搜档网
当前位置:搜档网 › 土壤中碱解氮、有效磷、速效钾、有机质、交换钙、镁及有效锌含量测定方法全解

土壤中碱解氮、有效磷、速效钾、有机质、交换钙、镁及有效锌含量测定方法全解

土壤中碱解氮、有效磷、速效钾、有机质、交换钙、镁及有效锌含量测定方法全解
土壤中碱解氮、有效磷、速效钾、有机质、交换钙、镁及有效锌含量测定方法全解

土壤的阳离子交换

土壤的阳离子交换性能是由土壤胶体表面性质所决定,由有机质的交换基与无机质的交换基所构成,前者主要是腐殖质酸,后者主要是粘土矿物。它们在土壤中互相结合着,形成了复杂的有机无机胶质复合体,所能吸收的阳离子总量包括交换性盐基(K+、Na+、Ca++、Mg++)和水解性酸,两者的总和即为阳离子交换量。其交换过程是土壤固相阳离子与溶液中阳离子起等量交换作用。

阳离子交换量的大小,可以作为评价土壤保水保肥能力的指标,是改良土壤和合理施肥的重要依据之一。

测量土壤阳离子交换量的方法有若干种,这里只介绍一种不仅适用于中性、酸性土壤,并且适用于石灰性土壤阳离子交换量测定的EDTA—铵盐快速法。

方法原理采用0.005mol/LEDTA与1mol/L的醋酸铵混合液作为交换剂,在适宜的pH 条件下(酸性土壤pH7.0,石灰性土壤pH8.5),这种交换络合剂可以与二价钙离子、镁离子和三价铁离子、铝离子进行交换,并在瞬间即形成为电离度极小而稳定性较大的络合物,不会破坏土壤胶体,加快了二价以上金属离子的交换速度。同时由于醋酸缓冲剂的存在,对于交换性氢和一价金属离子也能交换完全,形成铵质土,再用95%酒精洗去过剩的铵盐,用蒸馏法测定交换量。对于酸性土壤的交换液,同时可以用作为交换性盐基组成的待测液用。

主要仪器架盘天平(500g)、定氮装置、开氏瓶(150ml)、电动离心机(转速3000—4000转/分);离心管(100ml);带橡头玻璃棒、电子天平(1/100)。

试剂 (1)0.005mol/LEDTA与1mol/L醋酸铵混合液:称取化学纯醋酸铵77.09克及EDTA1.461克,加水溶解后一起冼入1000ml容量瓶中,再加蒸溜水至900ml左右,以1:1氢氧化铵和稀醋酸调至pH至7.0或pH8.5,然后再定容到刻度,即用同样方法分别配成两种不同酸度的混合液,备用。其中pH7.0的混合液用于中性和酸性土壤的提取,pH8.5

的混合液仅适用于石灰性土壤的提取用。

(2)95%酒精。工业用,应无铵离子反应。

(3)2%硼酸溶液:称取20g硼酸,用热蒸馏水(60℃)溶解,冷却后稀释至1000ml,最后用稀盐酸或稀氢氧化钠调节pH至4.5(定氮混合指示剂显酒红色)。

(4)定氮混合指示剂:分别称取0.1克甲基红和0.5克溴甲酚绿指示剂,放于玛瑙研钵中,并用100ml95%酒精研磨溶解。此液应用稀盐酸或氢氧化钠调节pH至4.5。

(5)纳氏试剂(定性检查用):称氢氧化钠134克溶于460ml蒸馏水中;称取碘化钾20克溶于50ml蒸馏水中,加碘化汞使溶液至饱和状态(大约32克左右)。然后将以上两种溶液混合即可。

(6)0.05mol/L盐酸标准溶液:取浓盐酸4.17ml,用水稀释至1000ml,用硼酸标准溶液标定。

(7)氧化镁(固体):在高温电炉中经500—600℃灼烧半小时,使氧化镁中可能存在的碳酸镁转化为氧化镁,提高其利用率,同时防止蒸馏时大量气泡发生。

(8)液态或固态石蜡

操作步骤称取通过60目筛的风干土样1.××克(精确到0.01g),有机质含量少的土样可称2—5克,将其小心放入100ml离心管中。沿管壁加入少量EDTA—醋酸铵混合液,用带橡皮头玻璃棒充分搅拌,使样品与交换剂混合,直到整个样品呈均匀的泥浆状态。再加交换剂使总体积达80ml左右,再搅拌1—2分钟,然后洗净带橡皮头的玻璃棒。

将离心管在粗天平上成对平衡,对称放入离心机中离心3—5分钟,转速3000转/分左右,弃去离心管中的清液。然后将载土的离心管管口向下用自来水冲洗外部,用不含铵离子的95%酒精如前搅拌样品,洗去过剩的铵盐,洗至无铵离子反应为止。

最后用自来水冲洗管外壁后,在管内放入少量自来水,用带橡皮头玻璃棒搅成糊状,并洗入150ml开氏瓶中,洗入体积控制在80—100ml左右,其中加2ml液状石蜡(或取2克固体石蜡)、1克左右氧化镁。然后在定氮仪进行蒸馏,同时进行空白试验。

结果计算

阳离子交换量(cmol/kg土)=M×(V-V0)/样品重式中:V—滴定待测液所消耗盐酸毫升数。

V0—滴定空白所消耗盐酸毫升数。

M—盐酸的摩尔浓度

样品重—烘干土样质量。

土壤水解氮的测定碱解扩散法

1 范围

本标准规定了土壤中水解氮的测定方法。

本标准适用于本公司所测各类土壤。

2 规范性引用文件

下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

GB/T 6003.1-1997 金属丝纺织网试验筛

HG/T 2843 化肥产品化学分析常用标准滴定溶液、标准溶液、试剂溶液和指示剂溶液

3 方法提要

加入还原剂,使土壤中的硝态氮还原,再用氢氧化钠溶液处理土样,在扩散皿中,土样于碱性条件下水解,使易水解氮经碱解转化为氨态氮,由硼酸溶液吸收,以标准酸滴定,计算碱解氮的含量。

4 仪器

通常实验室用仪器及:

4.1 恒温培养箱;

4.2 扩散皿;

4.3 微量滴定管。

5 试剂

本标准中所用试剂、水和溶液的配制,在未注明规格和配制方法时,均应符合HG/T2843的要求。5.1 1.8mol L-1氢氧化钠溶液:称取72.0g氢氧化钠,溶解于水,稀释至1L;

5.2 锌-硫酸亚铁还原剂:称取50.0g磨细并通过0.25mm孔径的硫酸亚铁(Fe S O4.7H 2O)及10.0g 锌粉混匀,贮于棕色瓶中;

5.3 碱性胶液:称取40g阿拉伯胶放入装有50ml水的烧杯中,加热至70-80℃,搅拌促溶,约1h后放冷。加入20ml甘油和20ml饱和碳酸钾水溶液,搅匀,放冷。离心除去泡沫和不溶物,将清液贮于玻璃瓶中备用。

5.4 硫酸标准溶液C(1/2H2SO4)=0.01 mol L-1;先配成C(1/2H2SO4)=0.1 mol L-1,用Na2CO3标定,再稀释10倍。

5.5 甲基红-溴甲酚绿混合指示剂;溶解0.1g溴甲酚绿和0.07g甲基红的乙醇中。

5.6 2%(m/V)硼酸溶液:溶解20g硼酸于1000ml蒸馏水中。

6 分析步骤

称取通过2mm孔径筛的风干试样2g(精确至0.01g)和1g锌-硫酸亚铁还原剂,均匀平铺于扩散皿外室内。在扩散皿内室加入2ml 2%硼酸溶液,并滴加1滴定氮混合指示剂。在皿的外室边缘涂上碱性胶液,盖上毛玻璃,旋转数次,使毛玻璃与皿边完全粘合,再慢慢转开毛玻璃的一边,使扩散皿外室露出一条狭缝,迅速加入10ml 1.8mol L-1氢氧化钠溶液于扩散皿外室,立即用毛玻璃盖严。水平地轻轻转动扩散皿,使氢氧化钠溶液与土样充分混合,然后小心地用橡皮筋二根交叉成十字形圈紧,使毛玻璃固定。放在恒温培养箱中于40℃保温24h。将扩散皿取出,用0.01 mol L-1硫酸标准溶液滴定内室硼酸中吸收的氨量,颜色由蓝色刚变紫红色即达终点。滴定时应用细玻璃棒搅动内室溶液,不宜摇动扩散皿,

以免溢出。

在样品测定同时进行空白试验,校正试剂和滴定误差。

7 分析结果的表述

水解氮,mg kg-1= (V-V0)×c×14

×1000

m

式中:V——滴定待测液消耗酸标准液体积,ml;

V0——滴定空白消耗酸标准溶液体积,ml;

c——准溶液浓度,mol L-1;

m——试样质量,g;

14——氮的摩尔质量,mg;

1000——换算成每千克含量。

取平行测定结果的算术平均值作为测定结果,所得结果表示至整数。

8 允许差

平行测定结果允许相对相差≤10%。

土壤有效磷的测定碳酸氢钠提取-钼锑抗比色法

9 范围

本标准规定了土壤中有效磷的测定方法。

本标准适用于本公司所测碳酸盐土壤、中性土壤及水稻土。

10 规范性引用文件

下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

GB/T 6003.1-1997 金属丝纺织网试验筛

GB 9837-88 土壤全磷测定法

GB 12297-90 石灰性土壤有效磷测定方法

HG/T 2843 化肥产品化学分析常用标准滴定溶液、标准溶液、试剂溶液和指示剂溶液

11 方法提要

碳酸氢钠溶液除可提取水溶性磷外,尚可以抑制Ca2+的活性,使一定量活性较大的Ca-P盐类中的磷被浸提出,也可使一定量比较活性的Fe-P和Al-P盐类中的磷通过水解作用而被提出。

土壤被浸提出的磷量与土液比、液温、振荡时间及方式有关。本法严格规定土液比为1:20,浸提液温度为25℃,振荡提取时间为30min。

浸出液中的磷以钼锑抗比色法测定。

12 仪器

通常实验室用仪器及:

12.1 恒温室;

12.2 具塞三角瓶,150ml;

12.3 往复式振荡机;

