搜档网
当前位置:搜档网 › 二项分布与超几何分布的区别练习题

二项分布与超几何分布的区别练习题

二项分布与超几何分布的区别练习题
二项分布与超几何分布的区别练习题

超几何分布与二项分布的区别

[知识点]关键是判断超几何分布与二项分布

判断一个随机变量是否服从超几何分布,关键是要看随机变量是否满足超几何分布的特征:一个总体(共有N 个)内含有两种不同的事物()A M 个、()B N M -个,任取n 个,其中恰有X 个A .符合该条件的即可断定是超几何分布,按照超几何分布的分布列

()k n k M N M

n

N

C C P X k C --==(0,1,2,,k m =)进行处理就可以了.

二项分布必须同时满足以下两个条件:①在一次试验中试验结果只有A 与A 这两个,且事件A 发生的概率为p ,事件A 发生的概率为1p -;②试验可以独立重复地进行,即每次重复做一次试验,事件A 发生的概率都是同一常数p ,事件A 发生的概率为1p -.

1、某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为

2

3

.现有10件产品,其中6件是一等品,4件是二等品. (Ⅰ) 随机选取1件产品,求能够通过检测的概率;

(Ⅱ) 随机选取3件产品,其中一等品的件数记为X ,求X 的分布列; (Ⅲ) 随机选取3件产品,求这三件产品都不能通过检测的概率.

2、第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm ):若身高在175cm 以上(包括175cm )定义为“高个子”,身高在175cm 以下(不包括175cm )定义为“非高个子”, 且只有“女高个子”才担任“礼仪小姐”.

(Ⅰ)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人, 再从这5人中选2人,那么至少有一人是“高个子”的概率是多少? (Ⅱ)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担 任“礼仪小姐”的人数,试写出ξ的分布列,并求ξ的数学期望.

3、某地区对12岁儿童瞬时记忆能力进行调查,瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,

,且听

觉记忆能力为中等或中等以上的概率为2

5

.(Ⅰ)试确定a、b的值;(Ⅱ)从40人中任

意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为ξ,求随机变量ξ的分布列.

4、在某校教师趣味投篮比赛中,比赛规则是: 每场投6个球,至少投进4个球且最后2

个球都投进者获奖;否则不获奖. 已知教师甲投进每个球的概率都是2

3

(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;(Ⅱ)求教师甲在一场比赛中获奖的概率;(Ⅲ)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗?

125、为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为

16,第二轮检测不合格的概率为1

10

,两轮检测是否合格相互没有影响.

(Ⅰ)求该产品不能销售的概率;

(Ⅱ)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有产品4件,记一箱产品获利X 元,求X 的分布列,并求出均值E(X).

6、张先生家住H 小区,他在C 科技园区工作,从家开车到公司上班有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为1

2

;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为

34,35

. (Ⅰ)若走L1路线,求最多遇到1次红灯的概率; (Ⅱ)若走L2路线,求遇到红灯次数X 的数学期望;

(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生 从上述两条路线中选择一条最好的上班路线,并说明理由.

7、某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.

(Ⅰ) 求这4位乘客中至少有一名乘客在第2层下电梯的概率;

(Ⅱ) 用X 表示4名乘客在第4层下电梯的人数,求X 的分布列和数学期望.

8、某射击小组有甲、乙两名射手,甲的命中率为12

3

p =

,乙的命中率为2p ,在射击比武活动中每人射击发两发子弹则完成一次检测,在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”; (Ⅰ)若21

2

p =

,求该小组在一次检测中荣获“先进和谐组”的概率; (Ⅱ)计划在2011年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数ξ,如果5E ξ≥,求2p 的取值范围.

9、A 、B 是治疗同一种疾病的两种药,用若干试验组进行对比试验。每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效。若在一个试验组中,服用A 有效的小白鼠的只数比服用B 有效的多,就称该试验组为甲类组。设每只小白鼠服用A 有效的概率为

32,服用B 有效的概率为2

1

. (Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望。

10、盒子中装有大小相同的10只小球,其中2只红球,4只黑球,4只白球.规定:一次摸出3只球,如果这3只球是同色的,就奖励10元,否则罚款2元. (Ⅰ)若某人摸一次球,求他获奖励的概率;

(Ⅱ)若有10人参加摸球游戏,每人摸一次,摸后放回,记随机变量ξ为获奖励的人数,

(i )求(1)P ξ> (ii )求这10人所得钱数的期望.

(结果用分数表示,参考数据:10

141152??

≈ ???

图(4)

六级

五级四级三级二级

一级空气质量级别

2天数

648

10 课后练习巩固

1、空气质量指数PM2.5 (单位:3/m μg )表示每立方米空气中可入肺颗粒物的含量,这

从甲城市2013年9月份的30天中随机抽取15天的PM2.5日均浓度指数数据茎叶图如图5所示.

(1)试估计甲城市在2013年9月份30天的空气质量类别为优或良的天数; (2)在甲城市这15个监测数据中任取2个,设X 为空气质量类别为优或良 的天数,求X 的分布列及数学期望.

2、根据空气质量指数AQI (为整数)的不同,可将空气质量分级如下表:

某市年月日—月日,对空气质量指数AQI 进行监测,获得数据后得到如图(4)的条形图: (1)估计该城市本月(按30天计)空气质量类别为中 度污染的概率;

(2)在上述30个监测数据中任取2个,设ξ为空气 质量类别颜色为紫色的天数,求ξ的分布列.

50 100 101150 151200

300

>一级 二级 三级 四级

五级

六级优 良轻度污染 中度污染 重度污染 严重污染3 2 0 4

5 5

6 4

7 6 9 7

8 8 0 7

9 1 8 0 9

图5

a 图3

重量/克

0.032

0.0245

2515O 3、某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.

(I )估计这次测试数学成绩的平均分;

(II )假设在[90,100]段的学生的数学成绩都不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数中任意抽取2个数,有放回地抽取了3次,记这3次抽取中,恰好是两个学生的数学成绩的次数为ξ,求ξ的分布列及数学期望E ξ.

4.一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为(]5,15,(]15,25,(]25,35,(]35,45, 由此得到样本的重量频率分布直方图,如图3.

