搜档网
当前位置:搜档网 › 经典排序算法及其应用

经典排序算法及其应用

经典排序算法及其应用
经典排序算法及其应用

一、归并排序算法 (1)

二、归并排序算法的应用举例 (2)

三、快速排序算法 (3)

四、快速排序算法应用举例 (4)

五、堆排序算法 (6)

六、堆排序算法应用举例 (7)

七、其它排序算法 (9)

一、归并排序算法

【算法思想】将待排序的数列分成两个小的数集,先对这两个子数集进行排序,然后进行两个有序子集的合并,形成排序后的数列。而对子集的处理方法与刚才的处理方法是一样的,直到子集中只存在一个整数为止,结束分解。

【程序代码】

const maxn=100;

type listtype=array[1..maxn]of integer;

var a:listtype;

i,n:integer;

procedure merge(var a:listtype;left,q,right:integer);

{将已排序好的子序列a[left..q]与a[q+1..right]合并为有序的tmp[left..right]}

var i,j,t:integer;

tmp:listtype;

begin

t:=left;i:=left;j:=q+1;{t为tmp指针,i,j分别为左右子序列的指针}

while(t<=right)do

begin

else begin tmp[t]:=a[j];inc(j);end;

inc(t);

end;

for i:=left to right do a[i]:=tmp[i];{将合并后的元素重新放入a数组}

end;{merge}

procedure merge_sort(var a:listtype;left,right:integer);{合并排序a[p..r]}

var q:integer;

begin

if left<>right then{至少有两个元素}

begin

q:=(left+right-1)div2;

merge_sort(a,left,q);

merge_sort(a,q+1,right);

merge(a,left,q,right);

end;

end;

{main}

begin

assign(input,'merge.in');reset(input);

assign(output,'merge.out');rewrite(output);

readln(n);

for i:=1to n do

read(a[i]);

readln;

merge_sort(a,1,n);

for i:=1to n do

write(a[i],'');

writeln;

close(input);close(output);

end.

二、归并排序算法的应用举例

【问题描述】给定一个序列,a1,a2,……,an,如果存在iaj,那么我们称之为逆序对,求逆序对的数目。

【输出格式】一个整数,表示所有的逆序对的总数。

【输入样例】

4

3232

【输出样例】

3

【数据范围】1

【时间限制】1S

【题目分析】很容易想到O(n2)的算法,但是无法在规定时间内通过所有数据,进一步思考nlog2n的算法,并思考在排序的过程中能否有效地解决题目给出的问题。以下采用归并排序的算法来解决。

当对数组a[left..right]中的元素进行排序时,假设q为中间值,i、j为左右子序列的下标指针,其中a[left..q]和a[q+1..right]都是从小到大有序,当a[i]>a[j]时,从a[i..q]都大于a[j],且它们的下标都小于j,满足逆序对的要求,该递归过程的逆序对个数为q-i+1,那么整个归并排序的逆序对总数为所有递归归并排序逆序对个数的总和。因此我们只需要在归并排序的合并连个有序序列的过程中添加一句代码:inc(sum,q-i+1)。

procedure merge(var a:listtype;left,q,right:integer);

var i,j,t:integer;

tmp:listtype;

begin

t:=left;i:=left;j:=q+1;

while(t<=right)do

begin

if(i<=q)and((j>right)or(a[i]<=a[j]))

then begin

tmp[t]:=a[i];inc(i);

end

else begin

tmp[t]:=a[j];inc(sum,q-i+1);inc(j);

end;

inc(t);

end;

三、快速排序算法

【算法思想】每次排序以某种方法(可以是随机、取中间元素)选取一个待排关键字,把比关键字大的数列放到关键字右边,把比关键字小的数列放到关键字左边,然后再对左、右两个序列进行相同的操作,直到全部有序。

【程序代码】

procedure qsort(left,right:integer);

var

i,j,x,y:integer;

begin

i:=left;j:=right;x:=a[(left+right)DIV2];

repeat

while a[i]

while x

if i<=j then

begin

y:=a[i];a[i]:=a[j];a[j]:=y;

i:=i+1;j:=j-1;

end;

until i>j;

if left

if i

end;

四、快速排序算法应用举例

【题目描述】给定一个长度为n的无序正整数序列,以及一个数k,输出第k大的数。所谓第k大的数是指将序列从大到小排序后,排在第k位的数值。例如序列{1,2,3,4,5,6}中第3大的数是4。

【输入格式】

第一行:两个整数n,k

第二行:n个正整数,数值之间用一个空格隔开。

【输出格式】

63

123456

【输出样例】

4

【数据范围】

1

【题目分析】由于题目只要求输出第k大的数,并没有要求将整个序列进行排序,所以在排序的过程中只要找到了第k大的数之后,程序应该终止运行。另外,在排序的过程中只需要对关键字的左边序列或右边序列进行递归排序即可,无需左右都进行。

【程序代码】

const maxn=1000000;

var a:array[1..maxn]of longint;

i,n,ans,k:longint;

function findkth(left,right,k:longint):longint;

var

i,j,x,y:longint;

begin

i:=left;j:=right;x:=a[(left+right)DIV2];

repeat

while x>a[j]do j:=j-1;

while a[i]>x do i:=i+1;

if i

begin

y:=a[i];a[i]:=a[j];a[j]:=y;

i:=i+1;j:=j-1;

end

else break

until i>j;

if j

if j>k thenexit(findkth(left,j,k));

exit(j);

end;

begin

assign(input,'kth.in');reset(input);

assign(output,'kth.out');rewrite(output);

writeln(a[ans]);

close(input);close(output);

end.