12.4 分光光度计;

12.5 比色管,25ml。

13 试剂

本标准中所用试剂、水和溶液的配制,在未注明规格和配制方法时,均应符合HG/T2843的要求。13.1 无磷活性炭粉:如所用活性炭含磷,应先用1+1盐酸溶液浸泡24h,然后移至平板漏斗上抽气过滤,用水淋洗4~5次,再用浸提剂浸泡24h,在平板漏斗上抽气过滤,用水洗尽碳酸氢钠,并至无磷为止,烘干备用。

13.2 0.5mol/L碳酸氢钠浸提剂(pH=8.5):称取42.0g碳酸氢钠溶于约950ml水中,用10%氢氧化钠溶液调节PH至8.5(用酸度计测定),用水稀释至1L。贮存于聚乙烯或玻璃瓶中备用。如贮存期超过20天,使用时须重新校正PH值。

13.3 0.3%(m/V)酒石酸锑钾溶液;称取0.3g酒石酸锑钾溶于100mL水中。

13.4 钼锑贮备液;称取10.0g钼酸铵[(NH4)6Mo7O24.4H2O]溶于300mL约60℃的水中,冷却。另取181mL浓硫酸,缓缓注入约800ml水中,搅匀,冷却。然后将稀硫酸注入钼酸铵溶液中,搅匀,冷却。再加入100ml 0.3%酒石酸锑钾溶液,最后用水稀释至2L,盛于棕色瓶中备用。

13.5 显色剂;称取1.50g抗坏血酸(左旋,旋光度+21~22℃),溶于100ml钼锑贮备液中。此试剂有效期在室温下为24h,在2~8℃冰箱中可贮存7d。

13.6 100mg/L磷标准贮备溶液:称取105℃烘干的磷酸二氢钾0.4394g溶于200mL水中,加入5mL 硫酸,转入1000mL容量瓶中,用水定容。

13.7 5mg/L磷标准工作溶液;将磷标准贮备溶液(5.6)用浸提剂准确稀释20倍。

14 分析步骤

称取通过2mm孔径筛的风干试样2.5g(精确至0.01g)于150ml具塞三角瓶中,加入约1g无磷活性炭,加入24~26℃的浸提剂50.0ml ,在24~26℃的室温下,于往复式振荡机上用160~200r/min的频率振荡30min,立即过滤于干燥的150ml具塞三角瓶中。

准确吸取滤液10.00mL(含5~10ug磷)于25ml比色管中,加入显色剂5.00ml,慢慢摇动,使CO2逸出,再以水稀释至刻度,充分摇动,逐尽CO2,加水定容。在室温高于20℃处放置30min后,用空白溶液(以10.00ml浸提剂代替土壤浸提液同上处理)为参比,用2cm光径比色皿在波长700nm处比色,测量吸光度。

显色后的样品溶液在分光光度计上,用700nm波长、2cm光径比色皿,以空白试验溶液为参比调零,进行比色,读取吸光度。从标准曲线上查得相应的含磷量或通过回归方程计算出样品显色液中含磷量。

标准曲线绘制或线性回归方程的计算:在土样测定的同时,吸取磷标准工作溶液0,1.50,2.50,5.00,10.00,15.00,20.00,25.00mL放入50mL容量瓶中,并用浸提剂定容。此标准系列溶液中磷的浓度依次为0,0.15,0.25,0.50,1.00,1.50,2.00,2.50ug/mL,同上述步骤进行显色并定容,测定吸收值后绘制工作曲线。

注:如果土壤有效磷含量较高,应吸取较少量的样品浸出液,并加浸提剂补充至10.00ml后显色,计算时按所取浸提液的分取倍数计算。

15 结果计算

有效磷,mg kg-1= c×V×D

×1000 m×1000

式中:c——从标准曲线上查得或从线性回归方程求得显色液中磷的浓度,ug ml-1;

V——显色液体积,本试验为25ml;

D——分取倍数,即试样提取液体积/显色时分取体积,本试验为50/10;

m——风干试样质量,g。

取平行测定结果的算术平均值作为测定结果,所得结果保留至一位小数。

16 允许差

平行测定结果允许相对相差:

测定值(P,mg/kg)

<10

10-20

>20 允许差(P,mg/kg)

≤绝对值0.5

≤绝对值1.0

≤相对相差5%

土壤速效钾的测定乙酸铵提取-火焰光度法

17 范围

本标准规定了土壤中速效钾的测定方法。

本标准适用于本公司所测各类土壤。

18 规范性引用文件

下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

GB/T 6003.1-1997 金属丝纺织网试验筛

HG/T 2843 化肥产品化学分析常用标准滴定溶液、标准溶液、试剂溶液和指示剂溶液

19 方法提要

以中性1 mol/ L乙酸铵溶液为浸提剂时,NH4+与土壤胶体表面的K+进行交换,连同水溶性钾一起进入溶液。浸出液中的钾可直接用火焰光度计测定。

20 仪器

通常实验室用仪器及:

20.1 火焰光度计;

20.2 往复式振荡机;

20.3 塑料瓶:200ml。

21 试剂

本标准中所用试剂、水和溶液的配制,在未注明规格和配制方法时,均应符合HG/T2843的要求。

21.1 1mol/L中性乙酸铵溶液;称取77.08g乙酸铵溶于近1水中,用稀乙酸或氨水调至pH值为7.0,然后定容至1L。

21.2 钾标准贮备溶液:称取1.907克氯化钾(110℃烘2h)溶于水中,定容至1L,即为1000ug/mL 钾标准溶液。

5.3 100ug/ml钾标准溶液:取10.00ml钾标准贮备溶液(5.2)用水稀释至100ml。

分别吸取100ug ml-1钾标准溶液0,1.00,2.00,5.00,10.00,15.00mL放入50ml容量瓶中,用1mol.L-1乙酸铵定容,即得0,2,4,10,20,30ug/ml钾标准系列溶液。用火焰光度计测定。绘制标准曲线或求出线性回归方程。

22 分析步骤

称取通过2mm孔径筛的风干试样5g(精确至0.01g)于200ml塑料瓶中,加50ml 1mol L-1中性乙酸铵溶液,用橡皮塞塞紧,在20-25℃下振荡30min,过滤,用滤液直接在火焰光度计上测定钾,同时做空白试验。

23 结果计算

速效钾,mg kg-1= c×V m

式中:c——从标准曲线上查得或从线性回归方程求得待测液中钾的浓度,ug ml-1;

V——加浸提剂体积,本试验为50ml;

m——风干试样质量,g。

取平行测定结果的算术平均值作为测定结果,所得结果取整数。

24 允许差

平行测定结果允许相对相差≤5%。

土壤有机质测定

5.2.1重铬酸钾容量法——外加热法

5.2.1.1方法原理在外加热的条件下(油浴的温度为180,沸腾5分钟),用一定浓度的重铬酸钾——硫酸溶液氧化土壤有机质(碳),剩余的重铬酸钾用硫酸亚铁来滴定,从所消耗的重铬酸钾量,计算有机碳的含量。本方法测得的结果,与干烧法对比,只能氧化90%的有机碳,因此将得的有机碳乘以校正系数,以计算有机碳量。在氧化滴定过程中化学反应如下:

2K2Cr2O7+8H2SO4+3C→2K2SO4+2Cr2(SO4)3+3CO2+8H2O

K2Cr2O7+6FeSO4→K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H20

在1mol·L-1H2SO4溶液中用Fe2+滴定Cr2O72-时,其滴定曲线的突跃范围为1.22~0.85V。

从表5—4中,可以看出每种氧化还原指示剂都有自己的标准电位(E0),邻啡罗啉(E0=1.11V),2-羧基代二苯胺(E0=1.08V),以上两种氧化还原指示剂的标准电位(E0),正落在滴定曲线突跃范围之内,因此,不需加磷酸而终点容易掌握,可得到准确的结果。

例如:以邻啡罗啉亚铁溶液(邻二氮啡亚铁)为指示剂,三个邻啡罗啉(C2H8N2)分子与一个亚铁离子络合,形成红色的邻啡罗啉亚铁络合物,遇强氧化剂,则变为淡蓝色的正铁络合物,其反应如下:

[(C12H8N2)3Fe]3++e [(C12H8N2)3Fe]2+

淡蓝色红色

滴定开始时以重铬酸钾的橙色为主,滴定过程中渐现Cr3+的绿色,快到终点变为灰绿色,如标准亚铁溶液过量半滴,即变成红色,表示终点已到。

但用邻啡罗啉的一个问题是指示剂往往被某些悬浮土粒吸附,到终点时颜色变化不清楚,所以常常在滴定前将悬浊液在玻璃滤器上过滤。

从表5-4中也可以看出,二苯胺、二苯胺磺酸钠指示剂变色的氧化还原标准电位(E0)分别为0.76V、0.85V。指示剂变色在重铬酸钾与亚铁滴定曲线突跃范围之外。因此使终点后移,为此,在实际测定过程中加入NaF或H3PO4络合Fe3+,其反应如下:

Fe3++2PO-3

4Fe(PO4)-3

2

Fe3++6F-[FeF6]3-

加入磷酸等不仅可消除Fe3+的颜色,而且能使Fe3+/Fe2+体系的电位大大降低,从而使滴定曲线的突跃电位加宽,使二苯胺等指示剂的变色电位进入突跃范围之内。

根据以上各种氧化还原指示剂的性质及滴定终点掌握的难易,推荐应用2-羧基二苯胺。价格便宜,性能稳定,值得推荐采用。

5.2.1.2主要仪器油浴消化装置(包括油浴锅和铁丝笼)、可调温电炉、秒表、自动控温调节器。

5.2.1.3试剂

(1)0.008mol·L-1(1/6K2Cr2O7)标准溶液。称取经130℃烘干的重铬酸钾(K2Cr2O7,GB642-77,分析纯)39.2245g溶于水中,定容于1000ml容量瓶中。

(2)H2SO4。浓硫酸(H2SO4,GB625-77,分析纯)。

(3)0.2mol·L -1FeSO 4溶液。称取硫酸亚铁(FeSO 4·7H 2O ,GB664-77,分析纯)56.0g 溶于水中,加浓硫酸5mL ,稀释至1mL 。

