搜档网
当前位置:搜档网 › 高三-平抛运动、圆周运动的临界问题(学)

高三-平抛运动、圆周运动的临界问题(学)

高三-平抛运动、圆周运动的临界问题(学)
高三-平抛运动、圆周运动的临界问题(学)

学科教师辅导讲义

前情回顾

体系搭建

突破一平抛运动中的临界问题

1.有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程中存在着临界点。

2.若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程中存在着“起止点”,而这些起止点往往就是临界点。

3.若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程中存在着极值,这些极值点也往往是临界点。

【例1】 (2015·新课标全国卷Ⅰ,18)一带有乒乓球发射机的乒乓球台如图所示。水平台面的长和宽分别为L 1和L 2,中间球网高度为h 。发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h 。不计空气的作用,重力加速度大小为g 。若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )

A.

L 1

2g

6h <v <L 1g

6h

B.

L 1

4

g

h <v <(4L 2

1+L 2

2)g

6h

C.

L 1

2

g 6h <v <12(4L 2

1+L 2

2)g

6h

D.

L 1

4

g h <v <12

(4L 2

1+L 22)g

6h

规律总结

处理平抛运动中的临界问题要抓住两点 (1)找出临界状态对应的临界条件。

(2)要用分解速度或者分解位移的思想分析平抛运动的临界问题。

【变式训练】

1.(多选)如图所示,水平屋顶高H =5 m ,围墙高h =3.2 m ,围墙到房子的水平距离L =3 m ,围墙外马路宽x =10 m ,为使小球从屋顶水平飞出落在围墙外的马路上,小球

离开屋顶时的速度v 0的大小的可能值为(g 取10 m/s 2

)( )

A.6 m/s

B.12 m/s

C.4 m/s

D.2 m/s

突破二 匀速圆周运动的临界问题

水平面内圆周运动的临界极值问题通常有两类,一类是与摩擦力有关的临界问题,一类是与弹力有关的临界问题。

1.与摩擦力有关的临界极值问题

物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,则

有F m =mv 2

r

,静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在

水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心。 2.与弹力有关的临界极值问题

压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等。

【例2】 如图所示,水平转台上放有质量均为m 的两个小物块A 、B ,A 离转轴中心的距离为L ,A 、B 间用长为L 的细线相连。开始时,A 、B 与轴心在同一直线上,细线刚好被拉直,A 、B 与水平转台间的动摩擦因数均为μ,最大静摩擦力等于滑动摩擦力,求: (1)当转台的角速度达到多大时细线上开始出现张力? (2)当转台的角速度达到多大时A 物块开始滑动? (1)转台的角速度较小时,向心力由什么力来提供? 静摩擦力

(2)物块A 、B 谁先达到最大静摩擦力? 物块B

(3)细线上何时开始出现张力?

物块B达到最大静摩擦力时

(4)细线上有张力时,谁提供物块A、B的向心力,列出表达式?

对A:F fA-F=mω2r A__对B:F f m+F=mω2r B

(5)两物块何时开始滑动?

物块A达到最大静摩擦力时开始滑动,即F f m=μmg

方法提炼

解决此类问题的一般思路

首先要考虑达到临界条件时物体所处的状态,其次分析该状态下物体的受力特点,最后结合圆周运动知识,列出相应的动力学方程综合分析。

【变式训练】

2.(多选)(2014·新课标全国卷Ⅰ,20)如图,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g。若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是 ( )

A.b一定比a先开始滑动

B.a、b所受的摩擦力始终相等

C.ω=kg

2l

是b开始滑动的临界角速度

D.当ω=2kg

3l

时,a所受摩擦力的大小为kmg

突破三竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型

1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产

生拉力也可对小球产生支持力。

2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。

【例3】 如图所示,长为L 的轻杆一端固定质量为m 的小球,另一端固定在转轴O ,现使小球在竖直平面内做圆周运动,P 为圆周的最高点,若小球通过圆周最低点时的速度大小为

9

2

gL ,忽略摩擦阻力和空气阻力,则以下判断正确的是( )

A.小球不能到达P 点

B.小球到达P 点时的速度大于gL

物理情景 最高点无支撑

最高点有支撑

实例

球与绳连接、水流星、沿内轨道的“过山车”等

球与杆连接、球在光滑管道中运动等

图示

异 同 点

受力特征 除重力外,物体受到的弹力方向:向下或等于零 除重力外,物体受到的弹力方

向:向下、等于零或向上

受力示意图

力学方程

mg +F N =m v 2

R

mg ±F N =m v 2

R

临界特征

F N =0

mg =m

v 2min R 即v min =gR

v =0 即F 向=0 F N =mg

过最高点的条件

在最高点的速度v ≥gR

v ≥0

C.小球能到达P点,且在P点受到轻杆向上的弹力

D.小球能到达P点,且在P点受到轻杆向下的弹力

方法提炼

分析竖直平面内圆周运动临界问题的思路

【变式训练】

3.(多选)如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r=0.4 m,最低点处有一小球(半径比r小很多),现给小球一水平向右的初速度v0,则要使小球不脱离圆轨道运动,v0应当满足(g=10

m/s2)( )