(1)求a 的值;(2)根据样本数据,试估计盒子中小球重量的平均值; (注:设样本数据第i 组的频率为i p ,第i 组区间的中点值为i x ()1,2,3,,i n =,

则样本数据的平均值为112233n n X x p x p x p x p =+++

+.)

(3)从盒子中随机抽取3个小球,其中重量在(]5,15内 的小球个数为ξ,求ξ的分布列和数学期望.

5、甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对为本队赢得一

分,答错得零分.假设甲队中每人答对的概率均为2

3

,乙队中3人答对的概率分别为

221

,,

332

,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分.

(1)求随机变量ξ的分布列和数学期望;

(2)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求()

P AB.

6.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可吸入肺颗粒物。我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标。某试点城市环保局从该市市区2013年上半年每天的PM2.5监测数据中随机的抽取15天的数据作为样本,监测值如右下图茎叶图所示(十位为茎,个位为叶)。

(1)在这15天的PM2.5日均监测数据中,求其中位数;

(2)从这15天的数据中任取2天数据,记ξ表示抽到

PM2.5监测数据超标的天数,求ξ的分布列及数学期望;

(3)以这15天的PM2.5日均值来估计一年的空气质量

情况,则一年(按360天计算)中平均有多少天的空气

质量达到一级或二级.

参考答案

1.【解析】(Ⅰ)设随机选取一件产品,能够通过检测的事件为A 分

事件A 等于事件 “选取一等品都通过检测或者是选取二等品通过检测” ………2分

15

13

32104106)(=?+=

A p …… (Ⅱ) 由题可知X 可能取值为0,1,2,3. 30463101

(0)30C C P X C ===,21463

103(1)10

C C P X C ===, 12463101(2)2C C P X C ===,03463101

(3)6

C C P X C ===. ……8分

的分布列为

… ………9分

(Ⅲ)设随机选取3件产品都不能通过检测的事件为B ……………10分 事件B 等于事件“随机选取3件产品都是二等品且都不能通过检测”

所以,3111

()()303810

P B =

?=. ……………13分

2.【解析】(Ⅰ)根据茎叶图,有“高个子”12人,“非高个子”18人,…………1分

用分层抽样的方法,每个人被抽中的概率是

6

1

305=, ………………2分 所以选中的“高个子”有26112=?人,“非高个子”有36

1

18=?人.…………3分

用事件A 表示“至少有一名“高个子”被选中”,则它的对立事件A 表示“没有一名“高个子”被选中”,

则()P A =-1252

3C C 10

7

1031=-

=.……5分 因此,至少有一人是“高个子”的概率是

10

7

.…6分 (Ⅱ)依题意,ξ的取值为0,1,2,3. ………………7分

5514C C )0(31238===ξP , 55

28C C C )1(3

1228

14===ξP , 5512C C C )2(3121824===ξP , 55

1

C C )3(31234===ξP . …………………9分

因此,ξ的分布列如下:

……分155

13551225528155140=?+?+?+?

=ξ∴E . …………12分

3.【解析】(Ⅰ)由表格数据可知,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的学生共有(10)a +人.记“视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上”为事件A ,

则102

()405

a P A +==,解得6a =,从而40(32)40382

b a =-+=-=. (Ⅱ)由于从40位学生中任意抽取3位的结果数为3

40

C ,其中具有听觉记忆能力或视觉记忆能力偏高或超常的学生共24人,从40位学生中任意抽取3位,其中恰有k 位具有听

觉记忆能力或视觉记忆能力偏高或超常的结果数为32416k k C C -,所以从40位学生中任意抽

取3位,其中恰有k 位具有听觉记忆能力或视觉记忆能力偏高或超常的概率为

32416

3

40

()k k

C C P k C ξ-==(0,1,2,3)k =.ξ的可能取值为0、1、2、3. 因

03241634014

(0)247

C C P C ξ===

,

12

241634072

(1)247

C C P C ξ===

,

21

24163

40552

(2)1235

C C P C ξ===,

30

24163

40253

(3)1235

C C P C ξ===,

ξ

4.【解析】(Ⅰ)X 的所有可能取值为0,1,2,3,4,5,6. 依条件可知X~B(6,2

3

).

66

21()33k

k

k P X k C -??

??==??

?

???

??

(0, 1, 2, 3, 4, 5, 6k =)

所以X

所以(01112260316042405192664)729EX =?+?+?+?+?+?+?=4729

=. 或因为X~B(6,23),所以2

643

EX =?=. 即X 的数学期望为4.

(Ⅱ)设教师甲在一场比赛中获奖为事件A ,则

2241

56441212232()()()()().3333381

P A C C =??+??+=

答:教师甲在一场比赛中获奖的概率为32

.81

(Ⅲ)设教师乙在这场比赛中获奖为事件B ,则2444662()5A A P B A ==.(此处为244

62

5

C C =会更好!因为样本空间基于:已知6个球中恰好投进了4个球)即教师乙在这场比赛中获奖的概

率为

2

5

. 显然23232

58081

=≠,所以教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的

概率不相等.

5.【解析】(Ⅰ)记“该产品不能销售”为事件A ,则1

11()1(1)(1)6104

P A =--?-=. 所以,该产品不能销售的概率为

1

4

. ……………………………………4分 (Ⅱ)由已知,可知X 的取值为320,200,80,40,160---. ………………………5分

411(320)()4256P X =-==, 1

34133(200)()4464P X C =-=??=,

22241327(80)()()44128P X C =-=??=,3341327(40)()4464P X C ==??=, 4381

(160)()4256

P X ===. ……………………………………10分

所以X

11分 E(X)1127278132020080401602566412864256

=-?-?-?+?+?40=,故均值E(X)为40.……12分

6.【解析】(Ⅰ)设走L1路线最多遇到1次红灯为A 事件,则

0312331111()=()()2222

P A C C ?+??=.…4分 所以走L1路线,最多遇到1次红灯的概率为

1

2

. (Ⅱ)依题意,X 的可能取值为0,1,2. …………5分

331(=0)=(1)(1)4510P X -?-=,33339

(=1)=(1)(1)454520P X ?-+-?=,

339

(=2)=4520

P X ?=.…8分

01210202020

EX =?+?+?=. …………

……10分

(Ⅲ)设选择L1路线遇到红灯次数为Y ,随机变量Y 服从二项分布,1

(3,)2

Y B ,

所以13

322

EY =?