(4)指示剂

①邻啡罗啉指示剂:称取邻啡罗啉(GB1293-77,分析纯)1.485g)与FeSO 4·7H 2O0.695g ,溶于100mL 水中。

②2-羧基代二苯胺(O-phenylanthranilicacid ,又名邻苯氨基苯甲酸,C 13H 11O 2N ))指示剂:称取0.25g 试剂于小研钵中研细,然后倒入100mL 小烧杯中,加入0.18mol·L -1NaOH 溶液12mL ,并用少量水将研钵中残留的试剂冲洗入100mL 小烧杯中,将烧杯放在水浴上加热使其溶解,冷却后稀释定容到250mL ,放置澄清或过滤,用其清液。

(5)Ag 2SO 4。硫酸银(Ag 2SO 4,HG3-945-76,分析纯),研成粉末。

(6)SiO 2。二氧化硅(SiO 2,Q/HG22-562-76,分析纯),粉末状。

5.2.1.4操作步骤 称取通过0.149mm (100目)筛孔的风干土样0.1~1g (精确到0.0001g ),放入一干燥的硬质试管中,用移液管准确加入0.8000mol·L -1(1/6K 2Cr 2O 7)标准溶液5mL (如果土壤中含有氯化物需先加入Ag 2SO 40.1g ),用注射器加入浓H 2SO 45mL 充分摇匀,管口盖上弯颈小漏斗,以冷凝蒸出之水汽。

将8~10个试管放入自动控温的铝块管座中(试管内的液温控制在约170℃),[或将8~10个试管盛于铁丝笼中(每笼中均有1~2个空白试管),放入温度为185~190℃的石蜡油锅中,要求放入后油浴锅温度下降至170~180℃左右,以后必须控制电炉,使油浴锅内始终内维持在170~180℃],待试管内液体沸腾发生气泡时开始计时,煮沸5min ,取出试管(用油浴法,稍冷,擦净试管外部油液)。

冷却后,将试管内容物倾入250mL 三角瓶中,用水洗净试管内部及小漏斗,这三角瓶内溶液总体积为60~70mL ,保持混合液中(1/2H 2SO 4)浓度为2~3mol·L -1,然后加入2-羧基代二苯胺指示剂12~15滴,此时溶液呈棕红色。用标准的0.2mol·L -1硫酸亚铁滴定,滴定过程中不断摇动内容物,直至溶液的颜色由棕红色经紫色变为暗绿(灰蓝绿色),即为滴定终点。如用邻啡罗啉指示剂,加指示剂2~3滴,溶液的变色过程中由橙黄→蓝绿→砖红色即为终点。记取FeSO 4滴定毫升数(V )。

每一批(即上述每铁丝笼或铝块中)样品测定的同时,进行2~3个空白试验,即取0.500g 粉状二氧化硅代替土样,其他手续与试样测定相同。记取FeSO 4滴定毫升数(V 0),取其平均值。

5.2.1.5结果计算

土壤有机碳(g·kg -1)=10001.10.310)(5300?????-??-k

m V V V c 式中:c ——0.8000 mol·L -1 (1/6K 2Cr 2O 7)标准溶液的浓度;

5——重铬酸钾标准溶液加入的体积(mL );

V 0——空白滴定用去FeSO 4体积(mL );

V ——样品滴定用去FeSO 4体积(mL );

3.0——1/4碳原子的摩尔质量(g·mol -1);

10-3——将mL 换算为L ;

1.1——氧化校正系数;

m——风干土样质量(g);

k——将风干土样换算成烘干土的系数。

5.2.1.6注释:

注1.含有机质高于50g·kg-1者,称土样0.1g,含有机质高于20~30g·kg-1者,称土样0.3g,少于20g·kg-1者,称土样0.5g以上。由于称样量少,称样时应用减重法以减少称样误差。

注2.土壤中氯化物的存在可使结果偏高。因为氯化物也能被重铬酸钾所氧化,因此,盐土中有机质的测定必须防止氯化物的干扰,少量氯可加少量Ag2SO4,使氯根沉淀下来(生成AgCl)。Ag2SO4的加入,不仅能沉淀氯化物,而且有促进有机质分解的作用。据研究,当使用Ag2SO4时,校正系数为1.04,不使用Ag2SO4时校正系数为1.1Ag2SO4的用量不能太多,约加0.1g,否则生成Ag2Cr2O7沉淀,影响滴定。

在氯离子含量较高时,可用一个氯化物近似校正系数1/12来校正之,由于Cr2O7-1与Cl-1及C的反应是定量的:

Cr2O72-+6Cl-1+14H+→2Cr3++3Cl2+7H2O

2Cr2O72-+3C+16H+→4Cr3+3CO2+8 H2O

由上二个反应式可知C/4Cl-1=12/4×35.5≈1/12

土壤含碳量(g·kg-1)=未经校正土壤含碳量(g·kg-1)-

12

) (1-

?kg

g

Cl含量

土壤

此校正系数在Cl:C比为5:1以下时适用。

注3.对于水稻土、沼泽土和长期渍水的土壤,由于土壤中含有较多的Fe2+、Mn2+及其它还原性物质,它们也消耗K2Cr2O7,可使结果偏高,对这些样品必须在测定前充分风干。一般可把样品磨细后,铺成薄薄一层,在室内通风处风干10天左右即可使Fe2+全部氧化。长期沤水的水稻土,虽经几个月风干处理,样品中仍有亚铁反应,对这种土壤,最好采用铬酸磷酸湿烧——测定二氧化碳法(见5.2.2)。

注4.这里为了减少0.4mol·L-1(1/6K2Cr2O7)—H2SO4溶液的黏滞性带来的操作误差,准确加入0.800mol·L-1(1/6K2Cr2O7)水溶液5mL及浓H2SO45mL,以代替0.4mol·L-1(1/6K2Cr2O7) 溶液10mL。在测定石灰性土壤样品时,也必须慢慢加入K2Cr2O7—H2SO4溶液,以防止由于碳酸钙的分解而引起激烈发泡。

注5.最好不采用植物油,因为它可被重铬酸钾氧化,而可能带来误差。而矿物油或石蜡对测定无影响。油浴锅预热温度当气温很低时应高一些(约200℃)。铁丝笼应该有脚,使试管不与油浴锅底部接触。

注6.用矿物油虽对测定无影响,但空气污染较为严重,最好采用铝块(有试管孔座的)加热自动控温的方法来代替油浴法。

注7.必须在试管内溶液表面开始沸腾才开始计算时间。掌握沸腾的标准尽量一致,然后继续消煮5min,消煮时间对分析结果有较大的影响,故应尽量记时准确。

注8.消煮好的溶液颜色,一般应是黄色或黄中稍带绿色,如果经绿色为主,则说明重铬酸钾用量不足。在滴定时消耗硫酸亚铁量小于空白用量的1/3时,有氧化不完全的可能,应弃去重做。

5.2.2电砂浴加- K 2Cr 2O 7 容量法

5.2.2.1方法原理 同5.2.1.1

5.2.2.2主要仪器 电砂浴;分析天平;滴定台;25ml 酸式滴定管;150毫升三角瓶;小漏斗(曲颈3cm);温度计200~300℃;500毫升塑料洗瓶。

5.2.2.3试剂 同5.2.1.3

5.2.2.4操作步骤 准确称取过0.25毫米筛的风干土0.05××~0.5×××克(称样量的多少取决于土壤中有机质的含量:含有机质10~20g ·kg -1 土样,取样在0.4~0.5克之间;含量达到80g ·kg -1 左右则不应超过0.1克),把土样移入150毫升三角瓶中(如含氯化物多的土样,需加粉末状Ag 2SO 4 约0.1毫克),准确缓慢地加入0.4mol·L -1(1/6K 2Cr 2O 7)—H 2SO 4溶液10mL ,加液时要避免将土粒冲溅到瓶的内壁上。瓶口处再加上一个小漏斗,把三角瓶放在已预热好(170~108℃)的电砂浴上加热,在真正沸腾时开始计算时间。保持平缓地沸腾5±0.5分钟。沸腾过程中如发现三角瓶内壁有土粒粘附,应轻轻摇动瓶子使下沉。

消煮完毕后,将三角瓶从电砂浴上取下,冷却片刻,然后用蒸馏水冲洗小漏斗、三角瓶瓶口及内壁,洗涤液要流入原三角瓶,瓶内溶液的总体应控制在30~35毫升左右为宜。加2~3滴邻菲罗啉(菲罗啉)指示剂,用0.1 mol·L -1 FeSO 4标准溶液滴定剩余的K 2Cr 2O 7 溶液的变色过程是由橙→蓝→棕红。

如果滴定所用FeSO 4 溶液的毫升数不到下述空白标定所耗FeSO 4 溶液的毫升数的1/3,则应碱少土壤称样量而重测。

每仳分析时,必须同时做2~3个空白标定:取大约0.2克石英砂代替土壤,其它步骤与土样测定时相同,但滴定前的溶液总体积控制在20~30毫升左右为宜。

5.2.2.5结果计算

有机质(g.kg -1)= 1000W

1.081.7240.003 v)mol -(v0???? 式中:V 0—空白测定时所消耗FeSO 4溶液的体积(ml );

V —土样测定时所消耗FeSO 4溶液的体积(ml );

mol —FeSO 4标准溶液的摩尔浓度;

0.003—1毫麾尔碳的克数;

1.724—土壤有机碳换算成土壤有机质的平均换算系数;

1.08—氧化校正系数(按回收率9

2.6%计算);

W —烘干土重(风干样除样品中水分的重量)。

5.2.3重铬酸钾容量法——稀释热法

5.2.3.1方法原理 基本原理、主要步骤与重铬酸钾容量法(外加热法)相同。稀释热法(水合热法)是利用浓硫酸和重铬酸钾迅速混合时所产生的热来氧化有机质,以代替外加热法中的油浴加热,操作更加方便。由于产生的热,温度较低,对有机质氧化程度较低,只有77%。

