搜档网
当前位置:搜档网 › BT-SGMWJ-0872-2003车用材料及零部件散发性能测试标准及要求

BT-SGMWJ-0872-2003车用材料及零部件散发性能测试标准及要求

BT-SGMWJ-0872-2003车用材料及零部件散发性能测试标准及要求
BT-SGMWJ-0872-2003车用材料及零部件散发性能测试标准及要求

材料力学性能试题(卷)集

判断 1.由内力引起的内力集度称为应力。(×) 2.当应变为一个单位时,弹性模量即等于弹性应力,即弹性模量是产生100%弹性变形所需的应力。(√) 3.工程上弹性模量被称为材料的刚度,表征金属材料对弹性变形的抗力,其值越大,则在相同应力条件下产生的弹性变形就越大。(×) 4.弹性比功表示金属材料吸收弹性变形功的能力。(√) 5.滑移面和滑移方向的组合称为滑移系,滑移系越少金属的塑性越好。(×) 6.高的屈服强度有利于材料冷成型加工和改善焊接性能。(×) 7.固溶强化的效果是溶质原子与位错交互作用及溶质浓度的函数,因而它不受单相固溶合金(或多项合金中的基体相)中溶质量所限制。(×) 8.随着绕过质点的位错数量增加,留下的位错环增多,相当于质点的间距减小,流变应力就增大。(√) 9.层错能低的材料应变硬度程度小。(×) 10.磨损、腐蚀和断裂是机件的三种主要失效形式,其中以腐蚀的危害最大。(×) 11.韧性断裂用肉眼或放大镜观察时断口呈氧化色,颗粒状。(×) 12.脆性断裂的断裂面一般与正应力垂直,断口平齐而光亮,长呈放射状或结晶状。(√) 13.决定材料强度的最基本因素是原子间接合力,原子间结合力越高,则弹性模量、熔点就越小。(×) 14.脆性金属材料在拉伸时产生垂直于载荷轴线的正断,塑性变形量几乎为零。(√) 15.脆性金属材料在压缩时除产生一定的压缩变形外,常沿与轴线呈45°方向产生断裂具有切断特征。(√)

16.弯曲试验主要测定非脆性或低塑性材料的抗弯强度。(×) 17.可根据断口宏观特征,来判断承受扭矩而断裂的机件性能。(√) 18.缺口截面上的应力分布是均匀的。(×) 19.硬度是表征金属材料软硬程度的一种性能。(√) 20.于降低温度不同,提高应变速率将使金属材料的变脆倾向增大。(×) 21.低温脆性是材料屈服强度随温度降低急剧下降的结果。(×) 22.体心立方金属及其合金存在低温脆性。(√) 23.无论第二相分布于晶界上还是独立在基体中,当其尺寸增大时均使材料韧性下降,韧脆转变温度升高。(√) 24.细化晶粒的合金元素因提高强度和塑性使断裂韧度K IC下降。(×) 25.残余奥氏体是一种韧性第二相,分布于马氏体中,可以松弛裂纹尖端的应力峰,增大裂纹扩展的阻力,提高断裂韧度K IC。(√) 26.一般大多数结构钢的断裂韧度K IC都随温度降低而升高。(×) 27.金属材料的抗拉强度越大,其疲劳极限也越大。(√) 28.宏观疲劳裂纹是由微观裂纹的形成、长大及连接而成的。(√) 29.材料的疲劳强度仅与材料成分、组织结构及夹杂物有关,而不受载荷条件、工作环境及表面处理条件的影响。(×) 30.应力腐蚀断裂并是金属在应力作用下的机械破坏与在化学介质作用下的腐蚀性破坏的叠加所造成的。(×) 31.氢蚀断裂的宏观断口形貌呈氧化色,颗粒状。(√) 32.含碳量较低且硫、磷含量较高的钢,氢脆敏感性低。(×) 33.在磨损过程中,磨屑的形成也是一个变形和断裂的过程。(√)

材料力学性能考试题及答案

07 秋材料力学性能 一、填空:(每空1分,总分25分) 1.材料硬度的测定方法有、和。 2.在材料力学行为的研究中,经常采用三种典型的试样进行研究,即、和。 3.平均应力越高,疲劳寿命。 4.材料在扭转作用下,在圆杆横截面上无正应力而只有,中心处切 应力为,表面处。 5.脆性断裂的两种方式为和。 6.脆性材料切口根部裂纹形成准则遵循断裂准则;塑性材料切口根 部裂纹形成准则遵循断裂准则; 7.外力与裂纹面的取向关系不同,断裂模式不同,张开型中外加拉 应力与断裂面,而在滑开型中两者的取向关系则为。 8.蠕变断裂全过程大致由、和 三个阶段组成。 9.磨损目前比较常用的分类方法是按磨损的失效机制分为、和腐蚀磨损等。 10.深层剥落一般发生在表面强化材料的区域。

11.诱发材料脆断的三大因素分别是、和 。 二、选择:(每题1分,总分15分) ()1. 下列哪项不是陶瓷材料的优点 a)耐高温 b) 耐腐蚀 c) 耐磨损 d)塑性好 ()2. 对于脆性材料,其抗压强度一般比抗拉强度 a)高b)低c) 相等d) 不确定 ()3.用10mm直径淬火钢球,加压3000kg,保持30s,测得的布氏硬度值为150的正确表示应为 a) 150HBW10/3000/30 b) 150HRA3000/l0/ 30 c) 150HRC30/3000/10 d) 150HBSl0/3000/30 ()4.对同一种材料,δ5比δ10 a) 大 b) 小 c) 相同 d) 不确定 ()5.下列哪种材料用显微硬度方法测定其硬度。 a) 淬火钢件 b) 灰铸铁铸件 c) 退货态下的软钢 d) 陶瓷 ()6.下列哪种材料适合作为机床床身材料 a) 45钢 b) 40Cr钢 c) 35CrMo钢 d) 灰铸铁()7.下列哪种断裂模式的外加应力与裂纹面垂直,因而 它是最危险的一种断裂方式。