五、堆排序算法

【基础知识】堆结构可以看做一棵完全二叉树,树中的每个结点与数组中存放该结点值的那个元素相对应,堆具有一个重要性质:即对除根以外的每个结点i的值都不超过其父结点的值。这样就可以知道,堆中的最大元素存放在根结点中,且每一个结点的子树中的结点值都小于等于该结点的值,这样的堆称为“大根堆”;反之,称之为“最小堆”。

【算法思想】先将数组元素a[1..n]建成一个大根堆,再将元素值最大的元素a[1](即堆顶)和最后一个元素a[n]交换,由此得到新的无序区a[1..n-1]和有序区a[n],且满足a[1..n-1]≤a[n];由于交换后新的根a[1]可能违反堆性质,故应将当前无序区a[1..n-1]调整为堆。然后再次将a[1..n-1]中最大的记录a[1]和该区间的最后一个记录a[n-1]交换,由此得到新的无序区a[1..n-2]和有序区a[n-1..n],且仍满足关系a[1..n-2]≤a[n-1..n],同样要将R[1..n-2]调整为堆。……直到无序区只有一个元素为止。

【程序代码】

procedure sift(i,m:integer);{调整以i为根的子树成为堆,m为结点总数}

var j,x:integer;

begin

x:=a[i];

j:=2*i;{在完全二叉树中结点i的左孩子为2*i,右孩子为2*i+1}

while j<=m do

begin

if(j

if x

else j:=m+1;

end;

a[i]:=x;{将根放在合适的位置}

end;

procedure heapsort;

var

for i:=n downto2do

begin

swap(a[1],a[i]);{将当前最大值交换到最终位置上}

sift(1,i-1);{对前i-1个数进行调整}

end;

end;

六、堆排序算法应用举例

【问题描述】

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。

每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。

例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。

【输入文件】

第一行是一个整数n(1<=n<=10000),表示果子的种类数。

第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。

【输出文件】

包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于231。

129

【样例输出】

15

【数据规模】

对于30%的数据,保证有n<=1000:

对于50%的数据,保证有n<=5000;

对于全部的数据,保证有n<=10000。

【题目分析】该算法的关键在于每次对结点集合中的结点按照其权值从小到大排序。由于n堆果子要进行n-1次合并,每次合并都要重新排序,这样即使采用快速排序,时间复杂度为O(n2log2n),使用最小堆进行操作,由于每次要取出最小的两个结点,因此共需要调用堆2*(n-1),每次调用的代价为log2n,总的时间复杂度为O(nlog2n),可以解决题目给出的数据规模。

【程序代码】

program fruit;

type arr=array[1..10000]of longint;

var i,m,sum,n:longint;

a:arr;

procedure sift(i,m:integer);

var j,x:longint;

begin

x:=a[i];

j:=2*i;

while j<=m do

begin

if(ja[j+1])then inc(j);

if x>a[j]then begin a[i]:=a[j];i:=j;j:=2*i;end

else break;

end;

a[i]:=x;

end;

procedure swap(var x,y:longint);

var z:longint;

begin

z:=x;x:=y;y:=z;

end;

begin

for i:=n div2downto1do sift(i,n);

for i:=n downto2do

begin

swap(a[1],a[i]);

sift(1,i-1);

a[1]:=a[1]+a[i];

sum:=sum+a[1];

sift(1,i-1);

end;

end;

begin

assign(input,'fruit.in');reset(input);

assign(output,'fruit.out');rewrite(output);

readln(n);

for i:=1to n do

read(a[i]);

heapsort;

writeln(sum);

close(input);close(output);

end.

七、其它排序算法

1、插入排序算法:

【算法思路】当前a[1]..a[i-1]已排好序了,现要插入a[i]使a[1]..a[i]有序。procedure insert_sort;

var i,j:integer;

begin

for i:=2to n do

begin

a[0]:=a[i];

j:=i-1;

while a[0]

begin a[j+1]:=a[j];j:=j-1;end;

a[j+1]:=a[0];

end;

end;{inset_sort}

var i,j,k:integer;

begin

for i:=1to n-1do

for j:=n downto i+1do

if a[j]

各种排序算法比较

排序算法 一、插入排序(Insertion Sort) 1. 基本思想: 每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。 2. 排序过程: 【示例】: [初始关键字] [49] 38 65 97 76 13 27 49 J=2(38) [38 49] 65 97 76 13 27 49 J=3(65) [38 49 65] 97 76 13 27 49 J=4(97) [38 49 65 97] 76 13 27 49 J=5(76) [38 49 65 76 97] 13 27 49 J=6(13) [13 38 49 65 76 97] 27 49 J=7(27) [13 27 38 49 65 76 97] 49 J=8(49) [13 27 38 49 49 65 76 97] Procedure InsertSort(Var R : FileType); //对R[1..N]按递增序进行插入排序, R[0]是监视哨// Begin for I := 2 To N Do //依次插入R[2],...,R[n]// begin R[0] := R[I]; J := I - 1; While R[0] < R[J] Do //查找R[I]的插入位置// begin R[J+1] := R[J]; //将大于R[I]的元素后移// J := J - 1 end R[J + 1] := R[0] ; //插入R[I] // end End; //InsertSort // 二、选择排序 1. 基本思想: 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 2. 排序过程: 【示例】: 初始关键字[49 38 65 97 76 13 27 49] 第一趟排序后13 [38 65 97 76 49 27 49] 第二趟排序后13 27 [65 97 76 49 38 49] 第三趟排序后13 27 38 [97 76 49 65 49] 第四趟排序后13 27 38 49 [49 97 65 76] 第五趟排序后13 27 38 49 49 [97 97 76]

