要用于降低水中的总硬度、总碱度等,脱盐处理主要用于降低水中的含盐量。2.设计水量 设计处理水量为:200m3/h。 二.技术工艺说明 1.技术工艺确定 1.1 技术工艺确定 根据污水水质分析,处理工艺确定为“预处理+脱盐”。其中预处理工艺需要降低水中总硬度、总碱度等,使出水水质满足膜脱盐设备的进水要求。对于水中的上述指标,均可通过“三法净水”处理技术进行有效降低去除,同时还可以进一步去除污水中的浊度、悬浮物等颗粒杂质。 由于处理出水作为循环水系统的补水,对于水质的含盐量要求并不高(新鲜水补水电导450-500uS/cm),而且随着回用设备的投运,循环水系统的含盐量逐渐降低,水质将逐渐改善,所以选择适度脱盐设备进行脱盐处理,即JR-EDR 电渗析脱盐设备。同时,JR-EDR电渗析脱盐设备具有运行成本低、膜抗污染性较强的特点,更适宜应用于污水回用处理。 设计技术工艺为:“三法净水”一体化设备+JR-EDR电渗析脱盐设备。1.2工艺流程框图 加酸、杀菌剂

污水处理电化学处理技术

污水处理电化学处理技术 高级氧化技术一般针对难降解有机废水,如医药、化工、染料工业废水以及含有难处理的有毒物质物质等。 第一节电化学处理技术 一、基本原理与特点 1. 原理 电化学氧化法主要用于有毒难生物降解有机废水的处理,电化学水处理技术的基本原理是使污染物在电极上发生直接电化学反应或间接电化学而得到转化,从而达到削减和去除污染物的目的。根据不同的氧化作用机理,可分为直接电解和间接电解。 1 ) 直接电解 直接电解是指污染物在电极上直接被氧化或还原而从废水中去除今直接电解可分为阳极过程和阴极过程。阳极过程就是污染物在阳极表面氧化而转化成毒性较小的物质或易生物降解的物质,甚至发生有机物无机化,从而达到削减、去除污染物的目的。阴极过程就是污染物在阴极表面还原而得以去除,阴极过程主要用于卤代经的还原脱卤和重金属的回收,如卤代有机物的卤素通过阴极还原发生脱卤反应,从而可以提高有机物的可生化性。 直接电解过程伴随着氧气析出,氧的生成使氧化降解有机物的电流效率降低,能秏升高,因此,阳极材料对电解的影响很大。 2 ) 间接电解 间接电解是指利用电化学产生的氧化还原物质作为反应剂或催化剂,使污染物转化成毒性小的物质。间接电解分为可逆过程和不可逆过程。可逆过程(媒介电化学氧化)是指氧化还原物在电解过程中可电化学再生和循环使用。不可逆过程是指利用不可逆电化学反应产生的物质,如具有强氧化性的氯酸盐、次氯酸盐、H202和O2等氧化有机物的过程,还可以利用电化学反应产生强氧化性的中间体,包括溶剂化电子、?HO、?H02/02 等自由基。 2. 电化学水处理技术的特点 1) 电化学方法既可以单独使用,又可以与其他处理方法结合使用,如作为前处理方法,可以提高废水的生物降解性; 2) 一般电化学处理工艺只能针对特定的废水,处理规模小,且处理效率不高; 3)有的电化学水处理工艺需消耗电能,运行成本大。 二、电化学反应器与电极 电化学反应器按反应器的工作方式分类可分为:间歇式、置换流式和连续搅拌箱式电化学反应器。按反应器中工作电极的形状分类可分为二维电极反应器、三维电极反应器。二维电极呈平面或曲面状,电极的形状比较简单,如平板、圆柱电极。电极反应发生于电极表面上,其电极表面积有限,比表面积极小,但电势和电流在表面上分布比较均匀。三维电极的结构复杂,通常是多孔状。电极反应发生于电极内部,整个三维空间都有反应发生。特点是比表面积大,床层结构紧密,但电势和电流分布不均匀。下列出了常见电化学反应器的电极类型。

电化学界面

电化学界面(1) 字体: 小中大| 打印发表于: 2007-7-17 17:04 作者: 热力学来源: 小蚂蚁化学门户网站 传统的电化学研究仅限于在(裸电极/ 电解液)界面上,从“青蛙实验”,Faraday电解定律,Tafel经验公式,到Nerst方程,电极过程动力学,乃至建立起界面双电层模型,20世纪70年代之前,如何赋予电极更优良或特定的功能还鲜为人知。而在1975年Miller(米勒)等人报道按人为设计对电极表面进行化学修饰,标志着化学修饰电极的问世之后,单纯的裸电极/电解液界面的电化学概念有了巨大发展。本文将着重介绍化学修饰的基本特征和应用;同时介绍离子选择性电极的基本特征和应用,以及电化学在生物体中的某些应用。 一化学修饰电极 与电化学中其他电极的概念相比,化学修饰电极最突出的特性是,在电极表面接着或涂敷了具有选择性化学基团的一层薄膜(从单分子到几个微米)。它是按人们意图设计的,并赋予了电极某种预定的性质,如化学的,电化学的,光学的、电学的和传输性等。化学修饰电极的表面性质比离子选择性电极要宽广得多,它概括了有意图设计的最高形式:设计相界面、设计在电极表面和电极之间的膜中分配和传输性质。化学修饰电极与离子选择性电极二者的不同点还在于,前者是利用电荷转移来进行实验测定或研究,而后者是测定相间电势。 因此,1989年IUPAC对化学修饰电极的定义是:化学修饰电极是由导体或半导体制作的电极,在电极的表面涂敷了单分子的,多分子的、离子的或聚合物的化学物质薄膜,借Faraday 反应(电荷消耗)而呈现出此修饰薄膜的化学的、电化学的以及/或光学的性质。 近30年来化学修饰电极领域的研究在国际上一直受到很大关注。美、英、法、日、德等国家都出现有代表性的研究组,国内有中科院长春应用化学所大量开展了这方面研究。随后许多高校也开展这方面的工作。这是因为化学修饰电极代表了电极/电解液界面的一种新概念。以聚合物膜修饰电极为例,它的界面要比传统溶液电化学情况复杂得多,它包括了膜/电极、电极/溶液、膜/溶液三个界面,其电荷传输机理也主要包括下列几个过程: ①电极与聚合物膜内电活性氧化还原物质间的电子转移反应(即电极反应); ②膜内电荷与物质的移动;

