搜档网
当前位置:搜档网 › 电磁感应综合问题

电磁感应综合问题

电磁感应综合问题
电磁感应综合问题

电磁感应综合问题

感应电路综合问题,综合了磁场、电场、电磁感应、电路、力与运动、能量动量等等几乎高中全部的重点知识内容,并且涉及到的电路结构、动态过程都属于高中阶段较难的问题,因此在历年高考中都有选择题或计算题出现,分值在6分到18分不等。

对于感应电路综合问题,一方面要求对相关基础知识要相当熟练,一方面要求有画等效电路图(理清电路结构)的习惯,再就是要求对感应电路综合问题的问题类型及相应解决方法很熟悉。

下面,我们将高中物理中的感应电路综合问题按问题类型分别举例并说明各个问题类型的处理方法。 一、电路问题

1.回路总电动势问题:动生电动势、感生电动势

当感应电路中有几个部分产生电动势或者几个原因引起电磁感应现象时,就涉及回路总电动势的问题(本文只涉及电动势串联的问题)。若感应电路中同时产生了几个电动势,回路中总电动势的求解方法是:沿顺时针(或逆时针)方向分析回路中各个电动势,方向沿顺时针则为正,方向沿逆时针则为负,然后将所有带正负号的电动势相加,其代数和的绝对值,即为回路中的总电动势。当然,回路中的总电动势,也可直接用法拉第电磁感应定律E n

t

=?对整个回路求解,只是很多时候要用到微元、微商的思路。

高中物理中常见的问题类型是双棒切割磁感线、感生动生现象同时存在两类。如下: 1.(2015·新课标全国Ⅱ·15)如图5,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )

A .U a >U c ,金属框中无电流

B .U b >U c ,金属框中电流方向沿a -b -c -a

C .U bc =-1

2

Bl 2ω,金属框中无电流

D .U bc =1

2

Bl 2ω,金属框中电流方向沿a -c -b -a

2.图中a 1b 1c 1d 1和a 2b 2c 2d 2为在同一竖直面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。导轨的a 1b 1段与a 2b 2段是竖直的,距离为l 1;c 1d 1段与c 2d 2段也是竖直的,距离为l 2。x 1y 1与x 2y 2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m 1和m 2,它们都垂直于导轨并与导轨保持光滑接触。两杆与导轨构成的回路的总电阻为R 。F 为作用于金属杆x 1y 1上的竖直向上的恒力。已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。

[答案]g m m R l l B g m m F P )()()(2

12

12221+-+-=

,R l l B g m m F Q 2

1221])()([-+-= 2.电路中的电压、电流的计算

此类问题要注意理清电路结构——分析清楚哪部分是“电源”(电源电动势和内阻各是多少),哪部分是”外电路”——画出等效电路图,然后结合闭合电路、部分电路相关知识来求解,特别要注意电动势和路端电压的区别。

3.如图所示,一根电阻为Ω=6.0R 的导线弯成一个圆形线圈,圆半径1m r =,圆形线圈质量1kg m =,此线圈放在绝缘光滑的水平面上,在y 轴右侧有垂直于线圈平面0.5T B =的匀强磁场。若线圈以初动能05J E =沿x 轴方向滑进磁场,当进入磁场0.5m 时,线圈中产生的电能为3J t E =。求: (1)此时线圈的运动速度;

(2)此时线圈与磁场左边缘两交接点间的电压; (3)此时线圈加速度大小。

[答案](1)2/v m s =;(2)23

3

ab U V =

(3)22.5/a m s =。 3.通过某个支路的电量

感应电路一般是不稳定电路,电路中的电流是随时间变化的,所以要求解一段时间t ?通过电路中某个支路的电量q ,需要在理清电路结构的基础上,分析通过该支路的平均电流I ,然后用q I t =?求解。

求通过某个支路的电量,有两种问题类型,其一是知道磁通量的变化量,则可用法拉第电磁感应定律E n

t

=?和欧姆定律求I 。 4.如图所示,由粗细相同的导线制成的正方形线框边长为L ,每条边的电阻均为R ,其中ab 边材料的密度较大,其质量为m ,其余各边的质量均可忽略不计.线框可绕与cd 边重合的水平轴O O '自由转动,不计空气阻力及摩擦.若线框从水平位置由静止释放,经历时间t 到达竖直位置,此时ab 边的速度大小为v .若线框始终处在方向竖直向下、磁感强度为B 的匀强磁场中,重力加速度为g .求: (1)线框在竖直位置时,ab 边两端的电压及所受安培力的大小; (2)在这一过程中,线框中感应电动势的有效值; (3)在这一过程中,通过线框导线横截面的电荷量。

[答案](1)3

4ab U BLv =,224B L v F R

=安;

(2)t R mv mgL E /)2

1(22

-=有,(3)24BL q R =。

5.竖直光滑的金属半圆形固定滑道PQ 的半径为2L ,圆心为O ,同心半圆MN

的半径为L ,在两个半圆环之间有匀强磁场,磁感应强度为B ,有一个轻质金属杆,电阻为2r ,长度为2L 一端以O 为轴,另一端固定一个质量为m 的小球,小球可看作质点。轻杆由水平位置静止滑下,在轻杆运动中轻杆于滑道接触良好,在轴O 和滑道PQ 之间接入一个定值电阻r ,在轻杆滑到竖直位置过程中,定值电阻r 生热为Q 。如图所示,不计导线、滑道的电阻及空气阻力。求:

(1)轻杆从水平位置滑到竖直位置过程中,通过电阻r 的电荷量是多少? (2)轻杆滑到竖直位置时,定值电阻r 上的热功率是多少?

4.有磁场变化但不产生感应电流的条件:Φ1=Φ2

6.如图所示,固定于水平面上的金属架CDEF 处在竖直向下的匀强磁场中,金属棒MN 沿框架以速度v 向右匀速运动。t=0时,磁感应强度为B 0,此时MN 到达的位置恰好使MDEN 构成一个边长为l 的正方向。为使MN 棒中不产生感应电流,从t=0开始,磁感应强度B 应怎样随时间t 变化?请推导这种情况下B 与t 的关系式。

7.如图所示,MN 、PQ 为间距L=0.5m 足够长的平行导轨,NQ ⊥MN ,导轨的电阻不计,导轨平面与水平面间夹角θ=370,NQ 间连接有一个R=4Ω的电阻。有一匀强磁场垂直于导轨平面且方向向上,磁感应强度B 0=1T.将一根阻值未知质量为m=0.05kg 的金属棒ab 紧靠NQ 放置在导轨上,且与导轨接触良好。现由静止释放金属棒,当金属棒滑行至cd 处时达到稳定速度,已知在此过程中通过金属棒横截面的电量q=0.2C ,且金属棒加速度a 与速度v 的关系如图乙所示,设金属沿导轨向下运动过程中始终与NQ 平行(取g=10m/s 2)。求:

(1)金属棒与导轨间的动摩擦因数μ和cd 离NQ 的距离s ; (2)金属棒滑行至cd 处过程中,电阻R 上产生的热量;

(3)若金属棒滑行至cd 处的时刻记作t=0

,从此时刻起,让磁感应强度逐渐

减小,为使金属棒中不产生感应电流,则磁感应强度B应怎样随时间t变化(写出B与t的关系式)。

二、力学问题

1.动态过程分析

导体棒切割磁感线产生的感应电动势E BLv

=与导体棒的运动速度v有关,即感应电路中的电流I、导体棒所受安培力F与导体棒的运动速度v有关。若导体棒最初受力不平衡,则导体棒的运动就必然是一个动态运动过程——速度改变引起受力改变,受力改变引起加速度改变,加速度改变则速度不均匀改变——运动参量都随时间不均匀变化。

这类问题的分析,必须列出导体棒的动力学方程,方程中包含导体棒的运动速度v,然后根据具体模型分析速度v变化趋势(增大或减小),进而由速度v的变化分析加速度a变化——运动性质的转折点往往是加速度0

a=时。

感应电路中的动态过程的两个典型模型是单棒收尾速度模型和双棒收尾速度模型。

8.如图所示,MN、PQ为间距L=0.5m足够长的平行导轨,NQ⊥MN。导轨平面与水平面间的夹角θ=37°,NQ间连接有一个R=5Ω的电阻。有一匀强磁场垂直于导轨平面,磁感强度为B0=1T。将一根质量为m=0.05kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好,导轨与金属棒的电阻均不计。现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ平行。已知金属棒与导轨间的动摩擦因数μ=0.5,当金属棒滑行至cd处时已经达到稳定速度,cd距离NQ为s=1m。试解答以下问题:(g=10m/s2,sin37°=0.6,cos37°=0.8)

(1)当金属棒滑行至cd处时回路中的电流多大?

(2)金属棒达到的稳定速度是多大?

(3)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感强度逐渐减小,可使金属棒中不产生感应电流,则t=1s时磁感应强度应为多大?[答案](1)0.2A;(2)2m/s;(3)

1

T

4

9..如图所示,金属棒a跨接在两金属轨道间,从高h处由静止开始沿光滑弧形平行金属轨道下滑,进入轨道的光滑水平部分之后,在自下向上的匀强磁场中运动,磁场的磁感应强度为B。在轨道的水平部分另有一个跨接在两轨道间的金属棒b,在a棒从高处滑下前b棒处于静止状态。已知两棒质量之比m a/m b=3/4,电阻之比为R a/R b=1/2,求:

(1)a棒进入磁场后做什么运动?b棒做什么运动?

