搜档网
当前位置:搜档网 › 催化剂制备

催化剂制备

纳米金属催化剂的制备方法

摘要:纳米金属催化剂的制备方法包括化学法和物理法。化学法中主要有溶胶-凝胶法、沉淀法、溶剂热合成法、微乳法和水解法等;物理法主要有气相凝聚法、溅射法和机械研磨法等。其中化学法中的溶胶-凝胶法及沉淀法应用最广。对纳米金属催化剂的制备方法进行了比较,并简要论述了制备及应用过程中存在的主要问题。

关键词:纳米;催化剂;制备方法

引言

纳米催化材料由于其特有的量子尺寸效应、宏观量子隧道效应等性能,显现出许多特有性质,在催化领域的应用为广大催化工作者开拓了一个广阔空间,国际上已把纳米粒子催化剂称为第四代催化剂,因此纳米材料在催化领域的应用日益受到重视。许多发达国家都相继投入大量人力、财力开展纳米粒子作为高性能催化剂的研究,如美国的Nano 中心,日本的Nano ST 均把纳米材料催化剂的研究列为重点开发项目。我国对纳米材料的研究也给以高度重视,国家“863”计划、“973”计划大力支持纳米材料及纳米催化剂的研究,已取得了可喜成果。目前,国内外纳米催化剂的制备和应用逐步拓展到催化加氢、脱氢、聚合、酯化、化学能源、污水处理等方面。纳米金属催化剂制备方法分为化学法及物理法:化学法包括溶胶-凝胶法、沉淀法、溶剂热合成法、微乳法和水解法等;物理法包括气相凝聚法、溅射法和机械研磨法等。

1 化学法制备金属纳米催化剂

1.1 溶胶-凝胶法

该法一般是以金属盐或半金属盐作前驱体,将适当的烷氧化物如四甲氧基硅烷与水、酸性或碱性催化剂与共熔剂,在搅拌超声下进行水解和缩聚反应形成SiO2 三维网络结构。在成胶过程中引入的金属组分包埋在三维网络结构中,再进行凝胶老化过程,即将凝胶浸于液体中,继续聚合反应,凝胶强度增加。最后通过干燥,将溶剂从相互关联的多孔网格中蒸发掉,即可得到纳米尺寸的网格结构。溶胶-凝胶技术已成为实现化学剪裁合成纳米材料的主要手段。但该法使用的原料价格较昂贵;通常整个溶胶-凝胶过程所需时间较长,有时长达几天或几周;而且凝胶中存在大量微孔,在干燥过程中将逸出许多气体及有机物,并产生收缩。溶胶-凝胶法还被用来制备复合纳米金属催化剂,如KeijiHashimoto等人利用溶胶-凝胶工艺制备了K+[Zn3(SiO3Al)10(OH)2]- 纳米粒子用于醇脱氢反应。李永丹等人还利用溶胶-凝胶法制备了镍基催化剂,并对其进行了甲烷分解制备碳纳米管的研究,所制备的纳米管直径为10~20nm。雷翠月也利用此法,直接制备出了高比表面积、低堆积密度的纤维状纳米级负载CuO-Al2O3 超细粒子,活性组分以远低于纳米级的微晶粒子簇状态均匀地分散在纳米级氧化铝载体表面,在500℃内具有较高的稳定性,晶粒未聚集长大,在十二醇催化胺化反应中表现出了较高的催化活性。陈立功等人在醇催化胺化反应研究中开发了一种改进的溶胶-凝胶法,利用这种方法制备的铜基纳米催化剂的活性和稳定性都有了显著提高。

1.2 沉淀法

沉淀法是指包括1 种或多种离子的可溶性盐溶液,加入沉淀剂(如OH-、C2O42 - 等)于一定温度下使溶液水解,形成不溶性的氢氧化物、水合氧化物或盐类而从溶液中析出,将溶剂和溶液中原有的阳离子洗去,经热解或热脱即得到所需的氧化物粉料。此法是传统制备氧化物方法之一,主要包括以下4 种。

1.2.1 共沉淀法

将过量的沉淀剂加入混合后的金属盐溶液中,使各组分均匀混合沉淀,然后将沉淀物多次洗涤,脱水或烘干得前驱物,再将前驱物加热分解得到纳米粒子。该法主要用于制备掺杂一定比例金属的金属氧化物纳米粒子。B. M. Nagaraja

等人利用共沉淀法制备了Cu/MgO 复合金属氧化物纳米催化剂,粒径最小可达3 nm。BET 表征该催化剂具有比常规制备方法更大的比表面积,从而对环己醇的脱氢反应表现了更好的活性及选择性。但该法也有缺点,在形成沉淀过程中,沉淀剂的加入可能导致局部浓度过高而产生团聚,或由于沉淀的不同顺序而导致组成不够均匀。

1.2.2 均相沉淀法

本法是对共沉淀法的改进,沉淀剂通过易缓慢水解的物质如尿素、六亚甲基四胺而生成。如采用尿素作沉淀生成剂,由于尿素在70 ℃左右发生水解,在生成沉淀剂N H 4O H 时,可通过控制生成NH4OH 的速率(即通过控制温度、浓度)来控制粒子的生长速度,这样生成的超微粒子团聚现象大为减少,即可达到避免浓度不均、控制粒子生长速度的目的。得到的反应产物粒度均匀,粒径分布较窄,纯度较高。丁士文等人利用均相沉淀法于90℃合成出了具有光催化性能的纳米ZnO 粒子。经物相分析,产物为六方晶系,粒子基本为球形,平均粒

