搜档网
当前位置:搜档网 › 直线中的几类对称问题(自己总结)

直线中的几类对称问题(自己总结)

直线中的几类对称问题(自己总结)
直线中的几类对称问题(自己总结)

(9)直线中的几类对称问题

一、点关于点的对称问题

点关于点的对称问题,是对称问题中最基础最重要的一类,其余几类对称问题均可以化归为点关于点的对称进行求解. 熟练掌握和灵活运用中点坐标公式是处理这类问题的关键.

例1 求点A (2,4)关于点B (3,5)对称的点C 的坐标.

分析 易知B 是线段AC 的中点,由此我们可以由中点坐标公式,构造方程求解.

解 由题意知,B 是线段AC 的中点,设点C (x ,y ),由中点坐标公式有???????+=+=2

45223x x ,解得???==64y x ,故C (4,6).

点评 解决点关于点的对称问题,我们借助中点坐标公式进行求解. 另外此题有可以利用中点的性质AB=BC ,以及A ,B ,C 三点共线的性质去列方程来求解.

练习1 已知点A (-2,3),求关于点P (1,1)的对称点B (00y ,x )。

解:设点A (-2,3)关于点P (1,1)的对称点为B (0

0y ,x ),则由中点坐标公式得??????

?=+=+-,12

y 3,

12

x 200

解得???-==1

y ,

4x 00所以点A 关于点P (1,1)的对称点为B (4,-1)。

二、点关于直线的对称问题

点关于直线的对称问题是点关于点的对称问题的延伸,处理这类问题主要抓住两个方面:①两点连线与已知直线斜率乘积等于-1,②两点的中点在已知直线上.

例2 求点A (2,2)关于直线09y 4x 2=+-的对称点坐标。 利用点关于直线对称的性质求解。

解法1(利用中点转移法):设点A (2,2)关于直线09y 4x 2=+-的对称点为A ′(00y ,x ),则直线AA ′与已知直线垂直,故可设直线AA ′方程为0c y 2x 4=++,把A (2,2)坐标代入,可求得12c -=。 ∴直线AA ′方程为06y x 2=-+。

由方程组???=-+=+-0

6y x 2,09y 4x 2解得AA ′中点M ???

??3,23。

由中点坐标公式得

32

2

y ,2322x 00=+=+,解得.4y ,1x 00== ∴所求的对称点坐标为(1,4)。

评注:解题时,有时可先通过求中间量,再利用中间量求解结果。

分析:设B (a ,b )是A (2,2)关于直线09y 4x 2=+-的对称点,则直线AB 与l 垂直,线段AB 中点在直线09y 4x 2=+-上。

解法2(相关点法):设B (a ,b )是A (2,2)关于直线09y 4x 2=+-的对称点,根据直线AB 与l 垂直,线段AB 中点在直线09y 4x 2=+-上,

则有???

????=++?-+?-=--?,0922b 422a 2,12

a 2

b 21

解得.4b ,1a ==

∴所求对称点的坐标为(1,4)。

评注:①中点在09y 4x 2=+-上;②所求点与已知点的连线与09y 4x 2=+-垂直。

练习2 求点A (1,3)关于直线l :x+2y-3=0的对称点A ′的坐标.

分析 因为A ,A ′关于直线对称,所以直线l 是线段AA ′的垂直平分线. 这就找到了解题的突破口. 解 据分析,直线l 与直线AA ′垂直,并且平分线段AA ′,设A ′的坐标为(x ,y ),则AA ′的中点B 的坐标为.13,23,21--=??? ??++'x y k y x A A 由题意可知,????

???

-=???

??-?--=-+?++121130323221x y y

x

, 解得???

???

?-=-=515

3

y x . 故所求点A ′的坐标为.51,53???

?

?-- 三、直线关于某点对称的问题

直线关于点的对称问题,可转化为直线上的点关于某点对称的问题,这里需要注意到的是两对称直线

是平行的. 我们往往利用平行直线系去求解.

例3 求直线2x+11y+16=0关于点P (0,1)对称的直线方程.

分析 本题可以利用两直线平行,以及点P 到两直线的距离相等求解,也可以先在已知直线上取一点,再求该点关于点P 的对称点,代入对称直线方程待定相关常数.

解法一 由中心对称性质知,所求对称直线与已知直线平行,故可设对称直线方程为2x+11y+c=0. 由点到直线距离公式,得

2

2

2

2

11

2|11|11

2|1611|++=

++c ,

即|11+c|=27,得c=16(即为已知直线,舍去)或c= -38. 故所求对称直线方程为2x+11y-38=0. 解法二 在直线2x+11y+16=0上取两点A (-8,0),则点A (-8,0)关于P (0,1)的对称点的B (8,2). 由中心对称性质知,所求对称直线与已知直线平行,故可设对称直线方程为2x+11y+c=0.

将B (8,2)代入,解得c=-38.

故所求对称直线方程为2x+11y-38=0.

点评 解法一利用所求的对称直线肯定与已知直线平行,再由点(对称中心)到此两直线距离相等,而求出c ,使问题解决,而解法二是转化为点关于点对称问题,利用中点坐标公式,求出对称点坐标,再利用直线系方程,写出直线方程. 本题两种解法都体现了直线系方程的优越性.

练习2求直线04y x 3=--关于点P (2,-1)对称的直线l 的方程。

分析:由已知条件可得出所求直线与已知直线平行,所以可设所求直线方程为0b y x 3=+-。 解:由直线l 与04y x 3=--平行,故设直线l 方程为0b y x 3=+-。

由已知可得,点P 到两条直线距离相等,得

.1

3|b 16|1

3|416|2

2

+++=

+-+

解得10b -=,或4b -=(舍)。则直线l 的方程为.010y x 3=--

评注:充分利用直线关于点对称的特性:对称直线与已知直线平行且点P 到两条直线的距离相等。几何图形特性的灵活运用,可为解题寻找一些简捷途径。此题还可在直线04y x 3=--上取两个特殊点,并分别求其关于点P (2,-1)的对称点,这两个对称点的连线即为所求直线。

四、直线关于直线的对称问题

直线关于直线对称问题,包含有两种情形:①两直线平行,②两直线相交. 对于①,我们可转化为点关于直线的对称问题去求解;对于②,其一般解法为先求交点,再用“到角”,

到角公式:直线l 1到l 2的角α,即直线l 1绕着与l 2的交点逆时针方向旋转到同l 2重合时所转过的最小的正角,2

11

21tan k k k k +-=

α(其中k 1,k 2是直线l 1,l 2的斜率,下同).