(2)a棒刚进入磁场时,a、b两棒加速度之比.?

(3)如果两棒始终没有相碰,a和b的最大速度各多大?

[答案](1)棒a做加速度减小的减速运动,棒b做加速度减小的加速运动,当v a=v b 时,两棒的速度达到最大;(2)

4

3

a

b

a

a

=-,“-”表示棒a、b的加速度方向相反;(3)棒a、b 速度均为

32

7

gh

v=。

10.(2015·天津理综·11)如图15所示,“凸”字形硬质金属线框质量为m,相邻各边互相垂直,且处于同一竖直平面内,ab边长为l,cd边长为2l,ab与cd平行,间距为2l.匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面.开始时,cd边到磁场上边界的距离为2l,线框由静止释放,从cd边进入磁场直到ef、pq边进入磁场前,线框做匀速运动,在ef、pq边离开磁场后,ab边离开磁场之前,线框又做匀速运动.线框完全穿过磁场过程中产生的热量为Q.线框在下落过程中始终处于原竖直平面内,且ab、cd边保持水平,重力加速度为g.求:

图15

(1)线框ab 边将要离开磁场时做匀速运动的速度大小是cd 边刚进入磁场时的几倍; (2)磁场上、下边界间的距离H .

2.用微元法对含容导轨的进行运动分析: 11.[2013·新课标全国卷Ⅰ]如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于导轨平面.在导轨上放置一质量为m 的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:

(1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系.

[答案](1)设金属棒下滑的速度大小为v ,则感应电动势为 E =BLv ①

平行板电容器两极板之间的电势差为 U =E ②

设此时电容器极板上积累的电荷量为Q ,按定义有 C =Q U ③

联立①②③式得

Q =CBLv ④

(2)设金属棒的速度大小为v 时经历的时间为t ,通过金属棒的电流为i.金属棒受到的磁场的作用力方向沿导轨向上,大小为[来源:https://www.sodocs.net/doc/6210134060.html,]

f 1=BLi ⑤

设在时间间隔(t ,t +Δt)内流经金属棒的电荷量为ΔQ ,按定义有

i =

ΔQ

Δt

⑥ ΔQ 也是平行板电容器极板在时间间隔(t ,t +Δt)内增加的电荷量.由④式得 ΔQ =CBL Δv ⑦

式中,Δv 为金属棒的速度变化量.按定义有 a =Δv Δt

金属棒所受到的摩擦力方向斜向上,大小为 f 2=μN ⑨

式中,N 是金属棒对于导轨的正压力的大小,有 N =mgcos θ⑩

金属棒在时刻t 的加速度方向沿斜面向下,设其大小为a ,根据牛顿第二定律有

mgsin θ-f 1-f 2=ma ○

11 联立⑤至○11式得 a =m (sin θ-μcos θ)

m +B 2L 2C

g ○

12 由○

12式及题设可知,金属棒做初速度为零的匀加速运动.t 时刻金属棒的速度大小为

v =m (sin θ-μcos θ)

m +B 2L 2C

gt ○

13

三、能量问题

用能量守恒的思路处理时,要熟悉一个功能关系——安培力做功与电能关系:

——安培力做负功,将其他形式能转化为电能。 另外,此类问题要特别注意,具体题目中问的是整个电路中产生的焦耳热还是

某个支路产生的焦耳热。 12.(08全国卷Ⅱ)(19分)如图,一直导体棒质量为m 、长为l 、电阻为r ,其两端放在位于水平面内间距也为l 的光滑平行导轨上,并与之密接;棒左侧两导轨之间连接一可控制的负载电阻(图中未画出);导轨置于匀强磁场中,磁场的磁感

电E W F ?-=

应强度大小为B ,方向垂直于导轨所在平面。开始时,给导体棒一个平行于导轨的初速度v 0。在棒的运动速度由v 0减小至v 1的过程中,通过控制负载电阻的阻值使棒中的电流强度I 保持恒定。导体棒一直在磁场中运动。若不计导轨电阻,求此过程中导体棒上感应电动势的平均值和负载电阻上消耗的平均功率。

[答案]()1021

v v Bl E +=

()r I v v Bl P 21022

1

-+=

13.如图甲所示,光滑且足够长的平行金属导轨MN 、PQ 固定在同一水平面上,两导轨间距为L =1m ,定值电阻R 1=3Ω,R 2=1.5Ω,导轨上放一质量为m =1kg 的金属杆,导轨和金属杆的电阻不计,整个装置处于磁感应强度为B =0.8T 的匀强磁场中,磁场的方向垂直导轨平面向下,现用一拉力F 沿水平方向拉杆,使金属杆由静止开始运动。图乙所示为通过R 1中的电流平方随时间变化的I 12—t 图线,求: (1)5s 末金属杆的动能; (2)5s 末安培力的功率; (3)5s 内拉力F 做的功。

[答案](1)112.5J ;(2)-7.2W ;(3)292.5J

14.(06江苏卷)(17分)如图所示,顶角θ=45°,的金属导轨MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向右滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均为r ,导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求:

(1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。

(4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。

[答案](1)电流强度0

(22)Bv I r

=+,电流方向b →a ;

(2)2202

(22)B v t

F r

=+;

(3)Q=

r

)22(2t

v B 2

2

302+;

(4)2002

0)t v (B r

mv )22(2x ++=

15.[2013·江苏卷] (15分)如图所示,匀强磁场中有一矩形闭合线圈abcd ,线圈平面与磁场垂直.已知线圈的匝数N =100,边长ab =1.0m 、bc =0.5m ,电阻r =2Ω.磁感应强度B 在0~1s 内从零均匀变化到0.2T .在1~5s 内从0.2T 均匀变化到-0.2T ,取垂直纸面向里为磁场的正方向.求:

(1)0.5s 时线圈内感应电动势的大小E 和感应电流的方向; (2)在1~5s 内通过线圈的电荷量q ; (3)在0~5s 内线圈产生的焦耳热Q.

[答案] (1)感应电动势E 1=N ΔΦ1

Δt 1

磁通量的变化ΔΦ1=ΔB 1S 解得E 1=N ΔB 1S

Δt 1

代入数据得E 1=10V

感应电流的方向为a →d →c →b →a (2)同理可得E 2=N ΔB 2S

Δt 2

感应电流I 2=E 2

r

电量q =I 2Δt 2 解得q =N ΔB 2S

r

代入数据得q =10C.

(3)0~1s 内的焦耳热Q 1=I 21r Δt 1 且I 1=E 1r

1~5s 内的焦耳热Q 2=I 22r Δt 2

由Q =Q 1+Q 2,代入数据得Q =100J 跟踪训练: 1.如图所示,光滑金属导轨框架MON 竖直放置,水平方向的匀强磁场垂直MON 平面.金属棒ab 从∠abO =60°位置由静止释放.在重力的作用下,金属棒ab 的两端沿框架滑动.在金属棒ab 由图示位置滑动到水平位置的过程中,金属棒ab 中感应电流的方向是( )

A .始终由a 到b

B .始终由b 到a

C .先由a 到b ,再由b 到a

D .先由b 到a ,再由a 到b

答案:D

2.【福建省连江尚德中学2016届高三3月模拟检测理科综合物理试题】用一根横截面积为S 、电阻率为ρ的硬质导线做成一个半径为r 的圆环,ab 为圆环的直径,t =0时刻在ab 的左侧存在一个匀强磁场,磁场垂直圆环所在平面,方向如甲图,磁感应强度B 与时间t 的关系如乙图,则0—t 1时间内下面说法正确的是()

A .圆环一直具有扩展的趋势

B .圆环中产生逆时针方向的感应电流

C .圆环中感应电流的大小为ρ004t rS B

D .图中a 、b 两点之间的电势差0

2

02t r B U AB π=

【答案】C

3.(2015·安徽理综·19)如图2所示,abcd 为水平放置的平行“”形光滑金属

导轨,间距为l ,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B ,导轨电阻不计.已知金属杆MN 倾斜放置,与导轨成θ角,单位长度的电阻为r ,保持金属杆以速度v 沿平行于cd 的方向滑动(金属杆滑动过程中与导轨接触良好).则( )

图2

A .电路中感应电动势的大小为Bl v

sin θ

B .电路中感应电流的大小为B v sin θ

r

C .金属杆所受安培力的大小为B 2l v sin θ

r

D .金属杆的发热功率为B 2l v 2

r sin θ

4.【安徽省六安市第一中学2016届高三下学期一模考试理科综合】如图所示,匀强磁场的方向垂直于光滑的金属导轨平面向里,极板间距为d 的平行板电容器与总电阻为02R 的滑动变阻器通过平行导轨连接,电阻为0R 的导体棒MN 可在外力的作用下沿导轨从左向右做匀速直线运动,当滑动变阻器的滑动触头位于a 、b 的中间位置,导体棒MN 的速度为0v 时,位于电容器中P 点的带电油滴恰好处于静止状态,若不计摩擦和平行导轨及导线的电阻,重力加速度为g ,则下列判断正确的是

A 、油滴带正电

B 、若将上极板竖直向上移动距离d ,油滴将向上加速运动,加速度2

g

a =

C 、若将导体棒的速度变为02v ,油滴将向上加速运动,加速度2a g =

D 、若保持导体棒的速度为0v 不变,而将滑动触头置于a 位置,同时将电容器上极板向上移动距离3

d

,油滴仍将静止 【答案】D

5.(多选)(2015·黑龙江第六中学二模)如图20所示,在半径为R 的半圆形区域

内,有磁感应强度为B 的垂直纸面向里的有界匀强磁场,PQM 为圆内接三角形,且PM 为圆的直径,三角形的各边由材料相同的细软导线组成(不考虑导线中电流间的相互作用).设线圈的总电阻为r 且不随形状改变,此时∠PMQ =37°,已知sin37°=0.6,cos37°=0.8.则下列说法正确的是( )