径为20 nm。

1.2.3 超声共沉淀法

由于超声波所产生的“超声空化气泡”的局部高温高压环境和具有强烈冲击力的微射流,更易实现介质间的均匀混合,从而能够消除局部浓度不均,提高反应速度,并刺激新相的形成,而且对团聚还可起到剪切作用,有利于微小颗粒的形成。梁新义等人利用超声共沉淀法制备出了纳米结构LaNiO3,结果表明在共沉淀过程中,施加超声波辐射可使LaNiO3 复合氧化物的粒径减小,比表面积增大,表面晶格氧空位增加,使其催化活性增大。

1.2.4 交流电沉淀法

以金属丝(或片)作电极,与交流电源相连,一个电极的末端固定在电解液中,另一个电极的末端与电解液周期性瞬间接触。电弧强烈交流放电过程中产生的大量热使2 金属丝(或片)熔化,并首先形成金属纳米粒子,而后因其极大的反应活性,迅速氧化成金属离子,进一步水解成氢氧化物微粒。根据其稳定程度的不同,最后产物有的转变为氧化物,有的依然为氢氧化物。经分离沉淀物、洗涤烘干,即可得到纳米氧化物(或氢氧化物) 微粒。该法由厦门大学Wang C. Y.等人首次提出,并成功地合成了磁性纳米Fe3O4 微粒。

1.3 溶剂热合成法

该法是于高温高压下在水溶液或蒸汽等流体中合成氧化物,再经分离或热处

理得到纳米粒子。此法具有原料易得、粒子纯度高、分散性好、晶型好且可控、成本相对较低等优点。Bai 等人用InCl3 和Li3N 在250℃环境压力下反应,用二甲苯作溶剂,通过溶剂热合成法制备出了粒径为27~30 nm 的InN 纳米晶体。

1.4 微乳法

该法是将合成催化剂的反应物溶于微乳液中,在剧烈搅拌下,反应物于水核内进行化学反应,且产物在水核内成核、生长。当水核内的粒子长到最后尺寸,表面活性剂就会附在粒子表面,使粒子稳定并防止其进一步长大。反应完成后,通过离心分离或加入水和丙酮等有机溶剂,以除去附在粒子表面的油和表面活性剂。然后在一定温度下干燥、焙烧,即可得到纳米粉体催化剂产品。微乳法具有制备的粒子粒径小、单分散性好、实验装置简单、易操作等优点。Chen等人采用微乳技术制备了贵金属纳米催化剂—— Au,Hayashi 等人制备了纳米金属催化剂—— Fe ,它们均显示出较好的催化性能,说明利用微乳技术制备金属催化剂有着较好的应用前景。

1.5 水解法

该法是在高温下将金属盐的溶液水解,生成水合氧化物或氢氧化物沉淀,经过滤、洗涤、加热分解即可得到金属氧化物纳米粉末。水解法包括金属盐水解法和金属醇盐水解法。其中以金属醇盐水解法最常用,其特点是从盐的溶液中可直接分离得到所需要的粒径细、粒度分布窄的超微粉末。该法具有制备工艺简单、化学组成能较精确控制、粉体的性能重复性好及产率高等优点。尚静等人采用金属醇盐水解法以TiCl4和无水乙醇为原料,制备了具有光催化活性的TiO2 纳米粒子。其他还有微波水解和水热解等方法。此外,化学方法还包括醇-水溶液加热法、还原氧化法和化学动力反应法等。

2 物理法制备金属纳米催化剂

2.1 气相凝聚法

气相凝聚法是通过加热使前驱体材料(通常是金属单质或化合物) 在低压惰性气流中蒸发,逐步均匀凝聚或沉积到特定底物上,再与冷端空间里分散漂浮的金属原子或原子簇不断碰撞形成纳米尺度的金属粒子。该法特点是粉体纯度高、颗粒尺寸小、团聚少、组分易控、缺少液体,因而能达到高温且较适于氧化物纳米粉末的合成。实际中应用较多的是化学气相冷凝法。

2.2 溅射法

溅射法是制备金属纳米粒子簇及各类纳米结构膜的方法。利用本法合成金属纳米粒子,一般采用热阴极使其熔化,然后用高压放电气流产生的高速气体离子冲击热阴极,使熔化的原子或分子蒸发出来,在底物表面沉积形成纳米粒子。Y. Jackie等人采用射频等离子体溅射法制备了二元(Cu和Ce)纳米粒子,在真空室内收集后进行原位制片,然后在一定气氛下使样片氧化,制备出Cu/CeO2-x 非化学计量的纳米金属/ 氧化物负载催化剂,并用于CO氧化反应中。

