搜档网
当前位置:搜档网 › 异形独塔斜拉桥张拉顺序研究

异形独塔斜拉桥张拉顺序研究

异形独塔斜拉桥张拉顺序研究
异形独塔斜拉桥张拉顺序研究

预应力钢束张拉顺序的原则及做法

预应力钢束张拉顺序的原则及做法 2013-11-05 00:19 专业分类:路桥隧道浏览数:3171 1、长束和短束。应该是先张拉长束,后张拉短束。假如反过来的话,当长束张完后,则短束的预应力损失太大,效率太低。 2、纵束、横束、竖向束。应是纵束、横束和竖向束。纵束是主要钢束,是根据当时施工进度而必须张拉的。横向束次之,有时一期作用下不张拉受力都通得过。竖向最后。 3、同一截面。首先要根据施工方法相应的受力要求确定。对于可同一工况张拉的同类型钢束(例如都是短束、或都是长束),应遵循对称,由内向外的原则。例如先张拉腹板束,再张拉顶底板。其实对于直线桥,截面张拉顺序对应力影响不大,可灵活调整。但是对于弯桥,研究证明,遵循对称张拉的大前提下,宜先张拉外侧腹板束,再张拉内侧腹板束。原因是外侧钢束会使曲率降低而内侧钢束则会增大曲率,即“外侧安全内侧危险”。 预应力张拉技术交底(旧规范) 一、预应力系统安装: 1、波纹管、锚垫板和连接器安装: (1)、波纹管安装 : 预应力用波纹管采用塑料波纹管,波纹管严格按设计图纸位置和要求安装,并要以定位筋将波纹管固定牢固,在直线段约为0.3米一道“U”字形架立筋固定,曲线段加密,以免在混凝土浇筑过程中,波纹管产生移位,影响钢束对箱梁混凝土的压力,如果管道和钢筋发生冲突,应以管道位置不变为主。 (2)、锚垫板安装: 在固定端和张拉端分别安装对应型号和规格的锚垫板和螺旋筋,并将锚垫板喇叭口底端和波纹管连接牢固,锚垫板要牢固地安装在模板上。要使垫板与孔道严格对中,并与孔道端部垂直,不得错位。锚下螺旋筋及加强钢筋要严格按图纸设置,

喇叭口与波纹管道要连接平顺,密封。对锚垫板上地的压浆孔要妥善封堵,防止浇注混凝土时漏浆堵孔。安装锚垫板时,对于两端张拉的锚具,需注意压浆端进浆孔向下,出气孔向上,对于一端张拉的P锚、H锚应把张拉端作为进浆孔,且向下,以保证压浆的密实。

二次张拉低回缩钢绞线竖向预应力锚固系统

二次张拉低回缩钢绞线竖向预应力锚固系统 施工、验收要点

二次张拉钢绞线技术应用于 箱梁腹板竖向预应力的标准化研究课题组 二○○九年八月二日

图1-02 固定端安装进浆聚乙烯半硬管 图1-03 二次张拉竖向预应力安装示意图 图1-03 二次张拉竖向预应力安装示意图 中心线与盒体四周对称 二次张拉低回缩钢绞线竖向预应力锚固系统 施工、验收要点 二次张拉低回缩钢绞线竖向预应力锚固系统是一种新型的预应力筋锚固体系,它不同于传统的精轧螺纹钢筋YGM锚固体系,也不同于夹片式钢绞线锚固体系,具有其自身的特点,在施工、验收中应掌握如下要点,才能确保发挥这一新型锚固体系的优势,从而确保竖向预应力(含中短预应力束)永存应力稳定可靠,孔道压浆密实饱满,提升桥梁的安全性能。 一、预应力筋制作、安装 1、正确安装P锚挤压套和弹簧在钢绞线上的位置,确保弹簧总长度的90%以上在挤压套内。 2、P锚挤压安装油压应大于或等于25Mpa(当使用YJ40挤压机时,应大于或等于30Mpa)。 3、每500套P锚应抽样3套在现场按施工同一工艺挤压,用标定合格千斤顶做拉断试验,钢绞线拉断,钢绞线与挤压套应无滑动、滑脱现象。 4、每一根钢绞线挤压安装P锚时,都应有原始记录。 5、安装固定端应注意安装压板。(如图1-01) 6、安装进浆钢管与塑料管连接部位应用铁丝或管 卡固定(如图1-01) 7.固定端波纹管口应用水泥砂浆(或环氧砂浆或 海棉)堵严实,防止进浆。 8、张拉端槽口穴模与垫板应用螺栓联接,穴模底 板与垫板之间应无间隙。(如图1-03) 图1-01 固定端安装示意图

图2-01 第一次张拉示意图 9、检查张拉端槽口穴模固定螺栓孔是否对称(图1-04),如发现不对称情况应坚决返工。 10、安装张拉端槽口穴模时,穴模底板应与桥面基本平行。 11、进浆塑料管宜采用聚乙烯钢丝管或聚乙烯半硬管(图1-01;图1-02)。 12、浇筑混凝土后,混凝土终凝2~5小时内拆除张控端槽口穴模。 13.张拉端槽口拆模后,应及时采取防护措施,防止混凝土以及杂物进入槽口内。 二、施加预应力 1、第一次张拉施工按常规钢绞线夹片锚固施工方法施工,每束3根(含3根)以下的钢绞线束可单根张拉。 2、第二次张拉应在第一次张拉放张后2~16小时内进行,张拉时应采用专用千斤顶和张拉连接装置,将整束张拉至设计要求应力值。 3、张拉施工工序 (1)第一次张拉施工宜为 0→0.1σcon →0.2σcon →1.03σcon 锚 固 (2)第二次张拉施工宜为 0→0.5σcon →1.03σcon 拧紧支承螺母→放张 (3)检验测量第二次张拉放张后伸长值是否符合要求。 (4)采用双控,以张拉力为主的方法,用 伸长值进行校验,(a)第一次张拉实测伸长值与理论伸长值之差应控制在±6%以内,(b)第二次张拉实测伸长值与理论伸长值之差应控制在±10%以内,c 第二次张拉放张后实测伸长值与理论伸长值应控制在±10%以内。 图2-02 第一次张拉放张后示意图 持荷2min 持荷2min