8大排序算法

概述 排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。 我们这里说说八大排序就是内部排序。 当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序、堆排序或归并排序序。 快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短; 1.插入排序—直接插入排序(Straight Insertion Sort) 基本思想:

将一个记录插入到已排序好的有序表中,从而得到一个新,记录数增1的有序表。即:先将序列的第1个记录看成是一个有序的子序列,然后从第2个记录逐个进行插入,直至整个序列有序为止。 要点:设立哨兵,作为临时存储和判断数组边界之用。 直接插入排序示例: 如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。 算法的实现: 1.void print(int a[], int n ,int i){ 2. cout<

13.if(a[i] < a[i-1]){ //若第i个元素大于i-1元素,直接插入。 小于的话,移动有序表后插入 14.int j= i-1; 15.int x = a[i]; //复制为哨兵,即存储待排序元素 16. a[i] = a[i-1]; //先后移一个元素 17.while(x < a[j]){ //查找在有序表的插入位置 18. a[j+1] = a[j]; 19. j--; //元素后移 20. } 21. a[j+1] = x; //插入到正确位置 22. } 23. print(a,n,i); //打印每趟排序的结果 24. } 25. 26.} 27. 28.int main(){ 29.int a[8] = {3,1,5,7,2,4,9,6}; 30. InsertSort(a,8); 31. print(a,8,8); 32.} 效率: 时间复杂度:O(n^2). 其他的插入排序有二分插入排序,2-路插入排序。 2. 插入排序—希尔排序(Shell`s Sort) 希尔排序是1959 年由D.L.Shell 提出来的,相对直接排序有较大的改进。希尔排序又叫缩小增量排序 基本思想: 先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序” 时,再对全体记录进行依次直接插入排序。

几种排序算法分析

《几种排序算法的分析》 摘要: 排序算法是在C++中经常要用到的一种重要的算法。如何进行排序,特别是高效率的排序是是计算机应用中的一个重要课题。同一个问题可以构造不同的算法,最终选择哪一个好呢?这涉及如何评价一个算法好坏的问题,算法分析就是评估算法所消耗资源的方法。可以对同一问题的不同算法的代价加以比较,也可以由算法设计者根据算法分析判断一种算法在实现时是否会遇到资源限制的问题。排序的目的之一就是方便数据的查找。在实际生活中,应根据具体情况悬着适当的算法。一般的,对于反复使用的程序,应选取时间短的算法;对于涉及数据量较大,存储空间较小的情况则应选取节约存储空间的算法。本论文重点讨论时间复杂度。时间复杂度就是一个算法所消耗的时间。算法的效率指的是最坏情况下的算法效率。 排序分为内部排序和外部排序。本课程结业论文就内部排序算法(插入排序,选择排序,交换排序,归并排序和基数排序)的基本思想,排序步骤和实现算法等进行介绍。 本论文以较为详细的文字说明,表格对比,例子阐述等方面加以比较和总结,通过在参加数据的规模,记录说带的信息量大小,对排序稳定的要求,关键字的分布情况以及算法的时间复杂度和空间复杂度等方面进行比较,得出它们的优缺点和不足,从而加深了对它们的认识和了解,进而使自己在以后的学习和应用中能够更好的运用。

1.五种排序算法的实例: 1.1.插入排序 1.1.1.直接插入排序 思路:将数组分为无序区和有序区两个区,然后不断将无序区的第一个元素按大小顺序插入到有序区中去,最终将所有无序区元素都移动到有序区完成排序。 要点:设立哨兵,作为临时存储和判断数组边界之用。 实现: Void InsertSort(Node L[],int length) { Int i,j;//分别为有序区和无序区指针 for(i=1;i=1)//直到增量缩小为1 { Shell(L,d); d=d/2;//缩小增量 } } Void Shell(Node L[],int d) {

各种排序算法的总结和比较

各种排序算法的总结和比较 1 快速排序(QuickSort) 快速排序是一个就地排序,分而治之,大规模递归的算法。从本质上来说,它是归并排序的就地版本。快速排序可以由下面四步组成。 (1)如果不多于1个数据,直接返回。 (2)一般选择序列最左边的值作为支点数据。(3)将序列分成2部分,一部分都大于支点数据,另外一部分都小于支点数据。 (4)对两边利用递归排序数列。 快速排序比大部分排序算法都要快。尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。 2 归并排序(MergeSort)

归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。 3 堆排序(HeapSort) 堆排序适合于数据量非常大的场合(百万数据)。 堆排序不需要大量的递归或者多维的暂存数组。这对于数据量非常巨大的序列是合适的。比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。 堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

Shell排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。平均效率是O(nlogn)。其中分组的合理性会对算法产生重要的影响。现在多用D.E.Knuth的分组方法。 Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相对比较简单,它适合于数据量在5000以下并且速度并不是特别重要的场合。它对于数据量较小的数列重复排序是非常好的。 5 插入排序(InsertSort) 插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。插入排序是对冒泡排序的改进。它比冒泡排序快2倍。一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列。