2.3 机械研磨法

该法是目前制备纳米材料最经济的方法之一,主要通过金属粒子塑性变形实

现。在一定应变速率下,研磨会使金属离子产生诸多滑移、孪生等结构位错现象,导致高密度位错网结构形成。位错网结构又会促使金属粒子产生剪切带,位错区最终导致整个晶格发生畸变。晶粒越来越小,不断重复,形成金属纳米粒子。但本法在制备金属纳米粒子时不可避免地要引入一些杂质如磨球微粒、粉尘等,因此对粒子表面与界面的污染不可避免,同时在空气中研磨也可能发生氧化反应。此外,物理法还有浸渍法等。由于物理法制备纳米金属催化剂设备投入高,操控性差,微粒制备过程中易氧化,故其在实际中应用较少。

3 比较与展望

由于化学法制备纳米金属催化剂反应温和易操控,设备投入小,又避免了物理法中其他杂质的引入及微粒在空气中的氧化问题,因而在科研、生产中广泛应用。尤其是化学法中的溶胶-凝胶法及沉淀法,制备的颗粒分散均匀,粒子形状好,在催化反应中具有较高的催化活性。虽然纳米金属催化剂的研究已取得了一些成果,但制备和应用在实际生产中仍存在许多需要解决的问题。主要体现在:②纳米金属催化剂性质发生变化的机理及其在制备中的动力学和热力学过程仍

需深入研究;②现有的制备技术还停留在实验室和小规模生产阶段,应用于大规模生产还有许多技术瓶颈需要解决;③由于纳米金属催化剂的粒子尺寸小,在空气中极易被氧化、吸湿和团聚,性能很不稳定,给工业化生产应用带来了许多困难,使其使用性能降低;④应用范围还较小,不能满足现代合成化学需要。在实施绿色化学、倡导绿色合成化学的今天,致力于纳米金属催化剂的制备及应用研究将会成为广大化学工作者面临的难点、热点和前沿问题。

参考文献

孙琦, 盛京. 纳米材料的技术发展及应用[J]. 化工进展,1997(1): 48-53.

Jing L Q, Xu Z L, Sun X J, et al. The surface properties andphoto catalytic activities of ZnO ultrafine paricles[J].Applied Surface Science, 2001, 180 (3-4): 308-314.

Zhao D B, Wu M, Kou Y , et al. Ionic liquids: Applicationsincatalysis[J]. CatalToday, 2002,74(1-2): 157-189.

于迎涛, 徐柏庆. 前驱体水解对纳米铂形状控制合成的影响[J]. 化学学报, 2003, 61: 1758-1764.

孙继红, 张晔, 范文浩, 等. Sol-Gel技术与纳米材料的剪裁[J]. 化学进展, 1999, 11(1): 80-85.

张绍岩, 丁士文, 刘淑娟, 等. 均相沉淀法合成纳米ZnO及其光催化性能研究[J]. 化学学报, 2002,

60(7): 1225-1229.

梁新义, 马智. 超声共沉淀法制备纳米结构LaNiO3及其性质[J]. 物理化学学报, 2002, 18(6): 567-571. Wang C Y, Zhu G M, Chen Z Y, et al. The preparation ofmagnetite Fe3O4 and its morphology control by a novel arcelectrodepositionmethod[J]. MaterialsResearchBulletin,2002, 37: 2 525-2 529. Bai Y J, Liu Z G, Xu X G, et al. Preparation of InN nanocrystalsby solvo-thermal method[J]. Journal of CrystalGrowth, 2002, 241(1-2): 189-192.

尚静, 徐自力, 杜尧国, 等. TiO2纳米粒子制备方法对其光催化活性的影响[J]. 分子催化, 2001, 15(4): 282-286.

Cirera A, Vila A. Microwave processing for the low cost,mass production of undoped and in situ catalytic dopednanosized SnO2 gas sensor powders[J]. Sensors andActuators B: Chemical, 2000, 64(1-3): 65-69.

张丽娟, 王国良, 索继栓, 等. 氧化铈纳米微粒的制备及其在金属钒钝化中的应用[J]. 化学研究, 2000, 11(4): 24-27.

催化剂常用制备方法

催化剂常用制备方法 固体催化剂的构成 ●载体(Al2O3 ) ●主催化剂(合成NH3中的Fe) ●助催化剂(合成NH3中的K2O) ●共催化剂(石油裂解SiO2-Al2O3 催化剂制备的要点 ●多种化学组成的匹配 –各组分一起协调作用的多功能催化剂 ●一定物理结构的控制 –粒度、比表面、孔体积 基本制备方法: ?浸渍法(impregnating) ?沉淀法(depositing) ?沥滤法(leaching) ?热熔融法(melting) ?电解法(electrolyzing) ?离子交换法(ion exchanging) ?其它方法 固体催化剂的孔结构 (1)比表面积Sg 比表面积:每克催化剂或吸附剂的总面积。 测定方法:根据多层吸附理论和BET方程进行测定和计算 注意:测定的是总表面积,而具有催化活性的表面积(活性中心)只占总表面的很少一部分。 内表面积越大,活性位越多,反应面越大。 (2)催化剂的孔结构参数 密度:堆密度、真密度、颗粒密度、视密度 比孔容(Vg):1克催化剂中颗粒内部细孔的总体积. 孔隙率(θ):颗粒内细孔的体积占颗粒总体积的分数. (一) 浸渍法 ?通常是将载体浸入可溶性而又易热分解的盐溶液(如硝酸盐、醋酸盐或铵盐等)中进 行浸渍,然后干燥和焙烧。 ?由于盐类的分解和还原,沉积在载体上的就是催化剂的活性组分。 浸渍法的原理 ●活性组份在载体表面上的吸附