独塔宽幅矮塔斜拉桥的设计与分析

文章编号:0451-0712(2006)05-0057-04 中图分类号:U 448.27 文献标识码:B 独塔宽幅矮塔斜拉桥的设计与分析 陈从春1,夏巨华2,肖汝诚1,何 鹏1 (11同济大学桥梁工程系 上海市 200092;21中国市政工程中南设计研究院 武汉市 430010) 摘 要:介绍了江苏昆山吴淞江大桥的设计与分析过程,并对平面应力和空间应力进行了讨论。该桥是一座跨径为10011m +10011m ,宽度为33m 的单索面矮塔斜拉桥,是目前同类结构中跨度较大、桥幅最宽的结构,主梁、桥塔、拉索等构造均比较新颖,可作其他桥梁设计借鉴参考之用。 关键词:矮塔斜拉桥;宽幅;设计;分析 吴淞江大桥位于江苏省昆山市吴淞江河跨处,主桥是一座跨径为10011m +10011m ,宽度为33m 的单索面矮塔斜拉桥。该桥在目前同类结构中跨径居第3位,宽度居第1位。桥上设计行车速度为50km h ;设计荷载,汽车为城市-A 级,人群为214kPa ,地震设防烈度为7度。桥梁采用塔、梁、 墩固结体系,主要构件都有一定的新颖性,效果 较好。1 设计概要111 总体布置 吴淞江大桥全桥共设14对拉索,索间距为 410m ,近塔端设有28m 的无索区段, 边墩附近设有20167m 的无索区段。总体布置如图1所示。 单位:m 图1 主桥立面布置 112 主梁 主梁采用变截面箱梁,塔根处梁高为510m ,跨中梁高310m ;梁高变化段在塔根无索区段,变化线 型为半径为16229m 的圆曲线。箱梁断面为单箱五室,箱底宽2514m ,顶宽33m ,其中悬臂长318m 。箱梁断面如图2所示。斜拉索锚固在中室内。箱形断 收稿日期:2005-11-28  公路 2006年5月 第5期 H IGHW A Y M ay 12006 N o 15

张拉顺序

1、长束和短束。应该是先张拉长束,后张拉短束。假如反过来的话,当长束张完后,则短束的预应力损失太大,效率太低。 2、纵束、横束、竖向束。应是纵束、横束和竖向束。纵束是主要钢束,是根据当时施工进度而必须张拉的。横向束次之,有时一期作用下不张拉受力都通得过。竖向最后。 3、同一截面。首先要根据施工方法相应的受力要求确定。对于可同一工况张拉的同类型钢束(例如都是短束、或都是长束),应遵循对称,由内向外的原则。例如先张拉腹板束,再张拉顶底板。其实对于直线桥,截面张拉顺序对应力影响不大,可灵活调整。但是对于弯桥,研究证明,遵循对称张拉的大前提下,宜先张拉外侧腹板束,再张拉内侧腹板束。原因是外侧钢束会使曲率降低而内侧钢束则会增大曲率,即“外侧安全内侧危险”。 预应力张拉技术交底(旧规范) 一、预应力系统安装: 1、波纹管、锚垫板和连接器安装: (1)、波纹管安装: 预应力用波纹管采用塑料波纹管,波纹管严格按设计图纸位置和要求安装,并要以定位筋将波纹管固定牢固,在直线段约为0.3米一道“U”字形架立筋固定,曲线段加密,以免在混凝土浇筑过程中,波纹管产生移位,影响钢束对箱梁混凝土的压力,如果管道和钢筋发生冲突,应以管道位置不变为主。 (2)、锚垫板安装: 在固定端和张拉端分别安装对应型号和规格的锚垫板和螺旋筋,并将锚垫板喇叭口底端和波纹管连接牢固,锚垫板要牢固地安装在模板上。要使垫板与孔道严格对中,并与孔道端部垂直,不得错位。锚下螺旋筋及加强钢筋要严格按图纸设置,喇叭口与波纹管道要连接平顺,密封。对锚垫板上地的压浆孔要妥善封堵,防止浇注混凝土时漏浆堵孔。安装锚垫板时,对于两端张拉的锚具,需注意压浆端进

预应力张拉方案说明

一、工程概况 本区间段部分为后张法预应力砼箱梁,预应力钢束为270级Φ15.24高强度低松弛钢绞线.梁采用两端张拉以及P锚。锚具采用OVM15-17、OVM15-15、OVM15-14、OVM15-13 OVM15-12及OVM5-7P、OVM5-7P锚具,400T、250T及150T千斤顶进行施工。标准区间的预应力钢束均布置在箱梁顶板顶和箱梁底板齿块上,为加快施工进度全面展开现浇箱梁施工创造了有利条件。砼的强度和龄期应严格按设计要求进行,张拉采取应力、伸长值双控制。如发现伸长值异常时,只有在分析出原因和找到解决办法后继续张拉。压浆应在规定时间内完成,其质量应有切实的保证。 二、施工方案 1、施工准备 (1)、审核预应力施工单位的施工资质及施工人员的上岗证书,审核通过后方可进场施工。(2)、对预应力筋的张拉顺序及程序、初始拉力和超张拉控制拉力及其对应油压值、预应力筋张拉伸长值允许范围、质量标准等正行技术交底,并有与之对应的安全、质量交底。 (3)、对图中每束预应力筋进行分类编号,给出每束预应力筋的下料长度。 (4)、确定灌浆配合比,保证灌浆料强度满足设计和规范要求。 (5)、张拉设备标定,确保张拉方式、顺序和油压表张拉读数值,计算每束预应力筋理论伸长值和允许偏差范围,做好张拉施工时的现场记录准备。 (6)、张拉前搭设安全、可靠的钢管脚手平台,面积1.5m×1.5m,带有围护栏杆; (7)、使用錾子、钢丝刷清理洞口残留砼,清理钢绞线表面水泥浆及浮锈; (8)、计算每个孔道的灌浆量和配合比控制措施,做好灌浆施工时现场记录准备。 2、施工工艺 预应力筋制作 预应力筋铺设、张拉锚固端组装 预应力筋张拉 (1)、工艺流程 波纹管定位 孔道灌浆 封闭灌浆孔排气泌水孔 张拉端切筋封锚 (2)、操作工艺 (1)、预应力孔道成型 1)、后张预应力孔道采用预埋波纹管法。 2)、塑料波纹管安装前首先在箍筋上标出预应力筋的曲线坐标位置,直线段每隔1m点焊Φ12钢筋支托,曲线段每隔0.5m点焊Φ12钢筋支托。 3)、安装波纹管时将接头位置错开,波纹管安装好后用铁丝与支托钢筋绑扎。 (2)、预应力筋制作 1)、钢绞线下料与编束 a、钢绞线在下料时用圆盘砂轮切割锯切割,保持切口平整。