电化学工程教学大纲

《电化学工程》教学大纲 课程编号 : 课程名称 :电化学工程/ 学时/学分:40/2.5 先修课程 :物理化学、有机化学、分析化学、电工学等 适用专业 :化工、制药、生物工程、轻工等 开课学院(部)、系(教研室):化工系化学工程系工艺研究所 一、课程的性质与任务 应用电化学是将有关电化学原理应用于与实际生产过程相关的领域,这些领域包括:电化学新能源、金属的表面精饰、无机、有机化合物的电解合成、金属的电化学腐蚀及防护、电化学传感器。课程的主要任务就是让学生掌握电化学理论基础知识,了解电化学理论如何应用在上述领域。使学生具备较强的理论基础和综合应用知识的能力。 二、课程的教学内容、基本要求及学时分配 (一)教学内容 1电化学理论基础:电化学体系的基本单元;电化学过程热力学;电极/溶液界面的性能;电极反应动力学;电化学研究方法介绍 2电催化过程:电催化原理;氢电极反应的电催化;氧电极反应的电催化;有机反应的电催化 3化学电源:化学电源的主要性能、选择及应用;一次电池;二次电池;燃料电池。 4金属的表面精饰:金属电沉积和电镀原理;电镀过程;电泳涂装 5电解工业:无机物的电解,工业氯碱工业;水的电解 有机物的电解合成,有机电解合成的发展方向,乙二氰的电解合成 6电化学传感器:控制电位电解型气体传感器;生物电化学传感器 7电化学腐蚀与防护:金属的电化学腐蚀;腐蚀电池;电位-PH图及其在金属防护中的应用;金属的电化学防护方法 (二)基本要求 1电化学理论基础:了解电解池的组成;可逆电化学过程与不可逆电化学过程;双电层理论;金属的零电荷电位;电极反应的种类、机理及影响因素。学会电化学研究的几种基本方法。 2电催化过程:电催化的类型、原理、影响因素及性能评价;氧电极反应的电催化;有机反应的电催化的机理 3化学电源:了解化学电源的主要性能、选择及应用;掌握一次电池;二次电池;燃料电池的机理,了解它们的结构、应用及研究现状。 4金属的表面精饰:掌握金属电沉积和电镀、电泳涂装的原理,了解电镀;电泳涂装工艺过程及相关技术。 5电解工业:掌握工业氯碱工业、水的电解、乙二氰的电解合成几个有代表性的电解工艺和机理。 6电化学传感器:了解控制电位电解型气体传感器;生物电化学传感器的电化学原理及两种传感器的应用。 7电化学腐蚀与防护:了解金属的电化学腐蚀的基本理论和过程,腐蚀倾向判断及电化学防护方法。

电化学-新型化学电源

电化学——新型化学电源(建议用时:120 min)1、【2019·全国卷Ⅰ】利用生物燃料电池原理研究室温下氨的合成,电池工作时MV+2/MV+ 在电极与酶之间传递电子,示意图如下所示。下列说法错误的是( B ) A.相比现有工业合成氨,该方法条件温和,同时还可提供电能 B.阴极区,在氢化酶作用下发生反应:H2+ 2MV+2=== 2H++ 2MV+ C.正极区,固氮酶为催化剂,N2发生还原反应生成NH3 D.电池工作时质子通过交换膜由负极区向正极区移动 【第1题】【第2题】 2、【2018·全国卷Ⅱ】我国科学家研发了一种室温下“可呼吸”的Na–CO2二次电池。将 NaClO4溶于有机溶剂作为电解液,钠和负载碳纳米管的镍网分别作为电极材料,电池的总反应为:3CO2+ 4Na2Na2CO3+ C。下列说法错误的是( D ) A.放电时,ClO- 向负极移动 4 B.充电时释放CO2,放电时吸收CO2 C.放电时,正极反应为:3CO2+ 4-e=== 2CO-23+ C D.充电时,正极反应为:Na++-e=== Na 3、【2017·海南高考】一种电化学制备NH3的装置如图所示,图中陶瓷在高温时可以传输 H+。下列叙述错误的是( A ) A.Pd电极b为阴极B.阴极的反应式为:N2+ 6H++ 6-e=== 2NH3 C.H+由阳极向阴极迁移D.陶瓷可以隔离N2和H2 【第3题】【第4题】