5.2.3.2试剂

(1)1mol·L -1(1/6K 2Cr 2O 7) 溶液。准确称取K 2Cr 2O 7(分析纯,105℃烘干)49.04g ,

溶于水中,稀释至1L 。

(2)0.4mol·L -1(1/6K 2Cr 2O 7) 的基准溶液。准确称取K 2Cr 2O 7(分析纯)(在130℃烘3h )19.6132g 于250mL 烧杯中,以少量水溶解,将全部洗入1000mL 容量瓶中,加入浓H 2SO 4约70mL ,冷却后用水定容至刻度,充分摇匀备用[其中含硫酸浓度约为2.5mol·L -1(1/2H 2SO 4)]。

(3)0.5mol·L -1FeSO 4溶液。称取FeSO 4·7H 2O140g 溶于水中,加入浓H 2SO 415mL ,冷却稀释至1L 或称取Fe(NH 4)2(SO 4)2·6H 2O196.1g 溶解于含有200mL 浓H 2SO 4的800mL 水中,稀释至1L 。此溶液的准确浓度以0.4mol·L -1(1/6K 2Cr 2O 7)的基准溶液标定之。即准确分别吸取3份0.4mol·L -1(1/6K 2Cr 2O 7)的基准溶液各25mL 于150mL 三角瓶中,加入邻啡罗啉指示剂2~3滴(或加2羧基代二苯胺12~15滴),然后用0.5mol·L -1FeSO 4溶液滴定至终点,并计算出的准FeSO 4确浓度。硫酸亚铁(FeSO 4)溶液在空气中易被氧化,需新鲜配制或以标准的K 2Cr 2O 7溶液每天标定之。

其他试剂同5.2.1.3中(4)、(5)、(6)。

5.2.3.3操作步骤 准确称取0.5000g 土壤样品(注1)于500mL 的三角瓶中,然后准确加入1mol·L -1(1/6K 2Cr 2O 7) 溶液10mL 于土壤样品中,转动瓶子使之混合均匀,然后加浓H 2SO 420mL ,将三角瓶缓缓转动1min ,促使混合以保证试剂与土壤充分作用,并在石棉板上放置约30min ,加水稀释至250mL ,加2-羧基代二苯胺12~15滴,然后用0.5mol·L -1FeSO 4标准溶液滴定之,其终点为灰绿色。

或加3~4滴邻啡罗啉指示剂,用0.5mol·L -1FeSO 4标准溶液滴定至近终点时溶液颜色由绿变成暗绿色,逐渐加入FeSO 4直至生成砖红色为止。

用同样的方法做空白测定(即不加土样)。

如果K 2Cr 2O 7被还原的量超过75%,则须用更少的土壤重做。

5.2.3.4结果计算

土壤有机碳(g·kg -1)=100033.10.310)(30????--烘干土重

V V c 土壤有机质(g·kg -1)=土壤有机碳(g·kg -1)×1.724

式中:1.33——为氧化校正系数;

c ——为0.5mol·L -1FeSO 4标准溶液的浓度;

其他各代号和数字的意义同5.2.1.6。

注释:

注1.泥碳称0.05g ,土壤有机质含量低于10g·kg -1者称2.0g 。

互换性习题及问题详解

第一章绪论 1-1.什么叫互换性?为什么说互换性已成为现代机械制造业中一个普遍遵守原则?列举互换性应用实例。(至少三个)。 答:(1)互换性是指机器零件(或部件)相互之间可以代换且能保证使用要求的一种特性。 (2)因为互换性对保证产品质量,提高生产率和增加经济效益具有重要意义,所以互换性已成为现代机械制造业中一个普遍遵守的原则。 (3)列举应用实例如下: a、自行车的螺钉掉了,买一个相同规格的螺钉装上后就能照常使用。 b、手机的显示屏坏了,买一个相同型号的显示屏装上后就能正常使 用。 c、缝纫机的传动带失效了,买一个相同型号的传动带换上后就能照 常使用。 d、灯泡坏了,买一个相同的灯泡换上即可。 1-2 按互换程度来分,互换性可分为哪两类?它们有何区别?各适用于什么场合? 答:(1)按互换的程来分,互换性可以完全互换和不完全互换。 (2)其区别是:a、完全互换是一批零件或部件在装配时不需分组、挑选、调整和修配,装配后即能满足预定要求。而不完全互换是零件加工好后,通过测量将零件按实际尺寸的大小分为若干组,仅同一组零件有互换性,组与组之间不能互换。b、当装配精度要求较高时,采用完全互换将使零件制造精度要求提高,加工困难,成本增高;而采用不完全互换,可适当降低零件的制造精度,使之便于加工,成本降低。 (3)适用场合:一般来说,使用要求与制造水平,经济效益没有矛盾时,可采用完全互换;反之,采用不完全互换。 1-3.什么叫公差、检测和标准化?它们与互换性有何关系? 答:(1)公差是零件几何参数误差的允许围。 (2)检测是兼有测量和检验两种特性的一个综合鉴别过程。 (3)标准化是反映制定、贯彻标准的全过程。 (4)公差与检测是实现互换性的手段和条件,标准化是实现互换性的前提。 1-4.按标准颁布的级别来分,我国的标准有哪几种? 答:按标准颁布的级别来分,我国标准分为国家标准、行业标准、地方标准和企业标准。 1-5.什么叫优先数系和优先数? 答:(1)优先数系是一种无量纲的分级数值,它是十进制等比数列,适用于各种量值的分级。 (2)优先数是指优先数系中的每个数。

土壤交换性钙和镁的测定

土壤交换性钙和镁的测定 乙酸铵交换——原子吸收分光光度法 1 方法提要 以乙酸铵为土壤交换剂,浸出液中的交换性钙、镁,可直接用原子吸收分光光度法测定。测定时所用的钙、镁标准溶液中要同时加入同量的乙酸铵溶液,以消除基本效应。此外,在土壤浸出液中,还要加入释放剂锶(Sr),以消除铝、磷和硅对钙测定的干扰。 2 应用范围 适用于酸性、中性土壤交换性钙镁的测定。 3 主要仪器和设备 3.1 天平(感量:0.01g) 3.2 原子吸收分光光度计(配置钙和镁空心阴极灯); 3.3 离心机; 3.4 离心管,100mL。 4 试剂和溶液 4.1乙酸铵溶液[c(CH3COONH4) = 1mol·L-1,pH7.0]:称取乙酸铵(CH3COONH4)77.08g 溶于约950mL水中,用(1:1)氨水和稀乙酸调节至pH7.0,加水稀释到1L; 4.2 氯化锶溶液[ρ(SrCl2?6H2O) = 30g·L-1]:称取氯化锶(SrCl2?6H2O)30g溶于水,定容至1L; 4.3 盐酸溶液(1:1):一份盐酸与等体积的水混合均匀; 4.4钙标准贮备液[ρ(Ca) = 1000μg·mL-1]:称取经110℃烘4h的碳酸钙(CaCO3,优级纯)2.4972g于250mL高型烧杯中,加少许水,盖上表面皿,小心从杯嘴处加入(1:1)盐酸溶液100mL 溶解,待反应完全后,用水洗净表面皿,小心煮沸赶去二氧化碳,将溶液无损移入1L容量瓶中,用水定容; 4.5钙标准溶液[ρ(Ca) =100μg·mL-1]:吸取10.00mL钙标准贮备溶液于100mL容量瓶中,定容; 4.6镁标准贮备液[ρ(Mg) =500μg·mL-1]:称取金属镁(光谱纯)0.5000g于250mL高型烧杯中,盖上表面皿,小心从杯嘴处加入(1:1)盐酸溶液100mL 溶解,用水洗净表面皿,将溶液无损移入1L容量瓶中,定容;

软化器设计计算书

目录 一、总述 (1) 1. 锅炉水处理监督管理规则 (1) 2. 离子交换树脂内部结构 (1) 3. 钠离子交换软化原理及特性: (2) 4. 水质分析测试内容 (2) ?PH值(Potential of Hydrogen) (2) ?总溶解固体(TDS --TOTAL DISSOLVED SOLIDS) (2) ?铁含量(IRON) (2) ?锰........................................................ ?硬度值(HARDNESS) (3) ?碱度 (3) ?克分子(mol) (3) ?当量 (4) ?克当量 (4) ?硬度单位 (4) ?我国江河湖泊水质组成 (7) 二、全自动软水器 (7) 三、影响软水器交换容量的因素 (9) 1. 流速(gpm/ft,m/h) (9) 2. 水与树脂的接触时间:(gpm/ft3) (9) 3. 树脂层的高度 (10) 4. 进水含盐量 (11) 5. 温度 (13) 6. 再生剂质量(NaCl) (13) 7. 再生液流量 (14) 8. 再生液浓度 (15) 9. 再生剂用量 (16) 10. 树脂 (16) 四、自动软水器设计 (16) 1. 软水器设备应遵循的标准 (16) 2. 全自动软水器主要参数计算 (17) 1) 反洗流速的计算: (17) 2) 系统压降计算 (17) 3. 软水器设计计算步骤 (17) 计算示例 (19)

一、总述 1.锅炉水处理监督管理规则 第三条锅炉及水处理设备的设计、制造、检验、修理、改造的单位,锅炉及水处理药剂、树脂的生产单位,锅炉房设计单位,锅炉水质监测 单位、锅炉水处理技术服务单位及锅炉清洗单位必须认真执行本规 则。 第九条锅炉水处理是保证锅炉安全经济运行的重要措施,不应以化学清洗代替正常的水处理工作。 第十条生产锅炉水处理设备、药剂和树脂的单位,须取得省级以上(含省级)安全监察结构注册登记后,才能生产。 第十一条未经注册登记的锅炉水处理设备、药剂和树脂,不得生产、销售、安装和使用。 第十四条锅炉水处理设备出厂时,至少应提供下列资料: 1.水处理设备图样(总图、管道系统图等); 2.设计计算书; 3.产品质量证明书; 4.设备安装、使用说明书; 5.注册登记证书复印件。 第三十六条对违反本规则的单位和个人,有下列情况之一者,安全监察机构有权给予通报批评、限期改进,暂扣直至吊销资格(对持证的单位 和个人)的处理。 2.离子交换树脂内部结构 离子交换树脂的内部结构可以分为三个部分: 1)高分子骨架由交联的高分子聚合物组成,如交联的聚苯烯、聚丙烯酸等; 2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子) 的离子官能团[如-SO 3Na、-COOH、-N(CH 3 ) 3 Cl]等,或带有极性的非离子型 官能团[如-N(CH 3)2、-N(CH 3 )H等]; 3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝 胶孔)和高分子结构之间的孔(毛细孔)。 离子交换树脂的内部结构如下图中的左图所示,离子交换基团的结构如下图的右图所示。 顺流再生:交换流速20-30m/h,反洗流速12~15m/h,吸盐流速4-6m/h(逆1.4-2m/h)