=.……12分 因为EX EY <,所以选择L2路线上班最好.……14分

7.【解析】(Ⅰ)设4位乘客中至少有一名乘客在第2层下电梯的事件为A ,………分

由题意可得每位乘客在第2层下电梯的概率都是1

3

, ……………………………3分

则4

265()1()1381

P A P A ??=-=-=

??? .……………………………6分

(Ⅱ) X 的可能取值为0,1,2,3,4, ………………………7分 由题意可得每个人在第4层下电梯的概率均为

1

3

,且每个人下电梯互不影响,所以1

(4,)3

X

B .…9分

………………11分

14

()433

E X =?=.………………………13分

8.【解析】(Ⅰ)11

2221

1122111

()()()()332233223

P C C =????+??=

---------6分 (Ⅱ)该小组在一次检测中荣获“先进和谐组”的概率

1

122

2222222212284()[(1)]()333399

P C C p p p p p =?

??-+?=- 而(12,)B P ξ,所以12E P ξ=,由5E ξ≥知22284

12()599

p p -≥,

解得

23

14

p ≤≤.-------12分 9.【解析】(Ⅰ)设i A 表示事件“一个试验组中,服用A 有效的小白鼠有i 只”,i=0,1,2;

i B 表示事件“一个试验组中,服用B 有效的小白鼠有i 只”,i=0,1,2

依题意有

1124()2339P A =??=,2224()339P A =?=,0111()224P B =?=,1111()2222

P B =??=,

所求的概率为0102121414144

()()()4949299

P P B A P B A P B A =++=?+?+?=

(Ⅱ)ξ的可能取值为0,1,2,3,且 ξ~ B(3,4

9), 3345()()(),0,1,2,399

k k k

P k C k ξ-===

所以数学期望393

E ξ=?

=. 10.【解析】(Ⅰ)3421021

=15

C p C =

(Ⅱ)(i )由题意知110,

)15

B ξ

(, 则101

910141141(1)1(0)(1)1()()1515157

P P P C ξξξ>=-=-==--??=

(ii )设η为在一局中的输赢,则1146

10215155

E η=?-?=-,

所以6

(10)1010()125

E E ηη==?-=-,即这10人所得钱数的期望为12-.

课后巩固参考答案

1.解:(1)由茎叶图可知,甲城市在2013年9月份随机抽取的15天中的空气质量类别为优或良的天数为5天.……………………………………………………1分

所以可估计甲城市在2013年9月份30天的空气质量类别为优或良的天数为10天.…2分

(2)X 的取值为0,1,2,………………………………………………………3分

因为()025102

15C C 3

0C 7P X ===,…………………………………………………5分 ()11

510

215C C 101C 21P X ===,………………………………………………7分

()20510215C C 2

2C 21

P X ===.……………………………………9分

所以X 的分布列为:

所以数学期望3

21221170=?+?

+?=EX .

2.解:(1)由条形统计图可知,空气质量类别为中度污染的天数为6, -------------1分 所以该城市本月空气质量类别为中度污染的概率 61

305

P =

=.---------------------4分 (2)随机变量ξ的可能取值为0,1,2,-----------------------------------------------5分

则()22623065

087C P C ξ===

,-----------------------------------------------------------7分 ()11426230104

1435C C P C ξ===,----------------------------------------------------------9分

()242302

2145

C P C ξ===-------------------------------------------------------11分

所以ξ的分布列为:

…………10分

3.解:(I )利用中值估算抽样学生的平均分:

45×0.05+55×0.15+65×0.2+75×0.3+85×0.25+95×0.05 =72. ……………(3分)

众数的估计值为75分

……………(5分) 所以,估计这次考试的平均分是72分. ……………(6分)

(注:这里的众数、平均值为估计量,若遗漏估计或大约等词语扣一分)

(II )从95, 96,97,98,99,100中抽2个数的全部可能的基本结果数是2615C =, 有15种结果,学生的成绩在[90,100]段的人数是0.005×10×80=4(人), 这两个数恰好是两个学生的数学成绩的基本结果数是246C =,

两个数恰好是两个学生的数学成绩的概率62

.155

P =

= ……………(8分) 随机变量ξ的可能取值为0、1、2、3,则有.

∴3323

()()(),0,1,2,355

k k k P k C k ξ-===

∴变量ξ的分布列为:

…………(10分)

E ξ83654546

01231251251251255

=?+?+?+?=

…………(12分)

4. (1) 解:由题意,得()0.020.0320.018101x +++?=, ……………1分 解得0.03x =. ……………2分

(2)解:50个样本小球重量的平均值为

0.2100.32200.3300.184024.6X =?+?+?+?=(克). ……………3分

由样本估计总体,可估计盒子中小球重量的平均值约为24.6克. ……………4分 (3)解:利用样本估计总体,该盒子中小球重量在(]5,15内的概率为0.2,则

13,5B ξ

??

???

. ……………5分 ξ的取值为0,1,2,3, ……………6分

()30346405125P C ξ??=== ???,()2

131448155125P C ξ????==?= ? ?????

, ()2

23

1412255125P C ξ????==?= ? ?????,()3

331135125

P C ξ??=== ???. ……………10分

∴ξ的分布列为:

∴6448121301231251251251255

E ξ=?+?+?+?=. ……………12分 (或者13

355

E ξ=?=)

5.解:(1)解法一:由题意知,ξ的可能取值为0,1,2,3,且 …………1分

30321(0)1327

P C ξ??==?-= ???,2

13222(1)1339P C ξ??==??-= ???,…………3分

2

23

224(2)1339P C ξ????==??-= ? ?????,3

3328(3)327

P C ξ??==?=

???.…………5分

所以ξ的分布列为

ξ的数学期望为124801232279927

E ξ=?

+?+?+?=.…………7分

解法二:根据题设可知,2~33B ξ?

? ???

,,…………3分

因此ξ的分布列为333

3222()1333

k k

k

k

k P k C C ξ-????==??-=? ? ?

????

01

23k =,,,.……5分 因为2~33B ξ?? ???,,所以2

323

E ξ=?