材料级《材料力学性能》考试答案AB

贵州大学2007-2008学年第一学期考试试卷 A 缺口效应; 因缺口的存在,改变了缺口根部的应力的分布状态,出现: ① 应力状态变硬(由单向拉应力变为三向拉应力); ② 应力集中的现象称为缺口效应。 解理台阶; 在拉应力作用下,将材料沿某特定的晶体学平面快速分离的穿晶脆性断裂方式称为解理断裂,称该晶体学平面为解理平面;在该解理平面上,常常会出现一些小台阶,叫解理台阶;这些小台阶有汇聚为大的台阶的倾向,表现为河流状花样。 冷脆转变; 当温度T ℃低于某一温度T K 时,金属材料由韧性状态转变为脆性状态,材料的αK 值明显降低的现象。 热疲劳; 因工作温度的周期性变化,在构件内部产生交变热应力循环所导致的疲劳断裂,表现为龟裂。 咬合磨损; 在摩擦面润滑缺乏时,摩擦面间凸起部分因局部受力较大而咬合变形并紧密结合,并产生形变强化作用,其强度、硬度均较高,在随后的相对分离的运动时,因该咬合的部位因结合紧密而不能分开,引起其中某一摩擦面上的被咬合部分与其基体分离,咬合吸附于另一摩擦面上,导致该摩擦面的物质颗粒损失所形成的磨损。 二、计算题(共42分,第1题22分,第2题20分) 1、一直径为10mm ,标距长为50mm 的标准拉伸试样,在拉力P=10kN 时,测 得其标距伸长为50.80mm 。求拉力P=32kN 时,试样受到的条件应力、条件应变及真应力、真应变。(14分) 该试样在拉力达到55.42kN 时,开始发生明显的塑性变形;在拉力达到67.76kN 后试样断裂,测得断后的拉伸试样的标距为57.6mm ,最小处截面直径为8.32mm ;求该材料的屈服极限σs 、断裂极限σb 、延伸率和断面收缩率。(8分) 解: d 0 =10.0mm, L 0 = 50mm, P 1=10kN 时L 1 = 50.80mm ;P 2=32kN 因P 1、P 2均远小于材料的屈服拉力55.42kN ,试样处于弹性变形阶段,据虎克 得 分 评分人

材料物理性能思考题

材料物理性能思考题 第一章:材料电学性能 1如何评价材料的导电能力?如何界定超导、导体、半导体和绝缘体材料? 2 经典导电理论的主要内容是什么?它如何解释欧姆定律?它有哪些局限性? 3 自由电子近似下的量子导电理论如何看待自由电子的能量和运动行为? 4 根据自由电子近似下的量子导电理论解释:准连续能级、能级的简并状态、 简并度、能态密度、k空间、等幅平面波和能级密度函数。 5 自由电子近似下的等能面为什么是球面?倒易空间的倒易节点数与不含自旋 的能态数是何关系?为什么自由电子的波矢量是一个倒易矢量? 6 自由电子在允许能级的分布遵循何种分布规律?何为费米面和费米能级?何 为有效电子?价电子与有效电子有何关系?如何根据价电子浓度确定原子的费米半径? 7 自由电子的平均能量与温度有何种关系?温度如何影响费米能级?根据自由 电子近似下的量子导电理论,试分析温度如何影响材料的导电性。 8 自由电子近似下的量子导电理论与经典导电理论在欧姆定律的微观解释方面 有何异同点?

9 何为能带理论?它与近自由电子近似和紧束缚近似下的量子导电理论有何关 系? 10 孤立原子相互靠近时,为什么会发生能级分裂和形成能带?禁带的形成规律 是什么?何为材料的能带结构? 11 在布里渊区的界面附近,费米面和能级密度函数有何变化规律?哪些条件下 会发生禁带重叠或禁带消失现象?试分析禁带的产生原因。 12 在能带理论中,自由电子的能量和运动行为与自由电子近似下有何不同? 13 自由电子的能态或能量与其运动速度和加速度有何关系?何为电子的有效质 量?其物理本质是什么? 14 试分析、阐述导体、半导体(本征、掺杂)和绝缘体的能带结构特点。 15 能带论对欧姆定律的微观解释与自由电子近似下的量子导电理论有何异同 点? 16 解释原胞、基矢、基元和布里渊区的含义

材料力学性能实验(2个)讲解

《材料力学性能》实验教学指导书 实验总学时:4 实验项目:1.准静态拉伸 2. 不同材料的冲击韧性 材料科学与工程学院实验中心 工程材料及机制基础实验室

实验一 准静态拉伸 一、实验目的 1.观察低碳钢(塑性材料)与铸铁(脆性材料)在准静态拉伸过程中的各种现象(包括屈服、强化和颈缩等现象),并绘制拉伸图。 2.测定低碳钢的屈服极限σs ,强度极限σb ,断后延伸率δ和断面收缩率ψ。 3.测定铸铁的强度极限σb 。 4.比较低碳钢和铸铁的力学性能的特点及断口形貌。 二、概述 静载拉伸试验是最基本的、应用最广的材料力学性能试验。一方面,由静载拉伸试验测定的力学性能指标,可以作为工程设计、评定材料和优选工艺的依据,具有重要的工程实际意义。另一方面,静载拉伸试验可以揭示材料的基本力学行为规律,也是研究材料力学性能的基本试验方法。 静载拉伸试验,通常是在室温和轴向加载条件下进行的,其特点是试验机加载轴线与试样轴线重合,载荷缓慢施加。 在材料试验机上进行静拉伸试验,试样在负荷平稳增加下发生变形直至断裂,可得出一系列的强度指标(屈服强度s σ和抗拉强度b σ)和塑性指标(伸长率δ和断面收缩率ψ)。通过试验机自动绘出试样在拉伸过程中的伸长和负荷之间的关系曲线,即P —Δl 曲线,习惯上称此曲线为试样的拉伸图。图1即为低碳钢的拉伸图。 试样拉伸过程中,开始试样伸长随载荷成比例地增加,保持直线关系。当载荷增加到一定值时,拉伸图上出现平台或锯齿状。这种在载荷不增加或减小的情况下,试样还继续伸长的现象叫屈服,屈服阶段的最小载荷是屈服点载荷s P ,s P 除以试样原始横截面面积Ao 即得到屈服极限s σ: s s A P = σ 试样屈服后,要使其继续发生变形,则要克服不断增长的抗力,这是由于金属材料在塑性变形过程中不断发生的强化。这种随着塑性变形增大,变形抗力不断增加的现象叫做形变强化或加工硬化。由于形变强化的作用,这一阶段的变形主要是均匀塑性变形和弹性变形。当载荷达到最大值b P 后,试样的某一部位截面积开始急剧缩小,出现“缩颈”现象,此后的变形主要集中在缩颈附近,直至达到 P b 试样拉断。P b 除以试样原始横截面面积A 0即得到

