搜档网
当前位置:搜档网 › 晶体生长软件FEMAG_Dynamic_Simulation of the Entire Crystal Growth Melt Flow Transients

晶体生长软件FEMAG_Dynamic_Simulation of the Entire Crystal Growth Melt Flow Transients

晶体生长软件FEMAG_Dynamic_Simulation of the Entire Crystal Growth Melt Flow Transients
晶体生长软件FEMAG_Dynamic_Simulation of the Entire Crystal Growth Melt Flow Transients

晶体生长软件FEMAG

Dynamic Simulation of the Entire Crystal

Growth Process: Multi-Scale Analysis of Melt

Flow Transients

V. Regnier, L. Wu, B.

Delsaute,

F. Bioul, N. Van den Bogaert, F.

Dupret

CESAME, Univer sité catholique de Louvain, E-mail:

fd@mema.ucl.ac.be

Abstract

This paper investigates the transient melt flow evolution during a complete Czochralski crystal growth process. Two basic time scales are considered. The short scale concerns the basic transients associated with flow oscillations at different process stages. Accurate understanding of the flow mechanisms at this scale is required to develop an average axisymmetric flow model for complete dynamic simulations. The long time scale is associated with the transients caused by the slower system evolution occurring during the complete growth process. In order to focus on the fundamental effects governing the flow, a model problem is considered where the liquid is placed into a possibly rotating container while a disk of smaller diameter rotates on its top surface. Both the container and the disk are isothermal. Several transient effects are investigated including the effect of disk radius increase or decrease, and abrupt changes of disk or container temperature or rotation rate. Introduction: dynamic modeling of crystal growth by means of the FEMAG software

There is increasing demand today for robust, reliable and user-friendly software to model bulk growth techniques such as the Czochralski (Cz), Liquid Encapsulated Czochralski (LEC), Floating Zone (FZ) and Vertical Bridgman (VB) processes. The aim is to help predict, design and control the growth processes, and to better understand the factors affecting crystal quality. However, the growth techniques are more and more complex, and optimization can be achieved only by use of suitable numerical modeling that accounts for the severely non-linear physical phenomena involved as well as for the high system thermal inertia. The resulting problem is coupled, global, nonlinear and dynamic. On the other hand, accurate prediction of crystal quality requires both appropriate modeling of the governing physics, and highly accurate dynamic numerical methods for computing the evolution of the solid-liquid interface shape and the temperature field gradient in its vicinity.

The FEMAG simulation software developed in the CESAME center of the University of Louvain is currently used by major crystal growth companies. The numerical model is both global and dynamic, and takes the effect of melt convection into account. Diffuse surface radiation is considered. Geometrical unknowns are dynamically coupled to the other unknowns, i.e. temperature field, velocity field, electrical potential, etc., leading to a complex non-linear system of equations whose solution is found by use of a decoupled scheme at every time step of the simulation. Whereas in its first generation FEMAG already performed global quasi-steady or time-dependent simulations, applications were restricted to top cone, shouldering and body growth stages.

Both laminar and non-laminar flow models were considered, including or not the effect of axisymmetric magnetic fields. The objective of launching the FEMAG-2 software generation has been to provide a fully automatic simulator predicting the entire growth process while handling correctly the switches between the growth stages, together with coupling dynamic calculations with accurate melt flow prediction.

A significant difficulty lay in the important evolution of the system geometry during a complete growth process. Indeed, the solidified region is very small during seeding and subsequently becomes larger and larger, while the volume of the molten region decreases continually and can take a complex

shape during tail-end stage. The solution adopted combines several approaches based on a representation of the furnace by means of deforming unstructured meshes together with automatic mesh generation. New geometrical methods were designed to allow easy calculation of the different system free surfaces (solidification front, melt/gas interface including crystal/melt and crucible/melt menisci, and crystal/gas surface). These methods allow performing easy time-dependent simulations even for stages of the process where important geometrical changes occur.

Another important difficulty to address in FEMAG-2 development was related to the complexity of dynamic melt flow modeling. Several problems must be solved to accurately couple melt flow predictions with crystal growth process simulation. First, in semi-conductor growth, the melt flow is time-dependent, 3D and weakly turbulent, whereas it can exhibit 3D azimuthal and temporal structured oscillations. The use of an axisymmetric quasi-steady flow model is devoted to average the effect of these oscillations, and the principal issue is to determine reliable average flow models, with the corresponding boundary conditions, above the steady laminar regime. Secondly, due to high nonlinearities, the solution of non-laminar flow problems can be quite difficult while, in most cases, these problems exhibit the numerical stability and convergence issues of transport-dominated systems. To this end, appropriate iterative schemes and stabilization techniques were introduced into the FEMAG-2 flow module. Thirdly, in order to achieve coupling with global thermal calculations, the melt flow problem is solved in FEMAG-2 at several stages of the simulation by using a quasi- steady model, while long term thermal transients are treated by including appropriate source terms into the momentum and energy equations. Interpolation between the collected results provides the flow pattern and the velocity field at each time step of the dynamic simulation.

Crystal quality can be predicted from the melt flow and temperature histories as long as the physical models are known. Therefore, solid phase simulators are currently developed in FEMAG-2 to calculate defect formation, diffusion and recombination, dislocation generation and motion, etc., on the basis of heat transfer and flow simulation results. A related objective is

to develop off-line control algorithms, the ultimate goal being to provide an easy way to determine the evolution of the different process parameters (heater power, pull rate, crystal and crucible rotation rates, crucible lift, magnetic field design and intensity…) in order to optimize selected process variables characterizing crystal shape and quality. For all these reasons it is of the utmost importance to develop accurate and reliable flow models for bulk crystal growth dynamic simulation.