=.…………7分 (2)解法一:用C 表示“甲得2分乙得1分”这一事件,用D 表示“甲得3分乙得0分”这一事件,所以AB C D =,且C D ,互斥,又…………8分

2

2322211121111()133332332332P C C ??????=??-???+??+?? ? ?????????410

3=,…10分

3

33521114()33323

P D C ????=????= ? ?????,…………11分

由互斥事件的概率公式得4551043434

()()()333243

P AB P C P D =+=+==.………12分

6.解:(1)由茎叶图可得中位数是45 (2) 依据条件,ξ服从超几何分布:

其中15,5,3N M n ===,ξ的可能值为0,1,2

由2510

2

15()k k

C C p k C ξ-?==, 得02

5102

153

(0)7

C C p C ξ?===, 1151021510(1)21C C p C ξ?===, 20

5102

152

(2)21

C C p C ξ?===, 所以ξ的分布列为:

310

01721E ξ∴=?+?(2)依题意可知,一年中每天空气质量达到一级或二级的概率为102

153

p == 一年中空气质量达到一级或二级的天数为η,则η~2(360,)3

B

2

3602403

E η∴=?=

∴一年中平均有240天的空气质量达到一级或二级

二项分布专题练习

二项分布专题练习 1.已知随机变量X 服从二项分布,X ~B 16,3?? ??? ,则P (X =2)=( ). A . 316 B . 4243 C . 13 243 D . 80 243 2.设某批电子手表正品率为 34,次品率为1 4 ,现对该批电子手表进行测试,设第X 次首次测到正品,则P (X =3)等于( ). A .223 13C 44??? ??? B .2 2331C 44 ??? ? ?? C .2 1344 ??? ??? D .2 3144 ??? ??? 3.甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为0.4,乙投中的概率为0.6,而且不受其他次投篮结果的影响,设投篮的轮数为X ,若甲先投,则P (X =k )等于( ). A .0.6k - 1×0.4 B .0.24k -1×0.76 C .0.4k -1×0.6 D .0.76k - 1×0.24 4.10个球中有一个红球,有放回地抽取,每次取出一球,直到第n 次才取得k (k ≤n )次红球的概率为( ). A .2191010n k -???? ? ? ???? B . 191010k n k -???? ? ? ???? C .1119C 1010k n k k n ---???? ? ????? D .1 1119C 1010k n k k n ----???? ? ??? ?? 5.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为 65 81 ,则事件A 在1次试验中发生的概率为( ). A . 13 B . 25 C . 56 D . 34 6.某一批花生种子,如果每一粒发芽的概率为4 5 ,那么播下4粒种子恰有2粒发芽的概率是__________. 7.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为__________.(用数字作答) 8.假定人在365天中的任意一天出生的概率是一样的,某班级中有50名同学,其中有两个以上的同学生于元旦的概率是多少?(结果保留四位小数)

随机变量及其分布列经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量、 ①随机变量就是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化、 2.表示:随机变量常用字母X ,Y,ξ,η,…表示. 3、所有取值可以一一列出的随机变量,称为离散型随机变量 ( dis cre te ran dom var ia ble ) . 二、离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,xi ,…,x n, X 取每一个值x i (i=1,2,…, n)的概率P (X =xi)=pi ,则称表: 为离散型随机变量X P(X =x i )=p i , i =1,2,…,n, 也可以用图象来表示X 的分布列、 2.离散型随机变量的分布列的性质 ①pi ≥0,i=1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X 的分布列具有上表形式,则称服从两点分布,并称p =P (X =1)为成功概率. 2、超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M,N ∈N * . 三、二项分布 一般地,在n 次独立重复试验中,用 X 表示事件A 发生的次数,设每次试验中事件A发生的概率为p ,则P (X=k )=C 错误!p k (1-p)n - k ,k=0,1,2,…,n 、此时称随机变量X服从二项分布,记作X ~B (n ,p),并称p 为成功概率.易得二项分布的分布列如下;

二项分布经典例题+测验题

二项分布 1.n 次独立重复实验 一般地,由n 次实验构成,且每次实验相互独立完成,每次实验的结果仅有两种对立的状态,即A 与A ,每次实验中()0P A p =>。我们将这样的实验称为n 次独立重复实验,也称为伯努利实验。 (1)独立重复实验满足的条件第一:每次实验是在同样条件下进行的;第二:各次实验中的事件是互相独立的;第三:每次实验都只有两种结果。 (2)n 次独立重复实验中事件A 恰好发生k 次的概率 ()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k == k k n k n C p q -,其中 0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作(,)X B n p 。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3.甲乙两人各进行3次射击,甲每次击中目标的概率为2 1,乙每次击中目标的概率为3 2 . (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且

规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (Ⅰ)求X的分布列。 (Ⅱ)求X的数学期望E(X). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投 篮投中的概率为1 3,乙每次投篮投中的概率为1 2 ,且各次投篮互不 影响. (Ⅰ) 求甲获胜的概率。 (Ⅱ) 求投篮结束时甲的投篮次数 的分布列与期望 3.设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜 4场则比赛宣告结束,假定,A B在每场比赛中获胜的概率都是1 2 , 试求需要比赛场数的期望. 3.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查. 下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图。

随机变量及其分布列经典例题教程文件

随机变量及其分布列 经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量. ①随机变量是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化. 2.表示:随机变量常用字母X ,Y ,ξ,η,…表示. 3.所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) . 二.离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n, X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则称表: 为离散型随机变量X P (X =x i )=p i ,i =1,2,…,n, 也可以用图象来表示X 的分布列. 2.离散型随机变量的分布列的性质 ①p i ≥0,i =1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X p =P (X =1)为成功概率. 2.超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M ,N ∈N *. 三.二项分布 一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发

二项分布经典例题练习题

二项分 布 1.n 次独立重复试验 一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中()0P A p =>。我们将这样的试验称为n 次独立重复试验,也称为伯努利试验。 (1)独立重复试验满足的条件第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都只有两种结果。 (2)n 次独立重复试验中事件A 恰好发生k 次的概率()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k ==k k n k n C p q -,其中0 1.1,0,1,2,,,p p q k n <<+==L 则称X 服从参数为,n p 的二项分布,记作(,)X B n p :。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 2.一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到 红灯的事件是相互独立的,并且概率都是31 . (1)设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列; (2)设η为这名学生在首次停车前经过的路口数,求η的分布列;