直线l 1与l 2的夹角β,即直线l 1与l 2相交所成的四个角中最小的角,|1|

tan 2

11

2k k k k +-=β.

例4 求直线l 1:x-y-1=0关于直线l 2:x-y+1=0对称的直线l 的方程.

分析 由题意,所给的两直线l 1,l 2为平行直线,求解这类对称总是,我们可以转化为点关于直线的对称问题,再利用平行直线系去求解,或者利用距离相等寻求解答.

解 根据分析,可设直线l 的方程为x-y+c=0,在直线l 1:x-y-1=0上取点M (1,0),则易求得M 关于直线l 2:x-y+1=0的对称点N (-1,2),

将N 的坐标代入方程x-y+c=0,解得c=3, 故所求直线l 的方程为x-y+3=0. 点评 将对称问题进行转化,是我们求解这类问题的一种必不可少的思路. 另外此题也可以先利用平行直线系方程写出直线l 的形式,然后再在直线l 2上的任取一点,在根据该点到互相对称的两直线的距离相等去待定相关常数.

例题5:试求直线01:1=-+y x l 关于直线033:2=--y x l 对称的直线l 的方程。 解法1:(动点转移法)

在1l 上任取点))(,(2/

/

l P y x P ?,设点P 关于2l 的对称点为),(y x Q ,则

?????-+=++-=????

????-=--=-+-+534359

343103223/

///

//y x y y x x x x y y y y x x 又点P 在1l 上运动,所以01=-+y x ,所以015

3

435934=--++++-y x y x 。即017=--y x 。所

以直线l 的方程是017=--y x 。 解法2:(到角公式法)

解方程组?

?

?==????=--=-+01

03301y x y x y x 所以直线21,l l 的交点为A(1,0) 设所求直线l 的方程为)1(-=x k y ,即0=--k y kx ,由题意知,1l 到2l 与2l 到l 的角相等,则7

1

31313113=?+-=?-+k k k .所以直线l 的方程是017=--y x 。

解法3:(取特殊点法)

由解法2知,直线21,l l 的交点为A(1,0)。在1l 上取点P (2,1),设点P 关于2l 的对称点的坐标为),(//y x Q ,

则?????

==????

????-

=--=-+-+575431210321223////

//y x x y y x 而点A ,Q 在直线l 上,由两点式可求直线l 的方程是017=--y x 。 解法4:(两点对称法)

对解法3,在1l 上取点P (2,1),设点P 关于2l 的对称点的坐标为Q )5

7,54(,在1l 上取点M (0,1),设点P 关于2l 的对称点的坐标为)5

1

,512(

N 而N ,Q 在直线l 上,由两点式可求直线l 的方程是017=--y x 。 解法5:(角平分线法)

由解法2知,直线21,l l 的交点为A(1,0),设所求直线l 的方程为:设所求直线l 的方程为)1(-=x k y ,即

0=--k y kx .由题意知,2l 为1,l l 的角平分线,在2l 上取点P (0,-3),则点P 到1,l l 的距离相等,由点

到直线距离公式,有:171

1|30|2|130|2

-==?+-+=--或k k k k

1-=k 时为直线1l ,故7

1

=k 。所以直线l 的方程是017=--y x

解法6(公式法)

给出一个重要定理:曲线(或直线 )0),(:=y x F C 关于直线0),(:=++=C By Ax y x f l 的对称曲线/

C (或直线 )的方程为)1.........(0)],(2),,(2[2

222=+-+-

y x f B

A B y y x f B A A x F 。 证:设),(y x M 是曲线/

C 上的任意一点),(y x M ,它关于l 的对称点为),(///y x M ,则C M ∈/于是

)2........(0),(//=y x F 。∵M 与M /关于直线l 对称,

∴)3..(..........),(2),(20220)()(22/22/

/

///??

???+-=+-=?????

?=++?++?=---y x f B A B y y y x f B A A x x C y y B x x A y y A x x B ,(3)代入(2),得0)],(2),,(2[2

222=+-+-

y x f B

A B y y x f B A A x F ,此即为曲线/

C 的方程。 解析:定理知,直线01),(:1=-+=y x y x F l 关于直线033),(:2=--=y x y x f l 的对称曲线l 的方程为:

17,05

1

57510

1)53

5453(5953540)535453,595354(0)]33(51

),33(53[0)],(13)1(2),,(1332[2222=--=++-?=--++++-?=-+++-?=--+---?=+-?-+?-

y x 即y x y x y x y x y x F y x y y x x F y x f y y x f x F 所以直线l 的方程是017=--y x 。 练习5 试求直线l 1:x-y-2=0关于直线l 2:3x-y+3=0对称的直线l 的方程. 分析 两直线相交,可先求其交点,再利用到角公式求直线斜率.

解 由???=+-=--0

3302y x y x 解得l 1,l 2的交点???

??--29,25A ,设所求直线l 的斜率为k ,由到角公式得,

k

k 313

13113+-=?+-,所以k=-7.由点斜式,得直线l 的方程为7x+y+22=0.

点评 本题亦可以先求l 1,l 2的交点A ,再在直线l 1上取异于点A 的任意点B ,再求点B 关于点A 的对称点B ′,最后由A ,B ′两点写出直线l 的方程.

.点关于特殊直线对称点的坐标

[例1] 求点A (4,1-)关于直线l :02

7

32=-

+y x 的对称点。 解:设点A (4,1-)关于l 的对称点B (y x ,)∴ ??????

?-=-?+-=-+?++-?1)32(1

4027243212x y y x

∴ B (1,3-)

[例2] 1l :0223=+-y x ,l :02=-y x ,求1l 关于l 的对称直线2l 。

解:??

?==???