Objectives of the paper in terms of melt flow modelling

The present paper is devoted to investigating the evolution of the melt flow regime and pattern during the complete Cz crystal growth process. To this end, two basic time scales must be considered. The short time scale, which is typically of the order of tens of seconds in silicon growth, concerns the basic transients associated with flow oscillations at different stages of the growth process. Accurate understanding of the flow behaviour at this scale is required to develop the average axisymmetric flow model to be used in global dynamic simulations. The long time scale, which is typically of the order of tens of minutes in Cz silicon growth, is associated with the flow and heat transfer transients caused by the long term system evolution. In particular, the melt height is continually decreasing during the complete growth process. In addition, the crystal radius changes significantly during cone growth and tail-end stages, while simultaneously the heat transfer is strongly affected by the heater power modifications required to obtain a crystal of the prescribed shape –it should be recalled that heater power is slowly decreased during conical growth in order to let crystal radius increase, while it experiences a quick peak during shouldering in order to stop conical growth, and it is progressively increased during tail-end stage in order to let crystal radius decrease to terminate the growth process.

As the aim is here to provide better understanding of the crystal growth melt flow transients at these two time scales, a model problem is considered where the liquid is placed into a possibly rotating cylindrical container while a rotating disk of smaller diameter is placed at the top surface of the liquid. The container and the disk are at uniform, but possibly different, temperatures in

order to generate buoyancy forces from radial temperature gradient effect. The advantage of this approach is to allow focusing on the fundamental effects governing the flow by reducing the number of system parameters –the latter being the height of the liquid domain, the container and disk diameters and temperatures, and some material properties of the liquid. Additional parameters can be introduced to characterize the imposed magnetic field if any, but any other effect such as radiation transfer, which is not directly affecting the flow, is removed from the model in order to focus on flow issues only. For validation purpose, this system has been the object of isothermal and non-isothermal experimental investigations by means of a simple apparatus.

In order to capture the particular effects related to the flow behaviour at the short time scale (including the detail of its oscillations in a periodic, quasi-periodic or chaotic regime), a particular simulation technique has been developed where the long term effects are frozen while a laminar flow model is used. Very high mesh and time step refinements are required and therefore short time scale simulations, whose understanding represent a first objective of the paper, are limited to rather small periods of time.

On the other hand, long time scale simulations can only be performed provided an appropriate axisymmetric average flow model is introduced. This non-laminar model is developed by fitting the simulations to short time scale results. The second objective of the paper is to investigate by use of this non-laminar model the importance of the long term flow transients resulting from process parameter changes, such as increase or decrease of disk radius, abrupt change of temperature or rotation rate of the disk or the container, etc. To this end, several examples will be completely analyzed and presented at the conference.

References

F. Dupret, P. Nicodème, Y. Ryckmans, P. Wouters, M.J. Crochet, Int. J. Heat Mass Transfer, 33 (1990), 1849.

F. Dupret & N. Van den Bogaert, in Handbook of Crystal Growth, Vol. 2B, Ch. 15, Elsevier, Neth. (1994), 875. R. Assaker, N. Van den Bogaert, F. Dupret,

Magnetohydrodynamics, 31 (1995), 254.

N. Van den Bogaert & F. Dupret, J. Crystal Growth, 166 (1996), 446; 171 (1997), 65; 171 (1997), 77. R. Assaker, N. Van den Bogaert, F. Dupret, J. Crystal Growth, 180 (1997), 450.

F. Dupret, N. Van den Bogaert, R. Assaker, V. Regnier, in Proc. 8th Int. Symp. on Si Mat. Sc. and Tech., 1998

ECS meeting, Proc. Vol. 98-1 of the Electrochem. Soc., Pennington, NJ (1998), 396.

T. Sinno, E. Dornberger, R.A. Brown, W. von Ammon, F. Dupret, Materials Science and Engineering: R Reports, 28 (2000), 149.

晶体生长方法

晶体生长方法 一、提拉法 晶体提拉法的创始人是J. Czochralski,他的论文发表于1918年。提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC),能够顺利地生长某些易挥发的化合物(GaP等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。这种方法的主要优点是:(a)在生长过程中,可以方便地观察晶体的生长情况;(b)晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c)可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。 二、热交换法

热交换法是由D. Viechnicki和F. Schmid于1974年发明的一种长晶方法。其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有特定形状要求的晶体。由于这种方法在生长晶体过程中需要不停的通以流动氦气进行热交换,所以氦气的消耗量相当大,如Φ30 mm的圆柱状坩埚就需要每分钟38升的氦气流量,而且晶体生长周期长,He气体价格昂贵,所以长晶成本很高。 三、坩埚下降法 坩埚下降法又称为布里奇曼-斯托克巴格法,是从熔体中生长晶体的一种方法。通常坩埚在结晶炉中下降,通过温度梯度较大的区域时,熔体在坩埚中,自下而上结晶为整块晶体。这个过程也可用结晶炉沿着坩埚上升方式完成。与提拉法比较该方法可采用全封闭或半封闭的坩埚,成分容易控制;由于该法生长的晶体留在坩埚中,因而适于生长大块晶体,也可以一炉同时生长几块晶体。另外由于工艺条件