材料物理性能及材料测试方法大纲、重难点

《材料物理性能》教学大纲 教学内容: 绪论(1 学时) 《材料物理性能》课程的性质,任务和内容,以及在材料科学与工程技术中的作用. 基本要求: 了解本课程的学习内容,性质和作用. 第一章无机材料的受力形变(3 学时) 1. 应力,应变的基本概念 2. 塑性变形塑性变形的基本理论滑移 3. 高温蠕变高温蠕变的基本概念高温蠕 变的三种理论 第二章基本要求: 了解:应力,应变的基本概念,塑性变形的基本概念,高温蠕变的基本概念. 熟悉:掌握广义的虎克定律,塑性变形的微观机理,滑移的基本形态及与能量的关系.高温蠕变的原因及其基本理论. 重点: 滑移的基本形态,滑移面与材料性能的关系,高温蠕变的基本理论. 难点: 广义的虎克定律,塑性变形的基本理论. 第二章无机材料的脆性断裂与强度(6 学时) 1.理论结合强度理论结合强度的基本概念及其计算 2.实际结合强度实际结合强度的基本概念 3. 理论结合强度与实际结合强度的差别及产生的原因位错的基本概念,位错的运动裂纹的扩展及扩展的基本理论 4.Griffith 微裂纹理论 Griffith 微裂纹理论的基本概 念及基本理论,裂纹扩展的条件 基本要求: 了解:理论结合强度的基本概念及其计算;实际结合强度的基本概念;位错的基本概念,位错的运动;裂纹的扩展及扩展的基本理论;Griffith 微裂纹理论的基本概念及基本理论,裂纹扩展的条件熟悉:理论结合强度和实际结合强度的基本概念;位错的基本概念,位错的运动;裂纹的扩展及扩展的基本理论;Griffith 微裂纹理论的基本概念及基本理论,裂纹扩展的条件. 重点: 裂纹的扩展及扩展的基本理论;Griffith 微裂纹理论的基本概念及基本理论,裂纹扩展的条件难点: Griffith 微裂纹理论的 基本概念及基本理论 第三章无机材料的热学性能(7 学时) 1. 晶体的点阵振动一维单原子及双原子的振动的基本理论 2. 热容热容的基本概念热容的经验定律和经典理论热容的爱因斯坦模型热容的德拜模型 3.热膨胀热膨胀的基本概念热膨胀的基

金属的性能 测试题一

金属的性能测试题一 一.填空题(每空1分,共45分) 1.金属材料的性能一般分为两种,一类是使用性能,一类是工艺性能,前者包括____________, 和,后者包括,,, 和。 2.力学性能是指金属在外力作用下所表现出来的性能,包括,,,,及疲劳强度等。 3.强度是指金属材料在载荷作用下,抵抗或的能力,强度常用的衡量指标有和。 4.如果零件工作时所受的应力低于材料的或则不会产生过量的塑性变形。 5.断裂前金属材料产生的能力称为塑性,金属材料的________________和 _____________的数值越大,表示材料的塑性越好。 6.530HBW/750表示直径为 mm的球压头,在 ________N压力下,保持 S,测得的硬度值为。 7韧性是指金属在吸收的能力,韧性的判据通过试验来测定,国标规定采用来作韧性判据,符号为,单位是,数值越大,冲击韧性越。 8.金属材料抵抗载荷作用而能力,称为。9.试验证明,材料的多种抗力取决于材料的与的综合力学性能,冲击能量高时,主要决定于,冲击能量低时,主要决定于。10.金属力学性能之一疲劳强度可用性能指标表示,该性能指标是指的最大应力,单位为,用表示,对于黑色金属一般规定应力循环周次为,有色金属取。 二.选择题(每选择项1分,共5分) 1.用拉伸试验可测定材料的(以下的)性能指标() A 强度 B 硬度 C 韧性 2.金属材料的变形随外力消除而消除为() A弹性形变 B 屈服现象 C 断裂 3.做疲劳试验时,试样承受的载荷为() A.静载荷 B 冲击载荷 C 交变载荷 4.用压痕的深度来确定材料的硬度值为() A.布氏硬度 B 洛氏硬度 C 维氏硬度 5.现需测定某灰铸铁的硬度一般应选用何种方法测定() A.布氏硬度机 B 洛氏硬度机 C 维氏硬度机 三.判断题(每题1分,共10分) 1.工程中使用的金属材料在拉伸试验时,多数会出现显著的屈服现象。() 2.维氏硬度测量压头为正四棱锥体金刚石() 3.洛氏硬度值无单位。() 4.做布氏硬度测试时,当试验条件相同时,其压痕直径越小,材料的硬度越低。() 5.在实际应用中,维氏硬度值是根据测定压痕对角线长度再查表得到的。()

涂层性能测试方法

涂层性能测试方法 1盐雾试验 盐雾试验是将试验样板(件)放置于盐雾箱中,在一定温度、湿度条件下,保持电解质溶液成雾状,进行循环腐蚀的实验室技术。 1.1盐雾试验注意事项 (1)供试验用样板底材,必须彻底清除锈迹和润滑油脂。无论是经喷砂、打磨还是磷化过的底材,谨防暴露于潮湿空气中,以防底材表面形成水膜造成再度生锈或因此而降低涂层与底材间的附着力。特别强调的是严禁用手指触摸底材有效部位,因为手指上的油脂、汗渍会沾污板面,造成涂层局部起泡和生锈。 (2)盐雾试验的关键是配制电解质溶液的浓度,多种组分的溶质要按比例严格称量,以确保pH值的准确性。不然会直接影响检测结果。 (3)制备涂层后的样板(件),需用涂料封边和覆盖底材裸露部位,否则,造成锈痕流挂、污染板面,给评定等级工作带来困难。 (4)定期查板(件)时,应保持板面呈湿润状态,尽量缩短板面暴露于空气中的时间。 (5)完成试验后,应立即对板面做出客观评价,包括:起泡、变色、生锈、脱落。也可按客户要求增加附着力、划痕单边锈蚀距离的检测评定。 (6)板面如需要划痕,则应一次性划透涂膜,并露出底材。不应重复施刀,以免造成划痕处涂层翻边和加宽单边锈蚀距离。根据经验,板面划痕通常为交叉状(X),而圆柱工件则可划成平行线(Ⅱ)。但划痕距板(件)缘应大于20mm,并依据GB/T9286—1998标准推荐的方法,使用单刃切割器。 值得注意的是划痕处单边锈蚀距离的测定方法。根据作者多年工作经验,在试验过程中,周期性查板(件)应保持原始锈蚀状态记录单项等级评定结果。当试验结束后进行综合等级评定时,首先选择划痕单边锈蚀最严重部位进行测量,然后用一工具小心剥离锈斑,尽量保持不要破坏涂层,用水冲净后再测量锈蚀距离,测量结果可能有3种情况:①因涂层沿 中心以化工行业技术需求和科技进步为导向,以资源整合、技术共享为基础,分析测试、技术咨询为载体,致力于搭建产研结合的桥梁。以“专心、专业、专注“为宗旨,致力于实现研究和应用的对接,从而推动化工行业的发展。