二次张拉_secret

xx特大桥竖向预应力二次张拉质量控制 一、工程概况 xx市轨道交通三号线xx特大桥总长352m,桥型方案为(96+160+96)m的三跨两向预应力砼连续刚构,采用单箱单室断面。箱顶板宽9.1m,底板宽5.6m,箱梁跨中及边跨现浇段梁高3.7m,0号块梁段高9.2m,其间按二次抛物线变化。全桥各梁段竖向预应力钢筋采用Фs15.2-3钢绞线,设计张拉吨位583KN 。针对国内桥梁短束预应力筋施工普遍存在应力损失大(应力损失可达20%~30%),钢材利用率低的现象,本桥采用已于2004年3月4号申请国家专利的YHM15-3G 型二次张拉预应力锚具(国家专利号:200420035230.3)。为加快新材料、新工艺的掌握,总结相关施工工法,本次QC活动主要以竖向预应力二次张拉质量控制为主。 二、QC小组情况 经项目领导研究讨论,项目部成立了以项目总工为组长,项目副总工为副组长以及由技术人员、管理人员、施工员组成的三级配置科技攻关型小组。QC小组由10人组成,平均年龄33岁。小组成员概况详见表-1。 QC小组概况一览表表1 QC小组成立后针对该项专利技术结合我部现场实际积极展开如下活动: 1、聘请材料供应商湘潭欧之姆预应力锚具有限公司技术专家现场讲解锚具结构、锚具安装及张拉施工技术要点。 2、组织QC小组成员学习YHM-3G型锚具设计图及二次预应力张拉施工图。参阅交通部、铁道部、xx轨道公司下发相关施工及验收规范,结合行业内发表的参考论文、文献制定我部竖向预应力二次张拉质量验收标准并报监理、业主审批。(由于采用二次张拉新型锚具,国内目前尚无

统一的质量验收标准) 3、结合业主审批的二次预应力张拉质量验收标准,QC小组编制了具体的《xx特大桥箱梁竖向预应力二次张拉作业指导书》等指导性文件。 4、组织QC小组成员进行全面质量管理教育,针对编制的作业指导书和质量验收标准进行工前专业技术培训和工中结合实践的全面管理培训,并通过书面考核检查学习情况。 5、为确保工程的质量及施工安全我们成立了科研小组,对施工 中关键技术进行研究;同时加强了现场调查和数据收集,并及时进行数据分析,定期召开QC小组成员会议,进行现状分析。 6、明确组内分工,建立规章制度,加强QC小组成员的管理。 三、选题理由 1、中短束竖向预应力二次张拉是近年来国家建设部重点推广的项目,目前国内外介绍该工法的相关文献较少。该工艺结合了预应力张拉施工中精轧螺纹钢筋安全和钢绞线经济的特点,有效解决了中短束预应力张拉损失过大的难题,在国内外预应力张拉施工中处于领先水平。 2、xx特大桥是xx市轨道交通三号线的控制性节点工程,创造了三个世界第一(跨越xx、轻轨二号线、牛滴路、北滨路,施工地形复杂;轨道梁桥主跨达160m;曲线半径仅311m)。梁部竖向预应力二次张拉作为该桥的控制性关键工序又是重中之重。保质保量完成施工任务填补了公司在预应力二次张拉技术领域的空白,同时也响应了公司“立足轻轨、占领xx、面向全国”的战略思路。 3、如果说利润和质量是企业的血脉和生命,那安全就是二者延续的保证,以上三者是具有统一性和矛盾性的一个有机结合体。预应力二次张拉通过新材料、新工艺将三者有机的结合起来,在提高质量和安全的基础上降低造价充分发挥了其统一性的一面。 4、通过本次QC活动,培养了一批技术骨干,为相关工法的总结提供了宝贵的第一手资料,同时也为公司在以后的同类施工任务中积累了施工实践经验。 综合以上因素,经过小组全体组员讨论确定以“xx特大桥竖向预应力二次张拉质量控制”为本次活动的研究课题,开展QC攻关活动。 四、活动目标及可行性分析 1、活动目标 ①、结合铁道部、交通部颁布相关验收标准和业主、监理下发质量要求,经QC小组成员集体讨论,每百束不合格点及其偏差值控制计划见表2 每百束不合格点控制表表2 ②、保证无施工安全事故发生;