盐类结晶实验报告-结晶与晶体生长形态观察

盐类结晶实验报告 一、实验名称: 盐类结晶与晶体生长形态观察 二、实验目的: 1.通过观察盐类的结晶过程,掌握晶体结晶的基本规律及特点。为理解金属的结晶理论建立感性认识。 2.熟悉晶体生长形态及不同结晶条件对晶粒大小的影响。观察具有枝晶组织的金相照片及其有枝晶特征的铸件或铸锭表面,建立金属晶体以树枝状形态成长的直观概念。 3.掌握冷却速度与过冷度的关系。 三、实验原理概述: 金属及其合金的结晶是在液态冷却的过程中进行的,需要有一定的过冷度,才能开始结晶。而金属和合金的成分、液相中的温度梯度和凝固速度是影响成分过冷的主要因素。晶体的生长形态与成分过冷区的大小密切相关,在成分过冷区较窄时形成胞状晶,而成分过冷区较大时,则形成树枝晶。由于液态金属的结晶过程难以直接观察,而盐类亦是晶体物质,其溶液的结晶过程和金属很相似,区别仅在于盐类是在室温下依靠溶剂蒸发使溶液过饱和而结晶,金属则主要依靠过冷,故完全可通过观察透明盐类溶液的结晶过程来了解金属的结晶过程。 在玻璃片上滴一滴接近饱和的热氯化氨(NH4CI)或硝酸铅[Pb(NO3)2]水溶液,随着水分蒸发,温度降低,溶液逐渐变浓而达到饱和,继而开始结晶。我们可观察到其结晶大致可分为三个阶段:第一阶段开始于液滴边缘,因该处最薄,蒸发最快,易于形核,故产生大量晶核而先形成一圈细小的等轴晶(如图1所示),接着形成较粗大的柱状晶(如图2所示)。因液滴的饱和程序是由外向里,故位向利于生长的等轴晶得以继续长大,形成伸向中心的柱状晶。第三阶段是在液滴中心形成杂乱的树枝状晶,且枝晶间有许多空隙(如图3所示)。这是因液滴已越来越薄,蒸发较快,晶核亦易形成,然而由于已无充足的溶液补充,结晶出的晶体填布满枝晶间的空隙,从而能观察到明显的枝晶。 四、材料与设备: 1)配置好的质量分数为25%~30%氯化铵水溶液。 2)玻璃片、量筒、培养皿、玻璃棒、小烧杯、氯化铵、冰块。 3)磁力搅拌器、温度计。 4)生物显微镜。 五、实验步骤: 1.将质量分数为25%~30%氯化铵水溶液,加热到80~90℃,观察在下列条件下的结晶过程及晶体生长形态。 1)将溶液倒入培养皿中空冷结晶。 2)将溶液滴在玻璃片上,在生物显微镜下空冷结晶。 3)将溶液滴入试管中空冷结晶。 4)在培养皿中撒入少许氢化氨粉末并空冷结晶。 5)将培养皿、试管置于冰块上结晶。 2.比较不同条件下对氯化铵水溶液空冷结晶组织的影响: 氯化钠溶液在玻璃皿中空冷时由于玻璃皿边缘与中心的介质不同,造成氯化钠溶液洁净的不均匀,从而造成晶粒的大小不同;另外撒入少量的氯化铵粉末后粉末在促进结晶的同时也成为氯化铵的成长中心,析出的氯化铵依附在撒入的粉末上成长,即撒入的粉末有引导结晶的作用,实际的形态和撒入的量、分布有关。

晶体生长机理研究综述

晶体生长机理研究综述 摘要 晶体生长机理是研究金属材料的基础,它本质上就是理解晶体内部结构、缺陷、生长条件和晶体形态之间的关系。通过改变生长条件来控制晶体内部缺陷的形成从而改善和提高晶体的质量和性能使材料的强度大大增强开发材料的使用潜能。本文主要介绍了晶体生长的基本过程和生长机理,晶体生长理论研究的技术和手段,控制晶体生长的途径以及控制晶体生长的途径。 关键词:晶体结构晶界晶须扩散成核 一、晶体生长基本过程 从宏观角度看,晶体生长过程是晶体-环境相、蒸气、溶液、熔体、界面向环境相中不断推移的过程,也就是由包含组成晶体单元的母相从低秩序相向高度有序晶相的转变从微观角度来看,晶体生长过程可以看作一个基元过程,所谓基元是指结晶过程中最基本的结构单元,从广义上说,基元可以是原子、分子,也可以是具有一定几何构型的原子分子聚集体所谓的基元过程包括以下主要步骤:(1)基元的形成:在一定的生长条件下,环境相中物质相互作用,动态地形成不同结构形式的基元,这些基元不停地运动并相互转化,随时产生或消失(2)基元在生长界面的吸附:由于对流~热力学无规则的运动或原子间的吸引力,基元运动到界面上并被吸附 (3)基元在界面的运动:基元由于热力学的驱动,在界面上迁移运动 (4)基元在界面上结晶或脱附:在界面上依附的基元,经过一定的运动,可能在界面某一适当的位置结晶并长入固相,或者脱附而重新回到环境相中。 晶体内部结构、环境相状态及生长条件都将直接影响晶体生长的基元过程。环境相及生长条件的影响集中体现于基元的形成过程之中;而不同结构的生长基元在不同晶面族上的吸附、运动、结晶或脱附过程主要与晶体内部结构相关联。不同结构的晶体具有不同的生长形态。对于同一晶体,不同的生长条件可能产生不同结构的生长基元,最终形成不同形态的晶体。同种晶体可能有多种结构的物相,即同质异相体,这也是由于生长条件不同基元过程不同而导致的结果,生长机理如下: 1.1扩散控制机理从溶液相中生长出晶体,首要的问题是溶质必须从过饱和溶液中运送到晶体表面,并按照晶体结构重排。若这种运送受速率控制,则扩散和对流将会起重要作用。当晶体粒度不大于1Oum时,在正常重力场或搅拌速率很低的情况下,晶体的生长机理为扩散控制机理。 1.2 成核控制机理在晶体生长过程中,成核控制远不如扩散控制那么常见但对于很小的晶体,可能不存在位错或其它缺陷。生长是由分子或离子一层一层