氧化铝陶瓷材料力学性能的检测

实验二 氧化铝陶瓷材料力学性能的检测 为了有效而合理的利用材料,必须对材料的性能充分的了解。材料的性能包括物理性能、化学性能、机械性能和工艺性能等方面。物理性能包括密度、熔点、导热性、导电性、光学性能、磁性等。化学性能包括耐氧化性、耐磨蚀性、化学稳定性等。工艺性能指材料的加工性能,如成型性能、烧结性能、焊接性能、切削性能等。机械性能亦称为力学性能,主要包括强度、弹性模量、塑性、韧性和硬度等。而陶瓷材料通常来说在弹性变形后立即发生脆性断裂,不出现塑性变形或很难发生塑性变形,因此对陶瓷材料而言,人们对其力学性能的分析主要集中在弯曲强度、断裂韧性和硬度上,本文在此基础上对其力学性能检测方法做了简单介绍。 1.弯曲强度 弯曲实验一般分三点弯曲和四点弯曲两种,如图1-1所示。四点弯曲的试样中部受到的是纯弯曲,弯曲应力计算公式就是在这种条件下建立起来的,因此四点弯曲得到的结果比较精确。而三点弯曲时梁各个部位受到的横力弯曲,所以计算的结果是近似的。但是这种近似满足大多数工程要求,并且三点弯曲的夹具简单,测试方便,因而也得到广泛应用。 图1-1 三点弯曲和四点弯曲示意图 由材料力学得到,在纯弯曲且弹性变形范围内,如果指定截面的弯矩为M ,该截面对 中性轴的惯性矩为I z ,那么距中性轴距离为y 点的应力大小为: z I My =σ 在图1-1的四点弯曲中,最大应力出现在两加载点之间的截面上离中性轴最远的点,其大小为: =???? ???=z I y a P max max 21σ?????圆形截面 16矩形截面 332D Pa bh Pa π 其中P 为载荷的大小,a 为两个加载点中的任何一个距支点的距离,b 和h 分别为矩形截面试样的宽度和高度,而D 为圆形截面试样的直径。因此当材料断裂时所施加载荷所对应的应力就材料的抗弯强度。 而对于三点弯曲,最大应力出现在梁的中间,也就是与加载点重合的截面上离中性轴最远的点,其大小为:

材料力学性能试题14春A卷

皖西学院2013–2014学年度第2学期考试试卷(A 卷) 材化 学院 材料科学与工程 专业 11 级 材料力学性能 课程 一.填空题:本大题共10小题,计20个空格,每空格0.5分,共10 分。 1.因相对运动而产生的磨损分为三个阶段: . 和剧烈磨损阶段。 2.影响屈服强度的外在因素有 . 和 。 3.金属材料断裂前所产生的塑性变形由 和 两部分构成。 4.洛氏硬度的表示方法为 .符号 和 。如80HRC 表示用C 标尺测得的洛氏硬度值为 。 5.疲劳过程是由 . 及最后 所组成的。 6.宏观疲劳裂纹是由微观裂纹的 . 及 而成的。 7.聚合物的聚集态结构包括 . 和 。 二.判断题:本大题共20小题,每小题1分,共20分。 1.工程上弹性模量被称为材料的刚度,表征金属材料对弹性变形的抗力,其值越大,则在相同应力条件下产生的弹性变形就越大。( ) 2.疲劳断裂应力判据:对称应力循环下:σ≥σ-1。非对称应力循环下:σ≥σr ( ) 3. 随着实验温度升高,金属的断裂由常温下常见的沿晶断裂过渡到穿晶断裂。( ) 4.聚合物的性能主要取决于其巨型分子的组成与结构。( ) 5.三种状态下的聚合物的变形能力不同,弹性模量几乎相同。( ) 6.体心立方金属及其合金存在低温脆性。( ) 7.在高弹态时聚合物的变形量很大,且几乎与温度无关。( ) 8.无论第二相分布于晶界上还是独立在基体中,当其尺寸增大时均使材料韧性下降,韧脆转变温度升高。( ) 9.残余奥氏体是一种韧性第二相,分布于马氏体中,可以松弛裂纹尖端的应力峰,增大 裂纹扩展的阻力,提高断裂韧度KIC 。( ) 10.金属材料的抗拉强度越大,其疲劳极限也越大。( ) 11.鉴于弯曲试验的特点,弯曲试验常用于铸铁.硬质合金等韧性材料的性能测试。( ) 12.材料的硬度与抗拉强度之间为严格的线性关系。( ) 13. 裂纹扩展方向与疲劳条带的方向垂直。( ) 14.适量的微裂纹存在于陶瓷材料中将提高热震损伤性。( ) 15.决定材料强度的最基本因素是原子间接合力,原子间结合力越高,则弹性模量.熔点就越小。( ) 16.脆性金属材料在拉伸时产生垂直于载荷轴线的正断,塑性变形量几乎为零。( ) 17.弹性比功表示金属材料吸收弹性变形功的能力。( ) 18.金属的裂纹失稳扩展脆断的断裂K 判据:K I ≥K IC ( ) 19.脆性金属材料在压缩时除产生一定的压缩变形外,常沿与轴线呈45°方向产生断裂具有切断特征。( ) 20.材料的疲劳强度仅与材料成分.组织结构及夹杂物有关,而不受载荷条件.工作环境及表面处理条件的影响。( ) 三.单选题:本大题共20小题,每小题1分,共20分。 1.拉伸断口一般成杯锥状,由纤维区.放射区和( )三个区域组成。 A .剪切唇 B .瞬断区 C .韧断区 D .脆断区。 2.根据剥落裂纹起始位置及形态的差异,接触疲劳破坏分为点蚀.浅层剥落和( )三类。 A .麻点剥落 B .深层剥落 C .针状剥落 D .表面剥落。 3.应力状态软性系数表示最大切应力和最大正应力的比值,单向压缩时软性系数(ν=0.25)的值是( )。 A .0.8 B .0.5 C .1 D .2 4.韧度是衡量材料韧性大小的力学性能指标,是指材料断裂前吸收( )和断裂功的能力 A .塑性变形功 B .弹性变形功 C .弹性变形功和塑性变形功 D .冲击变形功 5.在拉伸过程中,在工程应用中非常重要的曲线是( )。 A .力—伸长曲线 B .工程应力—应变曲线 C .真应力—真应变曲线。 6.冲击载荷与静载的主要差异:( ) A .应力大小不同 B .加载速率不同 C .应力方向不同 D .加载方向