组合体系拱桥构造

组合体系拱桥构造 整体式拱桥 基本特点 实腹段在永久作用下主要承受轴向压力,在可变作用下成为一个偏心受压构件 空腹段的主拱与拱上结构共同受力、刚度较大 混凝土用量为轻型双曲拱桥的1/3左右,与T形梁桥相当或稍多。钢材用量比梁桥则节省较多 经济指标好、重量轻,对软土地基有较好的适应性整体式拱桥由多个拱片组合而成 除桥面板现浇外大部分都可预制施工,安装块件的尺寸和重量由运输和安装能力而定 结构内部超静定次数较高,结构外部则可根据构造而设为双铰拱或无铰拱 各杆件交点采用刚性联结,但交汇结点易开裂,处理不好将影响结构整体刚度和耐久性 —桁架拱桥 自重轻、整体性好、刚度大及经济性好 桁架拱内部的超静定次数较高,外部一般可简 化为一次超静定结构的二铰拱,有水平推力 兼有桁架和拱的受力特点,实腹段偏心受压, 空腹段除上弦杆外的其它杆件主要承受轴向力 下弦杆为拱肋、上弦杆为桥面 结点构造复杂,钢筋用量较大 结构组成 桁架拱片 横向联结系 桥面板 —刚架拱桥 刚架拱桥是在肋拱桥、桁架拱桥、斜腿刚架桥 等基础上发展起来的一种新桥型 具有构件少、自重轻、整体性好、刚度大、经 济指标较先进、造型美观等优点 结构内部一般为多次超静定,外部可为二铰拱、无铰拱或拱与其它结构组合的支承方式 兼有刚架和拱的受力特点,钢筋混凝土材料的 受力性能得到较好利用 杆件(分段)预制、现浇砼连接,施工简便 —组合式拱桥 基本特点 拱式组合桥是一种以拱为主要承重构件、具有拱式

结构内力分布和变形特征的组合式桥梁结构 具有外形美观、结构轻巧、无推力或小推力的结构 特点,适用于不同环境和各种地质条件 能够充分发挥各种材料的受力优势,结构受力合理、 经济指标优良稳定 近年来的新发展,也得益于预应力技术与工艺的更 新,从而保证了这种体系及相应施工方法的可行性 主要类型及基本组成_简支拱式组合桥 一种单跨、简支、下承式的拱式组合桥 单悬臂拱式组合桥 是一种三跨、上承式的单悬臂拱式组合桥 连续拱式组合桥 连续拱式组合桥,是指三跨或多跨结构连续的 拱式组合桥 根据路面在桥梁结构中的位置,连续拱式组合 桥分为上承式、中承式及下承式三种 结构特点 简支、单悬臂拱式组合桥对下部结构无水平推力作用 连续拱式组合桥,在构造上可以处理成完全无水平多余 约束或在成桥后才形成多余约束的两种方式 若有水平多余约束,也在桥梁建成后起作用,而大部分 永久荷载并不引起水平推力,表现出连续梁桥的外部受力特点 通过拉开拱与梁或系杆的相对距离,利用拱、梁或 系杆的压力与拉力形成自平衡的抵抗力矩、平衡外荷载弯矩 利用拱轴线与水平线之间的倾角,将拱压力的竖向 分力平衡外荷载剪力 通过对中支点旁区段的加强(较长的空腹段布置),扩大负 弯矩作用区段的范围、调整结构内力分布 下承式连续拱式组合桥中支点附近的区段,并不通过拱、梁或系杆的分离方式进行加强,而是通过对中跨的加强吸引内力,并将荷载通过拱直接转移到支点,达到了“声东击西”的目的 由于中跨的加强作用,中跨与边跨的相互影响大为减弱,边跨出现负反力的可能性大大减小,使非通航边跨的跨度达到了最小值 拱式组合桥的五种型式 单跨简支下承式 三跨单悬臂上承式 三跨连续上承式 三跨连续中承式 三跨连续下承式

预应力张拉技术交底

箱梁预应力张拉技术交底 张拉控制 箱梁混凝土达到设计强度的90%,且混凝土龄期不小于7d 时,方可张拉正弯矩区预应力钢束。正弯矩采用两端同时对称张拉,锚下控制应力为0.7f pk =1302Mpa 。箱梁混凝土达到设计强度的95%,方可张拉负弯矩区预应力钢束。负弯矩采用两端同时对称张拉,锚下控制应力为0.75f pk =1395Mpa 。施加预应力采用张拉力与伸长量双控。 4、张拉顺序 正弯矩钢束张拉顺序:N1→N2→N3; 负弯矩钢束张拉顺序:T1→T2→T3。 预应力张拉计算书 1、张拉计算所用常量: 预应力钢材弹性模量 Eg=1.96×105N/mm 2 预应力单数钢材截面面积 Ag=139mm 2 预应力钢材标准强度 R b y =1860Mpa 孔道每米局部偏差对摩擦的影响系数 k=0.0015 预应力钢材与孔道壁的摩擦系数 μ=0.25 设计图纸要求:正弯矩束锚下张拉控制应力σ1=0.70 R b y =1302Mpa ,负弯矩束锚下张拉控制应力σ1=0.75 R b y =1395Mpa 2、计算所用公式: 1)预应力筋张拉端的张拉力P 的计算: P=σk ×Ag ×n ×10001 ×b (KN) 式中:σ k --预应力钢材的张拉控制应力(Mpa); Ag--预应力单束钢筋截面面积(mm 2); n--同时张拉预应力筋的根数(mm 2); b--超张拉系数,不超张拉取1.0。 2)预应力筋的平均张拉力p 的计算: ①直线筋 P=P