?=-=+-4

2

020223y x y x y x A (0,1)在直线1l 上,关于l 对称点B (y x ,) ∴ B (

5

3

,54) 由两点式 ∴ 2l :010617=--y x 例3 求直线l 1:y =2x +3关于直线l :y =x +1对称的直线l 2的方程. 解 方法一 由?

?

?+=+=13

2x y x y 知直线l 1与l 的交点坐标为(-2,-1),

∴设直线l 2的方程为y +1=k (x +2),即kx -y +2k -1=0.在直线l 上任取一点(1,2),

由题设知点(1,2)到直线l 1、l 2的距离相等,由点到直线的距离公式得

2

21122k k k +-+-=

2

2)1(2322-++-,解得k =2

1(k =2舍去),∴直线l 2的方程为x -2y =0.

方法二 设所求直线上一点P (x ,y ),

则在直线l 1上必存在一点P 1(x 0,y 0)与点P 关于直线l 对称. 由题设:直线PP 1与直线l 垂直,且线段PP 1的中点

P 2???? ??++2,200y y x x 在直线l 上.∴???????++=+-=?--122

110

00

0x x y y x x y

y ,变形得???+=-=1100x y y x ,

代入直线l 1:y =2x +3,得x +1=2×(y -1)+3,整理得x -2y =0. 所以所求直线方程为x -2y =0.

总结:(1)一般的,求与直线ax+by+c=0关于x=a 0对称的直线方程,先写成a(x-a 0)+by+c+aa 0=0的形式,再写成a(a 0-x)+by+c+aa 0=0形式,化简后即是所求值.

(2)一般的,求与直线ax+by+c=0关于y=b 0对称的直线方程,先写成ax+b(y-b 0)+c+bb 0=0的形式,再写ax+b(b 0-y)+c+bb 0=0成形式,化简后即是的求值.

(3)一般的,求与直线ax+by+c=0关于原点对称的直线方程,只需把x 换成-x ,把y 换成-y ,化简后即为所求.

(4)一般地直(曲)线f(x ,y)=0关于直线y=x+c 的对称直(曲)线为f(y-c ,x+c)=0. 即把f(x ,y)=0中的x 换成y-c 、y 换成x+c 即可.

(5)一般地直(曲)线f(x ,y)=0关于直线y= -x+c 的对称直(曲)线为f(-y+c ,-x+c). 即把f(x ,y)=0中的x 换成-y+c ,y 换成-x+c.

(一) 主要知识及方法:

2.点(),P a b 关于直线0ax by c ++=的对称点的坐标的求法:

()1设所求的对称点'

P 的坐标为()00,x y ,则'

PP 的中点00,2

2a x b y ++??

???一定在直线0ax by c ++=上.

()2直线'PP 与直线0ax by c ++=的斜率互为负倒数,即

001y b a x a b -??

?-=- ?-??

4.点(),x y 关于定点(),a b 的对称点为()2,2a x b y --,曲线C :(),0f x y =关于定点(),a b 的对称曲

线方程为()2,20f a x b y --=.

5.直线系方程:

()1直线y kx b =+(k 为常数,b 参数;k 为参数,b 位常数). ()2过定点()00,M x y 的直线系方程为()00y y k x x -=-及0x x =

()3与直线0Ax By C ++=平行的直线系方程为10Ax By C ++=(1C C ≠) ()4与直线0Ax By C ++=垂直的直线系方程为0Bx Ay m -+=

()5过直线11110l a x b y c ++=:和22220l a x b y c ++=:的交点的直线系的方程为:()()1112220a x b y c a x b y c λ+++++=(不含2l )

一、直线系的定义

1、 共点直线系方程

经过两直线y B x A l C y B x A l 2221111:,0:+=++02=+C 的交点的直线系方程为+++111C y B x A )(0)(222为待定的系数λλ=++C y B x A

2、 平行直线系方程

与直线平行直线系方程是0=++C By Ax )(0是参变量λλ=++By Ax 3、 垂直直线系方程

与直线垂直的直线系方程是0=++C By Ax ) j 0(Ay -Bx 参变量λλ=+

《函数对称性的解题方法归纳》

函数对称性的解题方法归纳 讲函数的对称性主要是讲奇偶函数图像的对称性,函数与反函数图像的对称性。前者是函数自身的性质,而后者是函数的变换问题。下文中我们均简称为函数的变换性。函数的对称性在近几年高考中屡见不鲜,对于解决其它问题也很有帮助,同时也是数学美的很好体现。现通过函数自身的对称性和不同函数之间的对称变换这两个方面来探讨函数对称性有关的性质。 1. 函数自身的对称性探究 设函数 )2()2(),()(x f x f x f +=-∞+-∞上满足在,)7()7(x f x f +=-,且在闭区间[0,7]上只有0)3()1(==f f (1)试判断函数)(x f y =的奇偶性; (2)试求方程0)(=x f 在闭区间[-2005,2005]上根的个数并证明你的结论。 分析:由)7()7(),2()2(x f x f x f x f +=-+=-可得:函数图象既关于x =2对称,又关于x =7对称,进而可得到周期性,然后再继续求解,而本题关键是要首先明确函数的对称性,因此,熟悉函数对称性是解决本题的第一步。 定理1 函数)(x f y =的图像关于直线x =a 对称的充要条件是)()(x a f x a f -=+即)2()(x a f x f -= 证明(略) 推论 函数)(x f y =的图像关于y 轴对称的充要条件是)()(x f x f -= 定理2 函数)(x f y =的图像关于点A (a ,b )对称的充要条件是 b x a f x f 2)2()(=-+ 证明(略) 推论 函数)(x f y =的图像关于原点O 对称的充要条件是0)()(=-+x f x f 偶函数、奇函数分别是定理1,定理2的特例。 定理3 ①若函数)(x f y =的图像同时关于点A (a ,c )和点B (b ,c )成中心对称(b a ≠),则)(x f y =是周期函数,且b a -2是其一个周期。