4、【2018·全国卷Ⅲ】一种可充电锂—空气电池如图所示。当电池放电时,O 2与Li +在多孔 碳材料电极处生成Li 2O 2-x (x =0或1)。下列说法正确的是( D ) A .放电时,多孔碳材料电极为负极 B .放电时,外电路电子由多孔碳材料电极流向锂电极 C .充电时,电解质溶液中Li +向多孔碳材料区迁移 D .充电时,电池总反应为:Li 2O 2-x === 2Li + ??? ?1-x 2 O 2 5、环境监察局常用“定电位”NO x 传感器来监测化工厂尾气中的氮氧化物是否达到排放标 准,其工作原理如图所示。下列说法不正确的是( D ) A .“对电极”是负极 B .“工作电极”上发生的电极反应为:NO 2 + 2H + + 2-e === NO + H 2O C .传感器工作时,H +由“对电极”移向“工作电极” D .“工作电极”的材料可能为活泼金属锌 【第5题】 【第6题】 6、尿素[CO(NH 2)2]与NO 在碱性条件下可形成燃料电池,如图所示,反应的方程式为: 2CO(NH 2)2 + 6NO + 4NaOH === 5N 2 + 2Na 2CO 3 + 6H 2O 。下列说法正确的是( D ) A .甲电极为电池的负极,发生还原反应 B .电子流向:甲电极→负载→乙电极→溶液→甲电极 C .一段时间后,乙电极周围溶液酸性增强 D .甲电极的反应式为:CO(NH 2)2 - 4-e + 8OH - === CO - 23 + N 2↑+ 6H 2O 7、【2019·山东八校联考】熔融碳酸盐燃料电池是一种高温电池(600~700 ℃),具有效率 高、噪声低、无污染等优点。熔融碳酸盐燃料电池的工作原理如图所示。下列说法正 确的是( B ) A .电池工作时,熔融碳酸盐只起到导电的作用 B .负极反应式为:H 2 - 2-e + CO - 23 === CO 2 + H 2O C .电子流向:电极a →负载→电极b →熔融碳酸盐→电极a D .电池工作时,外电路中通过0.2 mol 电子,消耗3.2 g O 2

8种电化学水处理方法

8种电化学水处理方法 电化学水处理- 世间万物,都是有一利就有一弊。社会的进步和人们生活水平的提高,也不可避免地对环境产生污染。废水就是其中之一。随着石化、印染、造纸、农药、医药卫生、冶金、食品等行业的迅速发展,世界各国的废水排放总量急剧增加,且由于废水中含有较多的高浓度、高毒性、高盐度、高色度的成分,使其难以降解和处理,往往会造成非常严重的水环境污染。 为了处理每天大量排出的工业废水,人们也是蛮拼的。物、化、生齐用,力、声、光、电、磁结合。今天笔者为您总结用电’ 来处理废水的电化学水处理技术。 电化学水处理技术,是指在电极或外加电场的作用下,在特定的电化学反应器内,通过一定的化学反应、电化学过程或物理过程,对废水中的污染物进行降解的过程。电化学系统设备相对简单,占地面积小,操作维护费用较低,能有效避免二次污染,而且反应可控程度高,便于实现工业自动化,被称为环境友好’ 技术。 电化学水处理的发展历程 1799 年 Valta制成Cu-Zn原电池,这是世界上第一个将化学能转化为电能的化学电源 1833 年 建立电流和化学反应关系的法拉第定律。 19世纪70年代 Helmholtz提出双电层概念。任何两个不同的物相接触都会在两相间产生电势,这是因电荷分离引起的。两相各有过剩的电荷,电量相等,正负号相反,相互吸引,形成双电层。 1887 年 Arrhenius提出电离学说。 1889 年 Nernst提出电极电位与电极反应组分浓度关系的能斯特方程。 1903 年 Morse 和Pierce 把两根电极分别置于透析袋内部和外部溶液中,发现带电杂质能迅速地从凝胶中除去。 1905年 提出Tafel 公式,揭示电流密度和氢过电位之间的关系。 1906年

污水处理电化学处理技术

污水处理电化学处理技术Last revision on 21 December 2020

污水处理电化学处理技术高级氧化技术一般针对难降解有机废水,如医药、化工、染料工业废水以及含有难处理的有毒物质物质等。 第一节电化学处理技术 一、基本原理与特点 1. 原理 电化学氧化法主要用于有毒难生物降解有机废水的处理,电化学水处理技术的基本原理是使污染物在电极上发生直接电化学反应或间接电化学而得到转化,从而达到削减和去除污染物的目的。根据不同的氧化作用机理,可分为直接电解和间接电解。 1 ) 直接电解 直接电解是指污染物在电极上直接被氧化或还原而从废水中去除今直接电解可分为阳极过程和阴极过程。阳极过程就是污染物在阳极表面氧化而转化成毒性较小的物质或易生物降解的物质,甚至发生有机物无机化,从而达到削减、去除污染物的目的。阴极过程就是污染物在阴极表面还原而得以去除,阴极过程主要用于卤代经的还原脱卤和重金属的回收,如卤代有机物的卤素通过阴极还原发生脱卤反应,从而可以提高有机物的可生化性。 直接电解过程伴随着氧气析出,氧的生成使氧化降解有机物的电流效率降低,能秏升高,因此,阳极材料对电解的影响很大。 2 ) 间接电解 间接电解是指利用电化学产生的氧化还原物质作为反应剂或催化剂,使污染物转化成毒性小的物质。间接电解分为可逆过程和不可逆过程。可逆过程(媒介电化学氧化)是指氧化还原物在电解过程中可电化学再生和循环使用。不可逆过程是指利用不可逆电