分布式系统中排序算法及应用案例

《软件工程》社会实践 分布式系统中排序算法以及应用案例设计报告 学号: 2014107326 姓名:侯明兰 一.算法需求分析 1. 分布式排序算法的排序过程为:在p台已经赋予序号的计算机C1,C2,……,Cp上,对一组给定的数据分布X={X1,X2,……,Xp}进行全局排序,得到一个新的数据分布Y={Y1,Y2,……,Yp},使得每个Yi(1≤i≤p)有序,并且Yi的每个元素不大于Yj的任何元素,i ≤j。分布式排序必须完成的最小工作是: 1.1 数据传输:把一些效据从它们所在的机器送到它们应放的机器; 1.2 局部排序; 1.3 预处理,以便能正确地把数据重新分布。 因此,根据预处理分类,一个分布式系统中的排序算法有四类操作: 1.3.1 局部排序; 1..3.2 合并; 1.3.3 预处理; 1.3.4 数据交换。 2.算法的分类:根据算法的分析可以分为:单节点排序(序(Single Node Sort,SNS)、多节点归并排序((Multiple Node Merge Sort,MNMS)和多节点分区排序((Multiple Partition Sort,MPS)。 2.1 单节点排序(SNS):假设数据存储在多个节点中,但是负责计算的节点之间没有并行计算的能力,只有当前被连接的节点能够提供计算并对对客户端提供服务.在这样的场景下对进行数据排序,流程的主要是,各节点将数据读入内存,并通过网络传输至排序的节点,在该节点上进行排序。 2.2 多节点归并排序:当存储数据的节点同时也拥有计算能力的时候,可以采用算法是:各节点先对存储在本地的数据进行排序,待所有的存储节点都对本地的数据排好序之后,再传送至某一个处理节点进行归并排序。

几种常见内部排序算法比较

常见内部排序算法比较 排序算法是数据结构学科经典的内容,其中内部排序现有的算法有很多种,究竟各有什么特点呢?本文力图设计实现常用内部排序算法并进行比较。分别为起泡排序,直接插入排序,简单选择排序,快速排序,堆排序,针对关键字的比较次数和移动次数进行测试比较。 问题分析和总体设计 ADT OrderableList { 数据对象:D={ai| ai∈IntegerSet,i=1,2,…,n,n≥0} 数据关系:R1={〈ai-1,ai〉|ai-1, ai∈D, i=1,2,…,n} 基本操作: InitList(n) 操作结果:构造一个长度为n,元素值依次为1,2,…,n的有序表。Randomizel(d,isInverseOrser) 操作结果:随机打乱 BubbleSort( ) 操作结果:进行起泡排序 InserSort( ) 操作结果:进行插入排序 SelectSort( ) 操作结果:进行选择排序 QuickSort( ) 操作结果:进行快速排序 HeapSort( ) 操作结果:进行堆排序 ListTraverse(visit( )) 操作结果:依次对L种的每个元素调用函数visit( ) }ADT OrderableList 待排序表的元素的关键字为整数.用正序,逆序和不同乱序程度的不同数据做测试比较,对关键字的比较次数和移动次数(关键字交换计为3次移动)进行测试比较.要求显示提示信息,用户由键盘输入待排序表的表长(100-1000)和不同测试数据的组数(8-18).每次测试完毕,要求列表现是比较结果. 要求对结果进行分析.

详细设计 1、起泡排序 算法:核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。 bubblesort(struct rec r[],int n) { int i,j; struct rec w; unsigned long int compare=0,move=0; for(i=1;i<=n-1;i++) for(j=n;j>=i+1;j--) { if(r[j].key

常见经典排序算法(C语言)1希尔排序 二分插入法 直接插入法 带哨兵的直接排序法 冒泡排序 选择排序 快速排

常见经典排序算法(C语言) 1.希尔排序 2.二分插入法 3.直接插入法 4.带哨兵的直接排序法 5.冒泡排序 6.选择排序 7.快速排序 8.堆排序 一.希尔(Shell)排序法(又称宿小增量排序,是1959年由D.L.Shell提出来的) /* Shell 排序法*/ #include void sort(int v[],int n) { int gap,i,j,temp; for(gap=n/2;gap>0;gap /= 2) /* 设置排序的步长,步长gap每次减半,直到减到1 */ { for(i=gap;i= 0) && (v[j] > v[j+gap]);j -= gap ) /* 比较相距gap远的两个元素的大小,根据排序方向决定如何调换*/ { temp=v[j]; v[j]=v[j+gap]; v[j+gap]=temp; } }

} } 二.二分插入法 /* 二分插入法*/ void HalfInsertSort(int a[], int len) { int i, j,temp; int low, high, mid; for (i=1; i temp) /* 如果中间元素比但前元素大,当前元素要插入到中间元素的左侧*/ { high = mid-1; } else /* 如果中间元素比当前元素小,但前元素要插入到中间元素的右侧*/ { low = mid+1; } } /* 找到当前元素的位置,在low和high之间*/ for (j=i-1; j>high; j--)/* 元素后移*/ { a[j+1] = a[j]; } a[high+1] = temp; /* 插入*/ } }