直线中的对称问题—4类对称题型

直线中的对称问题—4类对称题型 直线的对称问题是我们学习平面解析几何过程中的不可忽视的问题,我们可以把它主要归纳为,点关于点对称,点关于线对称,线关于点对称,线关于线对称问题,下面我们来一一探讨: 一、点关于点对称问题 解决点点对称问题的关键是利用中点坐标公式,同时也是其它对称问题的基础. 例1.求点(1)关于点的对称点的坐标, (2),关于点对称,求点坐标. 解:由题意知点是线段的中点, 所以易求(1) (2). 因此,平面内点关于对称点坐标为 平面内点,关于点对称 二、点关于线对称问题 求定点关于定直线的对称问题时,根据轴对称定义利用①两直线斜率互为负倒数,②中点坐标公式来求得. 例2.已知点直线:,求点关于直线的对称点的坐标 解:法(一)解:设,则中点坐标为且满足直线的方程 ① 又与垂直,且斜率都存在即有② 由①②解得, 法(二)求点点关于线对称问题,其实我们可以转化为求点关于点对称的问题,可先求出的直线方程进而求与的交点坐标,再利用中点坐标公式建立方程求坐标. 三、线关于点对称问题 求直线关于某一点的对称直线的问题,一般转化为直线上的点关于点的对称问题. 例3.求直线:关于点的对称直线的方程. 解:法(一)直线:与两坐标轴交点为, 点关于对称点 点关于对称点 过的直线方程为,故所求直线方程为. 法(二)由两直线关于点对称,易知两直线平行,则对称点到两直线的距离相等,可以建立等式,求出直线方程. 四、线关于线的对称问题 求直线关于直线的对称问题,一般转化为点关于直线对称问题:即在已知直线上任取两不同点,求出这两点关于直线的对称点再求出直线方程. 例4.求已知直线:关于直线对称的直线方程. 解:在:上任取一点 直线的斜率为3

函数的对称性

函数的对称性 知识梳理 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数; ⑨正弦型函数sin()y A x ω?=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数; ⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。 ⒂形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c =- (由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c -。 二、抽象函数的对称性 【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。】 1、函数)(x f y =图象本身的对称性(自对称问题) (1)轴对称 ①)(x f y =的图象关于直线a x =对称 ?)()(x a f x a f -=+ ?)2()(x a f x f -= ?)2()(x a f x f +=-

直线关于直线对称问题的常用方法与技巧

直线关于直线对称问题的常用方法与技巧 对称问题是高中数学的比较重要内容,它的一般解题步骤是:1. 在所求曲线上选一点),(y x M ;2. 求出这点关于中心或轴的对称点),(00/y x M 与),(y x M 之间的关系;3. 利用0),(00=y x f 求出曲线0),(=y x g 。直线关于直线的对称问题是对称问题中的较难的习题,但它的解法很多,现以一道典型习题为例给出几种常见解法,供大家参考。 例题:试求直线01:1=-+y x l 关于直线033:2=--y x l 对称的直线l 的方程。 解法1:(动点转移法) 在1l 上任取点))(,(2/ /l P y x P ?,设点P 关于2l 的对称点为),(y x Q ,则 ?????-+=++-=???? ????-=--=-+-+534359343103223//////y x y y x x x x y y y y x x 又点P 在1l 上运动,所以01=-+y x ,所以015 3435934=--++++-y x y x 。即017=--y x 。所以直线l 的方程是017=--y x 。 解法2:(到角公式法) 解方程组? ??==????=--=-+0103301y x y x y x 所以直线21,l l 的交点为A(1,0) 设所求直线l 的方程为)1(-=x k y ,即0=--k y kx ,由题意知,1l 到2l 与2l 到l 的角相等,则7 131313113=?+-=?-+k k k .所以直线l 的方程是017=--y x 。 解法3:(取特殊点法) 由解法2知,直线21,l l 的交点为A(1,0)。在1l 上取点P (2,1),设点P 关于2l 的对称点 的坐标为),(//y x Q ,则?????==???? ????-=--=-+-+575431210321223//////y x x y y x 而点A ,Q 在直线l 上,由两点式可求直线l 的方程是017=--y x 。 解法4:(两点对称法)

2016苏教版平移旋转轴对称知识点总结

2016苏教版平移、旋转、轴对称知识点总结 平移 1、物体在同一平面上沿直线运动,这种现象叫做平移。 注意:平移只是沿水平方向左右移动(×) 平移不仅仅局限于左右运动。 2、平移二要素:(1)平移方向;(2)平移距离。 将一个图形平移时,要先确定方向,再确定平移的距离,缺一不可。 3、平移的特征:物体或图形平移后,他们的形状、大小、方向都不改变,只是位置发生改变。 4、在方格纸上平移图形的方法: (1)找出图形的关键点; (2)以关键点为参照点,按指定方向数出平移的格数,描出平移后的点; (3)把各点按原图顺序连接,就得到平移后的图形。 注意:用箭头标明平移方向(→) 旋转 1、旋转:物体绕某一点或轴的转动。 2、旋转方向:与时针运动方向相同的是顺时针方向; 与时针运动方向相反的是逆时针方向; 3、旋转三要素:旋转点(旋转中心)、旋转方向、旋转角度。

4、图形旋转的特征:图形旋转后,形状、大小都没发生变化,只是位置和方向 变了。 5、图形旋转的性质:图形绕某一点旋转一定的角度,图形中的对应点、对应线 段都旋转相同的角度,对应点到旋转点的距离相等。 6、旋转的叙述方法:物体是绕哪个点向什么方向旋转了多少度。 7、简单图形旋转90°的画法: (1)找出原图形的关键线段或关键点,借助三角板作关键线段的垂线,或者作关键点与旋转点所在线段的垂线; (2)从旋转点开始,在所作的垂线上量出与原线段相等的长度取点,即所找的点是原图形关键点的对应点; (3)参照原图形顺次连接所画的对应点。 关键线段:水平的、竖直的、过旋转点的线段。 轴对称图形 1、将图形沿着一条直线对折,如果直线两侧的部分能够完全重合,这样的图形叫做轴对称图形。折痕所在的直线叫做对称轴。 注意:对称轴是直线,既不是线段,也不是射线,画时不用实线,用虚线(虚线、尺子、露头) 2、轴对称图形性质:对称点到对称轴的距离相等。 3、对称点:轴对称图形沿对称轴对折后,互相重合的点叫做对称点。 4、在方格纸上补全轴对称图形关键: 找出所给图形的关键点的对称点,要按照顺序将对称点连接起来。 5、不同的轴对称图形,对称轴的数量也不同,轴对称图形至少有一条对称轴。