(3)求这名学生在途中至少遇到一次红灯的概率. 3.甲乙两人各进行3次射击,甲每次击中目标的概率为 21,乙每次击中目标的概率为3 2. (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且规定:取出一个白球的 2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出3球所得分数之和. (Ⅰ)求X 的分布列; (Ⅱ)求X 的数学期望E (X ). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜 或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为1 3 ,乙每次投篮投中的概 率为1 2 ,且各次投篮互不影响. (Ⅰ)求甲获胜的概率; (Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望

选修2-3随机变量及其分布知识点总结典型例题

2-3随机变量及其分布 -- HW) T数字特征11 …. --- L-W Array「(两点分布〕 5店殊分布列)--憊几何分祠 -(二项分利 十[并件相互独立性)一価立重复试劇 5J ~(条件概率) ”、r<正态分布密度曲绚 f正态分布)一 要点归纳 一、离散型随机变量及其分布列 1.⑴随机变量:在随机试验中,我们确定了一个对应关 系,使得每一个试验结果都用一个确定的数字表示?在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量?通常用字母X, Y, E, n等表示. (2) 离散型随机变量:所有取值可以一一列出的随机变量称为离散型随 机变量. (3) 离散型随机变量的分布列: 一般地,若离散型随机变量 X可能取的不同值为X i, X2…,X i,…X n,X取每一个值X i(i = 1,2,…,n)的概率 P(X= X)= p i,以表格的形式表示如下: X的分布列.有时为了简单起见,也用等式P(X = X i) = p i, i = 1,2,…,n表示X的分布列. (4)离散型随机变量的分布列的性质: ①P i>0,i = 1,2,…,n; n ②P i = 1. i = 1

(5)常见的分布列: 两点分布:如果随机变量X 的分布列具有下表的形式,则 称X 服从两点分布,并称p = P(X = 1)为成功概率. 两点分布又称 0- 1分布,伯努利分布. 超几何分布:一般地,在含有 M 件次品的N 件产品中,任取 X 件次品,则事件{X = k }发生的概率为 P(X = 其中 m= min { M , n },且 n W N , M < N , n , M , N € N *.如 果随机变量X 的分布列具有上表的形式,则称随机变量 X 服从超几何分布. 2 .二项分布及其应用 (1)条件概率:一般地,设 A 和B 是两个事件,且 P(A)>0, p / AB) 称P(BA) = P ((A )为在事件A 发生的条件下,事件B 发生 的条件概率.P(B|A)读作A 发生的条件下B 发生的概率. ⑵条件概率的性质: ① 0 < P(BA)< 1; ② 必然事件的条件概率为1,不可能事件的条件概率为0; ③ 如果 B 和C 是两个互斥事件,则 P(B U C|A)= P(B|A) + P(C|A). (3) 事件的相互独立性:设 A, B 为两个事件,如果 P(AB)= P(A)P(B),则 称事件 A 与事件B 相互独立?如果事件 A 与B 相互独立,那么 A 与-,-与B ,-与-也都相互独立. (4) 独立重复试验:一般地,在相同条件下重复做的 n 次试 验称为n 次独立重复试验. c M c N-/i c N k = 0, 1, 2, ,m,即 n 件,其中恰有 k)=

二项分布高考试题.

二项分布练习题目: 1.某人射击一次击中目标的概率为0.6,经过3次射击,此人恰有两次击中目标的概率为 2.加工某种零件需经过三道工序。设第一、二、三道工序的合格率分别为10 9、9 8、8 7,且各道工序互不影响。 (1) 求该种零件的合格率; (2) 从该种零件中任取3件,求恰好取到一件合格品的概率和至少取到一件合格品的概率。 (Ⅰ)解:9877 109810 P = ??=; (Ⅱ)解法一: 该种零件的合格品率为10 7,由独立重复试验的概率公式得: 恰好取到一件合格品的概率为 12 373()0.1891010C ? ?=, 至少取到一件合格品的概率为 .973.0)10 3 (13=- 解法二: 恰好取到一件合格品的概率为1237 3 ()0.1891010 C ??=, 至少取到一件合格品的概率为 1 22233 33373737()()()0.973.1010101010 C C C ? ?+?+= 3. 9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种

子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种。 (Ⅰ)求甲坑不需要补种的概率; (Ⅱ)求3个坑中恰有1个坑不需要补种的概率; (Ⅲ)求有坑需要补种的概率。 (Ⅰ)解:因为甲坑内的3粒种子都不发芽的概率为 8 1)5.01(3=-,所以甲坑不需要补种的概率为 .875.08 7 8 11==- (Ⅱ)解:3个坑恰有一个坑不需要补种的概率为 .041.0)8 1(8 721 3=??C (Ⅲ)解法一:因为3个坑都不需要补种的概率为3)8 7(, 所以有坑需要补种的概率为 .330.0)8 7(13=- 解法二:3个坑中恰有1个坑需要补种的概率为 ,287.0)8 7(8 121 3=??C 恰有2个坑需要补种的概率为 ,041.087 )81(223=??C 3个坑都需要补种的概率为 .002.0)8 7()81(033 3=??C 4.某学生在上学路上要经过4个路口,假设在各路口是

二项分布经典例题复习总结练练习习题.doc

二项分布 1.n次独立重复试验 一般地,由 n 次试验构成,且每次试验相互独立完成,每次试验 的结果仅有两种对立的状态,即 A 与 A ,每次试验中P( A) p0 。我们将这样的试验称为n 次独立重复试验,也称为伯努利试验。 (1)独立重复试验满足的条件第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都 只有两种结果。 ( 2 )n次独立重复试验中事件A恰好发生k次的概率P( X k) C n k p k (1p) n k。 2.二项分布 若随机变量X的分布列为P( X k ) C n k p k q n k,其中0 p 1.p q 1,k 0,1,2,L ,n, 则称 X 服从参数为 n, p 的二项分布,记作 X : B(n, p) 。 1.一盒零件中有9 个正品和 3 个次品,每次取一个零件,如果取出 的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3. 甲乙两人各进行 3 次射击,甲每次击中目标的概率为1 ,乙每次击 中目标的概率为2 . 2 3