材料力学-测试题

材料力学-测试题

1. 判断改错题 6-1-1 单元体上最大正应力平面上的剪应力必为零, 则最大剪应力平面上的正应力也必为零。 ( ) 6-1-2 从横力弯曲的梁上任一点取出的单元体均属于二向应力状态。 ( ) 6-1-3 图示单元体一定为二向应力状态。( ) 6-1-4 受扭圆轴除轴心外, 轴内各点均处于纯剪切应力状态。 ( ) 题6 -1 -3 图 题6 -1 -5 图 6-1-5 图示等腰直角三角形, 已知两直角边所表示的截面上只有剪应力, 且等于τ0 ,

则斜边所表示的截面上的正应力σ=τ0 , 剪应力τ=1/2τ0。 ( ) 6-1-6 单向应力状态的应力圆和三向均匀拉伸或压缩应力状态的应力圆相同, 且均为σ轴上的一个点。 ( ) 6-1-7 纯剪应力状态的单元体, 最大正应

面上。 ( ) 6-1-8 塑性材料制成的杆件, 其危险点必须用第三或第四强度理论所建立的强度条件来校核强度。 ( ) 6-1-9 图示为两个单元体的应力状态, 若它们的材料相同,则根据第三强度理论可以证明两者同样危险。 ( ) 6-1-10 纯剪应力状态的单元体既有体积改变, 又有形状改变。 ( )题6 -1 -9 图6-1-11 某单元体叠加上一个三向等拉( 或等压) 应力状态后, 其体积改变比能 不变而

形状改变比能发生变化。 ( ) 6-1-12 铸铁水管冬天结冰时会因冰膨胀被胀裂, 而管内的冰却不会破坏, 这是 因为的 强度比铸铁的强度高。 ( ) 6-1-13 有正应力作用的方向上, 必有线应

6-1-14 当单元体的最大拉应力σmax = σs 时, 单元体一定出现屈服。 ( ) 6-1-15 脆性材料中若某点的最大拉应力σma x = σb , 则该点一定会产生断裂。 ( ) 6-1-16 若单元体上σx = σy = τx = 50MPa, 则该单元体必定是二向应力状 态。 ( ) 2. 填空题 6-2-1 矩形截面梁在横力弯曲下, 梁的上、下边缘各点处于向应力状态, 中性轴上各 点处于应力状态。题6 -2 -2 图

涂层测试

涂层材料性能测试技术 1硬度与韧性 硬度是指材料在表面上的不大体积内抵抗变形或者破裂的能力。究竟代表何种抗力则决定于采用的试验方法,如刻划法表征材料抵抗破裂的能力,压入法表征材料抵抗变形的能力。应用较多的是压入法硬度,如布氏硬度、维氏硬度和显微硬度等。只要知道了硬度值,就可间接推知许多其它力学性能数据。洛氏硬度用来测定稍厚涂层的硬度,参照GB1818-79金属表面洛氏硬度试验方法及GB8640-88金属热喷涂层表面洛氏硬度试验方法。洛氏硬度的压头有硬质和软质两种。硬质的由顶角为120°的金刚石圆锥体制成,适于测定较硬的材料;软质的为直径1/16″(1.5875mm)或1/8″(3.175mm)钢球,适于较软材料测定。所加负荷根据被试材料硬软不等作不同规定,负荷选择原则是根据工件厚度、硬度层深度和材料预期硬度而尽可能选取较大的负荷,随不同压头和负荷的搭配出现了各种洛氏硬度级,最普遍的是HRC(金刚石圆锥压头,150kgf负荷)。 2耐腐蚀性 涂层耐腐蚀性按GB10124-88进行,腐蚀介质为30%硫酸溶液或10%HaOH溶液,腐蚀时间7天( d)。根据累计腐蚀失重计算平均腐蚀速率(g/mm2h)。采用其它各种浓度的各类腐蚀介质也都可比较测定涂层的耐蚀性。涂层耐腐蚀性也可在0.1当量浓度H2SO4中测试,根据涂层的钝化电位和临界钝化电流密度的大小、钝化区范围的宽度、钝化区电流密度的大小,表征涂层腐蚀速度的大小;也可用Potentiostat/Galvanostat Model 273电化学综合测试仪测定分析涂层试样的耐腐蚀性能。 3涂层结合强度 有效的涂层结合强度测试方法应满足:(1)能使涂层从基体剥离并有良好的物理模型;(2)可准确测定有关力学参量,试验值对界面状态敏感并和其它非界面因素如涂层、基体特性等无关。现行的涂层结合强度测试方法可归纳为定性和定量两大类。定性法以经验判断和相对比较为主,一般难以给出力学参量,但简单快速,一般不需专门设备。定性方法大多是破坏性的,不适合产品零件的质量检验。定量的方法有粘结拉伸法、压入法、断裂力学法和动态结合强度测定方法等。压痕试验法、划痕试验法等比较适合于薄膜涂镀层。 3.1粘结拉伸法 目前普遍采用,各国制定了类似的试验标准。将涂层试样与配副胶粘起来进行拉伸,涂层被拉脱时的载荷与涂层面积之比为结合强度。此法不足:(1)粘结剂的抗拉强度必须高于涂层的结合强度,因此,只适于低中结合强度测量;(2)涂层内晶粒之间为内聚性断裂,而涂层与基体之间属粘结性断裂。拉伸试验时,可能是内聚性和粘结性断裂共存的混合性断裂。此时的结合强度测定值不纯真,包含了涂层本身的强度,无法保证测出真正的结合强度值;(3)加载方式不是涂层使用时的典型应力状态,因而涂层的使用性能可能与测得的结合强度无直接关系;(4)试样加载不对中、试样尺寸、粘结剂渗入涂层细孔、粘结剂固化改变残余应力分布等因素会影响测量值,使试验结果分散,需大量试验并统计分析后才能对结合强度作出