中心对称知识点

中心对称图形(一)知识点 一.图形旋转 1.图形旋转的有关概念:图形的旋转、旋转中心、旋转角; 在平面内,将一个图形一个定点转动一定的角度,这样的图形运动称为图形的旋转。这个定点称为旋转中心,旋转的角度称为旋转角。 注意点:旋转角通常与旋转方向有关,因此在写旋转角时通常要说明旋转方向。 2.旋转图形的性质: (1)旋转前、后的图形全等。 (2)对应点到旋转中心的距离相等。 (3)每一对对应点与旋转中心的边线所成的角彼此相等。 二.中心对称 1.中心对称的有关概念:中心对称、对称中心、对称点 把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。 2.中心对称的基本性质: (1)成中心对称的两个图形具有图形旋转的一切性质。 (2)成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 三.中心对称图形 1.中心对称图形的有关概念:中心对称图形、对称中心 把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。这个点就是它的对称中心。 2.中心对称与中心对称图形的区别与联系 如果将成中心对称的两个图形看成一个图形,那么这个整体就是中心对称图形;反过来,如果把一个中心对称图形沿着过对称中心的任一条直线分成两个图形,那么这两个图形成中心对称。 3.图形的平移、轴对称(折叠)、中心对称(旋转)的对比 1.定义: 两组对边分别平行的四边形叫做平行四边形。 2.性质:(边、角、对角线) (1)平行四边形的对边相等。 (2)平行四边形的对角相等。 (3)平行四边形的对角线互相平分。 3.判定: (1)两组对边分别平行的四边形是平行四边形。 (2)一组对边平行并且相等的四边形是平行四边形。 (3)两条对角线互相平分的四边形是平行四边形。 (4)两组对边分别相等珠四边形是平行四边形。 五.矩形 1.定义:

函数对称性、周期性和奇偶性的规律总结大全 .分解

函数对称性、周期性和奇偶性规律 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数 )(x f y =,如果存在一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周 期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==, 即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数 )(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在 )(x f y =上,即) (11x f y =,通过 b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以 1 112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得 证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数 )(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个 y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则 有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数 )(x f y =满足如下关系系,则T x f 2)(的周期为 A 、 )()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+= +或 C 、 )(1)(1)2(x f x f T x f -+=+或) (1) (1)2(x f x f T x f +-=+(等式右边加负号亦成立)

直线中的几类典型问题(学)

直线中的几类典型问题 一.求倾斜角的范围 1.直线x sin π7+y cos π 7=0的倾斜角是( ) A .-π 7 B.π7 C.5π7 D.6π 7 2.直线2x cos α-y -3=0(α∈???? π6,π3)的倾斜角的变化范围是( ) A.????π6,π3 B.????π4,π3 C.??? ?π4,π 2 D.???? π4,2π3 3.直线023cos =++y x θ的倾斜角的取值范围是_______ 分析:将直线的方程化为斜截式,得出直线的斜率,再由斜率和倾斜角的关系,得出关 于θ的一个三角不等式即可. 说明:解题易得出错误的结果?? ? ???-∈6,6ππα,其原因是没有注意到倾斜角的取值范围. 二.求直线的方程 4.将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线方程为________. 5.直线l 过点P (-1,3),倾斜角的正弦是 5 4 ,求直线l 的方程 分析:根据倾斜角的正弦求出倾斜角的正切,注意有两解. 说明:此题是直接考查直线的点斜式方程,在计算中,要注意当不能判断倾斜角α的正切时,要保留斜率的两个值,从而满足条件的解有两个. 6.求经过两点A (2,m )和B (n ,3)的直线方程. 分析:本题有两种解法,一是利用直线的两点式;二是利用直线的点斜式.在解答中如果选用点斜式,只涉及到n 与2的分类;如果选用两点式,还要涉及m 与3的分类. 说明:本题的目的在于使学生理解点斜式和两点式的限制条件,并体会分类讨论的思想方法. 7.直线过点(3,2),且在两坐标轴上的截距相等的直线方程。 分析:借助点斜式求解,或利用截距式求解. 说明:对本例,常见有以下两种误解: 误解一:如下图,由于直线l 的截距相等,故直线l 的斜率的值为1±.若1=k ,则直线方程为32-=-x y ;若1-=k ,则直线方程为)3(2--=-x y .故直线方程为0 1=-+y x

轴对称图形知识点归纳

轴对称知识梳理 一、基本概念 1.轴对称图形 如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点. 2.线段的垂直平分线 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线 3.轴对称变换 由一个平面图形得到它的轴对称图形叫做轴对称变换. 4.等腰三角形 有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 5.等边三角形 三条边都相等的三角形叫做等边三角形. 二、主要性质 1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. 2.线段垂直平分钱的性质 线段垂直平分线上的点与这条线段两个端点的距离相等. 3.(1)点P(x,y)关于x轴对称的点的坐标为P′(x,-y). (2)点P(x,y)关于y轴对称的点的坐标为P″(-x,y). 4.等腰三角形的性质 (1)等腰三角形的两个底角相等(简称“等边对等角”). (2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合. (3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴. (4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等. (5)等腰三角形一腰上的高与底边的夹角是顶角的一半。 (6)等腰三角形顶角的外角平分线平行于这个三角形的底边. 5.等边三角形的性质 (1)等边三角形的三个内角都相等,并且每一个角都等于60°. (2)等边三角形是轴对称图形,共有三条对称轴. (3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合. 三、有关判定 1.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”). 3.三个角都相等的三角形是等边三角形. 4.有一个角是60°的等腰三角形是等边三角形.