数据结构各种排序方法的综合比较

数据结构各种排序方法的综合比较 结论: 排序方法平均时间最坏时间辅助存储 简单排序O(n2) O(n2) O(1) 快速排序O(nlogn)O(n2)O(logn) 堆排序O(nlogn)O(nlogn)O(1) 归并排序O(nlogn)O(nlogn)O(n) 基数排序O(d(n+rd))O(d(n+rd))O(rd) PS:直接插入排序、冒泡排序为简单排序,希尔排序、堆排序、快速排序为不稳定排序 一、时间性能 按平均的时间性能来分,有三类排序方法: 时间复杂度为O(nlogn)的方法有:快速排序、堆排序和归并排序,其中以快速排序为最好;时间复杂度为O(n2)的有:直接插入排序、起泡排序和简单选择排序,其中以直接插入为 最好,特别是对那些对关键字近似有序的记录序列尤为如此; 时间复杂度为O(n)的排序方法只有,基数排序。 当待排记录序列按关键字顺序有序时,直接插入排序和起泡排序能达到O(n)的时间复杂度;而对于快速排序而言,这是最不好的情况,此时的时间性能蜕化为O(n2),因此是应该尽量避免的情况。简单选择排序、堆排序和归并排序的时间性能不随记录序列中关键字的分布而改变。 二、空间性能 指的是排序过程中所需的辅助空间大小。 1. 所有的简单排序方法(包括:直接插入、起泡和简单选择)和堆排序的空间复杂度为O(1); 2. 快速排序为O(logn),为栈所需的辅助空间; 3. 归并排序所需辅助空间最多,其空间复杂度为O(n ); 4.链式基数排序需附设队列首尾指针,则空间复杂度为O(rd)。 三、排序方法的稳定性能 1. 稳定的排序方法指的是,对于两个关键字相等的记录,它们在序列中的相对位置,在排序之前和经过排序之后,没有改变。 2. 当对多关键字的记录序列进行LSD方法排序时,必须采用稳定的排序方法。 3. 对于不稳定的排序方法,只要能举出一个实例说明即可。 4. 快速排序和堆排序是不稳定的排序方法

c语言程序设计(排序算法)

《高级语言程序设计》 课程设计报告 题目: 排序算法 专业: 班级: 姓名: 指导教师: 成绩: 计算机与信息工程系 2015年3月26日 2014-2015学年 第2学期

目录 引言 (1) 需求分析 (1) 第一章程序内容及要求 (1) 1.1 冒泡排序 (1) 1.2 选择排序 (2) 1.3 插入排序 (3) 第二章概要设计 (4) 2.1冒泡排序 (4) 2.2选择排序 (5) 2.3插入排序 (6) 第三章程序的比较及其应用 (7) 3.1时间复杂度 (7) 3.2空间复杂度 (7) 3.3稳定程度 (7) 3.4应用及其改进 (8) 第四章程序设计结果 (8) 附录 (9) 参考文献 (12)

引言 伴随着社会的发展,数据也变得越来越庞大。如何将庞大的数据进行很好的排序,使用户更加方便的查找资料,成了一件越来越重要的问题。对于程序员来说,这将是一个挑战。 经常查找资料的朋友都会知道,面对海量的资料,如果其查找资料没有进行排序,那么其查找资料将会是一家非常痛苦的事情。针对这一问题,我们自此通过一个课程设计来解决它。 理论上排序算法有很多种,不过本课程设计只涉及到三种算法。这三种算法包括:冒泡排序,选择排序,直接插入排序。 本课程设计通过对这三种算法的运行情况进行对比,选择最优秀的算法出来。希望通过我的努力能解决一些问题,带来一些方便。 需求分析 本课程题目是排序算法的实现,由于各方面的原因,本科程设计一共需要设计三种排序算法。这三种算法包括:冒泡排序,选择排序,直接插入排序。三种排序算法各有独到之处,因此我们要通过各种调试分析来比较其优劣长短。 由于使用的调试软件及操作系统不一样。因此个别程序在不同的软件上可能会报错。 本课程软件运行的的操作系统为Windows7 64位操作系统。所使用的软件为Microsoft Visual C++6.0以及Turbo C2.0 第一章程序内容及要求 1.1 冒泡排序 冒泡排序(Bubble Sort,台湾译为:泡沫排序或气泡排序)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越大的元素会经由交换慢慢“浮”到数列的顶端,故名。

十 大 经 典 排 序 算 法 总 结 超 详 细

数据挖掘十大经典算法,你都知道哪些? 当前时代大数据炙手可热,数据挖掘也是人人有所耳闻,但是关于数据挖掘更具体的算法,外行人了解的就少之甚少了。 数据挖掘主要分为分类算法,聚类算法和关联规则三大类,这三类基本上涵盖了目前商业市场对算法的所有需求。而这三类里又包含许多经典算法。而今天,小编就给大家介绍下数据挖掘中最经典的十大算法,希望它对你有所帮助。 一、分类决策树算法C4.5 C4.5,是机器学习算法中的一种分类决策树算法,它是决策树(决策树,就是做决策的节点间的组织方式像一棵倒栽树)核心算法ID3的改进算法,C4.5相比于ID3改进的地方有: 1、用信息增益率选择属性 ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(shang),一种不纯度度量准则,也就是熵的变化值,而 C4.5用的是信息增益率。区别就在于一个是信息增益,一个是信息增益率。 2、在树构造过程中进行剪枝,在构造决策树的时候,那些挂着几个元素的节点,不考虑最好,不然容易导致过拟。 3、能对非离散数据和不完整数据进行处理。 该算法适用于临床决策、生产制造、文档分析、生物信息学、空间数据建模等领域。 二、K平均算法