单晶生长原理

直拉法:直拉法即切克老斯基法(Czochralski: Cz), 直拉法是半导体单晶生长用的最多的一种晶体生长技术。 直拉法单晶硅工艺过程 -引晶:通过电阻加热,将装在石英坩埚中的多晶硅熔化,并保持略高于硅熔点的温度,将籽晶浸入熔体,然后以一定速度向上提拉籽晶并同时旋转引出晶体; -缩颈:生长一定长度的缩小的细长颈的晶体,以防止籽晶中的位错延伸到晶体中; -放肩:将晶体控制到所需直径;-等径生长:根据熔体和单晶炉情况,控制晶体等径生长到所需长度;-收尾:直径逐渐缩小,离开熔体; -降温:降底温度,取出晶体,待后续加工 直拉法-几个基本问题 最大生长速度 晶体生长最大速度与晶体中的纵向温度梯度、晶体的热导率、晶体密度等有关。提高晶体中的温度梯度,可以提高晶体生长速度;但温度梯度太大,将在晶体中产生较大的热应力,会导致位错等晶体缺陷的形成,甚至会使晶体产生裂纹。为了降低位错密度,晶体实际生长速度往往低于最大生长速度。 熔体中的对流 相互相反旋转的晶体(顺时针)和坩埚所产生的强制对流是由离心力和向心力、最终由熔体表面张力梯度所驱动的。所生长的晶体的直径越大(坩锅越大),对流就越强烈,会造成熔体中温度波动和晶体局部回熔,从而导致晶体中的杂质分布不均匀等。实际生产中,晶体的转动速度一般比坩锅快1-3倍,晶体和坩锅彼此的相互反向运动导致熔体中心区与外围区发生相对运动,有利于在固液界面下方形成一个相对稳定的区域,有利于晶体稳定生长。 生长界面形状(固液界面) 固液界面形状对单晶均匀性、完整性有重要影响,正常情况下,固液界面的宏观形状应该与热场所确定的熔体等温面相吻合。在引晶、放肩阶段,固液界面凸向熔体,单晶等径生长后,界面先变平后再凹向熔体。通过调整拉晶速度,晶体转动和坩埚转动速度就可以调整固液界面形状。 生长过程中各阶段生长条件的差异 直拉法的引晶阶段的熔体高度最高,裸露坩埚壁的高度最小,在晶体生长过程直到收尾阶段,裸露坩埚壁的高度不断增大,这样造成生长条件不断变化(熔体的对流、热传输、固液界面形状等),即整个晶锭从头到尾经历不同的热历史:头部受热时间最长,尾部最短,这样会造成晶体轴向、径向杂质分布不均匀。 直拉法-技术改进: 一,磁控直拉技术 1,在直拉法中,氧含量及其分布是非常重要而又难于控制的参数,主要是熔体中的热对流加剧了熔融硅与石英坩锅的作用,即坩锅中的O2, 、B、Al等杂质易于进入熔体和晶体。热对流还会引起熔体中的温度波动,导致晶体中形成杂质条纹和旋涡缺陷。 2,半导体熔体都是良导体,对熔体施加磁场,熔体会受到与其运动方向相反的洛伦兹力作用,可以阻碍熔体中的对流,这相当于增大了熔体中的粘滞性。在生产中通常采用水平磁场、垂直磁场等技术。 3,磁控直拉技术与直拉法相比所具有的优点在于: 减少了熔体中的温度波度。一般直拉法中固液界面附近熔体中的温度波动达10 C以上,而施加0.2 T 的磁场,其温度波动小于 1 ℃。这样可明显提高晶体中杂质分布的均匀性,晶体的径向电阻分布均匀性也可以得到提高;降低了单晶中的缺陷密度;减少了杂质的进入,提高了晶体的纯度。这是由于在磁场作用下,熔融硅与坩锅的作用减弱,使坩锅中的杂质较少进入熔体和晶体。将磁场强度与晶体转动、坩锅转动等工艺参数结合起来,可有效控制晶体中氧浓度的变化;由于磁粘滞性,使扩散层厚度增大,可提高杂

晶体生长规律

1.如何知道晶体沿哪个晶面生长?一个晶体有多个晶面,怎么知道它沿哪个晶面生长?是不是沿XRD测出来的峰最强的那个晶面生长?扫描电镜可以观察晶体有多个面,如何知道每个面所对应的晶面?答:一般是晶体的密排面,因为此晶面的自由能最低。这个和温度有关,温度高就是热力学生长,能克服较大势垒,一般沿111面长成球或者四方。温度低的话,就是动力学生长,沿着100面,成为柱状了。对于完美无缺陷的晶体来说,原子间距最小的面最容易生长,如111面,长成球或者四方。改变外界条件,如温度、PH值、表面活性剂等,都会影响晶体的生长。对于缺陷晶体来说,除以上因素外,杂质缺陷、螺旋位错等也会影响晶体的生长。如果按照正常生长的话,都是密排面生长,但是熔体的条件改变后生长方式发生改变,例如铝硅合金的变质,加入变质剂后就不是密排面生长,而是频繁的分枝,各个面可能都有。完美条件下是沿吴立夫面生长,但总会有外界条件影响晶面的表面能,导致吴立夫面不是表面能最低的面,所以晶体露在外边的面就不一定是吴立夫面了,但应该是该生长条件下表面能最低的面。 HRTEM 和SAED可以表征生长方向~晶面能量越高,原子堆积速度越快,垂直该晶面方向的生长速度就快。而这样的后果有两个: 1.晶体沿垂直该晶面的方向快速生长; 2.该晶面在生长过程中消失。 引晶是拉晶里面的一个步骤,一般拉晶是指单晶生长的整个过程,其中包括清炉、装料、抽空、化料、引晶、放肩、转肩、等径、收尾、