●毛细管压力使液体渗透到载体空隙内部 ●提高浸渍量(可抽真空或提高浸渍液温度) ●活性组份在载体上的不均匀分布 浸渍法的优点 ?第一,可使用现成的有一定外型和尺寸的载体材料,省去成型过程。(如氧化铝,氧 化硅,活性炭,浮石,活性白土等) ?第二,可选择合适的载体以提供催化剂所需的物理结构待性.如比表面、孔径和强 度等。 ?第三,由于所浸渍的组分全部分布在载体表面,用量可减小,利用率较高,这对贵 稀材料尤为重要。 ?第四,所负载的量可直接由制备条件计算而得。 浸渍的方法 ?过量浸渍法 ?等量浸渍法 ?喷涂浸渍法 ?流动浸渍法 1.1、过量浸渍法 ?即将载体泡入过量的浸渍液中,待吸附平衡后,过滤、干燥及焙烧后即成。 ?通常借调节浸渍液浓度和体积来控制负载量。 1.2、等量浸渍法 ?将载体与它可吸收体积相应的浸渍液相混合,达到恰如其分的湿润状态。只要混合 均匀和干燥后,活性组分即可均匀地分布在载体表面上,可省却过滤和母液回收之累。但浸渍液的体积多少,必须事先经过试验确定。 ?对于负载量较大的催化剂,由于溶解度所限,一次不能满足要求;或者多组分催化 剂,为了防止竞争吸附所引起的不均匀,都可以来用分步多次浸渍来达到目的。 1.3.多次浸渍法 ●重复多次的浸渍、干燥、焙烧可制得活性物质含量较高的催化剂 ●可避免多组分浸渍化合物各组分竞争吸附 1.4浸渍沉淀法 将浸渍溶液渗透到载体的空隙,然后加入沉淀剂使活性组分沉淀于载体的内孔和表面 (二) 沉淀法 ?借助于沉淀反应。用沉淀剂将可溶性的催化剂组分转变为难溶化合物。经过分离、 洗涤、干燥和焙烧成型或还原等步骤制成催化剂。这也是常用于制备高含量非贵金属、金属氧化物、金属盐催化剂的一种方法。 ?共沉淀、均匀沉淀和分步沉淀 2.1、共沉淀方法 将催化剂所需的两个或两个以上的组分同时沉淀的一个方法,可以一次同时获得几个活性组分且分布较为均匀。为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质

催化剂制备方法

催化剂制备 共沉淀法 按照Co3O4和CeO2在催化剂中的比例,计算出所需0.5mol/L Ce(NO3)3溶液的体积和Co(NO3)2?6H2O 的质量。将钴、铈的硝酸盐混合溶液与沉淀剂碳酸钠并流滴定。沉淀过程中,始终保持沉淀液的pH 值在8.5~9.5 之间。在室温下搅拌 3 小时。按50mL 蒸馏水/g.cat 的比例用80℃蒸馏水洗涤三次,在80℃下干燥24 小时,一定温度下焙烧5 小时,制得不同比例的钴、铈混合氧化物催化剂。 浸渍法 考察制备方法对催化剂的活性影响时,用到了浸渍法,具体步骤如下:取一定量的0.5mol/L Ce(NO3)3溶液,与沉淀剂碳酸钠并流滴定。沉淀过程中,始终保持沉淀液的pH值在8.5~9.5之间。在室温下搅拌3小时。按50mL蒸馏水/g.cat的比例用80℃蒸馏水洗涤三次,在80℃下干燥24小时,得到CeO2载体的前驱体。按比例取一定量的Co(NO3)2?6H2O,采用等体积浸渍方法将Co(NO3)2溶液浸渍于载体前驱体上,再于室温下放置过夜。一定温度下焙烧5小时,制得Co3O4-CeO2催化剂。 活性 原料气空速为40,000ml/h gcat。原料组成为:1 vol.% O2,1 vol.% CO,50 vol.% H2,N2平衡气;Co3O4-CeO2催化剂的制备方法及钴含量、焙烧温度等制备条件对催化剂的活性有很大影响,本实验范围内的最佳条件为:共沉淀法制备,Co3O4含量为80wt.%,焙烧温度为350℃,采用氧化预处理。

从图4-4 至图4-6 可见,共沉淀法制备的催化剂活性明显好于浸渍法的催化剂。共沉淀法的15wt.%Co3O4-CeO2在175℃时达到100%的CO 转化率,而浸渍法的15wt.%Co3O4-CeO2在200℃实现CO 的完全转化。图4-6 显示浸渍法制得的催化剂选择性略好于共沉淀法,但若对比在相同CO 转化率时的选择性,则可看出制备方法对选择性没有明显的影响 二 催化剂酌制备 溶胶一凝胶法 采用溶胶一凝胶法制备介孔ceO,载体.首先向不断搅拌的十六烷基三甲基溴化铵(CTABr)(36.5g/L)溶液中加人一定量的氨水(20%),直到获得澄清透明的模板剂溶液.将硝酸铈溶液(43.4 g/L)逐滴加入到模板剂溶液中,并在强烈搅拌的情况F使其混合均匀.用氨水将上述溶液的pH值调到11左右。然后搅拌至形成溶胶.将溶胶移入带聚四氟乙烯内衬的不锈钢晶化釜内,100℃晶化5 d,过滤分离出固体产物,用去离子水和乙醇分别洗涤三次,于80℃烘箱中干燥24 h,然后在马弗炉中以5℃/min的速率升温至450℃煅烧4 h,制得介孔Cc02.非介iL CeCh(non—meso—Ce02)载体与介孔CeO:载体制备过程相同,但