图20 A .穿过线圈PQM 的磁通量为Φ=0.96BR 2

B .若磁场方向不变,只改变磁感应强度B 的大小,且B =B 0+kt (k 为常数,k >0),则线圈中产生的感应电流大小为I =0.96kR 2

r

C .保持P 、M 两点位置不变,将Q 点沿圆弧顺时针移动到接近M 点的过程中,线圈中感应电流的方向先沿逆时针,后沿顺时针

D .保持P 、M 两点位置不变,将Q 点沿圆弧顺时针移动到接近M 点的过程中,线圈中不会产生焦耳热

6.[2014·浙江卷] 某同学设计一个发电测速装置,工作原理如图所示.一个半径为R =0.1 m 的圆形金属导轨固定在竖直平面上,一根长为R 的金属棒OA ,A 端

与导轨接触良好,O 端固定在圆心处的转轴上.转轴的左端有一个半径为r =R 3的

圆盘,圆盘和金属棒能随转轴一起转动.圆盘上绕有不可伸长的细线,下端挂着一个质量为m =0.5 kg 的铝块.在金属导轨区域内存在垂直于导轨平面向右的匀强磁场,磁感应强度B =0.5 T .a 点与导轨相连,b 点通过电刷与O 端相连.测量a 、b 两点间的电势差U 可算得铝块速度.铝块由静止释放,下落h =0.3 m 时,测得U =0.15 V .(细线与圆盘间没有滑动,金属棒、导轨、导线及电刷的电阻均不计,重力加速度g 取10 m/s 2

)

24

题图

(1)测U时,与a点相接的是电压表的“正极”还是“负极”?

(2)求此时铝块的速度大小;

(3)求此下落过程中铝块机械能的损失.

[答案] (1)正极(2)2 m/s(3)0.5 J

7.如图12-17所示,水平地面上方的H高区域内有匀强磁场,水平界面PP′是磁场的上边界,磁感应强度为B,方向是水平的,垂直于纸面向里.在磁场的正上方,有一个位于竖直平面内的闭合的矩形平面导线框abcd,ab长为l1,bc长为l2,H>l2,线框的质量为m,电阻为R.使线框abcd从高处自由落下,ab边下落的过程中始终保持水平,已知线框进入磁场的过程中的运动情况是:cd边进入磁场以后,线框先做加速运动,然后做匀速运动,直到ab边到达边界PP′为止.从线框开始下落到cd边刚好到达水平地面的过程中,线框中产生的焦耳热为Q.求:

图12-17

(1)线框abcd在进入磁场的过程中,通过导线的某一横截面的电荷量是多少?

(2)线框是从cd边距边界PP′多高处开始下落的?

(3)线框的cd边到达地面时线框的速度大小是多少?

8.[2014·新课标Ⅱ卷]半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、质量为m且质量分布均匀的直导体棒AB置于圆导轨上面,BA的延长线通过圆导轨中心O,装置的俯视图如图所示.整个装置位于一匀强磁场中,磁感应强度的大小为B,方向竖直向下.在内圆导轨的C点和外圆导轨的D点之间接有一阻值为R的电阻(图中未画出).直导体棒在水平外力作用下以角速度ω绕O逆时针匀速转动,在转动过程中始终与导轨保持良好接触.设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略.重力加速度大小g.求

(1)通过电阻R的感应电流的方向和大小:

(2)外力的功率.

25. [答案] (1)从C端流向D端

3ωBr2

2R

(2)

3

2

μmgωr+

9ω2B2r4

4R

9.(2015·浙江理综·24)小明同学设计了一个“电磁天平”,如图24甲所示,等臂天平的左臂为挂盘,右臂挂有矩形线圈,两臂平衡.线圈的水平边长L=0.1m,竖直边长H=0.3m,匝数为N1.线圈的下边处于匀强磁场内,磁感应强度B0=1.0T,方向垂直线圈平面向里.线圈中通有可在0~2.0A范围内调节的电流I.挂盘放上待测物体后,调节线圈中电流使天平平衡,测出电流即可测得物体的质量.(重力加速度取g=10m/s2)

图24

(1)为使“电磁天平”的量程达到0.5kg ,线圈的匝数N 1至少为多少?

(2)进一步探究电磁感应现象,另选N 2=100匝、形状相同的线圈,总电阻R =10Ω.不接外电流,两臂平衡.如图乙所示,保持B 0不变,在线圈上部另加垂直纸面向外的匀强磁场,且磁感应强度B 随时间均匀变大,磁场区域宽度d =0.1m .当挂盘中放质量为0.01kg 的物体时,天平平衡,求此时磁感应强度的变化率ΔB

Δt .

10.如图所示,两竖直金属导轨PQ 、EF 平行且足够长,导轨间距离为L ,在导轨下端Q 、F 之间接有一个阻值为R 的电阻,导轨间有垂直于纸面的匀强磁场(图中未画出)。质量为m 的金属杆垂直于两导轨放置,与两道轨接触良好,但无摩擦,金属杆在导轨间部分的电阻为r 。金属杆系在以轻质细线上,细线通过一光滑定滑轮与一质量为4m 的物块相连。初始时金属杆距QF 的高度为h 。将物块由静止释放,金属杆上升h 高度后,与物块一起做匀速运动。设此过程中匀强磁场的磁感应强度大小为B 。导轨的电阻不计,重力加速度为g 。

(1) 求金属杆匀速运动时的速度大小。

(2) 求金属杆上升h 高度过程中,金属杆上产生的热量。

(3) 设金属杆匀速运动速度为v 0,若金属杆上升h 高度开始计时,从t=0时刻

开始,磁场的磁感应强度大小B 随时间t 发生变化,此过程中,电阻R 中无电流流过,试写出磁感应强度B 随时间t 变化关系式。

11.【北京市海淀区2016届高三下学期期中练习理科综合】24.(20分) 在如图甲所示的半径为r 的竖直圆柱形区域内,存在竖直向上的匀强磁场,磁感应强度大小随时间的变化关系为B =kt (k >0且为常量)。

(1)将一由细导线构成的半径为r 、电阻为R 0的导体圆环水平固定在上述磁场中,并使圆环中心与磁场区域的中心重合。求在T 时间内导体圆环产生的焦耳热。 (2)上述导体圆环之所以会产生电流是因为变化的磁场会在空间激发涡旋电场,该涡旋电场趋使导体内的自由电荷定向移动,形成电流。如图乙所示,变化的磁场产生的涡旋电场存在于磁场内外的广阔空间中,其电场线是在水平面内的一系列沿顺时针方向的同心圆(从上向下看),圆心与磁场区域的中心重合。在半径为r 的圆周上,涡旋电场的电场强度大小处处相等,并且可以用2E r

ε

π=

涡计算,其中ε为由于磁场变化在半径为r 的导体圆环中产生的感生电动势。如图丙所示,在磁场区域的水平面内固定一个内壁光滑的绝缘环形真空细管道,其内环半径为r ,

管道

中心与磁场区域的中心重合。由于细管道半径远远小于r ,因此细管道内各处电场强度大小可视为相等的。某时刻,将管道内电荷量为q 的带正电小球由静止释放(小球的直径略小于真空细管道的直径),小球受到切向的涡旋电场力的作用而运动,该力将改变小球速度的大小。该涡旋电场力与电场强度的关系和静电力与电场强度的关系相同。假设小球在运动过程中其电荷量保持不变,忽略小球受到的重力、小球运动时激发的磁场以及相对论效应。

○1若小球由静止经过一段时间加速,获得动能E m ,求小球在这段时间内在真空细管道内运动的圈数;

②若在真空细管道内部空间加有方向竖直向上的恒定匀强磁场,小球开始运动后经过时间t 0,小球与环形真空细管道之间恰好没有作用力,求在真空细管道内部所加磁场的磁感应强度的大小。

【答案】(1)2240

T k r Q R π=(2)a. m 2

E N kq r π= ; b. kt 0/2 ②小球的切向加速度大小为2

F kqr

a m m

=

= 由于小球沿速度方向受到大小恒定的电场力,所以经过时间t 0, 小球的速度大小v 满足v =at 0

小球沿管道做圆周运动,因为小球与管道之间没有相互作用力,所以,小球受到的洛伦兹力提供小球的向心力,设所加磁场的磁感应强度为B 0,

则有qvB 0=mv 2/r 解得:B 0=kt 0/2

12.【北京市西城区2016 年高三一模试卷理科综合能力测试】(1)如图1所示,固定于水平面的U 形导线框处于竖直向下、磁感应强度为B 0的匀强磁场中,导线框两平行导轨间距为l ,左端接一电动势为E 0、内阻不计的电源。一质量为m 、电阻为r 的导体棒MN 垂直导线框放置并接触良好。闭合开关S ,导体棒从静止开始运动。忽略摩擦阻力和导线框的电阻,平行轨道足够长。请分析说明导体棒MN 的运动情况,在图2中画出速度v 随时间t 变化的示意图;并推导证明导体棒达到的最大速度为l

B E v 00m =;

(2)直流电动机是一种使用直流电流的动力装置,是根据通电线圈在磁场中受到安培力的原理制成的。如图3所示是一台最简单的直流电动机模型示意图,固定部分(定子)装了一对磁极,旋转部分(转子)装设圆柱形铁芯,将abcd 矩形导线框固定在转子铁芯上,能与转子一起绕轴OO '转动。线框与铁芯是绝缘的,线框通过换向器与直流电源连接。定子与转子之间的空隙很小,可认为磁场沿径向分布,线框无论转到什么位置,它的平面都跟磁感线平行,如图4所示(侧面图)。已知ab 、cd 杆的质量均为M 、长度均为L ,其它部分质量不计,线框总电阻为R 。电源电动势为E ,内阻不计。当闭合开关S ,线框由静止开始在磁场中转动,线框所处位置的磁感应强度大小均为B 。忽略一切阻力与摩擦。

a .求:闭合开关后,线框由静止开始到转动速度达到稳定的过程中,电动机产生的内能Q 内;

b .当电动机接上负载后,相当于线框受到恒定的阻力,阻力不同电动机的转动速度也不相同。求:ab 、cd 两根杆的转动速度v 多大时,电动机的输出功率P 最大,并求出最大功率P m 。

【答案】(1)见下列的解析过程;(2)a.