硅 铝 铁 钙 镁 钾 钠 钛 锰 磷等10个主元素的测定 ICP多道直读光谱法

FHZDZTR0137 土壤硅铝铁钙镁钾钠钛锰磷等10个主元素的测定ICP多道直读光谱法 F-HZ-DZ-TR-0137 土壤—硅、铝、铁等10个主元素的测定—ICP多道直读光谱法 1 范围 本方法适用于地质类型样品、土壤样品中主要成份硅、铝、铁、钙、镁、钾、钠、钛、锰、磷的测定。如果以氧化物表示及另取样测定灼烧失量和其他微量元素,可得样品全量分析结果,百分总和为99~101之间。 2 原理 用电感耦合等离子体(ICP)作为激发光源,由于ICP光源的稳定性好和线性动态范围宽的特点,对测定地质类型样品、土壤样品中主成份,提供了很好的条件。试样用偏硼酸锂熔融,熔融物趁热倒入滚动的压片机压成薄片,用王水溶解后,就可直接测定,方法简便,快速,分析结果好。 3 试剂和材料 3.1 分析纯偏硼酸锂(LiBO2·10H2O),700℃脱水,磨细待用。 3.2 王水,硝酸+盐酸=1+3。 3.3 石墨坩埚。 3.4 专用压片机。 3.5 镉1mg/mL溶液。 4 仪器 4.1 ICP-AES多道直读光谱仪,0.75m,光栅刻线2400/mm,通道数60+1,配有计算机,有光谱移位器,自动背景校正和进行元素间干扰校正软件。 4.2 射频发生器,输出功率1000W,反向功率<5W。 4.3 高盐雾化器,蠕动泵进样。氩气流量:冷却气17L/min,载气0.4L/min,试液提升量3mL/min,积分时间15s。 5 试样的制备 将样品粉碎至粒度100μm~74μm,在干净的房间风干。称样测定时,另称取一份试样测定吸附水,最后换算成烘干样计算结果。 6 操作步骤 6.1 试样溶液的制备 称取0.05g土样(精确至0.0001g),置于10mL石墨坩埚中,加0.125g偏硼酸锂,搅匀。放入1000℃高温炉中熔融15min。取出坩埚,立即将熔融物倒入滚动的压片机中压成薄片,将薄片放入装有15mL王水的烧杯中,在搅拌机上搅拌数分钟至熔融物完全溶解,移入25mL 比管中,加入25μL 1mg/mL的镉溶液作内标,用王水(5+95)稀释至刻度,摇匀待用。 6.2 标准溶液的制备 取国家级GBW0703标准物质,与试样同样进行化学处理,所得溶液作为校准曲线的高点,以试剂空白溶液作为低点。 6.3 分析线对如下: Si 251.612nm/Cd 228.802nm Al 308.216nm/Cd 228.802nm K 766.491nm/Cd 228.802nm P 214.911nm/Cd 228.802nm

交换性钙、镁的测定

交换性钙、镁的测定(原子吸收分光光度法) 试剂和溶液 乙酸铵溶液:称取77.08g乙酸铵溶于近950mL水中,用1:1氨水和稀乙酸调节PH至7.0,转移入1000mL容量瓶中,定容。 氯化锶溶液[p(SrCl2·6H 2O )=30g/L]:称取氯化锶(SrCl2·6H 2 O)30g溶于水,定 溶至1L。 盐酸溶液(1:1) 钙标准贮备液[p(Ca ) =1000ug/mL]:称取经110℃烘4h的碳酸钙(CaCO 3 ,优级纯)2.4972g于250mL高型烧杯中,加少许水,盖上表面皿,小心从杯嘴处加入(1:1)盐酸溶液100mL溶解,待反应完全后,用水洗净表面皿,小心煮沸赶去二氧化碳,将溶液无损移入1L容量瓶中,定容。 钙标准溶液[p(Ca ) =100ug/mL]:吸取10.00mL钙标准贮备液于100mL容量瓶中,定容。 镁标准贮备液[p(Mg) =500ug/mL]:称取金属镁(光谱纯)0.5000g于250mL 高型烧杯中,盖上表面皿,小心从杯嘴处加入(1:1)盐酸溶液100mL溶解,用水洗净表面皿,将溶液无损移入1L容量瓶中,定容。 镁标准溶液[p(Mg) =50ug/mL]:吸取10.00mL镁标准贮备液于100mL容量瓶中,定容。 结果计算 交换性钙(Ca ),mg/kg=[ p(Ca )·V·D/m·103] ·1000 交换性钙(Mg ),mg/kg=[ p(Mg )·V·D/m·103]·1000 式中: p(Ca )或p(Mg )――查校准曲线或求回归方程而得测定液中Ca或Mg的质量浓度,ug/mL V――测定液体积,50mL D――分取倍数,浸出液总体积/吸取浸出液体积=250/20 m――风干试样质量,g 103和1000――分别将ug换算成mg和将g换算为kg 平行测定结果用算术平均值表示,保留小数点后一位 精密度平行测定结果允许相差:≤10%

离子交换设计计算书(有公式)

全自动软水器设计指导手册 (附设计公式)

目录 一、总述 0 1. 锅炉水处理监督管理规则 0 2. 离子交换树脂部结构 0 3. 钠离子交换软化原理及特性: (1) 4. 水质分析测试容 (1) ?PH值(Potential of Hydrogen) (1) ?总溶解固体(TDS --TOTAL DISSOLVED SOLIDS) (1) ?铁含量(IRON) (1) ?锰 (2) ?硬度值(HARDNESS) (2) ?碱度 (2) ?克分子(mol) (2) ?当量 (3) ?克当量 (3) ?硬度单位 (3) ?我国江河湖泊水质组成 (5) 二、全自动软水器 (5) 三、影响软水器交换容量的因素 (7) 1. 流速(gpm/ft,m/h) (7) 2. 水与树脂的接触时间:(gpm/ft3) (7) 3. 树脂层的高度 (8) 4. 进水含盐量 (9) 5. 温度 (11) 6. 再生剂质量(NaCl) (11) 7. 再生液流量 (12) 8. 再生液浓度 (13) 9. 再生剂用量 (14) 10. 树脂 (14) 四、自动软水器设计 (14) 1. 软水器设备应遵循的标准 (14) 2. 全自动软水器主要参数计算 (15) 1) 反洗流速的计算: (15) 2) 系统压降计算 (15) 3. 软水器设计计算步骤 (15) 计算示例 (17)

一、总述 1.锅炉水处理监督管理规则 第三条锅炉及水处理设备的设计、制造、检验、修理、改造的单位,锅炉及水处理药剂、树脂的生产单位,锅炉房设计单位,锅炉水质监测 单位、锅炉水处理技术服务单位及锅炉清洗单位必须认真执行本规 则。 第九条锅炉水处理是保证锅炉安全经济运行的重要措施,不应以化学清洗代替正常的水处理工作。 第十条生产锅炉水处理设备、药剂和树脂的单位,须取得省级以上(含省级)安全监察结构注册登记后,才能生产。 第十一条未经注册登记的锅炉水处理设备、药剂和树脂,不得生产、销售、安装和使用。 第十四条锅炉水处理设备出厂时,至少应提供下列资料: 1.水处理设备图样(总图、管道系统图等); 2.设计计算书; 3.产品质量证明书; 4.设备安装、使用说明书; 5.注册登记证书复印件。 第三十六条对违反本规则的单位和个人,有下列情况之一者,安全监察机构有权给予通报批评、限期改进,暂扣直至吊销资格(对持证的单位 和个人)的处理。 2.离子交换树脂部结构 离子交换树脂的部结构可以分为三个部分: 1)高分子骨架由交联的高分子聚合物组成,如交联的聚苯烯、聚丙烯酸等; 2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子)的 离子官能团[如-SO3Na、-COOH、-N(CH3)3Cl]等,或带有极性的非离子型官能团[如-N(CH3)2、-N(CH3)H等]; 3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝 胶孔)和高分子结构之间的孔(毛细孔)。 离子交换树脂的部结构如下图中的左图所示,离子交换基团的结构如下图的右图所示。 顺流再生:交换流速20-30m/h,反洗流速12~15m/h,吸盐流速4-6m/h(逆1.4-2m/h)

钙和镁离子的测定

制盐工业通用试验方法钙和镁离子的测定 1.适用范围 本方法适用于制盐工业中工业盐、食用盐(海盐、湖盐、矿盐、精制盐)、氯化钾、工业氯化镁试样中钙、镁离子含量的测定。 2.容量法 2.1.镁离子含量的测定 2.1.1.原理概要 样品溶液调至碱性(pH≈10),用EDTA标准溶液滴定,测定钙离子和镁离子的总量,然后从总量中减去钙离子量即为镁离子量。 2.1.2.主要试剂和仪器 2.1.2.1.试剂 氨-氯化铵缓冲溶液(pH≈10) 称取20g氯化铵,以无二氧化碳水溶解,加入100mL25%氨水,用水稀释至1L。 铬黑T:0.2%溶液 称取0.2g铬黑T和2g盐酸羟胺,溶于无水乙醇中,用无水乙醇稀释至100mL,贮于棕色瓶内; 三乙醇胺:10%溶液; 氧化锌:标准溶液 称取0.8139g于800±2℃灼烧恒重的氧化锌,置于150mL烧杯中,用少量水润湿,滴加盐酸(1∶2)至全部溶解,移入500mL容量瓶,加水稀释至刻度,摇匀; 乙二胺四乙酸二钠(EDTA):0.02mol/L标准溶液 配制:称取40g二水合乙二胺四乙酸二钠,溶于不含二氧化碳水中,稀释至5L,混匀,贮于棕色瓶中备用; 标定:吸取20.00mL氧化锌标准溶液,置于150mL烧杯中,加入5mL氨性缓冲溶液,4滴铬黑T指示剂,然后用0.02mol/L EDTA标准溶液滴定至溶液由酒红色变为亮蓝色为止。 计算:EDTA标准溶液对镁离子的滴定度按式(1)计算。 T EDTA/Mg2+= W×20/500 ×0.2987 (1) V 式中:T EDTA/Mg2+——EDTA标准溶液对镁离子的滴定度,g/mL; V——EDTA标准溶液的用量,mL; W——称取氧化锌的质量,g; 0.2987——氧化锌换算为镁离子的系数。 2.1.2.2.仪器 一般实验室仪器。 2.1. 3.过程简述 吸取一定量样品溶液〔见附录A(补充件)〕,置于150mL烧杯中,试验程序同2.1.2.1.标定,EDTA标准溶液用量为测定钙离子及镁离子的总用量。 2.1.4.结果计算 镁离子含量按式(2)计算。