K平均算法(k-means algorithm)是一个聚类算法,把n个分类对象根据它们的属性分为k类(kn)。它与处理混合正态分布的最大期望算法相似,因为他们都试图找到数据中的自然聚类中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 从算法的表现上来说,它并不保证一定得到全局最优解,最终解的质量很大程度上取决于初始化的分组。由于该算法的速度很快,因此常用的一种方法是多次运行k平均算法,选择最优解。 k-Means 算法常用于图片分割、归类商品和分析客户。 三、支持向量机算法 支持向量机(Support Vector Machine)算法,简记为SVM,是一种监督式学习的方法,广泛用于统计分类以及回归分析中。 SVM的主要思想可以概括为两点: (1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分; (2)它基于结构风险最小化理论之上,在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。 四、The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法,其核心是基于两阶段“频繁项集”思想的递推算法。其涉及到的关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支

C#实现所有经典排序算法

C#实现所有经典排序算法 //选择排序 class SelectionSorter { private int min; public void Sort(int[] arr) { for (int i = 0; i < arr.Length - 1; ++i) { min = i; for (int j = i + 1; j < arr.Length; ++j) { if (arr[j] < arr[min]) min = j; } int t = arr[min]; arr[min] = arr[i]; arr[i] = t; } } static void Main(string[] args) { int[] array = new int[] { 1, 5, 3, 6, 10, 55, 9, 2, 87, 12, 34, 75, 33, 47 }; SelectionSorter s = new SelectionSorter(); s.Sort(array); foreach (int m in array) Console.WriteLine("{0}", m); } } //冒泡排序 class EbullitionSorter { public void Sort(int[] arr) { int i, j, temp; bool done = false; j = 1; while ((j < arr.Length) && (!done))//判断长度 { done = true; for (i = 0; i < arr.Length - j; i++) { if (arr[i] > arr[i + 1]) {

五种排序算法的分析与比较

五种排序算法的分析与比较 广东医学院医学信息专业郭慧玲 摘要:排序算法是计算机程序设计广泛使用的解决问题的方法,研究排序算法具有重要的理论意义和广泛的应用价值。文章通过描述冒泡、选择、插入、归并和快速5种排序算法,总结了它们的时间复杂度、空间复杂度和稳定性。通过实验验证了5种排序算法在随机、正序和逆序3种情况下的性能,指出排序算法的适用原则,以供在不同条件下选择适合的排序算法借鉴。 关键词:冒泡排序;选择排序;插入排序;归并排序;快速排序。 排序是计算机科学中基本的研究课题之一,其目的是方便记录的查找、插入和删除。随着计算机的发展与应用领域的越来越广,基于计算机硬件的速度和存储空间的有限性,如何提高计算机速度并节省存储空间一直成为软件设计人员的努力方向。其中,排序算法已成为程序设计人员考虑的因素之一[1],排序算法选择得当与否直接影响程序的执行效率和内外存储空间的占用量,甚至影响整个软件的综合性能。排序操作[2,3],就是将一组数据记录的任意序列,重新排列成一个按关键字有序的序列。而所谓排序的稳定性[4]是指如果在排序的序列中,存在前后相同的两个元素,排序前和排序后他们的相对位臵不发生变化。 1 算法与特性 1.1冒泡排序 1.1.1冒泡排序的基本思想

冒泡排序的基本思想是[5,6]:首先将第1个记录的关键字和第2个记录的关键字进行比较,若为逆序,则将2个记录交换,然后比较第2个和第3个记录的关键字,依次类推,直至n-1个记录和第n个记录的关键字进行过比较为止。然后再按照上述过程进行下一次排序,直至整个序列有序为止。 1.1.2冒泡排序的特性 容易判断冒泡排序是稳定的。可以分析出它的效率,在最好情况下,只需通过n-1次比较,不需要移动关键字,即时间复杂度为O(n)(即正序);在最坏情况下是初始序列为逆序,则需要进行n-1次排序,需进行n(n-1)/2次比较,因此在最坏情况下时间复杂度为O(n2),附加存储空间为O(1)。 1.2选择排序 1.2.1选择排序的基本思想 选择排序的基本思想是[5,6]:每一次从待排序的记录中选出关键字最小的记录,顺序放在已排好序的文件的最后,直到全部记录排序完毕.常用的选择排序方法有直接选择排序和堆排序,考虑到简单和易理解,这里讨论直接选择排序。直接选择排序的基本思想是n个记录的文件的直接排序可经过n-1次直接选择排序得到有序结果。 1.2.2选择排序的特性 容易得出选择排序是不稳定的。在直接选择排序过程中所需进行记录移动的操作次数最少为0,最大值为3(n-1)。然而,无论记录的初始排序如何,所需进行的关键字间的比较次数相同,均为n(n-1)/2,时间

十大经典排序算法

.1 算法分类 十种常见排序算法可以分为两大类: ?比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。 ?非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。 0.2 算法复杂度

0.3 相关概念 ?稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。 ?不稳定:如果a原本在b的前面,而a=b,排序之后a 可能会出现在b 的后面。 ?时间复杂度:对排序数据的总的操作次数。反映当n变化时,操作次数呈现什么规律。 ?空间复杂度:是指算法在计算机 内执行时所需存储空间的度量,它也是数据规模n的函数。 1、冒泡排序(Bubble Sort) 冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

1.1 算法描述 ?比较相邻的元素。如果第一个比第二个大,就交换它们两个; ?对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数; ?针对所有的元素重复以上的步骤,除了最后一个; ?重复步骤1~3,直到排序完成。 1.2 动图演示 1.3 代码实现 ?