催化剂制备方法大全

催化剂制备方法简介 1、催化剂制备常规方法 (1)浸渍法 a过量浸渍法 b等量浸渍法(多次浸渍以防止竞争吸附) (2)沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂加到盐溶液为正,反之为倒加) a单组分沉淀法 b多组分共沉淀法 c均匀沉淀法(沉淀剂:尿素) d超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) e浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 f导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝

光沸石、Y型、X型分子筛。 (3)共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬酐的水溶液和少许石墨)然后送入压片机制成圆柱形,在100 o C烘2h即可。 (4)热分解法 硝酸盐、碳酸盐、甲酸盐、草酸盐或乙酸盐。 (5)沥滤法 制备骨架金属催化剂的方法,Raney 镍、铜、钴、铁等。 (6)热熔融法 合成氨催化剂Fe-K2O-Al2O3;用磁铁矿Fe3O4、KNO3和Al2O3高温熔融而得。 (7)电解法 用于甲醇氧化脱氢制甲醛的银催化剂,通常用电解法制备。该法以纯银为阳极和阴极,硝酸银为电解液,在一定电流密度下电解,银粒在阴极析出,经洗涤、干燥和活化后即可使用。

催化剂论文

负载型金催化剂的研究及应用 化工07-3 张波 摘要讨论了有关金属催化剂的相关知识并着重介绍了负载型金催化剂的发展、常用的制备方法及应用,金催化剂的性能,展望了金催化剂的前景。 关键词负载型金催化剂制备性能应用 Supported Gold Catalysts for Research and Application chemicial engineering and technology class of 073 zhangbo Abstract This paper discusses the metal catalyst-related knowledge and highlights the development of supported gold catalysts, commonly used preparation methods and application of the performance of gold catalysts and looking forward to the prospect of the gold catalyst. Key words supported gold catalyst preparation, performance, application 1金属催化剂的概述 存在少量就能显着加速反应而不改变反应的总标准吉布斯函数变的物质称为该反应的催化剂。金属催化剂是一类重要的工业催化剂。主要包括块状催化剂,如电解银催化剂、融铁催化剂、铂网催化剂等;分散或者负载型的金属催化剂,如Pt-Re/-Al2O3重整催化剂,Ni/Al2O3加氢催化剂等。?几乎所有的金属催化剂都是过渡金属,这与金属的结构、表面化学键有关。金属适合于作哪种类型的催化剂,要看其对反应物的相容性。发生催化反应时,催化剂与反应物要相互作用。除表面外,不深入到体内,此即相容性。如过渡金属是很好的加氢、脱氢催化剂,因为H2很容易在其表面吸附,反应不进行到表层以下。但只有“贵金属”(Pd、Pt,也有Ag)可作氧化反应催化剂,因为它们在相应温度下能抗拒氧化。 2金催化剂的发展 金一直被认为是化学惰性最高的金属[1] ,由于其化学惰性和难于高分散,一般不被用来作为催化剂。但是到80年代,Haruta 发现担载在过渡金属氧化物上的金催化剂,不仅对CO 低温氧化具有很高的催化活性,而且还具有良好的抗水性、稳定性和湿度增强效应[2 ,3 ] , 另一方面, 作为一种贵金属催化剂, 金催化剂具有商业化的经济优势,致使人们对其催

催化剂制备方法大全

催 化 剂 的 制 备 方 法 与 成 型 技 术 总 结 应用化学系1202班 王宏颖 2012080201

催化剂的制备方法与成型技术 一、固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 二、催化剂传统制备方法 1、浸渍法 (1)过量浸渍法 (2)等量浸渍法(多次浸渍以防止竞争吸附) 2、沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂 加到盐溶液为正,反之为倒加) (1)单组分沉淀法 (2)多组分共沉淀法 (3)均匀沉淀法(沉淀剂:尿素) (4)超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) (5)浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 (6)导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 3、共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬

催化剂的制备方法及成型

催化剂的制备方法及成型 一催化剂的制备方法 1.1浸渍法 将含有活性组分(或连同助催化剂组分)的液态(或气态)物质浸载在固态载体表面上。此法的优点为:可使用外形与尺寸合乎要求的载体,省去催化剂成型工序;可选择合适的载体,为催化剂提供所需的宏观结构特性,包括比表面、孔半径、机械强度、导热系数等;负载组分仅仅分布在载体表面上,利用率高,用量少,成本低。广泛用于负载型催化剂的制备,尤其适用于低含量贵金属催化剂。 影响浸渍效果的因素有浸渍溶液本身的性质、载体的结构、浸渍过程的操作条件等。浸渍方法有:①超孔容浸渍法,浸渍溶液体积超过载体微孔能容纳的体积,常在弱吸附的情况下使用;②等孔容浸渍法,浸渍溶液与载体有效微孔容积相等,无多余废液,可省略过滤,便于控制负载量和连续操作;③多次浸渍法,浸渍、干燥、煅烧反复进行多次,直至负载量足够为止,适用于浸载组分的溶解度不大的情况,也可用来依次浸载若干组分,以回避组分间的竞争吸附;④流化喷洒浸渍法,浸渍溶液直接喷洒到反应器中处在流化状态的载体颗粒上,制备完毕可直接转入使用,无需专用的催化剂制备设备;⑤蒸气相浸渍法,借助浸渍化合物的挥发性,以蒸气相的形式将它负载到载体表面上,但活性组分容易流失,必须在使用过程中随时补充。 1.2沉淀法 用淀剂将可溶性的催化剂组分转化为难溶或不溶化合物,经分离、洗涤、干燥、煅烧、成型或还原等工序,制得成品催化剂。广泛用于高含量的非贵金属、金属氧化物、金属盐催化剂或催化剂载体。沉淀法有: ①共沉淀法,将催化剂所需的两个或两个以上的组分同时沉淀的一种方法。其特点是一次操作可以同时得到几个组分,而且各个组分的分布比较均匀。如果组分之间形成固体溶液,那么分散度更为理想。为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质的pH值及其他条件都须满足各个组分一起沉淀的要求。 ②均匀沉淀法,首先使待沉淀溶液与沉淀剂母体充分混合,造成一个十分均匀的体系,然后调节温度,逐渐提高pH值,或在体系中逐渐生成沉淀剂等,创造形成沉淀的条件,使沉淀缓慢地进行,以制取颗粒十分均匀而比较纯净的固体。例如,在铝盐溶液中加入尿素,混合均匀后加热升温至90~100℃,此时体系中各处的尿素同时水解,放出OH-离子: 于是氢氧化铝沉淀可在整个体系中均匀地形成。 ③超均匀沉淀法,以缓冲剂将两种反应物暂时隔开,然后迅速混合,在瞬间内使整个体系在各处同时形成一个均匀的过饱和溶液,可使沉淀颗粒大小一致,组分分布均匀。苯选择加氢的镍/氧化硅催化剂的制法是:在沉淀槽中,底部装入硅酸钠溶液,中层隔以硝酸钠缓冲剂,上层放置酸化硝酸镍,然后骤然搅拌,静置一段时间,便析出超均匀的沉淀物。 ④浸渍沉淀法,在浸渍法的基础上辅以均匀沉淀法,即在浸渍液中预先配入沉淀剂母体,待浸渍操作完成后加热升温,使待沉淀组分沉积在载体表面上。 混合法多组分催化剂在压片、挤条等成型之前,一般都要经历这一步骤。此法设备简单,操作方便,产品化学组成稳定,可用于制备高含量的多组分催化剂,尤其是混合氧化物催化剂,但此法分散度较低。 混合可在任何两相间进行,可以是液-固混合(湿式混合),也可以是固-固混合(干式混合)。混合的目的:一是促进物料间的均匀分布,提高分散度;二是产生新的物理性质(塑性),便于成型,并提高机械强度。

催化剂的制备性能评价及使用技术多相催化剂常用哪些

第二章催化剂的制备、性能评价及使用技术 1.多相催化剂常用哪些方法来制备?为什么制备固体催化剂都需要经过热处理,其目的是什么? 多相催化剂常用的制备方法有:(1)天然资源的加工,结构不同,含量不同的硅铝酸盐采用不同的方法和条件加工后能适用于某一特定的催化反应;(2)浸渍法,将载体置于含活性组分的溶液中浸泡,达到平衡后将剩余液体除去,再经干燥、煅烧、活化等步骤即得催化剂。此法要求浸渍溶液中所含活性组分溶解度大、结构稳定、受热后分解为稳定的化合物;(3)滚涂法和喷涂法,滚涂法是将活性组分先放在一个可摇动的容器中,再将载体布于其上,经过一段时间的滚动,活性组分逐渐粘附其上,为了提高滚涂效果,有时也添加一定的粘合剂。喷涂法与滚涂法类似,但活性组分不同载体混在一起,而是用喷枪附于载体上;(4)沉淀法,在含金属盐类的水溶液中,加进沉淀剂,以便生成水合氧化物、碳酸盐的结晶或凝胶。将生成的沉淀物分离、洗涤、干燥后,即得催化剂;(5)共混合法:将活性组分与载体机械混合后,碾压至一定程度,再经挤条成型,最后缎烧活化;(6)沥滤法(骨架催化剂的制备方法),将活性组分金属和非活性金属在高温下做成合金,经过粉碎,再用苛性钠来溶解非活性金属即得;(7)离子交换法: 是在载体上金属离子交换而负载的方法, 合成沸石分子筛一般也是先做成Na型,需经离子交换后方显活性;(8) 均相络合催化别的固载化: 将均相催化剂的活性组分移植于载体上, 活性组分多为过渡金属配合物,载体包括无机载体和有机高分子载体。优点是活性组分的分散性好,而且可根据需要改变金属离子的配体。制备各固体催化剂,无论是浸渍法,沉淀法还是共混合法,有的钝态催化剂经过缎烧就可以转变为活泼态,有的还需要进一步活化。 所以,催化剂在制备好以后,往往还要活化;除了干燥外,还都需要较高温度的热处理-煅烧的目的:1)通过热分解除掉易挥发的组分而保留一定的化学组成,使催化剂具有稳定的催化性能。2)借助固态反应使催化剂得到一定的晶型、晶粒大小、孔隙结构和比表面。3)提高催化剂的机械强度。 2.沉淀法制备催化剂的原理是什么?金属盐和沉淀剂的选择原则是什么? 沉淀法制备催化剂的原理是沉淀反应,金属盐一般首选硝酸盐来提供无机催化剂材料所需的阳离子;金、铂、钯等贵金属不溶于硝酸,但可溶于王水。 沉淀剂的选择原则是:(1)尽可能使用易分解并含易挥发成分的沉淀剂;(2)沉淀便于过滤和洗涤;(3)沉淀剂自身的溶解度要足够大;(4)沉淀物的溶解度应很小;(5)沉淀剂必须无毒,不造成环境污染。