化学反应产生的物质,如具有强氧化性的氯酸盐、次氯酸盐、H202和 O2等氧化有机物的过程,还可以利用电化学反应产生强氧化性的中间体,包括溶剂化电子、HO、 H02/02 等自由基。 2. 电化学水处理技术的特点 1) 电化学方法既可以单独使用,又可以与其他处理方法结合使用,如作为前处理方法,可以提高废水的生物降解性; 2) 一般电化学处理工艺只能针对特定的废水,处理规模小,且处理效率不高; 3)有的电化学水处理工艺需消耗电能,运行成本大。 二、电化学反应器与电极 电化学反应器按反应器的工作方式分类可分为:间歇式、置换流式和连续搅拌箱式电化学反应器。按反应器中工作电极的形状分类可分为二维电极反应器、三维电极反应器。二维电极呈平面或曲面状,电极的形状比较简单,如平板、圆柱电极。电极反应发生于电极表面上,其电极表面积有限,比表面积极小,但电势和电流在表面上分布比较均匀。三维电极的结构复杂,通常是多孔状。电极反应发生于电极内部,整个三维空间都有反应发生。特点是比表面积大,床层结构紧密,但电势和电流分布不均匀。下列出了常见电化学反应器的电极类型。 常见电化学反应器的电极类型 三、电化学处理技术在废水处理中的应用 (一)微电解 1. 原理 微电解技术是目前处理高浓度有机废水的一种理想工艺,又称内电解法,它是在不通电的情况下,利用填充在废水中的微电解材料自身产生的电位差对废水进行电解处

电化学发展史

电化学发展史 电化学是物理化学的一个重要组成部分,它不仅与无机 化学、有机化学、分析化学和化学工程等学科相关,还渗透 到环境科学、能源科学、生物学和金属工业等领域。 电化学作为化学的分支之一,是研究两类导体(电子导 体,如金属或半导体,以及离子导体,如电解质溶液)形成 的接界面上所发生的带电及电子转移变化的科学。

传统观念认为电化学主要研究电能和化学能之间的相互转换,如电解和原电池。但电化学并不局限于电能出现的化学反应,也包含其它物理化学过程,如金属的电化学腐蚀,以及电解质溶液中的金属置换反应。 一、16-17世纪:早期的相关研究 公元16世纪标志着对于电认知的开始。在16世纪50年代,英国科学家William Gilbert (威廉·吉尔伯特,1540-1605)花了17年时间进行磁学方面的试验,也或多或少地进行了一些电学方面的研究。吉尔伯特由于在磁学方面的开创性研究而被称为“磁学之父”,他的磁学研究为电磁学的产生和发展创造了条件。 吉尔伯特按照马里古特的办法,制成球状磁石,取名为“小地球”,在球面上用罗盘针和粉笔划出了磁子午线。他证明诺曼所发现的下倾现象也在这种球状磁石上表现出来,在球面上罗盘磁针也会下倾。他还证明表面不规则的磁石球,其磁子午线也是不规则的,由此认为罗盘针在地球上和正北方的偏离是由陆地所致。他发现两极装上铁帽的磁石,磁力大大增加,他还研究了某一给定的铁块同磁石的大小和它的吸引力的关系,发现这是一种正比关系。吉尔伯特根据他所发现的这些磁力现象,建立了一个理论体系。他设想整个地球是一块巨大的磁石,上面为一层水、岩石和泥土覆盖着。他认为磁石的磁力会产生运动和变化。他认为地球的磁力一直伸到天上并使宇宙合为一体。在吉尔伯特看来,引力无非就是磁力。吉尔伯特关于磁学的研究为电磁学的产生和发展创造了条件。在电磁学中,磁通势单位的吉伯 (gilbert)就是以他的名字命名,以纪 念他的贡献。 1663年,德国物理学家Otto von Guericke(奥托·冯·格里克1602-1686) 发明了第一台静电起电机。这台机器由 球形玻璃罩中的巨大硫磺球和转动硫 磺球用的曲轴组成的。当摇动曲轴来转 动球体的时候,衬垫与硫磺球发生摩擦 产生静电。这个球体可以拆卸并可以用 作电学试验的来源。 二、18世纪:电化学的诞生 在18世纪中叶,法国化学家夏尔·杜菲发现了两种不同的静电,他将两者分别命名为“玻璃电”和“松香电”,同种相互排斥而不同种相互吸引。杜菲因此认为电由两种不同液体组成:正电“vitreous”(玻璃),以及负电“resinous”(树脂),这便是电的双液体理论,这个理论在18世纪晚期被本杰明·富兰克林的单液体理论所否定。 1781年,法国物理学家Charles Augustin de Coulomb (夏尔·奥古斯丁·库仑1736-1806)在试图研究由英国科学家Joseph Priestley (约瑟夫·普利斯特里1733-1804)提出的电荷相斥法则的过程中发展了静电相吸的法则。 1771年,意大利生理学家、解剖学家Luigi Galvani(路易吉·伽伐尼1737-1798)发现蛙腿肌肉接触金属刀片时候会发生痉挛。他于1791年发表了题为“电流在肌肉运动中所起的作用”的论文,提出在生物形态下存在的“神经电流物质”,在化学反应与电流之间架起了一座桥梁。这篇论文的发表标志着电化学和电生理学的诞生。在论文中,伽伐尼认为动物体内中存在着一种与“自然”形式(如闪电)或“人工”形式(如摩擦起电)都不同的“动物电”,

电化学传感器的应用及发展前景

苏州大学研究生考试答卷封面 考试科目:仪器分析考试得分:________________院别:材料与化学化工学部专业:分析化学 学生姓名:饶海英学号: 033 授课教师: 考试日期: 2012 年 1 月 10 日