;b.

图4

图 3

v m

t

v

图2

E 0

B 0

N

M

图1

S

(2)a

类似于(1)中的分析过程,线框由静止开始加速转动的过程也是一个加速度减小的加速过程。设线框转动时ab cd的最大速度为v m’,此时,线圈转动产生的反电动势等于直流电源电动势,即E=2Bl v m’,

解得:v m’=E/2BL

设ab,cd棒速度v’时,线框回路中对应的电流为I’。此时,两棒所受安培力均为,在时间内,对一根棒应用动量定理可得:F’Δt=MΔv’。在线圈从静止到达稳定的过程中,有BLΣ(I’t)= MΔv m’.在此过程中,电源输出的总能量E总=ΣEI’Δt=EΣ(I’Δt)

联立解得:E总=E2M/2B2L2;线框稳定转动时,动能E k=2*

2

1

Mv m2=E2M/4B2L2

由能量守恒有解得:E总=Q内+E K

解得Q内=E2M/4B2L2

b.当电动机加上负载后,设线框所受等效阻力为f,即电动机输出的动力大小也为f,设此时对应的杆ab,cd的稳定转动速度为v’’。则线框回路中的电流是I’’=(E-2BL v’’)/R,每根杆受到的安培F’’= I’’BL=BL(E-2BL v’’)/R。由于线圈此时稳定转动,由平衡条件有:f=2 F’’=2 I’’BL=2BL(E-2BL v’’)/R

因此,电动机的输出功率为P=fv’’=2BL v’’(E-2BL v’’)/R,因此,当v’’=E/4BL时,功率有最大值P m=E2/4R

考点:法拉第电磁感应定律,安培力做功计算,能量守恒定律应用;

电磁感应动力学问题归纳.doc

电磁感应动力学问题归纳 重、难点解析: (一)电磁感应中的动力学问题 电磁感应和力学问题的综合,其联系桥梁是磁场对感应电流的安培力,因为感应电流与导体运动的加速度有相互制约的关系,这类问题中的导体一般不是做匀变速运动,而是经历一个动态变化过程再趋于一个稳定状态,故解这类问题时正确进行动态分析确定最终状态是解题的关键。 1.动态分析:求解电磁感应中的力学问题时,要抓好受力 分析和运动情况的动态分析,导体在拉力作用下运动,切割磁感线产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化,周而复始地循环,当循环结束时,加速度等于零, 导体达到稳定运动状态。此时 a=0,而速度 v 通过加速达到最大值,做匀速直线运动;或通过减速达到稳定值,做匀速直线运动 . 2.两种状态的处理:当导体处于平衡态——静止状态或匀速直线运动状态时,处理的途径是:根据合外力等于零分析。当导体处于非平衡态——变速运动时,处理的途径是:根据牛顿第二定律进行动态分析,或者结合动量的观点分析 . 3.常见的力学模型分析: 类型“电—动—电”型 示 意 图 棒 ab 长为 L,质量 m,电阻 R,导轨光 滑,电阻不计 BLE F S 闭合,棒 ab 受安培力R ,此时 BLE “动—电—动”型 棒 ab 长 L ,质量 m,电阻 R;导轨光滑,电阻不计 棒 ab 释放后下滑,此时 a g sin ,棒ab 速度 v↑→感应电动势E=BLv ↑→电 分 a mR ,棒ab速度v↑→感应电动势I E 析 BLv ↑→电流 I ↓→安培力 F=BIL ↓→ 加速度 a↓,当安培力F=0 时, a=0, v 最大。 运动 变加速运动 形式 最终 v m E 状态BL 匀速运动流 R ↑→安培力F=BIL↑→加速度a↓,当安培力 F mg sin 时, a=0, v 最大。 变加速运动 mgR sin v m 2 L2 匀速运动 B 4.解决此类问题的基本步骤: (1)用法拉第电磁感应定律和楞次定律(包括右手定则)求出感应电动势的大小和方向(2)依据全电路欧姆定律,求出回路中的电流强度. ( 3)分析导体的受力情况(包含安培力,可利用左手定则确定所受安培力的方向). ( 4)依据牛顿第二定律列出动力学方程或平衡方程,以及运动学方程,联立求解。

【精品专题】动量定理与电磁感应地综合应用

动量定理与电磁感应的综合应用 姓名:____________ 【例题精讲】 例1:如图所示,水平面上有两根相距0.5m足够长的平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R=3Ω的定值电阻;有一质量m=0.1kg,长L=0.5m,电阻r=1Ω的导体棒ab,与导轨接触良好,整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=1T,在t=0s开始,使ab以v0=10m/s的初速度向右运动,直至ab停止,求: (1)t=0时刻,棒ab两端电压; (2)整个过程中R上产生的总热量是多少; (3)整个过程中ab棒的位移是多少 针对训练1-1:如图所示,两条相距L的光滑平行金属导轨位于同一竖直面(纸面)内,其上端接一阻值为R的电阻;在两导轨间OO′下方区域内有垂直导轨平面向里的匀强磁场,磁感应强度为B。现使电阻为r、质量为m的金属棒ab由静止开始自OO′位置释放,向下运动距离d后速度不再变化。(棒ab与导轨始终保持良好的电接触且下落过程中始终保持水平,导轨电阻不计). (1)求棒ab在向下运动距离d过程中回路产生的总焦耳热; (2)棒ab从静止释放经过时间t0下降了0.5d,求此时刻的速度大小。

针对训练1-2:(浙江2015年4月选考)如图所示,质量m=3.0×10-3kg的“”型金属细框竖直放置在两水银槽中,“”型框的水平细杆CD长l=0.20 m,处于磁感应强度大小B1=1.0 T、方向水平向右的匀强磁场中,有一匝数n=300匝、面积S=0.01 m2的线圈通过开关K与两水银槽相连。线圈处于与线圈平面垂直的、沿竖直方向的匀强磁场中,其磁感应强度B2的大小随时间t变化的关系如图所示。 (1)求0~0.10 s线圈中的感应电动势大小; (2)t=0.22 s时闭合开关K,若细杆CD所受安培力方向竖直向上,判断CD中的电流方向及磁感应强度B2的方向; (3)t=0.22 s时闭合开关K,若安培力远大于重力,细框跳起的最大高度h=0.20 m,求通过细杆CD的电荷量。 针对训练1-3:(浙江2017年11月选考)所图所示,匝数N=100、截面积s=1.0×10-2m2、电阻r=0.15Ω的线圈内有方向垂直于线圈平面向上的随时间均匀增加的匀强磁场B1,其变化率k=0.80T/s。线圈通过开关S连接两根相互平行、间距d=0.20m的竖直导轨,下端连接阻值R=0.50Ω的电阻。一根阻值也为0.50Ω、质量m=1.0×10-2kg的导体棒ab搁置在等高的挡条上。在竖直导轨间的区域仅有垂直纸面的不随时间变化的匀强磁场B2。接通开关S后,棒对挡条的压力恰好为零。假设棒始终与导轨垂直,且与导轨接触良好,不计摩擦阻力和导轨电阻。 (1)求磁感应强度B2的大小,并指出磁场方向; (2)断开开关S后撤去挡条,棒开始下滑,经t=0.25s后下降了h=0.29m,求此过程棒上产生的热量。

高中物理电磁感应综合问题讲课教案

电磁感应综合问题 电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下两个方面: (1)受力情况、运动情况的动态分析。思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化 →……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。要画好受力图, 抓住 a =0时,速度v 达最大值的特点。 (2)功能分析,电磁感应过程往往涉及多种能量形势的转化。例如:如图所示中的金属棒ab 沿导轨由静止下滑时,重力势能减小,一部分用来克服安培力做功转化为感应电流的电能,最终在R 上转转化为焦耳热,另一部分转化为金属棒的动能.若导轨足够长,棒最终达到稳定状态为匀速运动时,重力势能用来克服安培力做功转化为感应电流的电能,因此,从功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往是解决电磁感应问题的重要途径. 【例1】 如图1所示,矩形裸导线框长边的长度为2l ,短边的长度为l ,在两个短边上均接有电阻R ,其余部分电阻不计,导线框一长边与x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin( l x B B 20π=。一光滑导体棒AB 与短边平行且与长边接触良好,电 阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求: (1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律; (2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。 答案:(1))() ( sin v l t R l vt v l B F 203222220≤≤= π (2)R v l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B=0.5T 。一质量为m=01kg 的金属杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,