催化剂的制备方法与成型技术简汇

\催化剂的制备方法与成型技术1314100125 13化工本一万立之 摘要:本文介绍了固体催化剂的组成,催化剂制备的一般方法、催化剂制备的新技术,以及催化剂常用成型技术。 关键词:固体催化剂;制备方法;成型技术 目录 摘要 (1) 1 固体催化剂的组成: (1) 2 催化剂的一般制备方法 (1) 2.1 浸渍法 (1) 2.2 沉淀法 (2) 2.3 混合法 (2) 2.4 滚涂法 (3) 2.5 离子交换法 (3) 2.6 热熔融法 (3) 2.7锚定法 (4) 3 催化剂成型技术 (4) 3.1喷雾成型 3.2油柱成型 3.3转动成型 3.4挤条成型 3.5压片成型 4 小结 (5) 参考文献 (6)

0 引言 催化剂又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。这种作用称为催化作用。涉及催化剂的反应为催化反应。催化作用是指改变化学反应的速度,控制反应方向和产物构成。催化剂具有加快化学反应的速度,但不进入化学反应计量,对反应的选择性,只能加速热力学上可能的反应,且不改变化学平衡的位置的特点。催化剂是催化工艺的灵魂,它决定着催化工艺的水平及其创新程度。因此研究工业催化剂的制备方法以及成型技术具有重要的实际意义。 1 固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 2 催化剂的一般制备方法 2.1 浸渍法 将含有活性组分(或连同助催化剂组分)的液态(或气态)物质浸载在固态载体表面上。此法的优点为:可使用外形与尺寸合乎要求的载体,省去催化剂成型工序;可选择合适的载体,为催化剂提供所需的宏观结构特性,包括比表面、孔半径、机械强度、导热系数等;负载组分仅仅分布在载体表面上,利用率高,用量少,成本低。广泛用于负载型催化剂的制备,尤其适用于低含量贵金属催化剂。 影响浸渍效果的因素有浸渍溶液本身的性质、载体的结构、浸渍过程的操作条件等。浸渍方法有:①超孔容浸渍法,浸渍溶液体积超过载体微孔能容纳的体积,常在弱吸附的情况下使用;②等孔容浸渍法,浸渍溶液与载体有效微孔容积相等,无多余废液,可省略过滤,便于控制负载量和连续操作;③多次浸渍法,浸渍、干燥、煅烧反复进行多次,直至负载量足够为止,适用于浸载组分的溶解

催化剂的制备及贵金属催化剂的回收

论文题目:催化剂的制备及贵金属催化剂的回收课程名称:石油化工 专业名称:应用化学 学号:1109341009 姓名: 成绩: 2014年3月29日

催化剂的制备及回收 摘要:在工业领域,催化剂是一种重要的化学制品,不但能够促进化学反应的发生,还能控制化学反应的速率,在工业领域有着重要的应用。对于有些化学反应来讲,如果没有催化剂的介入,将无法正常实现。然而,在参与反应后很多催化剂很难回收利用或已经中毒。 关键词:催化剂;回收技术;贵金属;催化剂中毒 Preparation Of Catalysts And Recycling Abstract:In industry, the catalyst is an important chemical products, not only to promote the chemical reaction, but also to control the chemical reaction rate, in the industrial field has important applications. For some chemical reactions in terms of, if not the catalyst intervention will not work properly achieved. However, after involved in the reaction a lot of catalyst is difficult to recycle or have been poisoned. Keywords: Catalyst; recycling technology; precious metals; catalyst poisoning 引言 催化剂最早由瑞典化学家贝采里乌斯发现。100多年前,贝采里乌斯偶然发现,白金粉末可以加快酒精和空气中的氧气发生化学反应,生成了醋酸。后来,人们把这一作用叫做触媒作用或催化作用,希腊语的意思是“解去束缚”。后来,经过科学家们的不断研究和总结,将催化剂普遍定义[1]为--催化剂是一种能够改变一个化学反应的速度,却不能改变化学反应热力学平衡位置,本身在化学反应中不被明显的消耗的化学物质。 1 催化剂的主要分类 催化剂种类繁多,按状态可分为液体催化剂和固体催化剂;按反应体系的相态分为均相催化剂和多相催化剂, 1.1 均相催化剂 催化剂和反应物同处于一相,没有相界存在而进行的反应,称为均相催化作