电化学传感器的应用研究 摘要:随着电分析技术的发展,电化学传感技术越来越成为生命科学、临床诊断和药学研究的重要手段之一。本文主要介绍了电化学发光免疫传感器,电化学DNA 传感器、电化学氧传感器、纳米材料电化学传感器的基本概念、原理,以及这些传感器在各领域的应用。 关键词:电化学传感器免疫传感器传感器 电化学传感技术的核心是传感器。传感器能感受(或响应)规定的被测量并按照一定规律转换成可用信号输出的器件或装置。传感器通常由直接响应于被测量的敏感元件和产生可用信号输出的转换元件以及相应的电子线路所组成,是将一种信息能转换成可测量信号(一般指电学信号)的器件。传感器可分为物理传感器、化学传感器和生物传感器三大类。本文以化学传感器尤其是电化学传感器进行研究。 电致化学发光(Electrogenerated chemiluminescence),也称电化学发光(Electrochemiluminescence),简称ECL,是通过电极对含有化学发光物质的体系施加一定的电压或通过一定的电流,电极氧化还原产物之间或电极氧化还原产物与体系其它共存物质之间发生化学反应并生成某种不稳定的中间态物质,该物质分解而产生的化学发光现象。电致化学发光技术是电化学与化学发光相结合的检测技术,该技术既集成了发光与电化学分析技术的优点,又具有二者结合产生的可控性、选择性、重现性好、灵敏度高、检测限低及动力学响应范围宽等新优势[ 1~3 ]。 电化学传感器可分为以下几个类型。①吸附型:通过吸附方式将修饰物质结合在电极表面得到的修饰电极为吸附型化学修饰电极。可以制备单分子层和多分子层。根据吸附作用力的不同,又可分为平衡吸附型、静电吸附型、LB膜型、SA 膜型、涂层型。②共价键合型:在电极的表面通过键合反应把预定功能团接在电极表面而得到的化学修饰电极为共价型化学修饰电极。常用基体电极有碳电极、玻碳电极、金属和金属氧化物电极。③聚合物型:利用聚合反应在电极表面形成修饰膜的电极。制备方式有氧化还原沉积、有机硅烷缩合、等离子聚合、电化学聚合等。④其他类型:无机物修饰电极,如普鲁士蓝修饰电极、粘土修饰电极、

电化学水处理考察

电化学水处理考察报告 针对我公司设备冷却循环水质不达标情况,由能源部、机动部联合组织相关人员分别对上海东方维尔和山西和风佳会两家公司在工业领域的应用进行了实地考察,两家公司处理原理基本相同,只是处理设备的形式上有所区别。 两家公司电化学水处理技术的主要工作原理是利用电化学的氧化还原反应,将水中的Ca2+、Mg2+以固体形式排除,降低水体的硬度,同时产生氧化性物质,抑制循环水系统中菌藻的滋生,达到杀菌灭藻功能。目前,对于电化学循环水处理技术的机理研究主要集中在以下几个方面: 1.电化学除垢原理 在直流电场的作用下水在阴极发生电解反应生成OH-,由阴极反应产生的OH-离子,打破阴极附近溶液中碱度与硬度的平衡,溶液中的HCO3-离子转化为CO32-离子,同时水中的Ca2+、Mg2+等成垢离子在静电引力的作用下向阴极区迁移,分别生成CaCO3、Mg(OH)2沉淀析出,同时在电场的作用下,CaCO3在阴极板表面的结晶形式由坚硬的方解石结构转变为较为疏松的文石型结构,更易于剥离去除 2.电化学杀菌原理 在电场的作用下,水中的氯离子会被氧化成氯气、次氯酸、次氯酸根等自由氯组分,电解氯化作用,主要通过次氯酸起作用。次氯酸为很小的中性分子,它扩散到带负电的细菌表面,并通过细菌的细胞

壁穿透到细菌内部。当次氯酸到达细菌内部时,能起氧化作用破坏细菌的酶系统而使细菌死亡。在电催化反应中,通过电解水以及溶解在水中的氧气在电极表面生成一些短寿命的中间产物,即臭氧、羟基自由基、过氧化氢和氧自由基等,这些强氧化性的物质能使微生物细胞中的多种成分发生氧化,从而使微生物产生不可逆的变化而死亡。 3.电化学处理设备的工作流程 冷却水在反应室内,经过电化学作用发生下列反应:(1)在阴极(反应室内壁)附近形成一个强碱性环境,使CaCO3从水中析出,与沉积的重金属离子一起附着在内壁上。(2)电流导致悬浮颗粒失稳,形成较大絮体沉淀下来。(3)在阳极附近,氯离子被电解氧化生成游离氯或者次氯酸。(4)在阳极附近同时生成氢氧根自由基、氧自由基、臭氧和双氧水,这些物质进一步强化在反应室内和整个水系统的杀菌灭藻效果。(5)当设备工作时间达到设定值或者水中电导率过高时,控制系统就启动自动刮垢、排污和清洗程序。进水阀门自动关闭,同时排污阀门开启,电机启动刮刀刮掉反应室内壁的软质水垢,与沉淀物一起排出反应室。然后进水阀门开启,刮刀停止运动,将水垢和沉淀物彻底清洗干净。达到设定时间后,排污阀门自动关闭,设备恢复正常工作。 通过对两家公司电化学水处理设备在焦化行业循环水池的应用我们进行比较,东方维尔的设备安装在曹妃甸首钢京唐公司的焦化循环水池,该设备为矩形反应室,阳极和阴极都是板式结构,需要手动清理污垢,并且需要把反应设备停车进行处理。山西和风佳会的处理