(完整版)电磁感应综合练习题(基本题型,含答案)

电磁感应综合练习题(基本题型) 一、选择题: 1.下面说法正确的是 ( ) A .自感电动势总是阻碍电路中原来电流增加 B .自感电动势总是阻碍电路中原来电流变化 C .电路中的电流越大,自感电动势越大 D .电路中的电流变化量越大,自感电动势越大 【答案】B 2.如图9-1所示,M 1N 1与M 2N 2是位于同一水平面内的两条平行金属导轨,导轨间距为L 磁感应强度为B 的匀强磁场与导轨所 在平面垂直,ab 与ef 为两根金属杆,与导轨垂直且可在导轨上滑 动,金属杆ab 上有一伏特表,除伏特表外,其他部分电阻可以不计,则下列说法正确的是 ( ) A .若ab 固定ef 以速度v 滑动时,伏特表读数为BLv B .若ab 固定ef 以速度v 滑动时,ef 两点间电压为零 C .当两杆以相同的速度v 同向滑动时,伏特表读数为零 D .当两杆以相同的速度v 同向滑动时,伏特表读数为2BLv 【答案】AC 3.如图9-2所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。 如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置 时的加速度关系为 ( ) A .a 1>a 2>a 3>a 4 B .a 1 = a 2 = a 3 = a 4 C .a 1 = a 2>a 3>a 4 D .a 4 = a 2>a 3>a 1 【答案】C 4.如图9-3所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S 接通一瞬间,两铜环的运动情况是( ) A .同时向两侧推开 B .同时向螺线管靠拢 C .一个被推开,一个被吸引,但因电源正负极未知,无法具体判断 D .同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断 【答案】 A 图9-2 图9-3 图9-4 图9-1

电磁感应中的综合问题

电磁感应中的综合问题 1.电磁感应中的力学问题 电磁感应中通过导体的感应电①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向; 流,在磁场中将受到安培力的作用.②求回路中电流; ;电磁感应问题往往和力学问题联系在③分析导体受力情况 一起,解决这类问题的基本方法是:④列出动力学方程或平衡方程并求解. 电磁感应中的力学问题,常常以导体棒在滑轨上运动的形式出现一种是滑轨上仅一个导体棒的运 动.这种情况有两种类型:①“电一动一电”类型 如图所示,水平放置的光滑平行导轨MN、PQ放有长为l、电阻为R、质量为m的金属棒ab.导轨左端接内电阻不计、电动势为E的电源形成回路,整个装置放在竖直向上的匀强磁场B之中.导轨电阻不计且足够长,并与开关S串接.当刚闭合开关时,棒ab因电而动,其受安培力FBlab有最大加速度amaxE,方向向右,此时ab具RBlabE.然而,ab 一旦具有了速度,则因动而电,立即产生了电动势.因为速度决mR定感应电动势,而感应电动势与电池的电动势反接

又导致电流减小,从而使安培力变小,故加速度减小,不难分析ab导体的运动是一种复杂的变加速运动.当FA=0,ab 速度将达最大值,故ab运动的收尾状态为匀速运动,且达到的最大速度为vmax= E. Bl ②“动一电一动”类型. 如图所示,型平行滑轨PQ、MN与水平方向成α角.长度l、质量m,电阻为R的导体ab紧贴在滑轨并与PM平行、滑轨电阻不计.整个装置处于 与滑轨平面正交、磁感应强度为B的匀强磁场中,滑轨足够长.导体ab静止 释放后,于重力作用下滑,此时具有最大加速度amax=gsinα.ab一旦运动。 则因动而生电,产生感应电动势,在PMba回路中产生电流,磁场对此电流作用力刚好与下滑力方向反向,随着a 棒下滑速度不断增大. E=Blv,IE,则电路 R中电流随之变大,安培阻力 B2l2F变大,直到与下 R滑力的合力为零,即加速度为零,以vmax= mgRsin的 22Bl最大速度收尾.此过程中,重力势能转化为ab棒的动能与回路中电阻 2耗散的热能之和.电磁感应中的力学问题,另一种是滑轨上有两个导体棒的运动情况,这种情况下两棒的运动特点可用右表进行

电磁感应综合应用

电磁感应综合应用 1.闭合矩形导线框abcd 固定在匀强磁场中,磁场的方向与导线框所在平面垂直,磁感应强度B 随时间t 变化的规律如图所示。规定垂直纸面向里为磁场的正方向,abcda 的方向为线框中感应电流的正方向,水平向右为安培力的正方向。关于线框中的电流i 与ad 边所受的安培力F 随时间t 变化的图象,下列正确的是( ) 2.如图所示,平行于y 轴的导体棒以速度v 向右匀速直线运动,经过半径为R 、磁感应强度为B 的圆形匀 强磁场区域,导体棒中的感应电动势ε与导体棒位置x 关系的图像是(A) 3.电阻R 、电容C 与一线圈连成闭合回路,条形磁铁静止于线圈的正上方,N 极朝下,如图所示,现使磁铁开始自由下落,在N 极接近线圈上端的过程中,流过R 的电流 方向和电容器极板的带电情况是( ) A .从a 到b ,上极板带正电 B .从a 到b ,下极板带正电 C .从b 到a ,上极板带正电 D .从b 到a ,下极板带正电 4.用相同导线绕制的边长为L 或2L 的四个闭合导体线框,以相同的速 度匀速进入右侧匀强磁场,如图所示。在每个线框进入磁场的过程中, M 、z 两点间的电压分别为U a 、U b 、U c 和U d 。下列判断正确的是 A .U a <U b <U c <U d B .U a <U b <U d <U c C .U a =U b <U c =U d D .U b <U a <U d <U c 5.如右图所示,在匀强磁场B 中放一电阻不计的平行金属导轨,导轨跟固定的 大导体矩形环M 相连接,导轨上放一根金属导体棒ab 并与导轨紧密接触,磁感 应线垂直于导轨所在平面。若导体棒匀速地向右做切割磁感线的运动,则在此 过程中M 所包围的固定闭合小矩形导体环N 中电流表内 ( ) A.有自下而上的恒定电流 B .产生自上而下的恒定电流 C .电流方向周期性变化 D .没有感应电流 6.如图所示电路中,L 是一电阻可忽略不计的电感线圈,a 、b 为L 上的左右两端点, A 、 B 、 C 为完全相同的三个灯泡,原来电键K 是闭合的,三个灯泡均在发光。某时 刻将电键K 打开,则下列说法正确的是( ) A .a 点电势高于b 点,A 灯闪亮后缓慢熄灭 B .b 点电势高于a 点,B 、 C 灯闪亮后缓慢熄灭 C .a 点电势高于b 点,B 、C 灯闪亮后缓慢熄灭 D .b 点电势高于a 点,B 、C 灯不会闪亮只是缓慢熄灭 7.如图甲所示, MN 左侧有一垂直纸面向里的匀强磁场。现将一边长为l 、质量为m 、电阻为R 的正方形金属线框置于该磁场中,使线框平面与磁场垂直,且bc 边与磁场边界MN 重合。当t=0时,对线框施加一水平拉力F ,使线框由静止开始向右做匀加速直线运动;当t=t 0时,线框的ad 边与磁场边界MN 重合。图乙为拉力F 随时间变化的图线。由以上条件可知,磁场的磁感应强度B 的大小为 A .B = .B =C .B = . B = a d 0F 03F 0甲乙××××××B ××××

2020届高考物理二轮复习 专题四 电路与电磁感应 提升训练15 电磁感应的综合问题

提升训练15 电磁感应的综合问题 1.一实验小组想要探究电磁刹车的效果。在遥控小车底面安装宽为L、长为 2.5L的N匝矩形线框,线框电阻为R,面积可认为与小车底面相同,其平面与水平地面平行,小车总质量为m。其俯视图如图所示,小车在磁场外行驶时的功率保持P不变,且在进入磁场前已达到最大速度,当车头刚要进入磁场时立即撤去牵引力,完全进入磁场时速度恰好为零。已知有界磁场PQ和MN间的距离为2.5L,磁感应强度大小为B,方向竖直向上,在行驶过程中小车受到地面阻力恒为F f。求: (1)小车车头刚进入磁场时,线框的感应电动势E; (2)电磁刹车过程中产生的焦耳热Q; (3)若只改变小车功率,使小车刚出磁场边界MN时的速度恰好为零,假设小车两次与磁场作用时间相同,求小车的功率P'。 2.(2017浙江义乌高三模拟)如图所示,固定在上、下两层水平面上的平行金属导轨MN、M'N'和OP、O'P'间距都是l,二者之间固定有两组竖直半圆形轨道PQM和P'Q'M',它们是用绝缘材料制成的,两轨道间距也均为l,且PQM和P'Q'M'的竖直高度均为4R,两组半圆形轨道的半径均为R。轨道的QQ'端、MM'端的对接狭缝宽度可忽略不计,图中的虚线为绝缘材料制成的固定支架。下层金属导轨接有电源,当将一金属杆沿垂直导轨方向搭接在两导轨上时,将有电流从电源正极流出,经过导轨和金属杆流回电源负极。此时金属杆将受到导轨中电流所形成磁场的安培力作用而运动。运动过程中金属杆始终与导轨垂直,且接触良好。当金属杆由静止开始向右运动4R到达水平导轨末端PP'位置时其速度大小v P=4。已知金属杆质量为m,两轨道间的磁场可视为匀强磁场,其磁感应强度与电流的关系为B=kI(k为已知常量),金属杆在下层导轨的运动可视为匀加速运动,运动中金属杆所受的摩擦阻力、金属杆和导轨的电阻均可忽略不计。 (1)求金属杆在下层导轨运动过程中通过它的电流大小。