2、选择排序(Selection Sort) 选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。 2.1 算法描述 n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下: ?初始状态:无序区为R[1..n],有序区为空; ?第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中-选出关键字最小的记录R[k],将它与无序区的第1个记录R交换,使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区; ?n-1趟结束,数组有序化了。 2.2 动图演示 2.3 代码实现 ?

各种排序法比较

各种排序法的比较 按平均时间将排序分为四类: (1)平方阶(O(n2))排序 一般称为简单排序,例如直接插入、直接选择和冒泡排序; (2)线性对数阶(O(nlgn))排序 如快速、堆和归并排序; (3)O(n1+£)阶排序 £是介于0和1之间的常数,即0<£<1,如希尔排序; (4)线性阶(O(n))排序 如桶、箱和基数排序。 各种排序方法比较: 简单排序中直接插入最好,快速排序最快,当文件为正序时,直接插入和冒泡均最佳。 影响排序效果的因素: 因为不同的排序方法适应不同的应用环境和要求,所以选择合适的排序方法 应综合考虑下列因素: ①待排序的记录数目n; ②记录的大小(规模); ③关键字的结构及其初始状态; ④对稳定性的要求; ⑤语言工具的条件; ⑥存储结构; ⑦时间和辅助空间复杂度等。 不同条件下,排序方法的选择 (1)若n较小(如n≤50),可采用直接插入或直接选择排序。 当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插人,应选直接选择排序为宜。 (2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜; (3)若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。 快速排序是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短; 堆排序所需的辅助空间少于快速排序,并且不会出现快速排序可能出现的最坏情况。这两种排序都是不稳定的。 若要求排序稳定,则可选用归并排序。从单个记录起进行两两归并,排序算法并不值得提倡,通常可以将它和直接插入排序结合在一起使用。先利用直接插入排序求得较长的有序子文件,然后再两两归并之。因为直接插入排序是稳定的,所以改进后的归并排序仍是稳定的。

常用算法的应用

常用算法的应用 1.递推算法(常用级数、数列求和、二分法、梯形积分法、穷举法等); 2.排序算法(选择法、冒泡法); 3.查找算法(顺序查找、折半查找); 4.有序数列的插入、删除操作; 5.初等数论问题求解的有关算法(最大数、最小数、最大公约数、最小公倍数、素数等);6.矩阵的处理(生成、交换及基本运算); 7.递归算法(阶乘、最大公约数等); 8.字符串处理(插入、删除、连接和比较等) 1.相对于递归算法,递推算法免除了数据进出栈的过程,也就是说,不需要函数不断的向边界值靠拢,而直接从边界出发,直到求出函数值. 比如阶乘函数:f(n)=n*f(n-1) 在f(3)的运算过程中,递归的数据流动过程如下: f(3){f(i)=f(i-1)*i}-->f(2)-->f(1)-->f(0){f(0)=1}-->f(1)-->f(2)--f(3){f(3)=6} 而递推如下: f(0)-->f(1)-->f(2)-->f(3) 由此可见,递推的效率要高一些,在可能的情况下应尽量使用递推.但是递归作为比较基础 的算法,它的作用不能忽视.所以,在把握这两种算法的时候应该特别注意. 2.所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。 分类 在计算机科学所使用的排序算法通常被分类为: 计算的复杂度(最差、平均、和最好表现),依据串列(list)的大小(n)。一般而言,好的表现是O。(n log n),且坏的行为是Ω(n2)。对於一个排序理想的表现是O(n)。仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要Ω(n log n)。 记忆体使用量(以及其他电脑资源的使用) 稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的串列中R出现在S之前,在排序过的串列中R也将会是在S之前。 一般的方法:插入、交换、选择、合并等等。交换排序包含冒泡排序(bubble sort)和快速排序(quicksort)。选择排序包含shaker排序和堆排序(heapsort)。 当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。 (4, 1) (3, 1) (3, 7) (5, 6) 在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有: (3, 1) (3, 7) (4, 1) (5, 6) (维持次序) (3, 7) (3, 1) (4, 1) (5, 6) (次序被改变) 不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地时作为稳定。作这件事情的一个方式是人工扩充键值的