电化学发展史

电化学发展史 作者:李京遥 院系:测绘学院 专业:测绘工程 年级:测绘1304 学号:311305010414 日期:2014年12月12日

摘要: 电化学是物理化学的一个重要组成部分,它不仅与无机化学、有机化学、分析化学和化学工程等学科相关,还渗透到环境科学、能源科学、生物学和金属工业等领域。 电化学作为化学的分支之一,是研究两类导体(电子导体,如金属或半导体,以及离子导体,如电解质溶液)形成的接界面上所发生的带电及电子转移变化的科学。 关键词:电化学的产生、电化学的发展、电化学的前景 一、16-17世纪:早期的相关研究 公元16世纪标志着对于电认知的开始。在16世纪50年代,英国科学家William Gilbert (威廉·吉尔伯特,1540-1605)花了17年时间进行磁学方面的试验,也或多或少地进行了一些电学方面的研究。吉尔伯特由于在磁学方面的开创性研究而被称为“磁学之父”,他的磁学研究为电磁学的产生和发展创造了条件。 吉尔伯特按照马里古特的办法,制成球状磁石,取名为“小地球”,在球面上用罗盘针和粉笔划出了磁子午线。他证明诺曼所发现的下倾现象也在这种球状磁石上表现出来,在球面上罗盘磁针也会下倾。他还证明表面不规则的磁石球,其磁子午线也是不规则的,由此认为罗盘针在地球上和正北方的偏离是由陆地所致。他发现两极装上铁帽的磁石,磁力大大增加,他还研究了某一给定的铁块同磁石的大小和它的吸引力的关系,发现这是一种正比关系。吉尔伯特根据他所发现的这些磁力现象,建立了一个理论体系。他设想整个地球是一块巨大的磁石,上面为一层水、岩石和泥土覆盖着。他认为磁石的磁力会产生运动和变化。他认为地球的磁力一直伸到天上并使宇宙合为一体。在吉尔伯特看来,引力无非就是磁力。吉尔伯特关于磁学的研究为电磁学的产生和发展创造了条件。在电磁学中,磁通势单位的吉伯(gilbert)就是以他的名字命名,以纪念他的贡献。 1663年,德国物理学家Otto von Guericke(奥托·冯·格里克1602-1686)发明了第一台静电起电机。这台机器由球形玻璃罩中的巨大硫磺球和转动硫磺球用的曲轴组成的。当摇动曲轴来转动球体的时候,衬垫与硫磺球发生摩擦产生静电。这个球体可以拆卸并可以用作电学试验的来源。 二、18世纪:电化学的诞生 在18世纪中叶,法国化学家夏尔·杜菲发现了两种不同的静电,他将两者分别命名为“玻璃电”和“松香电”,同种相互排斥而不同种相互吸引。杜菲因此认为电由两种不同液体组成:正电“vitreous”(玻璃),以及负电“resinous”(树脂),这便是电的双液体理论,这个理论在18世纪晚期被本杰明·富兰克林的单液体理论所否定。 1781年,法国物理学家Charles Augustin de Coulomb (夏尔·奥古斯丁·库仑1736-1806)在试图研究由英国科学家Joseph Priestley (约瑟夫·普利斯特里1733-1804)提出的电荷相斥法则的过程中发展了静电相吸的法则。 1771年,意大利生理学家、解剖学家Luigi Galvani(路易吉·伽伐尼1737-1798)发现蛙腿

新型石墨烯纳米材料的合成在电化学中的应用

新型石墨烯纳米材料的合成在电化学中的应用 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料。自从2004年发现以来石墨烯以其独特的电学、力学、热学和光学等性能,引起了人们的极大关注,在复合材料、纳米器件及能量储存等方面有着广泛的应用前景。本论文以石墨烯的不同修饰电极为研究对象,探讨其在电化学方面的应用。本论文得到的主要结果如下: 1.用化学氧化法将碳纳米管解开制备氧化石墨烯,然后分别通过化学还原和电化学还原方法得到石墨烯材料,并用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、能量散射谱(EDS)、X射线衍射谱(XRD)、X射线光电子能谱(XPS)和拉曼光谱(Raman)等手段对其形貌、结构进行了表征。 2.以铁氰化钾、烟酰胺腺嘌呤二核苷酸、抗坏血酸、过氧化氢、氧气、多巴胺和尿酸等物质为探针分子,研究了氧化石墨烯、化学还原石墨烯和电化学还原石墨烯的电化学性能。结果发现,与裸玻碳电极相比,石墨烯材料表现出了更好的电子转移性能和电催化性能,使测定物的过电位大大降低。其中电化学催化能力由强至弱的排列顺序为:电化学还原石墨烯>化学还原石墨烯>氧化石墨烯。 3.用循环伏安法在氧化石墨烯修饰电极上制备了钯/石墨烯复合纳米材料,SEM和EDS研究表明钯纳米粒子成功地负载在石墨烯上。借助氢键和静电相互作用,氧化石墨烯和钯纳米粒子可以有序组装在玻碳电极上,从而制备出钯/石墨烯复合纳米材料修饰电极。 4.以铁氰化钾、烟酰胺腺嘌呤二核苷酸、抗坏血酸、过氧化氢、氧气、多巴胺和尿酸为探针分子,通过电化学阻抗(EIS)、循环伏安(CV)、计时电流(CA)和示差脉冲(DVP)等方法研究了钯/石墨烯复合纳米材料修饰电极的电化学行为。结果发现,在石墨烯和钯的共同促进作用下,钯/石墨烯复合纳米材料修饰电极在铁氰化钾溶液里表现出更快的电子转移能力,对烟酰胺腺嘌呤二核苷酸、抗坏血酸的氧化,过氧化氢、氧气的还原反应都有很高的电催化活性。该复合纳米材料同时对抗坏血酸、多巴胺、尿酸拥有较好的催化效果,而且三者不相互干扰。我们也研究了甲醇在钯/石墨烯复合纳米材料修饰电极上的电催化氧化行为,其性能良好,有望应用在燃料电池中。 本论文对石墨烯在生物传感器中的应用进行了基础性的研究。主要包括三部分内容:辣根过氧化物酶修饰石墨烯电极对H2O2的电催化研究;基于石墨烯负载纳米铂的葡萄糖生物传感器;MB/RG、MB/GO复合材料修饰电极对NADH的电催化研究。 具体的研究工作主要集中在以下几部分: (1)利用辣根过氧化物酶能够在石墨烯电极上实现直接电子转移的性质,组装了一种用电聚合吡咯的方法把HRP固定在石墨烯电极上的新的过氧化氢生物传感器。研究了此传感器对过氧化氢的电催化行为和分析测定。 (2)将石墨烯作为催化剂载体制备了新型的葡萄糖生物传感器。具体方法是先通过化学还原法将氯铂酸和石墨氧化物同时还原得到Pt/RG的混合物,将铂有效地固定在石墨烯载体上,之后制备了Pt/RG/GCE电极,并对此生物传感器的催化性能进行研究。接着用电聚合的