催化剂的制备方法与成型技术

\催化剂的制备方法与成型技术 摘要:本文介绍了固体催化剂的组成,催化剂制备的一般方法、催化剂制备的新技术,以及催化剂常用成型技术。 关键词:固体催化剂;制备方法;成型技术 Abstract: this paper introduces the composition of the catalyst, solid catalyst preparation of the general method of preparation, catalyst of new technology, and catalysts used molding technology. Keywords: Solid catalyst; Preparation methods; Molding technology

目录 摘要 (1) 1 固体催化剂的组成: (2) 2 催化剂的一般制备方法 (2) 2.1 浸渍法 (2) 2.2 沉淀法 (3) 2.3 混合法 (4) 2.4 滚涂法 (4) 2.5 离子交换法 (4) 2.6 热熔融法 (4) 2.7锚定法 (5) 2.8 其他方法 (5) 3 催化剂成型技术 (6) 4 小结 (7) 参考文献 (8)

0 引言 催化剂又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。这种作用称为催化作用。涉及催化剂的反应为催化反应。催化作用是指改变化学反应的速度,控制反应方向和产物构成。催化剂具有加快化学反应的速度,但不进入化学反应计量,对反应的选择性,只能加速热力学上可能的反应,且不改变化学平衡的位置的特点。催化剂是催化工艺的灵魂,它决定着催化工艺的水平及其创新程度。因此研究工业催化剂的制备方法以及成型技术具有重要的实际意义。 1 固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 2 催化剂的一般制备方法 2.1 浸渍法 将含有活性组分(或连同助催化剂组分)的液态(或气态)物质浸载在固态载体表面上。此法的优点为:可使用外形与尺寸合乎要求的载体,省去催化剂成型工序;可选择合适的载体,为催化剂提供所需的宏观结构特性,包括比表面、孔半径、机械强度、导热系数等;负载组分仅仅分布在载体表面上,利用率高,用量少,成本低。广泛用于负载型催化剂的制备,尤其适用于低含量贵金属催化剂。 影响浸渍效果的因素有浸渍溶液本身的性质、载体的结构、浸渍过程的操作条件等。浸渍方法有:①超孔容浸渍法,浸渍溶液体积超过载体微孔能容纳的体积,常在弱吸附的情况下使用;②等孔容浸渍法,浸渍溶液与载体有效微孔容积相等,无多余废液,可省略过滤,便于控制负载量和连续操作;③多次浸渍法,浸渍、干燥、煅烧反复进行多次,直至负载量足够为止,适用于浸载组分的溶解

催化剂的制备和表征方法

简论催化剂的制备和表征方法 关键词:催化剂制备表征 催化剂是一种能够改变化学反应的速率,控制反应方向和产物结构,而又本身又不参与最终产物构成的物质。催化科学的发展可以追溯到公元前,中国很早就利用发酵方法酿酒和制醋,这是生物催化剂在古代的应用,那时的应用可以说只是根据经验对催化剂的简单应用。而如今,人们已经研究出催化剂的作用原理,催化剂也已经广泛应用到生活、工业等各个领域,成为我们现在乃至未来不可或缺的物质。催着催化领域的发展,催化剂的制备技术也随着各种需要而不断产生,到现在已经有很多完善的催化剂制备方法,同时也还是有一大批科研工作者致力于催化剂制备的新方法的研究。本文主要介绍几种常用的催化剂制备和表征方法,并对比较新颖的制备方法进行了简单的介绍。 催化剂一般有三种组分,即活性组分、载体和助催化剂。活性组分是起催化作用的根本性物质,载体是活性组分的分散剂、粘合剂,而助催化剂本身并没有活性,且量比较少但是却可以改变活性组分的活化性能。催化剂的制备是一系列单元操作组成的,一般用最核心的单元操作来命名方法,常用的有沉淀法、吸附法、离子交换法和浸渍法。 沉淀法主要用于制备分散度要求高并含有一种或多种金属氧化物的催化剂。一般是在金属盐溶液中加入适当的沉淀剂使金属盐溶液沉淀分布在载体上,然后经过滤、洗涤、干燥、活化得到催化剂。沉淀法制备催化剂最主要的是要控制沉淀过程均匀,一种有效的方法是用尿素代替碱,将尿素加入金属盐-载体浆状液中,在搅拌下加热,尿素在90摄氏度下分解生成的OH基团均匀地分布在容器和载体的孔中,可以做到均匀的发生沉淀过程。 对于负载量高于10%-20%(质量分数)的催化剂,沉淀法是较好的制备方法。而吸附法则在较小的沉积量时比较优异。吸附法的过程是载体物料在金属盐溶液中吸附平衡梁的盐离子,载体从溶液中可能吸附阳离子也可能吸附阴离子,这取决与表面的性质。一般,沸石是强的阳离子交换剂,二氧化硅是弱的阳离子吸附剂,氧化铝对阳离子和阴离子的吸附都弱,氧化镁是强的阴离子吸附剂,炭与电子施主优先形成电荷专业络合物,但也吸附阳离子。吸附法的饱和量一般较小,虽然可以通过多次吸附增加,但比较麻烦,因此一般只适合低负载量的催化剂制备。

相关主题