停炉。拉晶有些人是叫长晶,引晶一般是指将籽晶(又称晶种)放入溶液硅中,然后沿着籽晶引出一段细晶,这过程主要是为了排除位错和缺陷,使后面的晶体能够较好的生长。

CZ法单晶生长原理及工艺流程

CZ生长原理及工艺流程 CZ法的基本原理,多晶体硅料经加热熔化,待温度合适后,经过将籽晶浸入、熔接、引晶、放肩、转肩、等径、收尾等步骤,完成一根单晶锭的拉制。炉内的传热、传质、流体力学、化学反应等过程都直接影响到单晶的生长与生长成的单晶的质量,拉晶过程中可直接控制的参数有温度场、籽晶的晶向、坩埚和生长成的单晶的旋转与升降速率,炉内保护气体的种类、流向、流速、压力等。 CZ法生长的具体工艺过程包括装料与熔料、熔接、细颈、放肩、转肩、等径生长和收尾这样几个阶段。 1.装料、熔料 装料、熔料阶段是CZ生长过程的第一个阶段,这一阶段看起来似乎很简单,但是这一阶段操作正确与否往往关系到生长过程的成败。大多数造成重大损失的事故(如坩埚破裂)都发生在或起源于这一·阶段。 2.籽晶与熔硅的熔接 当硅料全部熔化后,调整加热功率以控制熔体的温度。一般情况下,有两个传感器分别监测熔体表面和加热器保温罩石墨圆筒的温度,在热场和拉晶工艺改变不大的情况下,上一炉的温度读数可作为参考来设定引晶温度。按工艺要求调整气体的流量、压力、坩埚位置、晶转、埚转。硅料全部熔化后熔体必须有一定的稳定时间达到熔体温度和熔体的流动的稳定。装料量越大,则所需时间越长。待熔体稳定后,降下籽晶至离液面3~5mm距离,使粒晶预热,以减少籽经与熔硅的温度差,从而减少籽晶与熔硅接触时在籽晶中产生的热应力。预热后,下降籽晶至熔体的表面,让它们充分接触,这一过程称为熔接。在熔接过程中要注意观察所发生的现象来判断熔硅表面的温度是否合适,在合适的温度下,熔接后在界面处会逐渐产生由固液气三相交接处的弯月面所导致的光环(通常称为“光圈”),并逐渐由光环的一部分变成完整的圆形光环,温度过高会使籽晶熔断,温度过低,将不会出现弯月面光环,甚至长出多晶。熟练的操作人员,能根据弯月面光环的宽度及明亮程度来判断熔体的温度是否合适。 3.引细颈 虽然籽晶都是采用无位错硅单晶制备的[16~19],但是当籽晶插入熔体时,由于受到籽晶与熔硅的温度差所造成的热应力和表面张力的作用会产生位错。因此,在熔接之后应用引细颈工艺,即Dash技术,可以使位错消失,建立起无位错生长状态。 Dash的无位错生长技术的原理见7.2节。金刚石结构的硅单晶中位错的滑移面为{111}面。当以[l00]、[lll]和[ll0]晶向生长时,滑移面与生长轴的最小夹角分别为36.16°、l9.28°和0°。位错沿滑移面延伸和产生滑移,因此位错要延伸、滑移至晶体表面而消失,以[100]晶向生长最容易,以[111]晶向生长次之, 以[ll0]晶向生长情形若只存在延伸效应则位错会贯穿整根晶体。细颈工艺通

晶体生长方法(新)

晶体生长方法 1) 提拉法(Czochralski,Cz ) 晶体提拉法的创始人是J. Czochralski ,他的 论文发表于1918年。提拉法是熔体生长中最常 用的一种方法,许多重要的实用晶体就是用这 种方法制备的。近年来,这种方法又得到了几 项重大改进,如采用液封的方式(液封提拉法, LEC ),如图1,能够顺利地生长某些易挥发的化 合物(GaP 等);采用导模的方式(导模提拉法) 生长特定形状的晶体(如管状宝石和带状硅单 晶等)。 所谓提拉法,是指在合理的温场下,将装 在籽晶杆上的籽晶下端,下到熔体的原料中, 籽晶杆在旋转马达及提升机构的作用下,一边 旋转一边缓慢地向上提拉,经过缩颈、扩肩、 转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。这种方法的主要优点是:(a) 在生长过程中,可以方便地观察晶体的生长情况;(b) 晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c) 可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。 提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。 图1 提拉法晶体生长装置结构示意图