中心对称知识点1

中心对称图形(一)知识点 一.图形旋转 1.图形旋转的有关概念:图形的旋转、旋转中心、旋转角; 在平面内,将一个图形一个定点转动一定的角度,这样的图形运动称为图形的旋转。这个定点称为旋 转中心,旋转的角度称为旋转角。 注意点:旋转角通常与旋转方向有关,因此在写旋转角时通常要说明旋转方向。 2 ?旋转图形的性质: (1)旋转前、后的图形全等。 (2)对应点到旋转中心的距离相等。 (3)每一对对应点与旋转中心的边线所成的角彼此相等。 二.中心对称 1.中心对称的有关概念:中心对称、对称中心、对称点 把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。 2 .中心对称的基本性质: (1)成中心对称的两个图形具有图形旋转的一切性质。 (2)成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 三.中心对称图形 1.中心对称图形的有关概念:中心对称图形、对称中心 把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图 形叫做中心对称图形。这个点就是它的对称中心。 2 .中心对称与中心对称图形的区别与联系 如果将成中心对称的两个图形看成一个图形,那么这个整体就是中心对称图形;反过来,如果把一个中心对称图形沿着过对称中心的任一条直线分成两个图形,那么这两个图形成中心对称。 1.定义: 两组对边分别平行的四边形叫做平行四边形。 2.性质:(边、角、对角线) (1)平行四边形的对边相等。 (2)平行四边形的对角相等。 (3)平行四边形的对角线互相平分。 3.判定: (1)两组对边分别平行的四边形是平行四边形。 (2)一组对边平行并且相等的四边形是平行四边形。 (3)两条对角线互相平分的四边形是平行四边形。 (4)两组对边分别相等珠四边形是平行四边形。 五.矩形

函数对称性、周期性和奇偶性规律总结

函数对称性、周期性和奇偶性规律总结

注:换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=y 对称。 2、()y f x =与()y f x =-关于Y 轴对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以()y f x =-经过点11(,)x y - ∵11(,)x y 与11(,)x y -关于Y 轴对称,∴()y f x =与()y f x =-关于Y 轴对称。 注:因为11(,)x y -代入()y f x =-得111(())()y f x f x =--=所以()y f x =-经过点11(,)x y - 换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=x 对称。 ()(())()g x f x f x -=--= 3、()y f x =与(2)y f a x =-关于直线x a = 对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以(2)y f a x =-经过点11(2,)a x y - ∵11(,)x y 与11(2,)a x y -关于x a =轴对称,∴()y f x =与(2)y f a x =-关 于直线x a = 对称。 注:换种说法:)(x f y =与()(2)y g x f a x ==-若满足)2()(x a g x f -=,即它们关于a x =对称。 4、)(x f y =与)(2x f a y -=关于直线a y =对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以)(2x f a y -=经过点11(,2)x a y - ∵11(,)x y 与11(,2)x a y -关于y a =轴对称,∴)(x f y =与)(2x f a y -=关于直线a y =对称. 注:换种说法:)(x f y =与()2()y g x a f x ==-若满足a x g x f 2)()(=+,即它们关于a y =对称。 5、)2(2)(x a f b y x f y --==与关于点(a,b)对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以2(2)y b f a x =--经过点11(2,2)a x b y --

直线中的几类对称问题(推荐)

直线中的几类对称问题 对称问题,是解析几何中比较典型,高考中常考的热点问题. 对于直线中的对称问题,我们可以分为:点关于点的对称;点关于直线的对称;直线关于点的对称,直线关于直线的对称. 本文通过几道典型例题,来介绍这几类对称问题的求解策略. 一、点关于点的对称问题 点关于点的对称问题,是对称问题中最基础最重要的一类,其余几类对称问题均可以化归为点关于点的对称进行求解. 熟练掌握和灵活运用中点坐标公式是处理这类问题的关键. 例1 求点A (2,4)关于点B (3,5)对称的点C 的坐标. 分析 易知B 是线段AC 的中点,由此我们可以由中点坐标公式,构造方程求解. 解 由题意知,B 是线段AC 的中点,设点C (x ,y ),由中点坐标公式有???????+=+=2 45223x x , 解得???==6 4y x ,故C (4,6). 点评 解决点关于点的对称问题,我们借助中点坐标公式进行求解. 另外此题有可以利用中点的性质AB=BC ,以及A ,B ,C 三点共线的性质去列方程来求解. 二、点关于直线的对称问题 点关于直线的对称问题是点关于点的对称问题的延伸,处理这类问题主要抓住两个方面:①两点连线与已知直线斜率乘积等于-1,②两点的中点在已知直线上. 例2 求点A (1,3)关于直线l :x+2y-3=0的对称点A ′的坐标. 分析 因为A ,A ′关于直线对称,所以直线l 是线段AA ′的垂直平分线. 这就找到了解题的突破口. 解 据分析,直线l 与直线AA ′垂直,并且平分线段AA ′,设A ′的坐标为(x ,y ),则AA ′的中点B 的坐标为133,,.2 21AA x y y k x '++-??= ?-?? 由题意可知,???????-=?? ? ??-?--=-+?++121130323221x y y x , 解得??? ????-=-=51 53y x . 故所求点A ′的坐标为31,.55??-- ???

中心对称知识点

中心对称图形知识点 一.图形旋转 1.图形旋转的有关概念:图形的旋转、旋转中心、旋转角; 在平面内,将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转。这个定点称为旋转中心,旋转的角度称为旋转角。 注意点:旋转角通常与旋转方向有关,因此在写旋转角时通常要说明旋转方向。 2.旋转图形的性质: (1)旋转前、后的图形全等。 (2)对应点到旋转中心的距离相等。 (3)每一对对应点与旋转中心的连线所成的角彼此相等。 二.中心对称 1.中心对称的有关概念:中心对称、对称中心、对称点 把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。 2.中心对称的基本性质: (1)成中心对称的两个图形具有图形旋转的一切性质。 (2)成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 三.中心对称图形 1.中心对称图形的有关概念:中心对称图形、对称中心 把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。这个点就是它的对称中心。 2.中心对称与中心对称图形的区别与联系 如果将成中心对称的两个图形看成一个图形,那么这个整体就是中心对称图形;反过来,如果把一个中心对称图形沿着过对称中心的任一条直线分成两个图形,那么这两个图形成中心对称。 对称:①点(x,y)关于横轴(x轴)的对称点为(x,-y); ②点(x,y)关于纵轴(y轴)的对称点为(-x,y); ③点(x,y)关于原点(0,0)的对称点为(-x,-y)