②两端张拉的曲线筋 p =μθ μθ+-+-kl e p kl ))(1( (KN ) 其中:P--预应力筋张拉端的拉力(N ); l--从张拉端至计算截面的孔道长(m ); θ--从张拉端至计算截面曲线孔道部分切线的夹角之和(Rad ); k--孔道每米局部偏差对摩擦的影响系数; μ--预应力钢材与孔道壁的摩擦系数。 3)预应力筋张拉时理论伸长值的计算: ΔL=Eg Ay L p ?? 其中:p ---预应力筋的平均张拉力(N ); L---预应力筋长度(cm ); Ay---预应力筋截面面积(mm 2); Eg---预应力筋弹性模量(N/mm 2)。 3、计算过程 本标段采用φ15.2钢绞线作为预应力钢材,依据通用图及设计图纸,钢束的组成形式一共有两种,N1、N2为5束φ15.2低松弛钢绞线,N3为4束φ15.2低松弛钢绞线。负弯矩钢绞线T1、T3为5束φ15.2低松弛钢绞线,T2为4束φ15.2低松弛钢绞线。 ①正弯矩张拉力 5φ15.2对应的张拉控制力为: P=σk ×Ag ×n ×10001×b =1302×139×5×10001 ×1=904.89KN ; 4φ15.2对应的张拉控制力为: P=σk ×Ag ×n ×10001×b =1302×139×4×10001 ×1=723.91KN 。 ②负弯矩张拉力 5φ15.2对应的张拉控制力为: P=σk ×Ag ×n ×10001×b =1395×139×5×10001 ×1=969.525KN ;

二次张拉操作规则(试行)

二次张拉低回缩钢绞线竖向预应力锚固系统施工、验收操作规则 ********项目部 2011年3月

目录 1、术语和符号 (2) 1.1 术语 (2) 1.2 符号 (3) 1.3 术语简称 (5) 2、材料及锚具系统 (6) 2.1 混凝土及钢筋 (6) 2.2 锚具系统 (6) 2.3 管道 (7) 3、施工 (8) 3.1 一般规定 (9) 3.2 预应力钢筋材料、锚具、管道进场验收 (9) 3.3 预应力钢筋的制作、安装 (9) 3.4 混凝土的浇筑 (10) 3.5 施加预应力 (11) 3.6 孔道压浆 (15) 3.7 封锚 (15) 4、验收 (16) 4.1 一般规定 (16) 4.2 工序施工验收 (16) 4.3 分项工程施工验收 (17) 附录A 二次张拉低回缩钢绞线竖向预应力锚固系统的锚具构造尺寸 (19) 附录B 张拉端锚具槽口及穴模参考尺寸 (20) 附录C 张拉端锚具槽口护罩和固定塞的构造尺寸 (21) 附录D 二次张拉专用千斤顶、张拉连接装置构造及参考尺寸 (22) 附录E 竖向预应力工程施工验收记录表 (23) 附录F 竖向预应力筋张拉记录表 (25) 附录G 钢绞线与固定端P锚安装记录表 (27)

1 术语、符号 1.1术语 1.1.1二次张拉低回缩钢绞线竖向预应力锚固系统 是一种由固定端“P型锚具系统”、钢绞线力筋、管道系统和张拉端“低回缩二次张拉锚具”等几个部分组合,沿垂直方向布置于预应力混凝土箱梁桥腹板内,并经二次张拉施工实现其力筋低回缩锚固的预应力锚固体系。 1.1.2二次张拉 对同一根钢绞线预应力束完成第一次张拉→放张→夹片锚固后,第二次将锚杯整体张拉→旋紧支承螺母→放张锚固力筋,以弥补第一次放张锚固回缩损失的预应力施工工艺。 1.1.3竖向预应力锚固系统 是一种由固定端锚具、预应力钢筋、张拉端锚具等部件组合,沿垂直方向布置于预应力混凝土内,经张拉施工实现其力筋锚固的预应力锚固体系。 1.1.4预应力筋 在预应力结构中用于建立预加应力的单根或成束的预应力钢丝、钢绞线或钢筋。 1.1.5锚具 在后张法预应力混凝土结构或构件中,为保持预应力筋的拉力并将其传递到混凝土上所用的永久性锚固装置。 1.1.6低回缩二次张拉锚具 是一种第一次张拉钢绞线放张锚固后,再实施第二次张拉使锚杯离开垫板,然后旋扭支承螺母来补偿锚杯下端面与垫板之间间隙,达到弥补第一次张拉放张回缩损失的新型锚具。 1.1.7锚杯 它是低回缩二次张拉锚具的关键零件。锚杯圆柱(或圆台)的内侧设置夹片座套,外周设置螺纹,并与支承螺母内螺纹旋接。 1.1.8 支承螺母 它是低回缩二次张拉锚具的另一个关键零件。其外周设有若干槽口便于转动螺母,其内螺纹与锚杯外螺纹旋接。 1.1.9 预应力筋-锚具组装件 单根或成束状态的预应力筋与安装在其端部的锚具组合装配而成的受力单元。