几种排序算法的分析与比较--C语言

一、设计思想 插入排序:首先,我们定义我们需要排序的数组,得到数组的长度。如果数组只有一个数字,那么我们直接认为它已经是排好序的,就不需要再进行调整,直接就得到了我们的结果。否则,我们从数组中的第二个元素开始遍历。然后,启动主索引,我们用curr当做我们遍历的主索引,每次主索引的开始,我们都使得要插入的位置(insertIndex)等于-1,即我们认为主索引之前的元素没有比主索引指向的元素值大的元素,那么自然主索引位置的元素不需要挪动位置。然后,开始副索引,副索引遍历所有主索引之前的排好的元素,当发现主索引之前的某个元素比主索引指向的元素的值大时,我们就将要插入的位置(insertIndex)记为第一个比主索引指向元素的位置,跳出副索引;否则,等待副索引自然完成。副索引遍历结束后,我们判断当前要插入的位置(insertIndex)是否等于-1,如果等于-1,说明主索引之前元素的值没有一个比主索引指向的元素的值大,那么主索引位置的元素不要挪动位置,回到主索引,主索引向后走一位,进行下一次主索引的遍历;否则,说明主索引之前insertIndex位置元素的值比主索引指向的元素的值大,那么,我们记录当前主索引指向的元素的值,然后将主索引之前从insertIndex位置开始的所有元素依次向后挪一位,这里注意,要从后向前一位一位挪,否则,会使得数组成为一串相同的数字。最后,将记录下的当前索引指向的元素的值放在要插入的位置(insertIndex)处,进行下一次主索引的遍历。继续上面的工作,最终我们就可以得到我们的排序结果。插入排序的特点在于,我们每次遍历,主索引之前的元素都是已经排好序的,我们找到比主索引指向元素的值大的第一个元素的位置,然后将主索引指向位置的元素插入到该位置,将该位置之后一直到主索引位置的元素依次向后挪动。这样的方法,使得挪动的次数相对较多,如果对于排序数据量较大,挪动成本较高的情况时,这种排序算法显然成本较高,时间复杂度相对较差,是初等通用排序算法中的一种。 选择排序:选择排序相对插入排序,是插入排序的一个优化,优化的前提是我们认为数据是比较大的,挪动数据的代价比数据比较的代价大很多,所以我们选择排序是追求少挪动,以比较次数换取挪动次数。首先,我们定义我们需要排序的数组,得到数组的长度,定义一个结果数组,用来存放排好序的数组,定义一个最小值,定义一个最小值的位置。然后,进入我们的遍历,每次进入遍历的时候我们都使得当前的最小值为9999,即认为每次最小值都是最大的数,用来进行和其他元素比较得到最小值,每次认为最小值的位置都是0,用来重新记录最小值的位置。然后,进入第二层循环,进行数值的比较,如果数组中的某个元素的值比最小值小,那么将当前的最小值设为元素的值,然后记录下来元素的位置,这样,当跳出循环体的时候,我们会得到要排序数组中的最小值,然后将最小值位置的数值设置为9999,即我们得到了最小值之后,就让数组中的这个数成为最大值,然后将结果数组result[]第主索引值位置上的元素赋值为最小值,进行下一次外层循环重复上面的工作。最终我们就得到了排好序的结果数组result[]。选择排序的优势在于,我们挪动元素的次数很少,只是每次对要排序的数组进行整体遍历,找到其中的最小的元素,然后将改元素的值放到一个新的结果数组中去,这样大大减少了挪动的次序,即我们要排序的数组有多少元素,我们就挪动多少次,而因为每次都要对数组的所有元素进行遍历,那么比较的次数就比较多,达到了n2次,所以,我们使用选择排序的前提是,认为挪动元素要比比较元素的成本高出很多的时候。他相对与插入排序,他的比较次数大于插入排序的次数,而挪动次数就很少,元素有多少个,挪动次数就是多少个。 希尔排序:首先,我们定义一个要排序的数组,然后定义一个步长的数组,该步长数组是由一组特定的数字组成的,步长数组具体得到过程我们不去考虑,是由科学家经过很长时间计算得到的,已经根据时间复杂度的要求,得到了最适合希尔排序的一组步长值以及计算

常见的八种经典排序方法

常见经典排序算法 1.希尔排序 2.二分插入法 3.直接插入法 4.带哨兵的直接排序法 5.冒泡排序 6.选择排序 7.快速排序 8.堆排序 一.希尔(Shell)排序法(又称宿小增量排序,是1959年由D.L.Shell提出来的) /* Shell 排序法 */ #include void sort(int v[],int n) { int gap,i,j,temp; for(gap=n/2;gap>0;gap /= 2) /* 设置排序的步长,步长gap每次减半,直到减到1 */ { for(i=gap;i= 0) && (v[j] > v[j+gap]);j -= gap ) /* 比较相距gap远的两个元素的大小,根据排序方向决定如何调换 */ { temp=v[j];

v[j]=v[j+gap]; v[j+gap]=temp; } } } } 二.二分插入法 /* 二分插入法 */ void HalfInsertSort(int a[], int len) { int i, j,temp; int low, high, mid; for (i=1; i temp) /* 如果中间元素比但前元素大,当前元素要插入到中间元素的左侧 */

c++排序算法

当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序、堆排序或归并排序序。 快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短; 1. 插入排序—直接插入排序(Straight Insertion Sort) 基本思想: 将一个记录插入到已排序好的有序表中,从而得到一个新,记录数增1的有序表。即:先将序列的第1个记录看成是一个有序的子序列,然后从第2个记录逐个进行插入,直至整个序列有序为止。 要点:设立哨兵,作为临时存储和判断数组边界之用。 直接插入排序示例:

如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。 算法的实现: 效率: 时间复杂度:O(n^2).

其他的插入排序有二分插入排序,2-路插入排序。 2. 插入排序—希尔排序(Shell`s Sort) 希尔排序是1959 年由D.L.Shell 提出来的,相对直接排序有较大的改进。希尔排序又叫缩小增量排序 基本思想: 先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。 操作方法: 1.选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1; 2.按增量序列个数k,对序列进行k 趟排序; 3.每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列, 分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。 希尔排序的示例:

相关主题