(完整版)函数的周期性与对称性总结

一:有关周期性的讨论 在已知条件()()f a x f b x +=-或 ()()f x a f x b +=-中, (1) 等式两端的两自变量部分相加得常数,如()()a x b x a b ++-=+,说明f x ()的图像具有对称性,其对称轴为2 b a x +=。 (2)等式两端的两自变量部分相减得常数,如()()x a x b a b +--=+,说明 f (x )的图像具有周期性,其周期T=a +b 。 设a 为非零常数,若对于)(x f 定义域内的任意x 恒有下列条件之一成立 周期性规律 对称性规律 (1))()(a x f a x f +=- a T 2=? (1))()(x a f x a f -=+ a x =? (2))()(a x f x f += a T =? (2))()(x b f x a f -=+ 2 b a x += ? (3))()(x f a x f -=+ a T 2=? (3) )()(x b f x a f +=- 2b a x +=? (4))(1)(x f a x f =+ a T 2=? (4) )()(x b f x a f --=+ 中心点)0,2 (b a +? (5))(1)(x f a x f - =+ a T 2=? (5) )()(x a f x a f --=+ 为对称中心点)0,(a ? (6)1 )(1)()(-+=+x f x f a x f a T 2=? (7) 1()()1() f x f x a f x -+=+ a T 2=? (8) 1()()1()f x f x a f x -+=- + a T 4=? (9) ) (1)(1)(x f x f a x f -+=+ a T 4=? (10) )()()(a x f a x f x f ++-=, 0>a a T 6=?

直线中的对称问题

直线中的对称问题 学习目标: 直线中的对称问题主要有:点关于点对称;点关于直线对称;直线关于点对称;直线关于直线对称。下面谈谈各类对称问题的具体求解方法。 新知自学: 1、点关于点的对称 例1:已知点A (-2,3),求关于点P (1,1)的对称点B (00y ,x )。 2、直线关于点的对称 例2:求直线04y x 3=--关于点P (2,-1)对称的直线l 的方程。 3、点关于直线的对称 例3:求点A (2,2)关于直线09y 4x 2=+-的对称点坐标。 特别地: 点(),P a b 关于x 轴的对称点的坐标为 ;关于y 轴的对称点的为 ; 关于y x =的对称点的坐标为 ;关于y x =-的对称点的坐标为 . 关于x=m 的对称点的坐标为 ;关于y=n 的对称点的坐标为 . 关于x+y+c=0的对称点的坐标为 ;关于x-y+c=0的对称点的坐标为 . 4、直线关于直线的对称 例4:求直线02y x :l 1=--关于直线03y x 3:l 2=+-对称的直线l 的方程。 变式:求直线02y x :l 1=--关于直线03:2=+-y x l 对称的直线l 的方程。 特别地:直线Ax+By+C=0 关于x 轴的对称直线为 ;关于y 轴的对称直线为 ; 关于y x =的对称直线为 ;关于y x =-的对称直线为 . 关于x=m 的对称直线为 ;关于y=n 的对称直线为 . 关于x+y+c=0的对称直线为 关于x-y+c=0的对称直线为 . 例5:已知点A(4,1),B(0,4),C(2,0)直线l :3x-y-1=0 (1)试在直线l 上找一点P ,使CP AP +最小,并求出最小值. (2)试在直线l 上找一点Q ,使BQ AQ -最大,并求出最大值. 变式: 1、求5213422+--++=x x x x y 的最大值。 2、求5213422+-+++=x x x x y 的最小值。 例6: 一条光线经过点()2,3P ,射在直线l :10x y ++=上, 反射后穿过点()1,1Q .()1求入射光线的方程;()2求这条光线从点P 到点Q 的长度. 例7:已知ABC △的顶点为()1,4A --,,B C ∠∠的平分线所在直线的方程分别是1l :10y +=与2l :10x y ++=,求BC 边所在直线的方程.

轴对称知识点的总结

轴对称与轴对称图形 、知识点: 1 .什么叫轴对称: 如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。 2 。什么叫轴对称图形: 如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。 3. 轴对称与轴对称图形的区别与联系: 区别: ①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿 某直线对折能完全重合。 ②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性. 联系: ①两部分都完全重合,都有对称轴,都有对称点。 ②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果 把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。 常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰二角形、等边三 角形、角、线段、相交的两条直线等. 4. 线段的垂直平分线: I 垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。 (也称线段的中垂线) A B 5. 轴对称的性质:

⑴成轴对称的两个图形全等.

⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线. 6. 怎样画轴对称图形: 画轴对称图形时,应先确定对称轴,再找出对称点。 二、举例: 例1 :判断题: ①角是轴对称图形,对称轴是角的平分线; () ②等腰三角形至少有1条对称轴,至多有3条对称轴; ( ) ③关于某直线对称的两个三角形一定是全等三角形;() ④两图形关于某直线对称,对称点一定在直线的两旁。() 例2 :下图曾被哈佛大学选为入学考试的试题?请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形? 例3 :如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它 成为一个轴对称图形: 例4 :如图,已知:方法ABC和直线I ,请作出法Δ^BC关于直线I的对法三角形.

九年级数学――旋转、中心对称知识点总结

九年级数学――旋转、中心对称知识点总结 一、旋转知识点 一、旋转的定义在平面内,把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角。我们把旋转中心、旋转角度、旋转方向称为旋转的三要素。知识点 二、旋转的性质旋转的特征:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。理解以下几点:(1)图形中的每一个点都绕旋转中心旋转了同样大小的角度。(2)对应点到旋转中心的距离相等,对应线段相等,对应角相等。(3)图形的大小和形状都没有发生改变,只改变了图形的位置。知识点三、利用旋转性质作图旋转有两条重要性质:(1)任意一对对应点与旋转中心所连线段的夹角等于旋转角;(2)对应点到旋转中心的距离相等,它是利用旋转的性质作图的关键。步骤可分为:①连:即连接图形中每一个关键点与旋转中心;②转:即把直线按要求绕旋转中心转过一定角度(作旋转角)③截:即在角的另一边上截取关键点到旋转中心的距离,得到各点的对应点;④接:即连接到所连接的各点。 二、中心对称知识点一、中心对称的定义中心对称:把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么