(1)记甲击中目标的此时为,求的分布列及数学期望; (2)求乙至多击中目标 2 次的概率; (3)求甲恰好比乙多击中目标 2 次的概率 . 【巩固练习】 1.(2012 年高考(浙江理))已知箱中装有 4 个白球和 5 个黑球 , 且 规定 : 取出一个白球的 2 分, 取出一个黑球的 1 分 . 现从该箱中任取( 无放回 , 且每球取到的机会均等 )3 个球 , 记随机变量X为取出 3 球所得分数之和 . ( Ⅰ) 求X的分布列 ; ( Ⅱ) 求X的数学期望E( X). 2.(2012 年高考(重庆理))( 本小题满分 13 分 ,( Ⅰ) 小问 5 分,( Ⅱ) 小问 8 分.) 甲、乙两人轮流投篮 , 每人每次投一球 ,. 约定甲先投且先投中者获胜, 一直到有人获胜或每人都已投球 3 次时投篮结束 . 设甲每次投 篮投中的概率为影响 . 1 3 ,乙每次投篮投中的概率为 1 2 ,且各次投篮互不 ( Ⅰ) 求甲获胜的概率 ;

二项分布与超几何分布的区别练习题

超几何分布与二项分布的区别 [知识点]关键是判断超几何分布与二项分布 判断一个随机变量是否服从超几何分布 ,关键是要看随机变量是否满足超几何分布 的特征:一个总体(共有N 个)内含有两种不同的事物()A M 个、()B N M 个,任取n 个,其 中恰有X 个A .符合该条件的即可断定是超几何分布 ,按照超几何分布的分布列() k n k M N M n N C C P X k C (0,1,2, ,k m )进行处理就可以了 . 二项分布必须同时满足以下两个条件:①在一次试验中试验结果只有A 与A 这两个, 且事件A 发生的概率为p ,事件A 发生的概率为1p ;②试验可以独立重复地进行,即每次重复做一次试验,事件A 发生的概率都是同一常数p ,事件A 发生的概率为1p . 1、某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为 23 .现有10件产品,其中6件是一等品,4件是二等品. (Ⅰ) 随机选取1件产品,求能够通过检测的概率;(Ⅱ) 随机选取3件产品,其中一等品的件数记为X ,求X 的分布列;(Ⅲ) 随机选取3件产品,求这三件产品都不能通过检测的概率. 2、第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为了搞好 接待工作,组委会在某学院招募了 12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm ):若身高在175cm 以上(包括175cm )定义为“高个子”,身高在175cm 以下(不包括175cm )定义为“非高个子”, 且只有“女高个子”才担任“礼仪小姐” . (Ⅰ)如果用分层抽样的方法从“高个子”和“非高个子”中中提取 5人, 再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?(Ⅱ)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出 的分布列,并求 的数学期望.

超几何分布教学案

2.1.3超几何分布 教学目标:1、理解理解超几何分布;2、了解超几何分布的应用. 教学重点:1、理解理解超几何分布;2、了解超几何分布的应用 教学过程 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量: 随机变量 只能取有限个数值 或可列无穷多个数 值 则称 为离散随机变量,在高中阶段我们只研究随机变量 取有限个 数值的情形. 3. 分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1) 对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和 即 ?? ?+=+==≥+)()()(1k k k x P x P x P ξξξ 5.二点分布:如果随机变量X 的分布列为: 二、讲解新课: 在产品质量的不放回抽检中,若N 件产品中有M 件次品,抽检n 件时所得次品数X=m 则()m M m n N n M N C C P X m C --==.此时我们称随机变量X 服从超几何分布 1)超几何分布的模型是不放回抽样 2)超几何分布中的参数是M,N,n

条件概率与独立事件、二项分布练习题及答案

条件概率与独立事件、二项分布 1.(2012·广东汕头模拟)已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为( ) A .0.85 B .0.819 2 C .0.8 D .0.75 2.(2011·广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A.34 B.23 C.35 D.12 3.(2011·湖北高考)如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为( ) A .0.960 B .0.864 C .0.720 D .0.576 4.(2011·辽宁高考)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( ) A.18 B.14 C.25 D.1 2 5.(2012·山西模拟)抛掷一枚硬币,出现正反的概率都是1 2 ,构造数列{a n },使得a n = ????? 1 (第n 次抛掷时出现正面),-1 (第n 次抛掷时出现反面), 记S n =a 1+a 2+…+a n (n ∈N *),则S 4=2的概率为( ) A.116 B.18 C.1 4 D.1 2 6.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是( ) A.12 B.13 C.14 D.25 7.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为16 25 ,则该队员每次罚球的命中率为________. 8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于

有关二项分布与超几何分布问题区别举例

关于“二项分布”与“超几何分布” 问题举例 一.基本概念 1.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件 X=k 发生的概率为:P(X=k)= n N k n M N k M C C C --?,k= 0,1,2,3,,m ; 其中,m = min M,n ,且n N , M N . n,M,N N 为超几何分布;如果一个变量X 的分布列为超几何分布列,则称随几变量X 服从超几何分布.其中,EX= n M N 2.二项分布

在n次独立重复试验中,设事件A发生的次数为X,在每次试验中,事件A发生的概率为P,那么在n次独立重复试中,事件A恰好发生k次的概率为: P(X=k)= C n k p k(1-p)n-k(k=0,1,2,3,,n),此时称随机变量X服从二项分布. 记作:X B(n,p),EX= np 3.“二项分布”与“超几何分布”的联系与区别 (1)“二项分布”所满足的条件 每次试验中,事件发生的概率是相同的;是一种放回抽样.各次试验中的事件是相互独立的;每次

试验只有两种结果,事件要么发生,要么不发生;随机变量是这n次独立重复试验中事件发生的次数. (2)“超几何分布”的本质:在每次试验中某一事件发生的概率不相同,是不放回抽样,“当样本容量很大时,超几何分布近似于二项分布; (3)“二项分布”和“超几何分布”是两种不同的分布,但其期望是相等的.即:把一个分布看成是“二项分布”或“超几何分布”时,它们的期望是相同的.事实上,对于“超几何 分布”中,若p= M N ,则EX= ∑ = - - ? ? n i n N k n M N k M C C C k 1 =

二项分布经典例题+练习题

二项分布 1.n 次独立重复试验 一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中()0P A p =>。我们将这样的试验称为n 次独立重复试验,也称为伯努利试验。 (1)独立重复试验满足的条件 第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都只有两种结果。 (2)n 次独立重复试验中事件A 恰好发生k 次的概率 ()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k == k k n k n C p q -,其中 0 1.1,0,1,2,,,p p q k n <<+== 则称X 服从参数为,n p 的二项分布,记作(,)X B n p 。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3.甲乙两人各进行3次射击,甲每次击中目标的概率为2 1,乙每次击中目标的概率为3 2.