电磁感应综合问题(解析版)

构建知识网络: 考情分析: 楞次定律、法拉第电磁感应定律是电磁学部分的重点,也是高考的重要考点。高考常以选择题的形式考查电磁感应中的图像问题和能量转化问题,以计算题形式考查导体棒、导线框在磁场中的运动、电路知识的相关应用、牛顿运动定律和能量守恒定律在导体运动过程中的应用等。备考时我们需要重点关注,特别是导体棒的运动过程分析和能量转化分析。 重点知识梳理: 一、感应电流 1.产生条件???? ? 闭合电路的部分导体在磁场内做切割磁感线运动 穿过闭合电路的磁通量发生变化 2.方向判断? ???? 右手定则:常用于切割类 楞次定律:常用于闭合电路磁通量变化类 3.“阻碍”的表现???? ? 阻碍磁通量的变化增反减同阻碍物体间的相对运动来拒去留 阻碍原电流的变化自感现象 二、电动势大小的计算

三、电磁感应问题中安培力、电荷量、热量的计算 1.导体切割磁感线运动,导体棒中有感应电流,受安培力作用,根据E =Blv ,I =E R ,F =BIl ,可得F =B 2l 2v /R . 2.闭合电路中磁通量发生变化产生感应电动势,电荷量的计算方法是根据E =ΔΦΔt ,I =E R ,q = I Δt 则q =ΔΦ/R ,若线圈匝数为n ,则q =nΔΦ/R . 3.电磁感应电路中产生的焦耳热,当电路中电流恒定时,可以用焦耳定律计算,当电路中电流发生变化时,则应用功能关系或能量守恒定律计算. 四、自感现象与涡流 自感电动势与导体中的电流变化率成正比,比例系数称为导体的自感系数L 。线圈的自感系数L 与线圈的形状、长短、匝数等因数有关系。线圈的横截面积越大,匝数越多,它的自感系数就越大。带有铁芯的线圈其自感系数比没有铁芯的大得多。 【名师提醒】 典型例题剖析: 考点一:楞次定律和法拉第电磁感应定律 【典型例题1】 (2016·浙江高考)如图所示,a 、b 两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长l a =3l b ,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则( ) A .两线圈内产生顺时针方向的感应电流 B .a 、b 线圈中感应电动势之比为9∶1 C .a 、b 线圈中感应电流之比为3∶4

电磁感应中的综合问题

电磁感应中的综合问题 教学目标 通过电磁感应综合题目的分析与解答,深化学生对电磁感应规律的理解与应用,使学生在建立力、电、磁三部分知识联系的同时,再次复习力与运动、动量与能量、电路计算、安培力做功等知识,进而提高学生的综合分析能力. 教学重点、难点分析 1.电磁感应的综合问题中,往往运用牛顿第二定律、动量守恒定律、功能关系、闭合电路计算等物理规律及基本方法,而这些规律及方法又都是中学物理学中的重点知识,因此进行与此相关的训练,有助于学生对这些知识的回顾和应用,建立各部分知识的联系.但是另一方面,也因其综合性强,要求学生有更强的处理问题的能力,也就成为学生学习中的难点. 2.楞次定律、法拉第电磁感应定律也是能量守恒定律在电磁感应中的体现,因此,在研究电磁感应问题时,从能量的观点去认识问题,往往更能深入问题的本质,处理方法也更简捷,“物理”的思维更突出,对学生提高理解能力有较大帮助,因而应成为复习的重点. 教学过程设计 一、力、电、磁综合题分析 〈投影片一〉 [例1] 如图3-9-1所示,AB、CD是两根足够长的固定平行金属导 轨,两导轨间的距离为l,导轨平面与水平面的夹角为θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感强度为B,在导轨的A、D端连接一个阻值为R 的电阻.一根垂直于导轨放置的金属棒ab,其质量为m,从静止开始沿导轨下滑.求:ab棒下滑的最大速度.(要求画出ab棒的受力图,已知ab与导轨间的动摩擦因数为μ,导轨和金属棒的电阻都不计) 教师:(让学生审题,随后请一位学生说题.)题目中表达的是什么物理现象?ab棒将经历什么运动过程?——动态分析.

电磁感应中的综合应用

电磁感应中的综合应用 一、电磁感应中的电路问题 1. 切割磁感线的导体或磁通量发生变化的回路产生感应电动势, 确定感应电动势和内阻 2. 正确分析电路的结构,画出等效电路图 3. 利用电路规律求解?主要闭合电路欧姆定律、串并联电路性质特点、电功、 解未知物理量. 1. 把总电阻为2R 的均匀电阻丝焊接成一半径为 a 的圆环,水平固定在 竖直向下的磁感应强度为 B 的匀强磁场中,如右图所示,一长度为2a, 电阻等于R,粗细均匀的金属棒 MN 放在圆环上,它与圆环始终保持良 好的电接触.当金属棒以恒定速度 v 向右移动经过环心 0时,求: (1)棒上电流的大小和方向; ⑵棒两端的电压UMN ⑶在圆环和金属棒上消耗的总热功率. 0.4 0 6 0 3,th 则这部分电路就是等效电源, 电热的公式.求 R =0.6 Q 的电 B =0.6T 的匀强磁场,磁场区域宽 D =0.2m ,细金属棒A 1和 A 2用长为2 D =0.4m 的轻质绝缘杆连接,放置在导轨平面上,并与导轨垂直.每根金属棒 在导轨间 的电阻均为 r =0.3 Q 导轨电阻不计.使金属棒以恒定速度 v =1.0m/s 沿导轨向右穿越 磁场.计算从金属棒A 1进入磁场(t =0) 电流强度,并在图(b )中画出. 2.如图(a )所示,水平放置的两根据平行金属导轨,间距 阻.区域abed 内存在垂直于导轨平面 L=0.3m ,导轨左端连接 到A 2离开磁场的时间内,不同时间段通过电阻R 的 *9 A1* li A M fe I 如 0 16 □ 14 0 0,10 0 00 0 06 0.04 0.02 ■ III II ■III X- X X X X X X X X X X X 用 X X V

2020届高考物理一轮复习专题13 电磁感应综合问题名校试题汇编(学生版)

专题13 电磁感应综合问题名校试题汇编 一、选择题 1.(多选)(2019·湖北省武汉市调研)如图甲所示,在足够长的光滑的固定斜面上放置着金属线框,垂直于斜面方向的匀强磁场的磁感应强度B 随时间的变化规律如图乙所示(规定垂直斜面向上为正方向).t =0时刻将线框由静止释放,在线框下滑的过程中,下列说法正确的是( ) A.线框中产生大小、方向周期性变化的电流 B.MN 边受到的安培力先减小后增大 C.线框做匀加速直线运动 D.线框中产生的焦耳热等于其机械能的损失 2.(多选)(2019·福建省厦门市质检)如图所示,在倾角为θ的光滑固定斜面上,存在着磁感应强度大小为B 的匀强磁场,磁场方向垂直斜面向上,磁场的宽度为2L .一边长为L 的正方形导线框,由静止开始沿斜面下滑,当ab 边刚越过GH 进入磁场瞬间和刚越过MN 穿出磁场瞬间速度刚好相等.从ab 边刚越过GH 处开始计时,规定沿斜面向上为安培力的正方向,则线框运动的速率v 与线框所受安培力F 随时间变化的图线中,可能正确的是( ) 3.(2018·全国卷Ⅱ·18)如图,在同一水平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁 场区域,区域宽度均为l ,磁感应强度大小相等、方向交替向上向下.一边长为32 l 的正方形金属线框在导轨上向左匀速运动.线框中感应电流i 随时间t 变化的正确图线可能是( )

4.(多选)(2019· 方向垂直纸面向外,一正方形金属线框质量为m,电阻为R,边长为L,从虚线处进入磁场时开始计时,在外力作用下,线框由静止开始,以垂直于磁场边界的恒定加速度a进入磁场区域,t1时刻线框全部进入磁场,规定顺时针方向为感应电流I的正方向,外力大小为F,线框中电功率的瞬时值为P,通过导线横截面的电荷量为q,选项中P-t图象和q-t图象均为抛物线,则这些量随时间变化的图象正确的是() 5.(多选)(2018·广西北海市一模)如图甲所示,导体框架abcd放置于水平面内,ab平行于cd,导体棒MN与两导轨垂直并与导轨接触良好,整个装置放置于垂直于框架平面的磁场中,磁感应强度B随时间变化规律如图乙所示,MN始终保持静止.规定竖直向上为磁场正方向,沿导体棒由M到N为感应电流的正方向,水平向右为导体棒所受安培力F的正方向,水平向左为导体棒所受摩擦力F f的正方向,下列图象中正确的是()