电化学工程

电化学工程 一、专业介绍 1、学科简介 电化学工程属于自设专业(自设专业是指在教育部专业目录中没有、而学校根据自己的特点和社会发展的需要设立的专业)、属于冶金工程一级学科下的二级学科。本专业学生主要学习电化学工业生产中所必需的基础理论和各种类型电化学反应器的设计方法,学习将小型实验成功地向电化学过程实现工业化生产的方法,优化生产条件以取得最佳经济效益的途径。 2、研究方向 01电化学基础理论02冶金过程电化学03化学电源 04材料电化学05电化学腐蚀与防腐06电镀与化学镀 07新型电池材料(含锂离子电池、镍氢电池、燃料电池、太阳能电池等电池材料)08新型电极材料09环境电化学 10电化学合成11电催化与电化学节能 12电化学过程的计算机仿真、优化与控制 3、考试科目 ①101政治②201英语 ③301数学一④912无机化学或976冶金原理 (注:研究方向及考试科目以中南大学为例) 二、专业培养目标 1.掌握物理化学、化学工程学、工程力学、电工学与工业电子

学、理论电化学与应用电化学等电化学工程的必需的基础理论、基础知识和基本技能; 2.具有设计电化学反应器和设计工艺流程的能力; 3.具有组织与管理电化学过程的生产与监控和解决生产中出现的问题的能力; 4.具有电化学产品性能检测及产品质量控制的能力; 5.具有对新工艺、新技术、新材料研究与开发的能力; 三、与此专业相近的自设专业 应用电化学工程 四、相同一级学科下的其他专业 冶金物理化学、钢铁冶金、有色金属冶金 五、招收此自设专业的院校及开设年份 中南大学(2002年) 六、就业方向 毕业生既可从事电化学(化学电源、电镀、电解等)金属腐蚀与防护等领域内的生产教学科学研究工作,又可从事与电化学结合的边缘科学的研究工作,如光电化学、生物电化学等。 七、就业前景 电化学是国民工业的一个主题技术之一,涉及到生活的很多方面。该专业毕业生不用怕找工作难,而且待遇也还行,不过化学这东西始终是有毒的,如果是女生最好不要选择该专业,而且该专业的女生相对于男生来说就业比较困难。但该专业相对有机来说还算好一

2020届高三化学电化学专题突破——电化学基础

2020届高三化学电化学专题突破 ——电化学基础 1、近年来AIST报告正在研制一种“高容量、低成本”锂一铜空气燃料电池。该电池通过一种复杂的铜腐蚀“现象”产生电力,其中 放电过程为2Li+Cu2O+H2O= 2Cu十2Li++2OH-,下列说法不正确的是( ) A.放电时,Li+透过固体电解质向Cu极移动B.放电时,负极的电极反应式为Cu2O+H2O+2e-=Cu+2OH- C.通空气时,铜被腐蚀,表面产生Cu2O D.整个反应过程中,铜相当于催化剂 2、锌溴液流电池是一种新型电化学储能装置(如图所示),电解液为溴化锌水溶液,电解液在电解质储罐和电池间不断循环。下 列说法不正确的是( ) A.充电时,阳离子通过交换膜移向装置右侧B.充电时,左侧与右侧的溴化锌溶液的浓度差将减小C.放电时装置发生的总反应为:Zn+Br2===ZnBr2 D.阳离子交换膜可阻止Br2与Zn直接发生反应 3、一种碳纳米管能够吸附氢气,用这种材料吸氢后制备的二次电池(充放电电池)工作原理如下图所示,该电池的电解质为6 mol·L -1KOH溶液,下列说法中正确的是( )