就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。注意以下几点:中心对称指的是两个图形的位置关系;只有一个对称中心;绕对称中心旋转180两个图形能够完全重合。知识点 二、作一个图形关于某点对称的图形要作出一个图形关于某一点的成中心对称的图形,关键是作出该图形上关键点关于对称中心的对称点。最后将对称点按照原图形的形状连接起来,即可得出成中心对称图形。知识点 三、中心对称的性质有以下几点:(1)关于中心对称的两个图形上的对应点的连线都经过对称中心,并且都被对称中心平分;(2)关于中心对称的两个图形能够互相重合,是全等形;(3)关于中心对称的两个图形,对应线段平行(或共线)且相等。知识点 四、中心对称图形的定义把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。知识点五 关于原点对称的点的坐标在平面直角坐标系中,如果两个点关于原点对称,它们的坐标符号相反,即点p(x,y)关于原点对称点为(-x,-y)。

高中数学直线中对称问题归类解析

直线中对称问题归类解析 直线中的对称问题主要有:点关于点对称;点关于直线对称;直线关于点对称;直线关于直线对称。下面谈谈各类对称问题的具体求解方法。 1、点关于点的对称 例1已知点A (-2,3),求关于点P (1,1)的对称点B (o x ,o y )。 分析:利用点关于点对称的几何特性,直接应用中点坐标公式求解。 解:设点A (-2,3)关于点P (1,1)的对称点为B (o x ,o y ),则由中点坐标公式得 ?????=+=+-12 3122o o y x 解得???-==14o o y x 所以点A 关于点P (1,1)的对称点为B (4,-1)。评注:利用中点坐标公式求解完之后,要返回去验证,以确保答案的准确性。 2、直线关于点的对称 例2求直线043:1=--y x l 关于点P (2,-1)对称的直线2l 的方程。 解法1:(用点到直线距离公式) 分析:由已知条件可得出所求直线与已知直线平行,所以可设所求直线方程为03=+-b y x 。 解:由直线2l 与043:1=--y x l 平行,故设直线2l 方程为03=+-b y x 。 由已知可得,点P 到两条直线距离相等,得1 316134 1622+++=+-+b 解得10-=b ,或4-=b (舍)。则直线2l 的方程为0 103=--y x 评注:充分利用直线关于点对称的特性:对称直线与已知直线平行且点P 到两条直线的距离相等。几何图形特性的灵活运用,可为解题寻找一些简捷途径。 解法2:(利用中点坐标法) 分析:设已知直线1l 上任意点A (a ,b ),对称点P(x 0,y 0)即为中点坐标,则对称点A ’(a x -02,b y -02)在与已知1l 的对称直线2l 上,两直线平行,可设为03=+-b y x ,带入即可求出2 l 解:设A (1,-1)在直线043:1=--y x l 上,关于点P (2,-1)的对称点A ’(3,-1) 把点A ‘(3,-1)带入直线03=+-b y x 得b=-10.则直线2l 为0 103=--y x 解法3:(利用图像平移法) 分析:取已知直线上与对称点P 相同的横坐标或纵坐标,求出点A 坐标,根据AP 之间距离可得AA ‘之间距离’,已知两直线平行,可让原直线根据方向平移既得直线

八年级数学上册轴对称知识点总结好)

轴对称知识点总结1、轴对称图形: 一个图形沿一条直线对折,直线两旁的部分能够完全重合。 这条直线叫做对称轴。互相重合的点叫做对应点。 2、轴对称: 两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。 这条直线叫做对称轴。互相重合的点叫做对应点。 3、轴对称图形与轴对称的区别与联系:(1)区别。轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。 (2)联系。把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。 4、轴对称的性质: (1)成轴对称的两个图形全等。 (2)对称轴与连结“对应点的线段”垂直。(3)对应点到对称轴的距离相等。 (4)对应点的连线互相平行。 5、线段的垂直平分线:(1)定义。经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。 如图2, ∵CA=CB, 直线m⊥AB于C, ∴直线m是线段AB的垂直平分线。 (2)性质。线段垂直平分线上的点与线段两端点的距离相等。 如图3, ∵CA=CB, 直线m⊥AB于C, 点P是直线m上的点。 ∴PA=PB 。 (3)判定。 与线段两端点距离相等的点在线段的垂直平分线上。 如图3,∵PA=PB, 直线m是线段AB的垂直平分线, m C A B 图1 图2 m C A B P 图3

∴点P 在直线m 上 。 6、等腰三角形: (1)定义。有两条边相等的三角形,叫做等腰三角形。 ①相等的两条边叫做腰。 第三条边叫做底。 ②两腰的夹角叫做顶角。 ③腰与底的夹角叫做底角。 说明:顶角=180°- 2底角 底角= 顶角顶角2 1 -902180?=-? 可见,底角只能是锐角。 (2)性质。 ①等腰三角 形是轴对称 图形,其对称轴是“底边的垂直平分 线” ,只有 一条。 ②等边对等角。 如图5,在△ABC 中 ∵AB=AC ∴∠B=∠C 。 ③三线合一。 (3)判定。 ①有两条边相等的三角形是等腰三角形。 如图5,在△ABC 中, ∵AB=AC ∴△ABC 是等腰三角形 。 ②有两个角相等的三角形是等腰三角形。 如图5,在△ABC 中 ∵∠B=∠C ∴△ABC 是等腰三角形 。 7、等边三角形: (1)定义。三条边都相等的三角形,叫做等边三角形。 说明:等边三角形就是腰和底相等的等腰三角形,因此,等边三角形是特殊的等腰三角形。 (2)性质。 ①等边三角形是轴对称图形,其对称轴是“三边的垂直平分线” ,有三条。 ②三条边上的中线、高线及三个内角平分线都相 交于一点。 ③等边三角形的三个内角都等于60°。 如图6,在△ABC 中 ∵AB=AC=BC ∴∠A=∠B=∠C=60°。 D' D C' B' A' K J I H 底边 底角底角顶 角 腰 腰 D C B A 图5 A B C 图4

高中函数对称性总结分析

高中函数对称性总结 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。以笔者的经验看,这方面一直是教学的难点,尤其是抽象函数的对称性判断。所以这里我对高中阶段所涉及的函数对称性知识做一个粗略的总结。 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上

相关主题