材料物理性能测试思考题答案

有效电子数:不是所有的自由电子都能参与导电,在外电场的作用下,只有能量接近费密能的少部分电子,方有可能被激发到空能级上去而参与导电。这种真正参加导电的自由电子数被称为有效电子数。 K状态:一般与纯金属一样,冷加工使固溶体电阻升高,退火则降低。但对某些成分中含有过渡族金属的合金,尽管金相分析和X射线分析的结果认为其组织仍是单相的,但在回火中发现合金电阻有反常升高,而在冷加工时发现合金的电阻明显降低,这种合金组织出现的反常状态称为K状态。X射线分析发现,组元原子在晶体中不均匀分布,使原子间距的大小显著波动,所以也把K状态称为“不均匀固溶体”。 能带:晶体中大量的原子集合在一起,而且原子之间距离很近,致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。 禁带:允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。 价带:原子中最外层的电子称为价电子,与价电子能级相对应的能带称为价带。 导带:价带以上能量最低的允许带称为导带。 金属材料的基本电阻:理想金属的电阻只与电子散射和声子散射两种机制有关,可以看成为基本电阻,基本电阻在绝对零度时为零。 残余电阻(剩余电阻):电子在杂质和缺陷上的散射发生在有缺陷的晶体中,绝对零度下金属呈现剩余电阻。这个电阻反映了金属纯度和不完整性。 相对电阻率:ρ (300K)/ρ (4.2K)是衡量金属纯度的重要指标。 剩余电阻率ρ’:金属在绝对零度时的电阻率。实用中常把液氦温度(4.2K)下的电阻率视为剩余电阻率。 相对电导率:工程中用相对电导率( IACS%) 表征导体材料的导电性能。把国际标准软纯铜(在室温20 ℃下电阻率ρ= 0 .017 24Ω·mm2/ m)的电导率作为100% , 其他导体材料的电导率与之相比的百分数即为该导体材料的相对电导率。 马基申定则(马西森定则):ρ=ρ’+ρ(T)在一级近似下,不同散射机制对电阻率的贡献可以加法求和。ρ’:决定于化学缺陷和物理缺陷而与温度无关的剩余电阻率。ρ(T):取决于晶格热振动的电阻率(声子电阻率),反映了电子对热振动原子的碰撞。 晶格热振动:点阵中的质点(原子、离子)围绕其平衡位置附近的微小振动。 格波:晶格振动以弹性波的形式在晶格中传播,这种波称为格波,它是多频率振动的组合波。 热容:物体温度升高1K时所需要的热量(J/K)表征物体在变温过程中与外界热量交换特性的物理量,直接与物质内部原子和电子无规则热运动相联系。 比定压热容:压力不变时求出的比热容。 比定容热容:体积不变时求出的比热容。 热导率:表征物质热传导能力的物理量为热导率。 热阻率:定义热导率的倒数为热阻率ω,它可以分解为两部分,晶格热振动形成的热阻(ωp)和杂质缺陷形成的热阻(ω0)。导温系数或热扩散率:它表示在单位温度梯度下、单位时间内通过单位横截面积的热量。热导率的单位:W/(m·K) 热分析:通过热效应来研究物质内部物理和化学过程的实验技术。原理是金属材料发生相变时,伴随热函的突变。 反常膨胀:对于铁磁性金属和合金如铁、钴、镍及其某些合金,在正常的膨胀曲线上出现附加的膨胀峰,这些变化称为反常膨胀。其中镍和钴的热膨胀峰向上为正,称为正反常;而铁和铁镍合金具有负反常的膨胀特性。 交换能:交换能E ex=-2Aσ1σ2cosφA—交换积分常数。当A>0,φ=0时,E ex最小,自旋磁矩自发排列同一方向,即产生自发磁化。当A<0,φ=180°时,E ex也最小,自旋磁矩呈反向平行排列,即产生反铁磁性。交换能是近邻原子间静电相互作用能,各向同性,比其它各项磁自由能大102~104数量级。它使强磁性物质相邻原子磁矩有序排列,即自发磁化。 磁滞损耗:铁磁体在交变磁场作用下,磁场交变一周,B-H曲线所描绘的曲线称磁滞回线。磁滞回线所围成的面积为铁 =? 磁体所消耗的能量,称为磁滞损耗,通常以热的形式而释放。磁滞损耗Q HdB 技术磁化:技术磁化的本质是外加磁场对磁畴的作用过程即外加磁场把各个磁畴的磁矩方向转到外磁场方向(和)或近似外磁场方向的过程。技术磁化的两种实现方式是的磁畴壁迁移和磁矩的转动。 请画出纯金属无相变时电阻率—温度关系曲线,它们分为几个阶段,各阶段电阻产生的机制是什么?为什么高温下电阻率与温度成正比? 1—ρ电-声∝T( T > 2/ 3ΘD ) ; 2—ρ电-声∝T5 ( T< <ΘD );