2)热交换法(Heat Exchange Method, HEM) 热交换法是由D. Viechnicki和 F. Schmid于1974年发明的一种长晶方法。 其原理是:定向凝固结晶法,晶体生长 驱动力来自固液界面上的温度梯度。特 点:(1) 热交换法晶体生长中,采用钼 坩埚,石墨加热体,氩气为保护气体, 熔体中的温度梯度和晶体中的温度梯 度分别由发热体和热交换器(靠He作 为热交换介质)来控制,因此可独立地 控制固体和熔体中的温度梯度;(2) 固 液界面浸没于熔体表面,整个晶体生长 过程中,坩埚、晶体、热交换器都处于 静止状态,处于稳定温度场中,而且熔 体中的温度梯度与重力场方向相反,熔 体既不产生自然对流也没有强迫对流; (3) HEM法最大优点是在晶体生长结束 后,通过调节氦气流量与炉子加热功率, 实现原位退火,避免了因冷却速度而产 生的热应力;(4) HEM可用于生长具有 图2HEM晶体生长装置结构示意图 特定形状要求的晶体。 由于这种方法在生长晶体过程中需要不停的通以流动氦气进行热交换,所以氦气的消耗量相当大,如Φ30mm的圆柱状坩埚就需要每分钟38升的氦气流量,而且晶体生长周期长,He气体价格昂贵,所以长晶成本很高。

cz生长原理及工艺

cz生长原理及工艺 New Roman "> CZ法的差不多原理,多晶体硅料经加热熔化,待温度合适后,通过将籽晶浸入、熔接、引晶、放肩、转肩、等径、收尾等步骤,完成一根单晶锭的拉制。炉内的传热、传质、流体力学、化学反应等过程都直截了当阻碍到单晶的生长与生长成的单晶的质量,拉晶过程中可直截了当操纵的参数有温度场、籽晶的晶向、坩埚和生长成的单晶的旋转与升降速率,炉内爱护气体的种类、流向、流速、压力等。 CZ法生长的具体工艺过程包括装料与熔料、熔接、细颈、放肩、转肩、等径生长和收尾如此几个时期。 1.装料、熔料 装料、熔料时期是CZ生长过程的第一个时期,这一时期看起来看起来专门简单,然而这一时期操作 正确与否往往关系到生长过程的成败。大多数造成重大缺失的事故(如坩埚破裂)都发生在或起源于这一·时期。 2.籽晶与熔硅的熔接 当硅料全部熔化后,调整加热功率以操纵熔体的温度。一样情形下,有两个传感器分不监测熔体表面和加热器保温罩石墨圆筒的温度,在热场和拉晶工艺改变不大的情形下,上一炉的温度读数可作为参考来设定引晶温度。按工艺要求调整气体的流量、压力、坩埚位置、晶转、埚转。硅料全部熔化后熔体必须有一定的稳固时刻达到熔体温度和熔体的流淌的稳固。装料量越大,则所需时刻越长。待熔体稳固后,降下籽晶至离液面3~5mm距离,使粒晶预热,以减少籽经与熔硅的温度差,从而减少籽晶与熔硅接触时在籽晶中产生的热应力。预热后,下降籽晶至熔体的表面,让它们充分接触,这一过程称为熔接。在熔接过程中要注意观看所发生的现象来判定熔硅表面的温度是否合适,在合适的温度下,熔接后在界面处会逐步产生由固液气三相交接处的弯月面所导致的光环(通常称为“光圈”),并逐步由光环的一部分变成完整的圆形光环,温度过高会使籽晶熔断,温度

晶体的生长模式

晶体的生长模式 晶体的生长过程一般认为有三个阶段:首先是溶液或气体达到过饱和状态或过冷却状态,然后整个体系中出现瞬时的微细结晶粒子,这就是形成了晶核,最后这些粒子按照一定的规律进一步生长,成为晶体。科学家已经发现了晶体生长的多种模式,其中较为重要的是层生长模式和螺旋生长理论。 晶体生长理论简介 自从1669年丹麦学者斯蒂诺(N.Steno)开始研究晶体生长理论以来,晶体生长理论经历了晶体平衡形态理论、界面生长理论、PBC理论和负离子配位多面体生长基元模型4个阶段,目前又出现了界面相理论模型等新的理论模型。现代晶体生长技术、晶体生长理论以及晶体生长实践相互影响,使人们越来越接近于揭开晶体生长的神秘面纱。 下面简单介绍几种重要的晶体生长理论和模型。 .晶体平衡形态理论:主要包括布拉维法则(Law of Bravais)、Gibbs—Wulff 生长定律、BFDH法则(或称为Donnay-Harker原理)以及Frank运动学理论等。晶体平衡形态理论从晶体内部结构、应用结晶学和热力学的基本原理来探讨晶体的生长,注重于晶体的宏观和热力学条件,没有考虑晶体的微观条件和环境相对于晶体生长的影响,是晶体的宏观生长理论。 .界面生长理论:主要有完整光滑界面模型、非完整光滑界面模型、粗糙界面模型、弥散界面模型、粗糙化相变理论等理论或模型。界面生长理论重点讨论晶体与环境的界面形态在晶体生长过程中的作用,没有考虑晶体的微观结构,也没有考虑环境相对于晶体生长的影响。 .PBC(周期键链)理论:1952年,P.Hartman、W.G.Perdok提出,把晶体划分为三种界面:F面、K面和S面。BC理论主要考虑了晶体的内部结构——周期性键链,而没有考虑环境相对于晶体生长的影响。