梁拱组合体系桥地震响应敏感性参数分析

梁拱组合体系桥地震响应敏感性参数分析 发表时间:2018-01-07T20:57:56.400Z 来源:《基层建设》2017年第27期作者:柳东委[导读] 摘要:为了寻求梁拱组合体系桥的抗震性能敏感设计参数的合理取值范围,按照空间有限元动力分析方法,考虑拱结构的二阶效应、吊杆的几何非线性效应等,采用非线性时程分析法对某梁拱组合体系桥进行了地震响应的参数敏感性分析,探讨了拱梁相对刚度比、横撑布置形式与刚度等关键影响参数对梁拱组合体系桥地震响应规律的影响机理 江苏纬信工程咨询有限公司 210014 摘要:为了寻求梁拱组合体系桥的抗震性能敏感设计参数的合理取值范围,按照空间有限元动力分析方法,考虑拱结构的二阶效应、吊杆的几何非线性效应等,采用非线性时程分析法对某梁拱组合体系桥进行了地震响应的参数敏感性分析,探讨了拱梁相对刚度比、横撑布置形式与刚度等关键影响参数对梁拱组合体系桥地震响应规律的影响机理关键词:桥梁工程;梁拱组合体系桥;地震响应;参数分析材料性能的提高和工程实践技术的革新推动了梁-拱组合体系桥的发展,作为一种特殊形式的拱桥,它将主要承受压力的拱和主要承受弯矩的梁组合起来共同承载,充分发挥拱和梁各自的优势。目前国内外针对梁-拱组合体系桥的静力力学性能研究较多,但在动力性能尤其是抗震方面研究尚显不足[1-4]。 有鉴于此,本文依托某在建工程,开展了梁-拱组合体系桥的地震响应特征及结构参数影响规律研究,旨在为同类桥梁的抗震设计提供理论和实践的参考。 1 工程概况 我国东部某在建的梁-拱组合体系桥设计全宽为40m,分幅方式为4m(人行道)+4m(慢车道)+3m(分隔带)+18m(快车道)+3m (分隔带)+4m(慢车道)+4m(人行道),采用沥青混凝土路面。上部结构采用的梁-拱组合体系,主跨为50m,两边跨都为30m。矢高为20.0m,采用刚性吊杆,矢跨比为1/4,。拱肋截面为2×1.8m。系杆截面尺寸为1.8×2.0m。全桥设置直径1.0m圆形钢管风撑四道。端横梁、中横梁及跨中横梁高度均为1.60m~1.743m。 图1.1 桥梁总体布置图(单位:cm) 2参数选择及分析工况 2.1矢跨比 对于梁拱组合体系桥来说,矢跨比也是一个重要的结构特征参数,对拱肋和系梁的受力均有很大的影响,有时甚至还会影响施工方法的选择。本文依托工程的原始矢跨比为1/4,为了探讨矢跨比对全桥结构地震响应的影响,保持拱肋截面形式和拱轴线线型方程表达式形式不变,同时构件尺寸、材料等都不做修改,分别把该桥的矢跨比调整为1/4、1/5、1/6、1/7,采用非线性时程分析法,探讨和计算不同矢跨比模型的地震响应。后文为了说明的方便,分别将上述模型简称为R-Sratio1/4、R-Sratio1/5、R-Sratio1/6、R-Sratio1/7。 2.2拱梁相对刚度比 在梁拱组合体系桥中,桥面是和系梁共同受力,这种受力结构的刚度成为梁的刚度,主拱圈拱的刚度与这种刚度的比值,成为拱梁相对刚度比。梁拱组合体系桥中,按拱梁刚度比的大小可分为刚性系杆柔性拱、柔性系杆刚性拱和刚性系杆刚性拱三种类型。为了探讨不同拱梁刚度比值的影响,本文分别研究了刚度比为0.62、0.31、2.47、4.94时,桥梁结构的地震响应变化情况。后文为了描述的方便,分别将上述模型检查简称为A-TRatio0.31、A-Tratio0.62、A-TRatio1.23、A-Tratio2.47、A-Tratio4.94。 2.3横撑的布置形式与刚度 横撑的布置形式、位置和刚度都影响着拱肋的横向整体刚度大小,进而对全桥的横向刚度产生影响。横撑主要有一字形、X形和K形等形式。本文为了研究横撑布置形式与刚度的影响,以结构的原始设计参数为基准,将横撑两个方向的抗弯刚度分别扩大5倍、10倍、100倍来进行探讨分析。此外,将横撑全部去除以及设置剪刀撑也作为两个比对方案。后文为了说明的方便,分别将上述模型检查简称为Stiffness-0(相当于将原始刚度乘以0倍)、Stiffness-1、Stiffness-5、Stiffness-10、Stiffness-100、Stiffness-X。其中,Stiffness-0表示两个拱肋横向不设置横撑的情况,Stiffness-X表示去除原始设计中的横撑,设置三道剪刀撑的情况 2 地震动输入 为了研究矢跨比、横撑布置形式及刚度以及拱梁相对刚度比对梁-拱组合体系桥动力特性和地震响应的影响,采用非线性时程分析方法分别针对不同参数取值的有限元分析模型进行数值参数分析。在进行结构设计参数分析时,选取的地震动记录是通过调整并且和设计反应谱拟合较好的实际地震动记录。限于篇幅,本文激励方向仅采用纵向+竖向和方式。 3 有限元模型 采用结构抗震分析软件SAP2000 version15.1.1进行本桥的地震响应分析。系梁和拱肋均分别采用空间梁单元进行模拟,桥面板采用壳单元模拟,吊杆采用桁架单元模拟,预应力钢束采用钢束单元一一模拟每一根钢束。为了准确反映桥面板与系梁以及横梁的共同作用,建立了壳单元与梁单元的边界约束关系。 4 地震响应敏感性参数分析 在结构的设计过程中,一般都存在许多需要设计人员充分重视的关键性结构参数。这些参数不仅直接影响了桥梁的结构性能,还会影响了使用寿命。因此,合理地优化结构设计参数是设计的核心。由于地震力的强度和时效都具有很强的随机性,对于梁-拱组合体系桥来说,其关键构件的材料和几何属性无疑影响了全桥的抗震性能。因此,本章对梁-拱组合体系桥的几个关键结构参数,即矢跨比、拱梁相对刚度比、横撑刚度及其设置方式进行参数分析。

钢管拱梁组合体系桥完整计算书.