离子交换树脂和设备设计

离子交换树脂及装置设计详解 1、离于交换剂 1.1离子交换剂的种类 离子交换剂是实现交换功能的最基本物质。离子交换剂根据其材料可分为无机离子交换剂和有机离子交换剂,又可分为天然离子交换剂和人工合成离子交换剂等。天然离子剂如粘土、沸石、褐煤等。人工合成离子交换树脂有凝胶树脂、大孔树脂、吸附树脂、氧化还原树脂、螯合树脂等。其交换能力又可分为强碱性、弱碱性、强酸性、弱酸性等多种类型。 1.2离子交换树脂的基本特性罗门哈斯树脂,陶氏树脂 依其功能用途不同、原料性能不同,所制的树脂特性也不相同。常用的凝胶树脂的主要特性简介如下。 1.2.1.树脂的外观与粒度 凝胶型阳树脂为半透明的棕色或淡黄色的小球,阴树脂颜色略深。树脂粒度和均一度影响树脂的性能,粒度越小表面积就越大;但粒度过细不仅增大液体在树脂层内的阻力,而且也会影响树脂的机械程度,降低使用寿命。通常树脂小球直径为0.2-0.8mm。 2.树脂的密度 树脂密度分为干密度和湿密度。干密度是在温度115℃真空干燥后的密度。湿密度又分湿真密度和湿视密度 2.1湿真密度是树脂在水中充分膨胀后的质量与自身所占体积(不含树脂颗粒之的空隙)之比值(g/cm3)。不同类型树脂,湿真密度不同。即使同一类型的阳树脂或阴树脂,由于所含交换离子种类不同,湿真密度大小也不相同。 2.2湿视密度湿视密度又称堆积密度,是指树脂在水中充分溶胀后,单位体积树脂所具有的质量。湿视密度可用来计算离子交换柱内填充树脂的所需量。 3.树脂的交联度 树脂的骨架是靠交联剂连接在一起的。交联度是指交联剂所占有的份数,一般用交联剂占单体质量百分数来表示。例如,聚苯乙烯树脂用二乙烯苯作交联剂,其用量占单体总料量的8%时,则这种树脂的交联度为8%。 交联度直接影响树脂的性能。交联度越高,树脂的机械强度就越大,对离子的选择性越强,但离子的交换速度就越慢。这是因为交联度高,表明树脂的结构紧密,孔隙率低,同时树脂在水中溶胀率也低,因而水中的离子在树脂内扩散速度小,影响了离子间的交换能力。 4、树脂的稳定性

混合糖、转化糖、钠钾镁钙葡萄糖对比

混合糖电解质注射液说明书 本品为复方制剂,其组份为每瓶含: 葡萄糖(按无水物计):30g 果糖:15g 木糖醇:7.5g(糖份合计:52.5g) 氯化钠:0.730g 乙酸钠:0.410g氯化钙:0.185g 氯化镁:0.255g 柠檬酸:适量 【适应症】不能口服给药或口服给药不能充分摄取时,补充和维持水分及电解质,并补给能量。 【用法用量】 缓慢静脉滴注。 通常,成人每次500ml~1000ml。给药速度(按葡萄糖计),通常成人每小时不得超过0.5g/kg 体重。 根据年龄、症状及体重等不同情况可酌量增减。 【不良反应】 1.严重肝功能障碍和严重肾功能障碍的患者; 2.电解质代谢异常的患者: 1)高钾血症(尿液过少、肾上腺皮质机能减退、严重灼伤及氮质血症等)患者; 2)高钙血症患者; 3)高磷血症患者; 4)高镁血症患者。 3.遗传性果糖不耐受患者。 【注意事项】 一、以下患者必须谨慎给药 1)肾功能不全的患者; 2)心功能不全的患者; 3)因闭塞性尿路疾病引起尿量减少的患者; 4)有肝功能障碍和肾功能障碍的患者; 5)糖尿病患者。 二、使用的注意事项 1.对于只能通过使用胰岛素控制血糖的患者(胰岛素依赖性糖尿病),建议使用葡萄糖制

剂。 2.配置时:磷酸根离子及碳酸根离子会产生沉淀,所以不能混入含有磷酸盐及碳酸盐的制剂。 3.给药前:(1)尿液量最好在每天500ml或每小时20ml以上;(2)寒冷季节应注意保持一定体温后再用药;(3)包装启封后立刻使用,残液绝不能使用。 【孕妇及哺乳期妇女用药】未进行该项实验且无可靠参考文献。 【儿童用药】未进行该项实验且无可靠参考文献。 【老年患者用药】通常高龄者的生理功能降低,易于引起水分、电解质异常及高血糖,所以应减慢给药速度,并密切观察。 【药物相互作用】未进行该项实验且无可靠参考文献。 【药物过量】未进行该项实验且无可靠参考文献。 【药理毒理】 (1)使用禁食白兔进行的试验表明,本品与7.5%葡萄糖电解质输液比较,其血液总酮体明显降低,肝脏糖原显著升高,本品中混合的葡萄糖,果糖及木糖醇在体内均可有效地被利用。同时,一次性水分平衡为正,电解质平衡系维持或减轻到负平衡。 (2)使用手术侵袭负荷中等程度糖尿病大鼠的试验表明,本品与10%葡萄糖电解质输液比较,手术后的血液葡萄糖浓度及尿液中总糖份排泄率明显降低,即使在耐糖作用降低时糖份的利用也很良好。 【药代动力学】根据文献资料: 本品以3.9ml/kg/hr速度,静脉滴注4位成年男子8小时,在此期间血糖水平有轻微升高,在末期时,血糖浓度又逐渐降低,需在治疗后2小时恢复到治疗前水平。果糖和木糖醇最高血液浓度各为8.5mg/dL和6.8mg/dL,但输液后1小时就无法检测。葡萄糖肾代谢量为0.1%,果糖为0.8%,木糖醇为14.2%,总计2.3%混合糖被代谢。 将用14C标记的混合糖电解质注射液以5ml/kg.hr和10ml/kg.hr的剂量分别通过静脉注射入正常小鼠和手术导致的中度糖尿病小鼠。放射性迅速分布全身,在肝部和脑部尤为 约为58%。 集中,放射活性物质主要通过呼出气体排出,24小时总共排出的14CO 2 转化糖电解质注射液说明书 【成份】本品为复方制剂,其组份为每500ml含:葡萄糖25g,果糖25g。氯化钠0.73g,氯化钾0.93g,氯化镁0.143g,磷酸二氢钠0.375g,乳酸钠1.40g,渗透压为726mOsmo/L。辅料为:亚硫酸氢钠、盐酸、药用炭、注射用水。 【性状】本品为无色至微黄色的澄明液体。 【适应症】适用于需要非口服途径补充水分或能源及电解质的患者的补液治疗。 【规格】500ml:葡萄糖25g与果糖25g与氯化钠0.73g与氯化钾0.93g与氯化镁0.143g 与磷酸二氢钠0.375g与乳酸钠1.40g。 【用法用量】用法:静脉滴注,在医生指导下使用。 用量:用量视病情需要而定,成人用量为每次250ml-1000ml,滴注速度应低于0.5g/kg/hr(以果糖计)。根据患者年龄、体重、临床情况和实验室检测结果调整剂量。 【不良反应】 据报道。本药可能会引起脸红、风疹、发热等过敏反应。大剂量、快速输注可能导致乳酸中毒和高尿酸血症。长期单纯使用可引起电解质紊乱。有文献报道肝病患者输注果糖后出现乳酸中毒。若出现不良反应。应终止输注。 【禁忌】 遗传性果糖不耐受患者禁用,痛风和高尿酸血症患者禁用。

互换性

一、填空题(每空2分,共20分) 1、设计时给定的尺寸称为,而通过测量得到的尺寸称为 。 2、按照互换性的范围的不同,互换性分和 两种。其中在机械制造业中应用广泛。 3、在公差带图中,确定的一条基准直线称为零线。通 常零线表示。 4、公差带包括公差带和公差带两要素。 5、基本偏差反映配合的。 二、选择题(每小题2分,共16分。每小题选项中只有一个答案 是正确的,请将正确答案的序号填在题后的括号内) 1、最大极限尺寸减其基本尺寸所得到的代数差称为. . . . .. () A、上偏差 B、下偏差 C、基本偏差 2、零件的基本尺寸是在时确定的…………….. () A、加工 B、装配 C、设计 3、比较两尺寸精度高低的依据是两尺寸的……………….. () A、公差等级的高低 B、公差值的大小 C、基本偏差的大小

4、下列描述零件尺寸合格的条件不正确的是…………….. () A、实际尺寸在最大极限尺寸和最小极限尺寸之间 B、基本尺寸在最大极限尺寸和最小极限尺寸之间 C、实际偏差在上偏差与下偏差之间 5、最大极限尺寸基本尺寸……………………. () A、大于 B、等于 C、小于 D、大于、等于或小于 6、间隙配合的孔公差带在轴公差带………………………. () A、之上 B、之下 C、相互交叠 7、公差的大小等于…………………………………………. () A、实际尺寸减其基本尺寸 B 、上偏差减下偏差 C 、极限尺寸减实际尺寸 8、允许尺寸变化的两个界限值称为………………………. () A、基本尺寸 B、实际尺寸 C、极限尺寸 三、判断题(每小题2分,共20分。正确的,在题后括号内打“√”, 错误的打“×”)。