A.放电时K+移向碳电极 B.放电时电池负极的电极反应为H2-2e-= 2H+ C.充电时镍电极的电极反应为Ni(OH)2 + OH――e-= NiO(OH) + H2O D.该电池充电时将碳电极与电源的正极相连,发生氧化反应 4、电解装置如图所示,电解槽内装有KI及淀粉溶液,中间用阴离子交换膜隔开。在一定的电压下通电后,发现左侧溶液变蓝色, 一段时间后,蓝色又逐渐变浅。(已知:3I2+ 6OH—= IO3—+5I—+3H2O ,IO3—离子无色);下列说法不正确的是( ) A.右侧发生的电极反应式:2H2O+2e—= H2↑+2OH- B.a为电源正极 C.电解结束时,右侧溶液中没有IO3— D.用阴离子交换膜,电解槽内发生的总化学方程式为:KI + 3H2O KIO3+3H2↑ 5、镍氢电池(NiMH)目前已经成为混合动力汽车的一种主要电池类型。NiMH中的M表示储氢金属或合金。该电池在充电过程中 的总反应方程式是:Ni(OH)2 + M=NiO OH + MH,已知:6NiOOH + NH3 + H2O + OH-=6Ni(OH)2 + NO2-,下列说法正确的是( ) A.NiMH电池放电过程中,正极的电极反应式为:NiOOH+H2O+e-=Ni(OH)2 +OH- B.充电过程中OH-离子从阳极向阴极迁移 C.充电过程中阴极的电极反应式:H2O+M+e-=MH+OH-,H2O中的H被M还原 D.NiMH电池中可以用KOH溶液、氨水等作为电解质溶液 6、用惰性电极电解一定量的硫酸铜溶液,实验装置如下图甲。电解过程中的实验数据如下图乙,横坐标表示电解过程中转移电子 的物质的量,纵坐标表示电解过程中产生气体的总体积(标准状况)。则下列说法不正确的是( )

电化学水处理系统原理和市场分析

电化学水处理系统 Electrolytic Descaling System 工业冷却循环水除垢技术 电化学水处理系统原理简介 一、电解; 1、原理概述:高频、变频电解反应将水分子打散,变成中性的小分子还原水(小分子还原水国际公认具有强渗透力与溶解能力),细化的水具有强的 溶解性和渗透性,可以渗透进管道的水垢及铁锈层,逐步将其溶解。 2、系统中带正电的离子(Ca2+、Mg2+、Fe3+)随着系统的循环水流出,并被水力清的电极外网(负极)吸附并在上面形成钙、镁的化合物结晶,降 低水体的硬度,且吸附网的吸附能力远远大于水垢在换热器铜管内生成的 能力,使水垢能集中在吸附网上生成,从根本上解决换热器管道内水垢的 产生。 3、 原理示意图;①还原水溶垢、锈示意图(H· 代表小分子还原水):

循环水除垢机的先进性、突破性与高效益 ②还原水流动溶垢、锈示意图 ③电极吸附收集水垢示意图

电化学水处理系统工作特征 ◎ 超环保 首创高频变频电解纯物理方式吸垢除锈,不需化学药剂,避免管道及换热设备腐蚀。 ◎ 超节能 自身功率为 0.3-4.5KW,却可以提升系统 5-25%综合效果,节约能耗 5-20%。!

◎ 超节水 基本不需要排污,同比目前行业水处理法节水量超过 90%及以上。 ◎ 超智能 全天候无需人员值守,管理方便,简单,不需专人管理。 冷却水系统除垢除锈的必要性: ◎ 长时间不对冷却水进行处理,会造成管道以及换热设备内壁生成水 垢,影响冷却水流量及换热效率,降低冷却效果,影响生产。 ◎ 严重时甚至堵塞换热设备,停机清洗,影响生产效率。 ◎ 常年累积的水垢与铁锈导致换热设备冷却效果不理想,成型周期变 得越来越长。甚至会出现垢腐蚀管路、设备现象。 电化学水处理系统带来的好处: ◎ 时刻吸垢,让冷却水系统处于无垢状态。稳定冷却水流量,提高冷 却效果及换热效率。保障正常生产。 ◎ 不需投放化学药剂,避免管道、换热设备腐蚀,增加设备的使用寿 命。同时减少人工及时间去清理水塔、水池,减少排水 量,节能环 保。

电化学工程课程复习思考题 - 2013

《电化学工程》复习思考题---电化2010级 1、⑴离子淌度、离子迁移数的基本概念?(7) ⑵电解液电导率(7)、摩尔电导的基本概念?(10) ⑶影响电解液电导率的因素有哪些?(8-9) 2、⑴平衡电极电位基本含义是什么?(14) ⑵标准平衡电极电位的基本含义是什么(14)? 3、电极电位的测量中参比电极应如何选择?(14) 4、⑴何谓电池的电动势?(11) ⑵电解池的理论分解电压?(12) ⑶电池标准电动势如何计算?(12) ⑷“电动势的温度系数”与“电化学反应器工作时的热效应”有什么关系?(13) 5、一个完整的电极过程包括哪些基本单元步骤?何为电极过程的速率控制步骤?(25) 6、电极过程的基本特征是什么?(26) 7、为什么可以用电流密度来表示电解过程的反应速率?(27) 8、⑴电极极化的基本含义是什么?(24) ⑵何为理想极化电极(19)、不极化电极(20)? ⑶阳极极化与阴极极化的特征有什么区别? ⑷何为电极的过电位?(25) 9、何为极化曲线?(25)电化学中通常采用哪几种极化曲线?(25) 10、⑴“电化学极化”基本动力学方程(Butler-V olmer方程)是什么?如何理解?(29) ⑵“电化学极化”的基本动力学方程在强极化区、弱极化区的简化方式?(29) ⑶浓差极化条件下的动力学方程?(49) ⑷电化学极化、浓差极化共同作用下的动力学方程?(50) 11、⑴液相传质的基本方式有哪几种?其对应的质量传递方程式?(93-94) ⑵稳态扩散的基本概念?(33) 理想稳态扩散条件下,电流密度如何计算?(34) ⑶对于O + ne→ R 的电极反应,当R的活度为1 时,电极的浓差极化方程式?(35) ⑷何为对流扩散?(35)

相关主题