一、工程概况 跨径布置为1-69m,上部结构采用下承式钢箱梁系杆拱。钢箱梁纵向为等梁高设计,横断面采用单箱六室截面,横向中心线处高1.6m,向两侧设置1.5%的横坡,人行道反向2.0%的横坡,两横坡交汇处设置桥面泄水管。钢箱梁纵向共划分为8个梁段,起终的两个梁段箱梁顶、底板及纵隔板厚均为28mm,横隔板厚24mm;其余梁段箱梁顶、底板及纵隔板厚均为16mm,横隔板厚14mm。钢箱梁宽度为等宽25.0m。 主拱采用矩形截面,宽1.2m,高1.6m。拱轴线为复合抛物线:小桩号侧21m为2.8次抛物线,大桩号侧44m为1.7次抛物线。拱矢高18.0m(拱面内高度),跨度65m,拱面内矢跨比约为1/3.61,拱轴线垂直于平面。顶、底板及腹板厚度相同,两拱脚段采用28mm厚钢板,其余段均采用24mm厚钢板。本桥共设置11对吊杆。吊杆与桥轴水平面夹角为60度,吊点中心距为5m,关于桥梁中心对称布置,均采用单吊索。吊杆采用HDPE护套平行钢丝索,上端钢箱拱内为冷铸锚头,下端钢箱梁底为可张拉式冷铸锚头,均在梁端进行单端张拉。考虑到疲劳、吊装、及可更换性,吊索设计安全系数大于3.0。 下部结构采用薄壁桥台、桩基础。每个桥台承台下设12根Φ1.5m桩基,桩顶承台厚2.0m,长25.0m、宽6.25m。 桥梁的起止桩号为K0+134.875~K0+209.125,全桥长为74.25m。 二、主要技术标准 1、道路等级:城市支路; 2、设计荷载:汽车荷载:城—A级; 人群荷载: 按照《城市桥梁设计规范》(CJJ 11-2011)第10.0.5条计算取值; 3、设计行车速度:30km/h; 4、车道数:双向四车道; 5、桥面路幅分布:2.5m(人行道)+2.5m(拉索区)+7.5m(机动车道)+7.5(机动车道) +2.5(拉索区)+2.5m(人行道)=25m; 6、地震基本烈度:桥位所在区域地震动峰值加速度为0.05g,为6度区,抗震措施满足7度区设防要求; 7、桥梁横坡:双向1.5%,人行道位置反向2.0%; 8、水文:设计水位 21.500m; 9、通航:本桥无通航要求,仅考虑游船通行。 10、桥梁环境类别:Ⅰ类; 11、桥梁设计安全等级:一级,结构重要性系数γ0=1.1;

混凝土预应力张拉实施细则(很详细)

南水北调中线一期总干渠 漳河北~古运河南段中线建管局直管工程 高邑赞皇段土建及设备安装工程 泲河渡槽槽身混凝土预应力张 拉实施细则 (合同编号:ZXJ/SG/ZSD-007) 批准: 校核: 编制: 中国水电第十一工程局有限公司 南水北调工程高邑赞皇段项目经理部 二○一一年九月

目录 1、概述 ------------------------------------------------------------------------------------------------ 1 2、钢绞线张拉 ---------------------------------------------------------------------------------------- 1 2.1张拉前的准备 --------------------------------------------------------------------------------- 1 2.2张拉工具 -------------------------------------------------------------------------------------- 1 2.3张拉顺序 -------------------------------------------------------------------------------------- 2 2.4施工编号 -------------------------------------------------------------------------------------- 2 2.5张拉应力计算 --------------------------------------------------------------------------------- 2 2.6张拉控制参数 --------------------------------------------------------------------------------- 4 2.7应力与伸长值及压力表读数之间的关系---------------------------------------------------- 5 2.8张拉施工 -------------------------------------------------------------------------------------- 5 2.9应急情况处理 --------------------------------------------------------------------------------- 7 3、精轧螺纹钢筋张拉 -------------------------------------------------------------------------------- 7 3.1张拉前准备------------------------------------------------------------------------------------ 7 3.2张拉工具 -------------------------------------------------------------------------------------- 8 3.3张拉顺序 -------------------------------------------------------------------------------------- 8 3.4施工编号 -------------------------------------------------------------------------------------- 8 3.5张拉计算及控制参数 ------------------------------------------------------------------------- 8 3.6张拉施工 -------------------------------------------------------------------------------------- 9 3.7注意事项 ------------------------------------------------------------------------------------ 10 4、施工记录 ------------------------------------------------------------------------------------------11

VLM型竖向二次张拉锚具使用说明书(威尔姆)

VLM 型竖向二次张拉锚具
使用说明书
柳州市威尔姆预应力有限公司 二○○八年三月

二次张拉低回缩钢绞线竖向预应力锚固系统 施工操作说明书
二次张拉低回缩钢绞线竖向预应力锚固系统是一种新型的预应力筋锚固体系, 它不同于 传统的精轧螺纹钢筋 YGM 锚固体系,也不同于夹片式钢绞线锚固体系,具有其自身的特点, 在施工、验收中应掌握如下要点,才能确保发挥这一新型锚固体系的优势,从而确保竖向预 应力(含中短预应力束)永存应力稳定可靠,孔道压浆密实饱满,提升桥梁的安全性能。 一、二次张拉低回缩钢绞线竖向预应力锚固系统的锚具尺寸(如图 1):
图 1 二次竖向张拉锚具安装时意图 1。工作夹片 2。工作锚板 3。工作螺母 5。波纹管 6。预应力筋 7。约束圈 9。固定螺钉 10。固定垫板 11。挤压套 二次张拉竖向低回缩锚具张拉端技术参数表 波纹管内 工作锚板 工作螺母 锚垫板 预应力 经(mm) 型号 筋根数 MA B D E F φC φI VLM.SX15-1 VLM.SX15-2 VLM.SX15-3 VLM.SX15-4 VLM.SX15-5 1 2 3 4 5 M48X2 M83X3 M85X3 M95X3 M110X2 56 56 60 60 60 φ64 φ98 φ110 φ120 φ132 26 26 32 32 32 100 115 140 140 150 14 80 110 100 120 35 45 50 55 55
4。锚垫板 8。螺旋筋 12。压板 单位:mm 螺旋筋 φJ φ80 φ120 φ130 φ140 φ160 φG φ8 φ8 φ8 φ8 φ8 K 40 40 50 50 50 圈数 4 4 4 4 4
二次张拉竖向低回缩锚具固定端技术参数表 固定垫板 预应力 固定垫板到 型号 筋根数 φN H 约束圈距离 VLM.SX15-1 VLM.SX15-2 1 2 φ80 φ100 14 20 / 160
单位:mm 张拉端槽口及模版参考尺寸 A 140 180 B 140 140 C / 100 φD φ20 φ60 H 100 110