晶体生长原理与技术

晶体生长原理与技术课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:晶体生长原理及电化学基础 所属专业:金属材料物理学 课程性质:专业方向选修课,学位课,必修环节 学分: 4 学时: 72 (二)课程简介、目标与任务; 课程简介:本课程将在绪论中,对人工晶体生长的基本概念,研究范畴,研究历史和晶体生长 方法分类等基本概念进行简要介绍。然后分4篇进行论述。第一篇为晶体生长的基本原理,将分5 章,对晶体生长过程的热力学和动力学原理,结晶界面形貌与结构,形核与生长的动力学过程进行 描述。第二篇为晶体生长的技术基础,将分3章,对晶体生长过程的涉及的传热、传质及流体流动 原理,晶体生长过程的化学原理和晶体生长过程控制涉及的物理原理进行论述。第三篇为晶体生长 技术,将分4章对熔体生长、溶液生长、气相生长的主要方法及其控制原理进行论述。第四篇,晶 体的性能表征与缺陷,将分2章,分别对晶体的结构、性能的主要表征方法,晶体的结构缺陷形成 与控制原理进行论述。 目标与任务:掌握晶体生长的基本物理原理,学会将基本物理知识运用与晶体生长过程分析讨论。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 修完普通物理学及四大力学课程、固体物理课程后才可学习该课程,该课程向前联系基本物理知识的运用,向后衔接研究生科学研究中遇到的实际结晶学问题。 (四)教材与主要参考书。 教材两本: 《晶体生长原理与技术》,介万奇,北京:科学出版社,2010 参考书: 《晶体生长科学与技术》[上、下册],张克从,凝聚态物理学丛书,北京:科学出版社,1997 《人工晶体:生长技术、性能与应用》,张玉龙,唐磊,化学工业出版社,2005 《晶体生长基础》,姚连增,中国科学技术大学出版社,1995

溶液法晶体生长

溶液法晶体生长技术 专业:材料学姓名:贾进前学号:21111711031 摘要:在本篇论文中讲述了溶液法晶体生长的基本原理以及溶液法应用技术的最新发展。溶液法在发展中出现了许多新技术,有高温溶液法、助溶剂法、水热法、液相电沉积法以及其他的一些方法,并且利用这些方法,一些研究者做了一系列的实验并取得了一些成果。 关键词:溶液法,高温溶液法,助溶剂法,水热法,液相电沉积法 引言: 在现在的高科技领域中,晶体在科学技术中有十分重要的用途,在基础研究方面单晶体主要用于晶体结构测定及性质研究,这部分晶体尺寸较小,它们是实验室进行探索性研究过程中合成的;而大尺寸的晶体作为重要材料用于高科技领域,它们是通过专门技术生长出来的。大多数的分子容易生长晶体,如何控制生长过程以获得具有大尺寸、高纯度和无缺陷等特征的高质量晶体是我们所面临的挑战。 晶体可以从气相、液相和固相中生长,不同的晶体又有着不同的生长方法和生长条件,加上应用对晶体质量及形貌要求有时不同,如单晶纤维、薄膜单晶和大尺寸晶体分别用于不同的目的,这导致了单晶生长方法和技术的多样性。在所有生长技术中,以液相生长(溶液和熔体生长)应用最为广泛,以气相生长发展最快。晶体生长的技术是相互渗透,不断改进和发展的。 一种晶体选择何种技术生长,取决于晶体的物化性质和应用要求。有的晶体只能用特定的技术生长;有的晶体则可以采用不同的方法生长,选择一般原则为:有利于提高晶体的完整性,严格控制晶体中的杂质和缺陷;有利于提高晶体的利用率,降低成本;有利于晶体的加工和器件化;有利于晶体生长的重复性和产业化。综合考虑上诉因素,每一种晶体都应有一种较为合适的生长方法。溶液法作为一种最古老的方法,得到了最广泛的应用。 1 溶液法晶体生长的基本原理 溶液法晶体生长是首先将晶体的组成元素(溶质)溶解在另一溶液(溶剂)中,然后通过改变温度、蒸汽压等状态参数,获得过饱和溶液,最后使溶质从溶液中析出,形成晶体的方法。掌握溶液法晶体生长原理和技术应该先从溶液分析

晶体生长理论

晶体生长理论 晶体生长理论是用以阐明晶体生长这一物理-化学过程。形成晶体的母相可以是气相、液相或固相;母相可以是单一组元的纯材料,也可以是包含其他组元的溶液或化合物。生长过程可以在自然界中实现,如冰雪的结晶和矿石的形成;也可以在人工控制的条件下实现,如各种技术单晶体的培育和化学工业中的结晶。 基础 晶体生长的热力学理论[1]J.W.吉布斯于1878年发表的著名论文《论复相物质的平衡》奠定了热力学理论的基础。他分析了在流体中形成新相的条件,指出自然体自由能的减少有利新相的形成,但表面能却阻碍了它。只有通过热涨落来克服形成临界尺寸晶核所需的势垒,才能实现晶体的成核。到20世纪20年代M.福耳默等人发展了经典的成核理论,并指出了器壁或杂质颗粒对核的促进作用(非均匀成核)。一旦晶核已经形成(或预先制备了一块籽晶),接下去的就是晶体继续长大这一问题。吉布斯考虑到晶体的表面能系数是各向异性的,在平衡态自由能极小的条件就归结为表面能的极小,于是从表面能的极图即可导出晶体的平衡形态。晶体平衡形态理论曾被P.居里等人用来解释生长着的晶体所呈现的多面体外形。但是晶体生长是在偏离平衡条件下进行的,表面能对于晶体外形的控制作用限于微米尺寸以下的晶体。一旦晶体尺寸较大时,表面能直接控制外形的能力就丧失了,起决定性作用的是各晶面生长速率的各向异性。这样,晶面生长动力学的问题就被突出了。 动力学理论 晶体生长的动力学理论晶面生长的动力学指的是偏离平衡的驱动力(过冷或过饱和)与晶面生长的速率的关系,它是和晶体表面的微观形貌息息相关的。从20世纪20年代就开始了这方面的研究。晶面的光滑(原子尺度而言)与否对生长动力学起了关键性的作用。在粗糙的晶面上,几乎处处可以填充原子成为生长场所,从而导出了快速的线性生长律。至于偏离低指数面的邻位面,W.科塞耳与 F.斯特兰斯基提出了晶面台阶-扭折模型,晶面上台阶的扭折处为生长的场所。由此可以导出相应的生长律。至于光滑的密集平面(这些是生长速率最低,因而在晶体生长中最常见的),当一层原子填满后,表面就没有台阶提供继续填充原子的场所,则要通过热激活来克服形成二维晶核的势垒后,方能继续生长。这样,二维成核率就控制晶面生长速率,导出了指数式的生长律。只有在甚高的驱动力(例如过饱和度达50%)作用下方可观测到生长。但实测的结果与此推论有显著矛盾。为了解释低驱动力作用下光滑晶面的生长,F.C.夫兰克于1949年提出螺型位错在晶面露头处会形成永填不满的台阶,促进晶面的生长。在晶体生长表面上观测到的螺旋台阶证实了夫兰克的设想。在W.伯顿、N.卡夫雷拉与夫兰克1951年题为《晶体生长与表面平衡结构》这一重要论文中,对于理想晶体和实际晶体的晶面生长动力学进行了全面的阐述,成为晶体生长理论发展的重要里程碑。