电磁感应与力学综合问题

电磁感应与力学综合练习2 1.两根电阻不计的光滑金属导轨,平行放置在倾角为 的斜面上.导轨的下端接有电阻R ,斜面处在匀强磁场中,磁场方向垂直于斜面向上,质量为m ,电阻不计的金属棒ab ,在沿斜面与棒垂直的恒力F 作用下,沿斜面匀速上滑,并上升h 高度,在这个过程中:( ) A 、作用于金属棒上的各力的合力所做的功等于零; B 、恒力F 与安培力的合力所做的功等于零; C 、恒力F 与重力的合力所做的功等于电阻R 上发出的焦耳热; D 、作用于金属棒上的各力的合力所做的功等于mgh 与电阻上发出的焦耳热之和; 2.如图所示,竖直面内的虚线上方是一匀强磁场B ,从虚线下方竖直上抛一正方形线圈,线圈越过虚线进入磁场,最后又落回原处,运动过程中线圈平面保持在竖直平面内,不计空气阻力,则: A .上升过程克服磁场力做的功大于下降过程克服磁场力做的功 B .上升过程克服磁场力做的功等于下降过程克服磁场力做的功 C .上升过程克服重力做功的平均功率大于下降过程中重力的平均功率 D .上升过程克服重力做功的平均功率等于下降过程中重力的平均功率 3.如图所示,虚线框abcd 内为一矩形匀强磁场区域,ab=2bc,磁场方向垂直于纸面;实线框a ′b ′c ′d ′是一正方形导线框,a ′b ′边与ab 边平行.若将导线框以相同的速度匀速地拉离磁场区域,以W 1表示沿平行于ab 的方向拉出过程中外力所做的功,W 2表示以同样速率沿平行于bc 的方向拉出过程中外力所做的功,则 A.W 1=W 2 B.W 2=2W 1 C.W 1=2W 2 D.W 2=4W 1 4.一条形磁铁用细线悬挂处于静止状态,一铜质金属环从条形磁铁的正上方由静止开始下落,如图所示,在下落过程中,下列判断中正确的是 A .在下落过程中金属环内产生电流,且电流的方向始终不变 B .在下落过程中金属环的加速度始终等于 g C .磁铁对细线的拉力始终大于其自身的重力 D .金属环在下落过程动能的增加量小于其重力势能的减少量 5、正方形的闭合线框,边长为a ,质量为m ,电阻为R ,在竖直平面内以某一水平初速度在垂直于框面的水平磁场中,运动一段时间t 后速度恒定,运动过程中总有 两条边处在竖直方向(即线框自身不转动),如图58所示。已知磁场的磁感应强度 在竖直方向按B=B 0+ky 规律逐渐增大,如图所示,k 为常数。在时间t 内: A 、水平分速度不断减小;B 、水平分速度不断增大; C 、水平分速度大小不变; D 、在竖直方向上闭合线框做自由落体运动。 6.如图所示,相距均为d 的的三条水平虚线L 1与L 2、L 2与L 3之间分别有垂直纸面向外、向里的匀强磁场,磁感应强度大小均为B 。一个边长也是d 的正方形导线框,从L 1上方一定高处由静止开始自由下落,当ab 边刚越过L 1进入磁场时,恰好以速度v 1做匀速直线运动;当ab 边在越过L 2运动到L 3之前的某个时刻,线框又开始以速度v 2做匀速直线运动,在线框从进入磁场到速度变为v 2的过程中,设线框的动能变化量大小为△E k ,重力对线框做功大小为W 1,安培力对线框做功大小为W 2,下列说法中正确的有( ) A .在导体框下落过程中,由于重力做正功,所以有v 2>v 1 B .从ab 边进入磁场到速度变为v 2的过程中,线框动能的变化量大小为 △E k =W 2-W 1 C .从ab 边进入磁场到速度变为v 2的过程中,线框动能的变化量大小为 △E k =W 1-W 2 D .从ab 边进入磁场到速度变为v 2的过程中,机械能减少了W 1+△ E k 7.如图所示,ABCD 为固定的水平光滑矩形金属导轨,AB 间距离为L ,左右两端均接有阻值为R 的电阻,处在方向竖直向下、磁感应强度大小为B 的匀强磁场中,质量为m 、长为L 的导体棒MN 放在导轨上,甲、乙两根相同的

高考综合复习——电磁感应专题复习二电磁感应的综合应用

高考综合复习一一电磁感应专题复习二 电磁感应的综合应用 编稿:郁章富审稿:李井军 ▲知识梳理 1求解电磁感应中电路问题的关键是分析清楚内电路和外电路。 “切割”磁感线的导体和磁通量变化的线圈都相当于“电源”,该部分导体的电阻相当于内电阻,而其余部分的电路则是外电路。 2 ?几个概念 (1)电源电动势三=汀「'或?。 T] - (2)电源内电路电压降?’,r是发生电磁感应现象导体上的电阻。( r是内电路的 电阻) (3)电源的路端电压u, 一』「「二亠’(R是外电路的电阻)。 3 ?解决此类问题的基本步骤 (1)用法拉第电磁感应定律和楞次定律或右手定则确定感应电动势的大小和方向。 (2)画等效电路:感应电流方向是电源内部电流的方向。 (3)运用闭合电路欧姆定律结合串、并联电路规律以及电功率计算公式等各关系式联立求解。 特别提醒:路端电压、电动势和某电阻两端的电压三者的区别: (1)某段导体作为外电路时,它两端的电压就是电流与其电阻的乘积。 (2)某段导体作为电源时,它两端的电压就是路端电压,等于电流与外电阻的乘积,或 等于电动势减去内电压,当其内阻不计时路端电压等于电源电动势。 (3)某段导体作为电源时,电路断路时导体两端的电压等于电源电动势。 ▲疑难导析 电磁感应与电路知识的综合 1解题思路 (1)明确电源的电动势 F二刃兰二曲E竺二2S&岀卫二Rg E = =科却YL邙直 (交流电)。 (2)明确电源的正、负极:根据电源内部电流的方向是从负极流向正极,即可确定“电源”的正、负极。 (3)明确电源的内阻:相当于电源的那部分电路的电阻。 (4)明确电路关系:即构成回路的各部分电路的串、并联关系。 (5)结合闭合电路的欧姆定律:结合电功、电功率等能量关系列方程求解。

巩固练习 电磁感应中的力电综合问题(基础)

【巩固练习】 一、选择题 1、(2015 山东卷)如图,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动。现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速。在圆盘减速过程中,以下说法正确的是 A .处于磁场中的圆盘部分,靠近圆心处电势高 B .所加磁场越强越易使圆盘停止转动 C .若所加磁场反向,圆盘将加速转动 D .若所加磁场穿过整个圆盘,圆盘将匀速转动 2、(2015 海南卷)如图,空间有一匀强磁场,一直金属棒与磁感应强度方向垂直,当它以速度v 沿与棒和磁感应强度都垂直的方向运动时,棒两端的感应电动势大小ε,将此棒弯成两段长度相等且相互垂直的折弯,置于磁感应强度相垂直的平面内,当它沿两段折线夹角平分线的方向以速度v 运动时,棒两端的感应电动势大小为ε',则ε ε'等于( ) A.1/2 B. 2 2 C.1 D.2 3、一质量为m 的金属杆a b ,以一定的初速度v 0从一光滑平行金属导轨底端向上滑行,导轨平面与水平面成300角,两导轨上端用一电阻R 相连,如图所示,磁场垂直斜面向上,导轨与杆的电阻不计,金属杆向上滑行到某一高度之后又返回到底端, 则在此全过程中( )

A.向上滑行的时间大于向下滑行的时间 B.电阻R上产生的热量向上滑行时大于向下滑行时 C.通过电阻R的电量向上滑行时大于向下滑行时 D.杆a b受到的磁场力的冲量向上滑行时大于向下滑行时 4、如图所示,闭合矩形导体线框abcd从高处自由下落,在ab边开始进入匀强磁场到cd边刚进入磁场这段时间内,线框的速度v随时间t变化的图象可能是图中的 5、甲、乙两个完全相同的铜环可绕固定轴OO'旋转,当给以相同的初速度开始转动后, 由于阻力,经相同的时间后便停止;若将环置于磁感应强度B大小相同的匀强磁场中,甲 环的转轴与磁场方向平行,乙环的转轴与磁场方向垂直,如图 所示,当甲、乙两环同时以相同的初速度开始转动后,则下列 判断正确的是() A.甲环先停B.乙环先停 C.两环同时停下D.无法判断两环停止的先后 6、(2015 北京朝阳质检)如图所示,一刚性矩形铜制线圈从高处自由下落,进入一水平的 匀强磁场区域,然后穿出磁场区域,则( ) A. 若线圈进入磁场过程是匀速运动,则离开磁场过程一定是匀速运动 B. 若线圈进入磁场过程是加速运动,则离开磁场过程一定是加速运动 C. 若线圈进入磁场过程是减速运动,则离开磁场过程一定是加速运动 D. 若线圈进入磁场过程是减速运动,则离开磁场过程一定是减速运动 7、如图所示,两粗细相同的铜、铁导线,围成半径相同的线圈,放在同一变化的磁场中,

电磁感应及综合应用(学案)