(1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且 规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (Ⅰ)求X的分布列; (Ⅱ)求X的数学期望E(X). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投 篮投中的概率为1 3,乙每次投篮投中的概率为1 2 ,且各次投篮互不 影响. (Ⅰ) 求甲获胜的概率;

选修2-3随机变量及其分布知识点汇总典型例题

选修2-3随机变量及其分布知识点汇总典型例题

————————————————————————————————作者:————————————————————————————————日期:

2-3随机变量及其分布 离散型随机变量及其分布列(1)随机变量:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.通常用字母X ,Y ,ξ,η等表示. (2)离散型随机变量:所有取值可以一一列出的随机变量称为离散型随机变量.(3)离散型随机变量的分布列: 要点归纳 一、 1. 一般地,若离散型随机变量X 可能取的不同值为x 1,x 2…,x i ,…x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下: X x 1x 2…x i …x n P p 1 p 2 … p i … p n 我们将上表称为离散型随机变量X 的概率分布列,简称为X 的分布列.有时为了简单起见,也用等式P (X =x i )=p i , i =1,2,…,n 表示X 的分布列.(4)离散型随机变量的分布列的性质:①p i ≥0,i =1,2,…,n ; ② i =1n p i =1.

(5)常见的分布列: 两点分布:如果随机变量X 的分布列具有下表的形式,则称X 服从两点分布,并称p =P (X =1)为成功概率. X 01P 1-p p 两点分布又称0-1分布,伯努利分布. 超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为P (X = k )=C k M C n - k N -M C n N ,k =0,1,2,…,m ,即 X 0 1 …m P … C 0M C n - N -M C n N C 1M C n - 1 N -M C n N C m M C n - m N -M C n N 其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.二项分布及其应用2. (1)条件概率:一般地,设A 和B 是两个事件,且P (A )>0,称P (B |A )= P (AB ) P (A ) 为在事件A 发生的条件下,事件B 发生 的条件概率.P (B |A )读作A 发生的条件下B 发生的概率. (2)条件概率的性质:①0≤P (B |A )≤1; ②必然事件的条件概率为1,不可能事件的条件概率为0; (4)独立重复试验:一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验. (5)二项分布:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为 ③如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). (3)事件的相互独立性:设A ,B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立.如果事件A 与B 相互独立,那么A 与B -,A -与B ,A -与B -也都相互独立.

二项分布、超几何分布、正态分布总结归纳及练习

二项分布与超几何分布辨析 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均 为,3次取球可以看成3次独立重复试验,则1~35X B ?? ???,. 3 03 1464(0)55125P X C ???? ==?= ? ????? ∴; 12 13 1448(1)55125 P X C ???? ==?= ? ?????; 21 231412(2)55125P X C ???? ==?= ? ?????; 3 33 141(3)55125 P X C ???? ==?= ? ?????. 因此,X 的分布列为 X 0 1 2 3 P 64125 48125 12125 1125 2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有: 03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101 (2)15 C C P Y C ===. 因此,Y 的分布列为 Y 0 1 2 P 715 715 115 辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的. 超几何分布和二项分布都是离散型分布

二项分布经典例题+练习题

二项分布 1.n 次独立重复试验 一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中()0P A p =>。我们将这样的试验称为n 次独立重复试验,也称为伯努利试验。 (1)独立重复试验满足的条件 第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都只有两种结果。 (2)n 次独立重复试验中事件A 恰好发生k 次的概率 ()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k == k k n k n C p q -,其中 0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作(,)X B n p 。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。

2.一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设 1. 他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是 3 (1)设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列; (2)设η为这名学生在首次停车前经过的路口数,求η的分布列;(3)求这名学生在途中至少遇到一次红灯的概率. 1,乙每次击3.甲乙两人各进行3次射击,甲每次击中目标的概率为 2 2. 中目标的概率为 3 (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (Ⅰ)求X的分布列; (Ⅱ)求X的数学期望E(X).

条件概率与超几何分布及二项分布练习题()

条件概率及乘法公式练习题 1.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇数的 条件下第二张也是奇数的概率( ) 2.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽 取一粒,求这粒种子能成长为幼苗的概率。 3?某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的 1 1 概率是2,在第一次闭合出现红灯的条件下第二次闭合还出现红灯的概率是3,求两次闭合都出现红灯的概率。 4.市场供应的灯泡中,甲厂产品占有70%乙厂产品占有30%甲厂产品的合格率为95% 乙厂产品的合格率为80%现从市场中任取一灯泡,假设A= “甲厂生产的产品” ,A = “乙厂生产的产品”,B=“合格灯泡”,B = “不合格灯泡”,求: (1) P(B|A) ; (2) P( B |A) ; (3) P(B| A ) ; ( 4) P( B | A). 超几何分布及二项分布练习题 1. 一个袋子中装有大小形状完全相同的编号分别为1,2,3,4,5 的5个红球与编号为1,2,3,4 的4个白球,从中任意取出3个球. (I)求取出的3个球颜色相同且编号是三个连续整数的概率; (n)求取出的3个球中恰有2个球编号相同的概率; 2.今年雷锋日,某中学从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的 名额分配如下: (I )若从20名学生中选出3人参加文明交通宣传,求他们中恰好有1人是高一年级学生的概率; (II )若将4名教师安排到三个年级 (假设每名教师加入各年级是等可能的,且各位教师

的选择是相互独立的),记安排到高一年级的教师人数为X,求随机变量X的分布列和数学期望.