晶体生长方法综述

溶液法生长晶体 不同晶体根据技术要求可采用一种或几种不同的方法生长。这就造成了人工晶体生长方法的多样性及生长设备和生长技术的复杂性。以下主要介绍溶液法生长晶体。 饱和与过饱和 从溶液中结晶,是自然界中大量存在的一种结晶方式。今天,用人工的方法从溶液中培养大块优质单晶体,已经成为应用最广泛、工艺最成熟的一种生长方法了。从溶液中生长晶体时,最重要的问题是溶解度,它是众多的生长参数中最基本的数据。 溶解度可以用在一定的条件(温度、压力等)下饱和溶液的浓度来表示,与溶质固相处于平衡状态的溶液则称为该物质的饱和溶液。但实际上,溶液中所含的溶质量比在同一条件下,饱和溶液中所含的溶质量要多,这样的溶液称为过饱和溶液。溶液都有程度不同的过饱和现象。对于某一特定的溶剂,人们测定出它的溶解度与温度之间的关系,并将它们的关系绘制成曲线,得到的就是溶解度曲线,对于从溶液中培养晶体,溶解度曲线的测定是非常重要的。它是选择生长方法和生长温度的重要依据。在我们所讨论的溶液体系中,压力对溶解度的影响是很小的,而温度的影响却十分显著。 降温法 此方法是从溶液中培养晶体最常用的一种方法。它的基本原理是利用晶体物质较大的正溶解度温度系数,将在一定温度下配制的饱和溶液,于封闭的状态下保持溶剂总量不变,而逐渐降低温度,使溶液成为过饱和溶液,析出的溶质不断结晶在籽晶上。 用降温法生长晶体的主要关键是在整个生长过程中,掌握合适的降温速度,使溶液始终处于亚稳过饱和,并维持合适的过饱和度,使晶体正常生长。 恒温蒸发法 恒温蒸发法是在一定温度和压力条件下,靠溶剂不断蒸发,使溶液达到过饱和状态,以析出晶体。这种方法适合于生长溶解度较大而溶解度温度系数又很小

晶体生长理论综述教学文案

综述晶体生长理论的发展现状 1前言 晶体生长理论是用以阐明晶体生长这一物理化学过程。形成晶体的母相可以是气相、液相或固相;母相可以是单一组元的纯材料,也可以是包含其他组元的溶液或化合物。生长过程可以在自然界中实现,如冰雪的结晶和矿石的形成;也可以在人工控制的条件下实现,如各种技术单晶体的培育和化学工业中的结晶等。 近几十年来,随着基础学科(如物理学、化学)和制备技术的不断进步,晶体生长理论研究无论是研究手段、研究对象,还是研究层次都得到了很快的发展,已经成为一门独立的分支学科。它从最初的晶体结构和生长形态研究、经典的热力学分析发展到在原子分子层次上研究生长界面和附加区域熔体结构,质、热输运和界面反应问题,形成了许多理论或理论模型。当然,由于晶体生长技术和方法的多样性和生长过程的复杂性,目前晶体生长理论研究与晶体生长实践仍有相当的距离,人们对晶体生长过程的理解有待于进一步的深化。可以预言,未来晶体生长理论研究必将有更大的发展[1]。 2晶体生长理论的综述 自从1669年丹麦学者斯蒂诺(N.Steno)开始晶体生长理论的启蒙工作以来[2],晶体生长理论研究获得了很大的发展,形成了包括晶体成核理论、输运理论、界面稳定性理论、晶体平衡形态理论、界面结构理论、界面动力学理论和负离子配位多面体模型的体系。这些理论在某些晶体生长实践中得到了应用,起了一定的指导作用。本文主要对晶体平衡形态理论、界面生长理论、PBC理论、晶体逆向生长等理论作简要的介绍。 2.1晶体平衡形态理论 晶体具有特定的生长习性,即晶体生长外形表现为一定几何形状的凸多面体,为了解释这些现象,晶体生长理论研究者从晶体内部结构和热力学分析出发,先后提出了Bravais法则、Gibbs-Wulff晶体生长定律、Frank运动学理论。

相关主题