电磁感应及综合应用(1) (一)体系呈现 (二)热点精析 ◆电磁感应中的图象问题 【例1】(2012·重庆理综)如图所示,正方形区域MNPQ内有垂 直纸面向里的匀强磁场,在外力作用下,一正方形闭合刚性导线 框沿QN方向匀速运动,t=0时刻,其四个顶点a、b、c、d恰好 在磁场边界中点,下列图像中能反映线框所受安培力f的大小随 时间t变化规律的是 〖变式〗(2011海南物理)如图,EOF和E’O’F’为空间一匀强 磁场的边界,其中EO∥E’O’,FO∥F’O’,且EO⊥OF;OO’为 ∠EOF的角平分线,OO 间的距离为l;磁场方向垂直于纸面向里。 一边长为l的正方形导线框沿OO’方向匀速通过磁场,t=0时刻恰 好位于图示位置。规定导线框中感应电流沿逆时针方向时为正,则感应电流i与时间t 的关系图线可能正确的是 『拓展』(2012·北京海淀期末)如图所示,在方向竖直向下、磁感 应强度为B的匀强磁场中,沿水平面固定一个V字形金属框架CAD, 已知∠A=θ,导体棒EF在框架上从A点开始在外力作用下,沿垂 直EF方向以速度v匀速向右平移,使导体棒和框架始终构成等腰三 角形回路。已知框架和导体棒的材料和横截面积均相同,其单位长

度的电阻均为R ,框架和导体棒均足够长,导体棒运动中始终与磁场方向垂直,且与框架接触良好。关于回路中的电流I 和消耗的电功率P 随时间t 变化关系,下列四个图象中可能正确的是( ) 思路小结: ◆电磁感应中的动力学问题 【例2】(2012·河南洛阳五校联考)如图,在水平桌面上 放置两条相距l 的足够长的平行光滑导轨AB 与CD ,阻 值为R 的电阻与导轨的A 、C 端相连。质量为m 、边长 为l 、电阻不计的正方形线框垂直于导轨并可在导轨上滑 动。整个装置放于匀强磁场中,磁场的方向竖直向上,磁感应强度的大小为B 。滑杆的中点系一不可伸长的轻绳,绳绕过固定在桌边的光滑轻滑轮后,与一个质量也为m 的物块相连,绳处于拉直状态。现若从静止开始释放物块,用h 表示物块下落的高度(物块不会触地),g 表示重力加速度,其他电阻不计,则( ) A .因通过正方形线框的磁通量始终不变,故电阻R 中没有感应电流 B .物体下落的加速度为0.5g C .若h 足够大,物体下落的最大速度为mgR 2B 2l 2 D .物块下降h 的过程中,通过电阻R 的电荷量为Blh R 〖变式〗如图,光滑且足够长的平行金属导轨MN 、PQ 固定在同一水平面上,两导轨间距L =0.2 m ,电阻R =0.4 Ω,与电阻R 并联的电容器的电 容C=0.6×10-6 F .导轨上停放着一质量m =0.1 kg 、电阻r =0.1 Ω的金属杆ab ,导轨电阻不计,整个装置处于磁感 应强度B =0.5 T 的匀强磁场中,磁场方向竖直向上。现用 一在导轨平面内,且垂直于金属杆ab 的外力F ,沿水平方 向拉杆,使之由静止开始做加速度为a =5 m/s 2的匀加速直 线运动。不计电容器充电时对电路的影响。 (1)写出电容器的带电量Q 与时间t 的关系式; (2)求金属杆ab 运动2 s 时外力F 的瞬时功率P 。 思路小结:

电磁感应综合典型例题

电磁感应综合典型例题 【例1】电阻为R的矩形线框abcd,边长ab=L,ad=h,质量为m,自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁场区域的宽度为h,如图所示,若线框恰好以恒定速度通过磁场,线框中产生的焦耳热是_______.(不考虑空气阻力) 【分析】线框通过磁场的过程中,动能不变。根据能的转化和守恒,重力对线框所做的功全部转化为线框中感应电流的电能,最后又全部转化为焦耳热.所以,线框通过磁场过程中产生的焦耳热为 Q=W G=mg—2h=2mgh. 【解答】2mgh。

【说明】本题也可以直接从焦耳热公式Q=I2Rt进行推算: 设线框以恒定速度v通过磁场,运动时间 从线框的cd边进入磁场到ab边离开磁场的过程中,因切割磁感线产生的感应电流的大小为 cd边进入磁场时的电流从d到c,cd边离开磁场后的电流方向从a到b.整个下落过程中磁场对感应电流产生的安培力方向始终向上,大小恒为 据匀速下落的条件,有

因线框通过磁场的时间,也就是线框中产生电流的时间,所以据焦耳定律,联立(l)、(2)、(3)三式,即得线框中产生的焦耳热为 Q=2mgh. 两种解法相比较,由于用能的转化和守恒的观点,只需从全过程考虑,不需涉及电流的产生等过程,计算更为简捷. 【例2】一个质量m=0.016kg、长L=0.5m,宽d=0.1m、电阻R=0.1Ω的矩形线圈,从离匀强磁场上边缘高h1=5m处由静止自由下落.进入磁场后,由于受到磁场力的作用,线圈恰能做匀速运动(设整个运动过程中线框保持平动),测得线圈下边通过磁场的时间△t=0.15s,取g=10m/s2,求: (1)匀强磁场的磁感强度B; (2)磁场区域的高度h2;

电磁感应的综合问题.docx

专题强化十二电磁感应的综合问题 专题解读 1.本专题是运动学、动力学、恒定电流、电磁感应和能量等知识的综合应用,高 考既以选择题的形式命题,也以计算题的形式命题. 2.学好本专题,可以极大地培养同学们数形结合的推理能力和电路分析能力,针对性的专题 强化,可以提升同学们解决数形结合、利用动力学和功能关系解决电磁感应问题的信心. 3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合 电路欧姆定律、平衡条件、牛顿运动定律、函数图象、动能定理和能量守恒定律等. 命题点一电磁感应中的图象问题 1.题型简述 借助图象考查电磁感应的规律,一直是高考的热点,此类题目一般分为两类: (1)由给定的电磁感应过程选出正确的图象; (2)由给定的图象分析电磁感应过程,定性或定量求解相应的物理量或推断出其他图象.常见的图象有 B- t 图、 E- t 图、 i - t 图、 v- t 图及 F-t 图等 . 2.解题关键 弄清初始条件、正负方向的对应变化范围、所研究物理量的函数表达式、进出磁场的转折点 等是解决此类问题的关键. 3.解题步骤 (1)明确图象的种类,即是B-t 图还是Φ- t 图,或者E- t 图、 I- t 图等; (2)分析电磁感应的具体过程; (3)用右手定则或楞次定律确定方向的对应关系; (4)结合法拉第电磁感应定律、闭合电路欧姆定律、牛顿运动定律等知识写出相应的函数关系 式; (5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等; (6)画图象或判断图象. 4.两种常用方法 (1)排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小 )、变化快慢 (均匀变化还是非均匀变化),特别是分析物理量的正负,以排除错误的选项. (2)函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图

电磁感应的综合应用(四)与能量综合

电磁感应的综合应用(四) 电磁感应与能量的结合 一、电磁感应过程中的功能关系 请说出几种复习过的做功与能量转化的关系 ___________________________________________ ___________________________________________ ___________________________________________ ___________________________________________ ___________________________________________ 例题1:如图所示,两根足够长的光滑平行金属导轨与水平面成θ角放置。导轨间距为L ,导轨 上下两端接有阻值均为2R 的电阻R 1和R 2,导轨的电阻不计。整个导轨处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向上。把一根质量为m ,电阻也为R 的金属杆MN 垂直于两根导轨放在导轨平面上,从静止开始释放,运动过程中金属杆与导轨接触良好。求: (1)金属杆MN 运动的最大速度v m 的大小。 (2)金属杆MN 达到最大速度时受到的安培力的大小。 (3)金属杆MN 达到最大速度时,杆上的热功率以及回路的总功 率。 (4)金属杆MN 达到最大速度时,安培力功率的大小。 结论:功是能量转化的量度,在切割产生感应电流的过程中,_________的功等于回路 中产生的电能;_________的功等于回路中产生的焦耳热。 练习1、两根光滑的金属导轨,平行放置在倾角为θ的斜面上,导轨的左端接有电阻R ,导轨自 身的电阻可忽略不计。斜面处在匀强磁场中,磁场方向垂 直于斜面向上。质量为m 、电阻可不计的金属棒ab ,在沿着斜面与棒垂直的恒力F 作用下沿导轨匀速上滑,并上升h 高度。如图所示,在这过程中 A.作用于金属棒上的各个力的合力所做的功等于零 B.作用于金属棒上的各个力的合力所做的功等于mgh 与电阻R 上发出的焦耳热之和 C.恒力F 与安培力的合力所做的功等于零 D.恒力F 与重力的合力所做的功等于电阻R 上发出的焦耳热 练习2、(2009天津)如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R ,质量不能 忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装 置放在匀强磁场中,磁场方向与导轨平面垂直,棒在竖直向上的恒力F 作用下加速上升的一段时间内,力F 做的功与安培力做的功的代数和等于 A.棒的机械能增加量 B.棒的动能增加量 C.棒的重力势能增加量 D.电阻R 上放出的热量 练习3、如图所示,AB 和CD 是足够长的平行光滑导轨,其间距为l ,导轨平面与水平面的夹角 为θ。整个装置处在磁感应强度为B 的,方向垂直于导轨平面向上的匀强磁场中。AC 端连有电阻值为R 的电阻,若将 一质量M ,垂直于导轨的金属棒EF 在距BD 端s 处由静止释放,在EF 棒滑至底端前会有加速和匀速两个运动阶段。今用大小为F ,方向沿斜面向上的恒力把EF 棒从BD 位置由静止推至距BD 端s 处,突然撤去恒力F ,棒EF 最后又回到BD 端。求: (1)EF 棒下滑过程中的最大速度。 (2)EF 棒自BD 端出发又回到BD 端的整个过程中,有多 少电能转化成了内能(金属棒、导轨的电阻均不计)?

相关主题