独塔小半径曲线斜拉桥施工关键技术解析

独塔小半径曲线斜拉桥施工关键技术解析 一、工程特点和施工的主要难点 1、工程特点 1)独特的塔梁索结构 其塔身呈仙鹤形状,桥的截面为空心不规则矩形,偏向于重心的设计方式;而在主梁设方面的设计主要采用半径以及宽都不相等的两段曲线单箱三室箱梁结构;而桥梁斜拉索方面也要设计出不对称的单索面,并且在塔的侧面还要加设锚墩和背索设计; 2)桥梁设计的几何结构较为复杂 根据塔梁索在结构设计方面具有其独特性,且主梁的位置处于整个桥梁的曲线上面,因此使得整个斜拉桥的结构处在了一个三维的空间当中,且对于它的坐标在计算也控制方面也是非常复杂的; 3)结构受力体系复杂 由于斜拉桥在结构方面的几何是非常复杂的,因此,整个主梁与异形的重心都偏向于塔柱,再由斜拉以及背索在水平方向的力的作用下,使得整个桥梁在维空间的受力情况下处于复杂且平衡的状态。 2、施工难点 1)桥梁的主边上的主梁是处在小半径曲线的位置上,由于桥梁在空间上的受力情况不同,因此对于桥梁的整体线形的有效控制的关键就是对于施工方案的选择以及对于施工工况的监控;

2)在桥梁施工的过程中,由于侧重主梁会对于主跨主梁造成纵向与横向的偏移情况,并导致斜拉索的支座受到一定程度的扭转,因此确定侧重主梁的施工方案就显得尤为重要了。 二、总体施工方案及主要施工流程 1、对于主边的跨主梁来讲,主要采用的是预偏位移支架的方法来对其进行施工,具体将其分成三段来全方位的实施现浇施工;对于配跨主梁来讲,主要采用的是端头悬挑支架的方式来对其进行现浇施工;对于主塔来讲,主要采用的是塔吊配合翻模的方法,来逐段进行浇筑施工;对于斜拉索来讲,主要采用的是分别挂设和单根不对称张拉有机结合的方式来进行施工; 2、从主要的施工流程上来看,首先施工的是32号主墩;其次施工的是0号主墩;第三施工的是索塔各个节段;第四施工的是锚墩;第五施工的是边跨的主梁;第六施工的是主跨的主梁;第七施工的是斜拉索第M01至M09以及S01至S09索;第八施工的是锚墩横梁合龙段;第九施工的是斜拉索第M10至M11以及S10至S11索;第十施工的是斜拉索B01、B02,M10至M11,以及S10至S11索;最后一步施工就是支架的拆除。 三、施工过程中的关键技术 1、主梁施工 小半径曲线的主梁在预应力与斜拉索的拉力共同的作用下,出现纵向压缩和横向方向的水平位移因此,在桥梁设计中所采用的支架以及模板等等结构会对于主梁的纵向与横向方面的变形与位移产生一定的约束力,

斜拉桥设计规范

路桥隧道管理养护专业网www.rbt mm.co m 中华人民共和国行业标准 公路斜拉桥设计规范(试行) Design Specifications of Highway Cable Stayed Bridge(on trial) JTJ 027—96 主编部门:交通部重庆公路科学研究所 批准部门:中华人民共和国交通部 试行日期:1996年12月1日 l 总则 1.0.1 为了使公路斜拉桥设计达到技术先进、经济合理、安全适用、确保质量,特制定本规范。 1.0.2 本规范适用于混凝土斜拉桥、结合梁斜拉桥、钢斜拉桥的设计,为现行公路桥涵设计规范的补充。除本规范明确规定外,应遵照现行有关公路桥涵设计规范要求执行。 1.0.3 斜拉桥总体方案,应与环境协调并综合考虑经济与安全、设计与施工、材料与机具、营运与管理,以及桥位处地质、水文、气象、地震等因素确定结构体系。 1.0.4 桥宽应满足交通发展的要求,并应符合《公路工程技术标准》 (JTJ 01 —88)(1995 年版 ) 的规定。 1.0.5 设计主梁、索塔与拉索时,宜进行多方案比较2 .

1.0.6 所选方案除进行静力分析外,应重视动力分析,结构体系应满足强度、刚度、稳定性要求,并有较好的抗震性能,混凝土斜拉桥宜注意减小收缩徐变影响。 2 术语 2.0.1 混凝土斜拉桥:主梁为钢筋混凝土或预应力混凝土的斜拉桥。 2.0.2 钢斜拉桥:主梁及桥面系均为钢结构的斜拉桥。 2.0.3 结合梁斜拉桥:主梁为钢结构,桥面系为混凝土结构,主梁与桥面系结合在一起共同受力的斜拉桥。 2.0.4 拉索:承受拉力并作为主梁主要支承的结构构件。 2.0.5 索塔:用以锚固拉索,并将其索力直接传递给下部结构的受力构件。 2.0.6 主梁:主要由拉索支承,直接承受荷载的结构构件。 2.0.7 辅助墩:为改善主跨的受力状态,在边跨内设置的既能承受压力又能承受拉力的墩。 2.0.8 初拉力:安装拉索时,给拉索施加的张拉力。 2.0.9 拉索调整力:为改善主梁及索塔的截面内力状态而调整拉索的拉力。 2.0.10 跨径:原则上为两支座中心线间的距离,中跨为两个索塔中心线间的距离,边跨为后锚索处的墩上支座中心线与临近的索塔中心线间的距离。 3.一般规定 3.1 材料 3.1.1 混凝土 用于斜拉桥各部分构件的混凝土标号、混凝土设计强度和标准强度、混凝土受压及受拉时的弹性模量,按交通部现行《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTJ 023 — 85) 的规定采用。 预应力混凝土主梁的混凝土标号不宜低于 40 号,预应力混凝土索塔的混凝土标号不宜低于 30 号,钢筋混凝土主梁的混凝土标号不宜低于 30 号,钢筋混凝土索塔的混凝土标号不宜低于 30 号。 3.1.2 钢材

相关主题