钠钾镁钙葡萄糖注射液标准

钠钾镁钙葡萄糖注射液 Najia meigai putaotang zhushye Sodium potassium magnesium calcium and glucose injection 本品为氯化钠、氯化钾、氯化镁、葡萄糖酸钙、枸橼酸钠、醋酸钠与葡萄糖的灭菌水溶液。含总氯量(Cl)应为0.39%~0.43%(g/ml);含总钠量(Na)应为0.30%~0.35%(g/ml);含钾量(K)应为0.0149%~0.0164%(g/ml);含钙量(Ca)应为0.0056%~0.0062%;含镁量(Mg)应为0.0022%~0.0027%(g/ml);含葡萄糖(C6H12O6?H2O)应为表示量的95.0%~105.0%。 【处方】氯化钠 6.372g 氯化钾0.3g 氯化镁0.204g 葡萄糖酸钙0.672g 枸橼酸钠0.588g 无水醋酸钠 2.052g 葡萄糖10g 注射用水适量 全量1000ml 【性状】本品为无色至淡黄色的澄明液体。 【鉴别】(1)本品显钠盐、钾盐、钙盐、镁盐及氯化物的鉴别反应。 (2)取本品,缓缓滴入温热的碱性酒石酸铜试液中,即生成氧化亚铜的红色沉淀。 【检查】PH值应为3.5~6.5(中国药典2005年版二部附录Ⅵ H)。 5-羟甲基糠醛精密量取本品适量(约相当于葡萄糖0.1g),置50ml量瓶中,加水稀释至刻度,摇匀,照分光光度法(中国药典2005年版二部附录Ⅵ A),在284nm的波长处测定,吸收度不得大于0.25。 重金属取本品50ml 置水浴上蒸发至约20ml,放冷,加醋酸盐缓冲液(PH3.5)2ml与水适量使成25ml,依法检查(中国药典2005年版二部附录Ⅷ H第一法),含重金属不得过千万分之三。 砷盐取本品200ml,置水浴上蒸发至5ml,加稀硫酸5ml与溴试液1ml,再在水浴上蒸发至约5ml,放冷,加盐酸5ml与水18ml,依法检查(中国药典2005年版二部附录Ⅷ J第一法),应符合规定(0.000001%)。 不溶性微粒取本品1袋,依法检查(中国药典2005年版二部附录ⅪC),应符合规定。 细菌内毒素取本品,依法检查(中国药典2005年版二部附录Ⅺ E),每1ml 中含内毒素量应小于0.5EU。 其他应符合注射剂项下有关的各项规定(中国药典2005年版二部附录ⅠB)。 总氯量精密量取本品10ml,加冰醋酸10ml,加甲醇75ml,曙红黄指示液 0.5ml,用硝酸银滴定液(0.1mol/L)。每1ml硝酸银滴定液(0.1mol/L)相当 于3.545mgCl。 总钠量照原子吸收分光光度法(中国药典2005年版二部附录Ⅳ D含量测定

互换性教学大纲(新标准)

《互换性与技术测量》教学大纲 适用专业:机械设计制造及其自动化 课程编号::80301006 总学时:32 实验学时:4 上机学时:0 学分:2 第一部分使用说明 一、课程的性质、地位和教学目标 1、课程性质、地位 《互换性与技术测量》是高等院校机械类及其相关专业必修的专业基础课。在教学中起着联系基础课与其它技术基础课及专业课的桥梁作用,同时也是联系设计类课程与制造工艺类课程的纽带。本大纲是根据高等院校机械类专业培养目标和要求,并依据本校学生培养目标及机械设计制造及其自动化专业教学计划编制而成。 2、教学目标 ( 本课程的教学内容是由互换性与技术测量两个各自独立又密切联系的部分组成。前者主要是学习几何量公差标准的构成及其使用,即研究产品零部件精度设计的基本原理和方法;后者是学习测量技术的基本知识与技能,许多内容要通过实验课来学习。通过本课程的学习,应使学生了解互换性与标准化、技术测量之间的关系;掌握机械产品零部件几何精度设计的基本原理和方法;初步掌握几何精度检测的原理、方法和基本技能。 二、教学要求 1、掌握互换性含义、种类、作用,了解公差和技术测量在互换性生产中的作用。 2、掌握公差标准的基本术语和定义;学会查标准公差表格和其它精度设计相关表格;掌握公差与配合的选用原则。掌握公差要求在图样上的正确标注;并能解释图样上有关公差标注的技术要求的含义。 3、了解测量方法的定义、分类及测量器具的技术性能指标;掌握通用计量器具的选择;了解各项几何量误差的评定方法,掌握孔、轴尺寸测量以及直线度、平面度、表面粗糙度测量的基本方法和技能。

4、了解典型零件的公差与配合标准的构成特点;掌握用几何量检测方法。 三、实施说明 1、成绩考核方法 ) 本课程是必修的专业基础课,是考试课。为了准确考核学生对本课程的学习和掌握情况,总评成绩可按下式给出:总评成绩=平时成绩(平时成绩考核项目包括:出勤、随堂测验、课堂提问、听课状态、作业)×40%+实验成绩×10%+期末考试成绩×50%。 本课程有关测量技术部分的学习目的是掌握技术测量的基本知识和技能,因此必须结合必要的测量实验才能达到教学目的,实验教学部分必不可少。要求学生必须参加实验,按时、按要求完成实验报告,无实验成绩者不允许参加期末考试。 2、教学方法、教学手段 1)讲授本课程时应结合课程内容比较抽象的特点,增强直观教学,尽量采用PPt课件进行理论讲授,通过多媒体演示,以提高教学效果。 2)在理论教学过程中,教师可采用提问的方式,培养学生独立思考能力;通过综合练习的方式,使学生能够学以致用,初步掌握对简单机械产品的零部件进行精度设计的能力。 3)实验教学教师可通过讲授和演示,指导学生独立完成实验操作,使学生掌握对零件进行精度检测的基本原理和基本技能。 4)本课程在今后的教学中应加强理论与实践环节的联系,为后续课程及毕业设计扫除障碍。在教学内容的安排与教学方法上,应注意内容以应用为目的、以必须、够用为度;教学必须加强基础,突出重点。在介绍公差标准的基本规定时,应从使用角度出发,着重培养学生应用标准的能力。 5)选用教材:应选本科规划教材;实验指导书和练习册可自编。 | 6)公差配合的正确选用,必须结合具体设计,综合运用工程设计和工艺知识。本课程在后续的课程设计、毕业设计中,应结合具体教学内容,指导学生进一步运用,使之加深和巩固。 四、课内实践环节的要求 1、名称:课内综合性实验。

树脂塔设计计算

树脂塔设计计算 一、树脂用量的计算: 1. 罐体直径的确定 D=(4A/π)1/2 A=Q/v 式中: D——罐体直径,m; A——罐体截面面积,m2; Q——处理水量,m3/h; v——过流速度,一般取值:钠型树脂20-30m/h,磺化煤10-20m/h,混床40-60m/h; 2. 树脂装填量计算 V=1.2×1000QTc/(q/2) 式中: V——树脂装填体积,L; 1.2——安全系数 Q——处理水量,m3/h; T——树脂塔再生周期,h; c——需去除的硬度,mmol/L; q——树脂工作交换容量※,mmol/L; 3. 树脂填装高度计算 H=4V/(1000πD2) 式中: H——树脂装填高度,m; 二、再生剂耗量计算: 1. 再生水耗量 a 反洗用水量: V f=v f·T f·πD2/240 式中: V f——反洗用水量,m3; v f——反洗流速,m/h,阳离子交换树脂为10-15m/h,阴离子交换树脂为8-10m/h; T f——反洗时间,min,通常为20-30min; b 置换用水量: V H=v H·T H·πD2/240 式中: V H——置换用水量,m3; V H——置换流速,m/h,一般<5m/h; T H——置换时间,min,通常为20-30min; c 正洗水量: V Z=a·V 式中: V Z——正洗用水量,m3;

a ——正洗水耗,m3/ m3树脂,正洗流速一般为10-15m/h,正洗时间为5-15min; ※计算过程中需注意单位的统一。由于离子交换树脂自身所能交换的离子(Na+、H+、O H-)化合价通常为一价,而处理水中需要被交换的离子(Ca2+、Mg2+)通常为二价,即两个树脂单元方能交换掉一个二价离子。此处按照需要被交换的离子为二价离子计,这是在计算过程中需注意的地方。