材料物理性能

材料物理性能 第一章 考点1. 电子理论的发展经历了三个阶段,即古典电子理论、量子自由电子理论和能带理论。古典电子理论假设金属中的价电子完全自由,并且服从经典力学规律; 量子自由电子理论也认为金属中的价电子是自由的,但认为它们服从量子力学规律;能带理论则考虑到点阵周期场的作用。 考点2. 费米电子 在T = 0K时,大块金属中的自由电子从低能级排起,直到全部价电子均占据了相应的能级为止。具有能量为EF(0)以下的所有能级都被占满,而在EF(0)之上的能级都空着,EF(0)称为费米能,是由费米提出的,相应的能级称为费米能级。 考点3. 四个量子数 1、主量子数n 2、角量子数l 3、磁量子数m 4、自旋量子数ms 考点4. 思考题 1、过渡族金属物理性能的特殊性与电子能带结构有何联系? 过渡族金属的 d 带不满,且能级低而密,可容纳较多的电子,夺取较高的 s 带中的电子,降低费米能级。 第二章 考点5. 载流子 载流子可以是电子、空穴,也可以是离子、离子空位。材料所具有的载流子种类不同,其导电性能也有较大的差异,金属与合金的载流子为电子,半导体的载流子为电子和空穴,离子类导电的载流子为离子、离子空位。而超导体的导电性能则来自于库柏电子对的贡献。 考点6. 杂质可以分为两类 一种是作为电子供体提供导带电子的发射杂质,称为“施主”;另一种是作为电子受体提供价带空穴的收集杂质,称为“受主”。 掺入施主杂质后在热激发下半导体中电子浓度增加(n>p),电子为多数载流子,简称“多子”,空穴为少数载流子,简称“少子”。这时以电子导电为主,故称为n型半导体。施主杂质有时也就称为n型杂质。 在掺入受主的半导体中由于受主电离(p>n),空穴为多子,电子为少子,因而以空穴导电为主,故称为p型半导体。受主杂质也称为p型杂质。 考点7. 我们把只有本征激发过程的半导体称为本征半导体。 考点8. 在同一种半导体材料中往往同时存在两种类型的杂质,这时半导体的导电类型主要取决于掺 杂浓度高的杂质。 随着温度的升高本征载流子的浓度将迅速增加,而杂质提供的载流子浓度却不随温度而改变。因此,在高温时即使是杂质半导体也是本征激发占主导地位,呈现出本征半导体的特征(n≈p)。一般半导体在常温下靠本征激发提供的载流子甚少

材料力学性能测试实验报告

材料力学性能测试实验 报告 标准化管理部编码-[99968T-6889628-J68568-1689N]

材料基本力学性能试验—拉伸和弯曲一、实验原理 拉伸实验原理 拉伸试验是夹持均匀横截面样品两端,用拉伸力将试样沿轴向拉伸,一般拉 至断裂为止,通过记录的力——位移曲线测定材料的基本拉伸力学性能。 对于均匀横截面样品的拉伸过程,如图 1 所示, 图 1 金属试样拉伸示意图 则样品中的应力为 其中A 为样品横截面的面积。应变定义为 其中△l 是试样拉伸变形的长度。 典型的金属拉伸实验曲线见图 2 所示。 图3 金属拉伸的四个阶段 典型的金属拉伸曲线分为四个阶段,分别如图 3(a)-(d)所示。直线部分的斜率E 就是杨氏模量、σs 点是屈服点。金属拉伸达到屈服点后,开始出现颈缩 现象,接着产生强化后最终断裂。 弯曲实验原理 可采用三点弯曲或四点弯曲方式对试样施加弯曲力,一般直至断裂,通过实 验结果测定材料弯曲力学性能。为方便分析,样品的横截面一般为圆形或矩形。 三点弯曲的示意图如图 4 所示。 图4 三点弯曲试验示意图 据材料力学,弹性范围内三点弯曲情况下C 点的总挠度和力F 之间的关系是 其中I 为试样截面的惯性矩,E 为杨氏模量。 弯曲弹性模量的测定 将一定形状和尺寸的试样放置于弯曲装置上,施加横向力对样品进行弯曲, 对于矩形截面的试样,具体符号及弯曲示意如图 5 所示。 对试样施加相当于σpb0.01。 (或σrb0.01)的10%以下的预弯应力F。并记录此力和跨中点处的挠度,然后对试样连续施加弯曲力,直至相应于σpb0.01(或σrb0.01)的50%。记录弯曲力的增量DF 和相应挠度的增量Df ,则弯曲弹性模量为 对于矩形横截面试样,横截面的惯性矩I 为 其中b、h 分别是试样横截面的宽度和高度。 也可用自动方法连续记录弯曲力——挠度曲线至超过相应的σpb0.01(或σrb0.01)的弯曲力。宜使曲线弹性直线段与力轴的夹角不小于40o,弹性直线段的高度应超过力轴量程的3/5。在曲线图上确定最佳弹性直线段,读取该直线段的弯曲力增量和相应的挠度增量,见图 6 所示。然后利用式(4)计算弯曲弹性模量。 二、试样要求

《材料物理性能》测试题汇总(doc 8页)

《材料物理性能》测试题 1、利用热膨胀曲线确定组织转变临界点通常采取的两种方法是: 、 2、列举三种你所知道的热分析方法: 、 、 3、磁各向异性一般包括 、 、 等。 4、热电效应包括 效应、 效应、 效应,半导体制冷利用的是 效应。 5、产生非线性光学现象的三个条件是 、 、 。 6、激光材料由 和 组成,前者的主要作用是为后者提供一个合适的晶格场。 7、压电功能材料一般利用压电材料的 功能、 功能、 功能、 功能或 功能。 8、拉伸时弹性比功的计算式为 ,从该式看,提高弹性比功的途径有二: 或 ,作为减振或储能元件,应具有 弹性比功。 9、粘着磨损的形貌特征是 ,磨粒磨损的形貌特征是 。 10、材料在恒变形的条件下,随着时间的延长,弹性应力逐渐 的现象称为应力松弛,材料抵抗应力松弛的能力称为 。 1、导温系数反映的是温度变化过程中材料各部分温度趋于一致的能力。 ( ) 2、只有在高温且材料透明、半透明时,才有必要考虑光子热导的贡献。 ( ) 3、原子磁距不为零的必要条件是存在未排满的电子层。 ( ) 4、量子自由电子理论和能带理论均认为电子随能量的分布服从FD 分布。 ( ) 5、由于晶格热振动的加剧,金属和半导体的电阻率均随温度的升高而增大。 ( ) 6、直流电位差计法和四点探针法测量电阻率均可以消除接触电阻的影响。 ( ) 7、 由于严格的对应关系,材料的发射光谱等于其吸收光谱。 ( ) 8、 凡是铁电体一定同时具备压电效应和热释电效应。 ( ) 9、 硬度数值的物理意义取决于所采用的硬度实验方法。 ( ) 10、对于高温力学性能,所谓温度高低仅具有相对的意义。 ( ) 1、关于材料热容的影响因素,下列说法中不正确的是 ( ) A 热容是一个与温度相关的物理量,因此需要用微分来精确定义。 B 实验证明,高温下化合物的热容可由柯普定律描述。 C 德拜热容模型已经能够精确描述材料热容随温度的变化。 D 材料热容与温度的精确关系一般由实验来确定。 2、 关于热膨胀,下列说法中不正确的是 ( ) A 各向同性材料的体膨胀系数是线膨胀系数的三倍。 B 各向异性材料的体膨胀系数等于三个晶轴方向热膨胀系数的加和。 C 热膨胀的微观机理是由于温度升高,点缺陷密度增高引起晶格膨胀。 D 由于本质相同,热膨胀与热容随温度变化的趋势相同。 3、下面列举的磁性中属于强磁性的是 ( ) A 顺磁性 B 亚铁磁性 C 反铁磁性 D 抗磁性 4、关于影响材料铁磁性的因素,下列说法中正确的是 ( ) A 温度升高使得M S 、 B R 、H C 均降低。 B 温度升高使得M S 、B R 降低,H C 升高。 C 冷塑性变形使得C H μ和均升高。 D 冷塑性变形使得C H μ和均降低。 5、下面哪种效应不属于半导体敏感效应。 ( ) A 磁敏效应 B 热敏效应 C 巴克豪森效应 D 压敏效应 6、关于影响材料导电性的因素,下列说法中正确的是 ( ) A 由于晶格振动加剧散射增大,金属和半导体电阻率均随温度上升而升高。 B 冷塑性变形对金属电阻率的影响没有一定规律。 C “热塑性变形+退火态的电阻率”的电阻率高于“热塑性变形+淬火态” D 一般情况下,固溶体的电阻率高于组元的电阻率。 7、下面哪种器件利用了压电材料的热释电功能 ( ) A 电控光闸 B 红外探测器 C 铁电显示器件 D 晶体振荡器 8、下关于铁磁性和铁电性,下面说法中不正确的是 ( ) A 都以存在畴结构为必要条件 B 都存在矫顽场 C 都以存在畴结构为充分条件 D 都存在居里点 9、下列硬度实验方法中不属于静载压入法的是 ( )