选修2-3随机变量及其分布知识点总结典型例题

2-3随机变量及其分布 离散型随机变量及其分布列(1)随机变量:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.通常用字母X ,Y ,ξ,η等表示. (2)离散型随机变量:所有取值可以一一列出的随机变量称为离散型随机变量.(3)离散型随机变量的分布列: 要点归纳 一、 1. 一般地,若离散型随机变量X 可能取的不同值为x 1,x 2…,x i ,…x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下: X x 1x 2…x i …x n P p 1 p 2 … p i … p n 我们将上表称为离散型随机变量X 的概率分布列,简称为X 的分布列.有时为了简单起见,也用等式P (X =x i )=p i , i =1,2,…,n 表示X 的分布列.(4)离散型随机变量的分布列的性质:①p i ≥0,i =1,2,…,n ; ② i =1n p i =1.

(5)常见的分布列: 两点分布:如果随机变量X 的分布列具有下表的形式,则称X 服从两点分布,并称p =P (X =1)为成功概率. X 01P 1-p p 两点分布又称0-1分布,伯努利分布. 超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为P (X = k )=C k M C n - k N -M C n N ,k =0,1,2,…,m ,即 X 0 1 …m P … C 0M C n - N -M C n N C 1M C n - 1 N -M C n N C m M C n - m N -M C n N 其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.二项分布及其应用2. (1)条件概率:一般地,设A 和B 是两个事件,且P (A )>0,称P (B |A )= P (AB ) P (A ) 为在事件A 发生的条件下,事件B 发生 的条件概率.P (B |A )读作A 发生的条件下B 发生的概率. (2)条件概率的性质:①0≤P (B |A )≤1; ②必然事件的条件概率为1,不可能事件的条件概率为0; (4)独立重复试验:一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验. (5)二项分布:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为 ③如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). (3)事件的相互独立性:设A ,B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立.如果事件A 与B 相互独立,那么A 与B -,A -与B ,A -与B -也都相互独立.

经典高考概率分布类型题归纳(供参考)

经典高考概率类型题总结 一、超几何分布类型 二、二项分布类型 三、超几何分布与二项分布的对比 四、古典概型算法 五、独立事件概率分布之非二项分布(主要在于如何分类) 六、综合算法 一、超几何分布 1.甲、乙两人参加普法知识竞赛,共设有10个不同的题目,其中选择题6个,判断题4个. (1)若甲、乙二人依次各抽一题,计算: ①甲抽到判断题,乙抽到选择题的概率是多少? ②甲、乙二人中至少有一人抽到选择题的概率是多少? (2)若甲从中随机抽取5个题目,其中判断题的个数为X ,求X 的概率分布和数学期望. 二、二项分布 1.某市医疗保险实行定点医疗制度,按照“就近就医、方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在的地区附近有A ,B ,C 三家社区医院,并且他们对社区医院的选择是相互独立的. (1)求甲、乙两人都选择A 社区医院的概率; (2)求甲、乙两人不选择同一家社区医院的概率; (3)设4名参加保险人员中选择A 社区医院的人数为X ,求X 的概率分布和数学期望. 2.某广场上有4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红 灯的概率都是23,出现绿灯的概率都是13.记这4盏灯中出现红灯的数量为X , 当这排装饰灯闪烁一次时: (1)求X =2时的概率;

(2)求X 的数学期望. 解 (1)依题意知:X =2表示4盏装饰灯闪烁一次时,恰好有2盏灯出现红 灯,而每盏灯出现红灯的概率都是23, 故X =2时的概率P =C 24? ????232? ????132=827 . (2)法一 X 的所有可能取值为0,1,2,3,4,依题意知 P(X =k )=C k 4? ????23k ? ?? ??134-k (k =0,1,2,3,4). ∴X 的概率分布列为 ∴数学期望E(X)=0×18+1×881+2×881+3×3281+4×1681=83. 三、超几何分布与二项分布的对比 有一批产品,其中有12件正品和4件次品,从中有放回地依 次任取3件,若X 表示取到次品的次数,则P (X )= . 辨析: 1.有一批产品,其中有12件正品和4件次品,从中不放回地依 次任取3件,若X 表示取到次品的件数,则P (X )= 2. 有一批产品,其中有12件正品和4件次品,从中有放回地依 次任取件,第k 次取到次品的概率,则P (X )= 3.有一批产品,其中有12件正品和4件次品,从中不放回地依 次任取件,第k 次取到次品的概率,则P (X )= 四、古典概型算法

(完整版)超几何分布典型例题(附答案)

1.20世纪50年代,日本熊本县水俣市的许多居民都患了运动失调、四肢麻木等症状,人们把它称为水俣病.经调查发现一家工厂排出的废水中含有甲基汞,使鱼类受到污染。人们长期食用含高浓度甲基汞的鱼类引起汞中毒.引起世人对食品安全的关注.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.00ppm. 罗非鱼是体型较大,生命周期长的食肉鱼,其体内汞含量比其他鱼偏高.现从一批罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前一位数字为茎,小数点后一位数字为叶)如下: (Ⅰ)若某检查人员从这15条鱼中,随机地抽出3条,求恰有1条鱼汞含量超标的概率; (Ⅱ)以此15条鱼的样本数据来估计这批鱼的总体数据.若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的鱼汞含量超标的条数,求ξ的分布列及Eξ. 【分析】①不放回→超几何分布 ②N=15,汞含量超标的鱼为X,则X服从一个参数为15(N).5(M).3(n)的超几何分布 ③由频率估计概率/由样本估计总体 2句都等价于将N无限化→不是超几何分布 ④做n次独立重复实验,每次实验成功的概率都相同→二项分布 法2:设3条鱼中汞含量超标的鱼的条数为X.则X服从一个参数为15、5、3的超几何分布 ∴P(X=1)= (每个概率的求得过程必须有公式和最简结果,再画表格)

设“学生持满意态度”为事件A,由题意可知该事件满足古典概型。 ∴P(A)= (Ⅱ)由题意可知,服从参数为14、3、4的超几何分布. (右上角为4-k)

(1)解:设“扫黑除恶利国利民”的卡片有M张 设抽取2张卡片中“扫黑除恶利国利民·”的卡片数为X,则X服从参数为9、M、2的超几何分布。 故由题意可得,即解得M=4 则抽奖者获奖的概率为 (为防止与第二问雷同,将X改为Y)(2)【分析】甲乙丙三人在抽奖过程中互不影响,各自独立,可看作3次独立重复实验,故为二项分布解:设中奖为事件A(下求中奖的概率) 即 则X服从参数为3(抽奖的人数)、5/9(中奖概率)的二项分布. 补充:数学期望

相关主题