互换性的含义

1.互换性的含义:统一规格的一批零部件,任取其一,不需任何挑选和修 理就能装在机器上,并能满足其使用功能要求的性能。零部件所具有的 不经任何挑选和修配便能在同规格范围内互相替换的特性就是互换性。 2.几何参数包括:尺寸大小、几何形状以及相互间的位置关系。 3.互换性可分为:完全互换和不完全互换。 4.互换性在机械制造业中的作用:在设计方面,零部件具有互换性,就可 以最大限度地采用标准件、通用件和标准部件,大大简化了绘图和计算 工作,缩短设计周期,有利于计算机辅助设计和产品品种的多样化。在 制造方面,有利于组织专业化生产,采用先进工艺和高效率的专门设备, 用计算机辅助制造,实现加工过程和装配过程机械化、自动化,从而可 以提高劳动生产率和产品质量,降低生产成本。在使用和维修方面,具 有互换性的零部件在磨损及损坏后可以及时的更换,因而可以减少机器 的维修时间和费用,保证机器连续的运转,提高机器的使用价值。 5.优先数的主要优点:相邻两项的相对差均云,疏密适中,而且运算方便, 简单易记。在同一序列中,优先数的积、商、整数的乘方等仍是优先数。 6.公差和偏差的比较:1)偏差可以为正值、负值或零,而公差则一定是正 值。2)极限偏差用于限制实际偏差,而公差用于限制误差。3)对于单 个零件,只能测出尺寸“实际偏差”,而对数量足够多的一批零件,才能 确定尺寸误差。4)偏差取决于加工机床的调整,不反映加工难易,而公 差表示制造精度,反映加工难以程度。5)极限偏差主要反映公差带位置, 影响配合松紧程度,而公差反映公差带大小,影响配合精度。 7.极限尺寸判断原则:1)孔或轴的作用尺寸不允许超过最大实体尺寸。2) 在任何位置上的实际尺寸不允许超过最小实体尺寸。对于孔,其实际尺 寸不应大于最大极限尺寸;对于轴,则应不小于最小极限尺寸。(最大实 体尺寸主要是用以限制作用尺寸的,而最小实体尺寸则主要是用以限制 实际尺寸的;即作用尺寸和实际尺寸均应限制在最大、最小实体尺寸以 内) 8.何谓最大、最小实体尺寸?它和极限尺寸有何关系?答、对应孔或轴具 有允许的材料量为最多状态下的极限尺寸;或最少状态下的极限尺寸。 9.最大实体极限是对应于孔或轴最大实体尺寸的那个极限尺寸,即轴的最 大极限尺寸或孔的最小极限尺寸;最小实体极限是对应于孔或轴最小实 体尺寸的那个极限尺寸,即轴的最小极限尺寸或孔的最大极限 10.公差等级:国家标准规定的标准公差是由公差等级系数和公差单位的乘 积值决定的。 11.基本偏差是确定零件公差带相对零线位置的上偏差或下偏差。 12.各种配合的特性和应用:间隙配合的特性,是具有间隙。主要用于结合 件有相对运动的配合,也可以用于一般的定位配合。过盈配合的特性, 是具有过盈。主要用于没有相对运动的配合。过度配合的特征,是可能 具有间隙,也可能具有过盈,但所得到的间隙和过盈量,一般是比较小 的,主要用于定位精度并要求拆卸的相对静止的联结。 13.测量过程就包括:测量对象、计量单位、测量方法及测量精度。 14.量块的作用:1)生产中被用来检定和校准测量工具和量仪。2)相对测 量时用来调整量具或量仪的零位。3)有时量块还可以直接用于精密测量、 精密划线和精密机床的调整。 15.测量误差的分类:系统误差、随机误差、粗大误差。在同一条件下,多 次测量同一量值时,误差的绝对值和符号保持恒定。在相同的测量条件 下,多次测量同一量值时,其绝对值大小和符号均以不可预知的方式变 化着的误差。由于测量不正确等原因引起的明显歪曲测量结果的误差或 大大超出规定条件下预期的误差。 16.测量精度:1)精密度:表示测量结果中随机误差大小的程度,表明测量 结果随机分散的特性,是指在多次测量中所得到的数值重复一致的程度, 是用于评定随机误差的精度指标。越小精密度越高。2)正确度:测量结 果中系统误差的大小程度,用于评定系统误差的精度指标,越小正确度 越高。3)精确度:表示测量结果中随机误差和系统误差综合影响程度,说 明测量结果和真值的一致程度。精密度高而正确度不一定高,反之亦然。 精确度高的精密度和正确度都高。 17.随机误差的四个基本特性:1)绝对值相等的正、负误差出现的次数大致 相等,即对称性。2)绝对值小的误差比绝对值大的误差出现的次数多, 即单峰性。3)在一定条件下,误差的绝对值不会超过一定界限,即有界 性。4)当测量次数N无限增加时,随机误差的算术平均值趋于零,即抵 偿性。 18.随机误差的评定指标:正态分布曲线的两个参数即算术平均值L和标准 偏差σ。 19.系统误差的消除:误差根除法、误差修正法即从产生误差的根源上消除, 这是消除系统误差最根本的方法;误差修正法;误差抵消法。 20.随机误差的处理:随机误差不可能被消除,它可应用概率和数理统计的 方法,通过对测量列的数据处理,评定对测量结果的影响。处理方法:1) 计算测量列算术平均值L;2)计算测量列任一测得值的标准偏差的估计 值σ;3)计算测量列算术平均值的标准偏差的估计值σ′;4)确定测量 结果。 21.位置公差分为:定向公差、定位公差和跳动公差。定向公差可以分为平 行度、垂直度、和倾斜度三个项目。定位公差分为:位置度、同轴度和 对称度三个项目。跳动公差分为圆跳动和全跳动。 22.与其他形为公差相比显著的特点:1、定向公差的特点:相对于基准有确 定的方向,并且公布公差带的位置可以浮动;还具有综合控制被测要素 的方向和形状的职能。2、定位公差的特点:具有确定的位置,相对于 基准的尺寸为理论正确尺寸;具有综合控制被测要素位置、方向和形状 的功能。特点:跳动公差带相对于基准轴线有确定的位置;跳动公差带 可以综合控制被测要素的位置、方向和形状。 23.相关要求又分为:包容要求、最大实体要求、最小实体要求。 24.采用未注公差值的优点:图样易读;节省设计时间;图样很清楚地指出 那些要素可以用一般加工方法加工,即保证工程质量又不需要一一检测; 保证零件特殊的精度要求,有利于安排生产、质量控制和检测。 25.形位误差的评定方法:最小包容区域法(是用两个等距的理想要素包容 实际要素,并使两理想要素之间距离为最小)。 26.评定方向误差时,理想要素的方向由基准确定;评定定位误差时,理想 要素的位置由基准和理论正确尺寸确定。对于同轴度和对称度,理论正 确尺寸为零。 27.形位误差的检测原则:与理想要素比较原则,测量坐标值原则,测定特 征参数的原则(按特参数的变动量来确定形位误差是近似的),测量跳动 原则,边界控制原则。 28.形状误差的测量:1、直线度误差测量(贴切法,测微法、节距法);2、 平面度误差测量(平晶测量法,打表法);3、圆度误差的测量(最理想 的测量方法是用圆度仪测量;实际应用采用近似的测量方法如:两点法, 三点法,两三点组合法)平面度误差测量时三个原则:三角形准则,交 叉准则,直线准则。 29.位置公差的测量:1、平行度误差的测量;2、同轴度误差的测量;3、对 称度误差的测量;(截面测量;长度测量)4、跳动测量(圆跳动的测量; 全跳动的测量); 30.公差值的选用原则是:在满足零件功能的要求下,选取最经济的公差值。 31.评定表面粗糙度时,为什么要规定取样长度?有了取样长度,为什么还 要规定评定长度?答:取样长度L是指评定表面粗糙度时所规定的一段 基准线长度。规定取样长度的目的在于限制和减弱其他几何形状误差, 特别是表面波纹度对测量结果的影响。表面越粗糙,取样长度就应越大, 因为表面越粗糙,波距也越大,较大的取样长度才能反映一定数量的微 观高低不平的痕迹。 32.评定表面粗糙度时,为什么要规定轮廓中线?答;轮廓中线是确定表面 粗糙度各评定参数值大小的一条基准线。首先按它确定方向,然后由它 开始计算距离(大小)。 33.表面粗糙度是:加工表面所具有的较小间距和微小峰谷的不平度。表面 粗糙度影响零件的耐磨性;配合性质的稳定性;零件的疲劳强度;零件 的抗腐蚀性;零件的密封性。 34.评定长度是指评定表面轮廓粗糙度所必需的一段长度,它可以包含几个 取样长度。测量表面粗糙度时,规定取样长度的目的在于能在测量范围 内保持表面粗糙度特征,达到限制和减弱表面波纹度对表面粗糙度测量 结果的影响。 35.国家标准中规定表面粗糙度的主要评定参数有幅度参数、间距参数、混 合参数三项 36.简述测量的含义和测量过程的四要素。答:测量是将被测几何量的量值 和一个作为计量单位的标准量进行比较,求得其比值的过程。测量过程 应包括被测对象、计量单位、测量方法和测量精度四要素。 37.“示值范围”和“测量范围”有何区别?答:“示值范围”指计量器具所 能显示或指示的最低值或最高值的范围;“测量范围”指在允许的误差限 内,计量器具所能测出的被测量的范围。 38.配合分哪几类?各类配合中孔和轴公差带的相对位置有何特点?答:配 合分三类:间隙配合、过渡配合和过盈配合。间隙配合中孔的公差带在 轴的公差带上方;过盈配合中孔的公差带在轴的公差带下方;过渡配合 中孔的公差带和轴的公差带相互重叠。 39.为什么要规定基准制?为什么优先采用基孔制?答:标准公差带形成最 多种的配合,国家标准规定了两种配合基准制:基孔制和基轴制。一般 情况下优先选用基孔制配合是考虑中、小尺寸孔常采用定尺寸刀具加工, 这样可以减少定尺寸刀具、量具的品种、规格、数量,而大尺寸刀具则 考虑习惯、方便,也采用基孔制。 40.滚动轴承内圈与轴颈的配合和外圈与外壳孔的配合分别采用哪种基准 制?为什么?滚动轴承内圈内径公差带相对于以公称直径为零线的分布 有何特点?其基本偏差是怎样规定的?答:滚动轴承内圈与轴颈的配合 采用基孔制,外圈与外壳孔的配合采用基轴制。原因是滚动轴承是标准 件。滚动轴承内圈内径公差带相对于以公称直径为零线的分布特点是在 零线以下,基本偏差是上偏差,且为零。 41.与圆柱配合相比,圆锥配合有哪些优点? 答:(1)对中性好内、外圆锥 体的轴线具有较高精度的同轴度,且能快速装拆。(2)配合的间隙 或过盈可以调整。(3)密封性好内、外圆锥的表面经过配对研磨 后,配合起来具有良好的自锁性和密封性。 42.尺寸公差带包含零线和公差带两个要素。 43.按表面轮廓的高度特征评定表面粗糙度的常用参数为(RZ),其名称为 (轮廓的最大高度)。滚动轴承的公差等级分为( G,E,D,C,B) 五级,其中( B 级最高)。 44.包容要求的使用在于可以用(尺寸公差)来控制(形状误差),从而保 证孔、轴的配合性质。 7、包容要求主要适用于(实际要素处处处于具 有理想形状的最大实体边界内)的场合;最大实体要求主要适用于(中 心要素有形位公差要求)的场合。 45.与光滑圆柱配合相比,光滑圆锥配合的优点是什么?答:1)具 有较高精度的同轴度2)能保证多次重复装配精度不变3)配合的自锁 性和密封性好4)间隙量或过盈量可以调整。 46.基准制的选用原则是什么?答:主要考虑工艺的经济性和结构的合理 性,一般情况下,优先采用基孔制,这样可以减少备用的定值孔用刀具、

相关主题