材料力学性能 2013试卷A

河南理工大学 2013~2014 学年第 1 学期 《材料力学性能》试卷 A 1、氢脆: 2、应力腐蚀: 3、蠕变: 4、疲劳失效: 5、塑性: 1、机械零件三种主要失效形式有 、 和 。 2、拉伸试验可以判断材料呈宏观 还是 以及塑性的大小、 对 和 的抗力以及 能力的大小等。 3、工程上弹性模量被称为材料的 ,表征金属材料对 的抗力。 4. 应力强度因子K 1是衡量裂纹顶端应力场强烈程度的函数,决定于 、 和 。 5、最常见的磨损分类是按磨损机理来分类,即 、 、 、 和 等。 6 、 和 是产生应力腐蚀开裂的三个条件。 7、硬度是表征材料软硬程度的一种性能。随试验方法的不同,其物理意义不同。常用的硬度测量方法有 、 和 等。 8、光滑拉伸试样断面收缩率大于 为脆断;小于 为韧断。 1、1. 影响屈服强度的外在因素是( )。 a . 金属的本性及晶格类型。 b. 晶粒大小。c. 溶质元素。d. 应力状态。 2. 循环应力的脉动循环,σm =σa ,R =0, 如图( )所示。 3、在交变载荷作用下,晶粒尺寸越大,材料的疲劳寿命( )。 a 、越大 b 、越小 c 、不变 d 、变化不确定 4、金属材料经冷变形后,会使材料的硬度、强度升高,塑性降低,这种现象称为( )。 a 、自然硬化 b 、人工硬化 c 、细晶硬化 d 、加工硬化。 5、在高温下,金属材料的强度会( )。 a 、提高 b 、降低 c 、不变 d 、变化不确定 6、裂纹扩展的能量判据为:( ) a 、K I ≥K IC b 、K C >K IC c 、G I ≥ G IC d 、K IC ≥ G IC 一、名词解释(共15分,每小题3分)

电弧喷涂涂层性能检测方法

电弧喷涂涂层性能检测方法 胡为峰 葛 爽(北京赛亿表面工程技术有限公司100083)① 摘要:锅炉喷涂涂层在锅炉运营中对管壁的性能起到重要的作用,为确定涂层所得喷涂性能和喷涂效果,本文主要介绍了几种在测试涂层性能过程中比较常见的几种测试方法和测试步骤。 关键词:电弧喷涂 涂层性能 测试 1、引言 作为电厂锅炉防护热喷涂材料中的重要体系,热喷涂涂层的性能由于影响着所防护材料的使用性能而倍受关注。电弧喷涂层的质量是通过涂层得性能来反映的,而涂层得性能又取决于喷涂设备、材料、工艺等多种因素。涂层性能的检测时评估涉及很多检测方法,就一般的电弧喷涂层而言,涂层性能主要包括了涂层得物理性能(如外观、密度、厚度、金相等)、力学性能(如结合强度、耐磨性、残余应力等)和化学性能(如化学成分、耐蚀性、耐热性、电化学性等)。当然,在实际工作中并不要求电弧喷涂层一定要测试上述所有性能,而是要根据不同的目的来选择不同的测试项目。 一般来说,电弧喷涂层性能试验与测试的目的主要有三个方面: z满足工艺上的要求; z满足技术的要求; z满足使用上的要求。 2、涂层性能测试标准和测试方法 2.1 涂层性能测试所涉及的国家标准 为了可靠地评价电弧喷涂涂层质量的优劣,准确测定涂层性能是否达到工艺、设计或者使用上的预期要求,就需要一套比较准确的涂层质量和性能检测的方法。当然,最有效的地方就是采用现有的国家标准。表2-1列出了现有的一些国家标准。 表2-1 热喷涂涂层性能试验方法与标准 标准号标准名称备注 GB/T 11374-1989 热喷涂涂层厚度的无损检测方法idt ISO 2064 GB/T 4956-2003 磁性金属基体上非磁性覆盖层厚度测量磁性方法idt ISO 2178 GB/T 6462-1986 金属和氧化物覆盖层横断面厚显微镜测量方法idt ISO 1463 GB/T 11378-1989 金属覆盖层厚度轮廓尺寸测量方法idt ISO 4518 GB/T 4955-1997 金属覆盖层覆盖层厚度测量阳极溶解库仑法idt ISO 2177 ① 本文通讯联系人:胡为峰(北京赛亿表面工程技术有限公司 100083)

相关主题