A.2 m/s

B.4 m/s

C.6 m/s

D.8 m/s

P (Practice -Oriented)——实战演练

? 课堂狙击

1.如图所示,球网上沿高出桌面H ,网到桌边的距离为L 。某人在乒乓球训练中,从左侧L

2处,将球沿垂直

于网的方向水平击出,球恰好通过网的上沿落到右侧桌边缘。设乒乓球的运动为平抛运动。则乒乓球( )

A.在空中做变加速曲线运动

B.在水平方向做匀加速直线运动

C.在网的右侧运动的时间是左侧的2倍

D.击球点的高度是网高的2倍

2.(多选)如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3 s 后又恰好垂直与倾角为45°的斜面相碰。已知半圆形管道的半径R =1 m ,小球可看做质点且其质量为m =1 kg ,g 取10 m/s 2

。则( )

A.小球在斜面上的相碰点C 与B 点的水平距离是0.9 m

B.小球在斜面上的相碰点C 与B 点的水平距离是1.9 m

C.小球经过管道的B 点时,受到管道的作用力F N B 的大小是1 N

D.小球经过管道的B 点时,受到管道的作用力F N B 的大小是2 N

3.(多选)(2015·浙江理综)如图所示为赛车场的一个水平“U”形弯道,转弯处为圆心在O 点的半圆,内外半径分别为r 和2r 。一辆质量为m 的赛车通过AB 线经弯道到达A ′B ′线,有如图所示的①、②、③三条路线,其中路线③是以O ′为圆心的半圆,OO ′=r 。赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max 。选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发

动机功率足够大),则( )

实战演练

A.选择路线①,赛车经过的路程最短

B.选择路线②,赛车的速率最小

C.选择路线③,赛车所用时间最短

D.①、②、③三条路线的圆弧上,赛车的向心加速度大小相等

4.(多选)如图所示,在水平转台上放一个质量M=2.0 kg的木块,它与台面间的最大静摩擦力F f m=6.0 N,绳的一端系住木块,另一端穿过转台的中心孔O(为光滑的)悬吊一质量m=1.0 kg的小球,当转台以ω=

5.0 rad/s的角速度转动时,欲使木块相对转台静止,则它到O孔的距离可能是( )

A.6 cm

B.15 cm

C.30 cm

D.34 cm

?课后反击

一、单项选择题

1.如图所示,在光滑水平面上,钉有两个钉子A和B,一根长细绳的一端系一个小球,另一端固定在钉子A

上,开始时小球与钉子A、B均在一条直线上(图示位置),且细绳的一大部分沿俯视顺时针方向缠绕在两钉子上,现使小球以初速度v0在水平面上沿俯视逆时针方向做圆周运动,使两钉子之间缠绕的绳子逐渐释放,在绳子完全被释放后与释放前相比,下列说法正确的是( )21世纪教育网版权所有

A.小球的线速度变大

B.小球的角速度变大

C.小球的加速度变大

D.细绳对小球的拉力变小

2.荡秋千一直是小朋友们喜爱的运动,秋千上端吊环之间不断磨损,能承受的拉力逐渐减小。如图所示,

一质量为m的小朋友在吊绳长为l的秋千上,如果小朋友从与吊环水平位置开始下落,运动到最低点时,吊绳突然断裂,小朋友最后落在地板上。如果吊绳的长度l可以改变,则( )

A.吊绳越长,小朋友在最低点越容易断裂

B.吊绳越短,小朋友在最低点越容易断裂

C.吊绳越长,小朋友落地点越远

D.吊绳长度是吊绳悬挂点高度的一半时,小朋友落地点最远

3.(2014·安徽理综,19)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止。物体与盘面间的动摩擦因数为

32

(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2

。则ω的最大值是( )

A. 5 rad/s

B. 3 rad/s

C.1.0 rad/s

D.0.5 rad/s

4.如图甲所示,轻杆一端固定在O 点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。小球运动到最高点时,杆与小球间弹力大小为F N ,小球在最高点的速度大小为v ,其F N -v 2

图象如图乙所示。则( )com

A.小球在质量为aR

b

B.当地的重力加速度大小为R

b

C.v 2

=c 时,在最高点杆对小球的弹力方向向上 D.v 2=2b 时,在最高点杆对小球的弹力大小为2a

二、多项选择题

5.(2016·东城区模拟)长为L的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直

平面内做圆周运动,关于小球在最高点的速度v,下列说法中正确的是( )2-1-c-n-j-y

A.当v的值为gL时,杆对小球的弹力为零

B.当v由gL逐渐增大时,杆对小球的拉力逐渐增大

C.当v由gL逐渐减小时,杆对小球的支持力逐渐减小

D.当v由零逐渐增大时,向心力也逐渐增大

6.质量为m的小球由轻绳a、b分别系于一轻质木架上的A和C点,绳长分别为l a、l b,如图所示,当木架

绕轴BC以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a在竖直方向,绳b在水平方向,当小球运动到图示位置时,绳b被烧断,同时木架停止转动,则( )【出处:21教育名师】

A.小球仍在水平面内做匀速圆周运动

B.在绳b被烧断瞬间,绳a中张力突然增大

C.若角速度ω较小,小球可能在垂直于平面ABC的竖直平面内摆动

D.绳b未被烧断时,绳a的拉力大于mg,绳b的拉力为mω2l b

7.(2016·山西吕梁模拟)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球

半径为r,则下列说法正确的是( )21教育名师原创作品

A.小球通过最高点时的最小速度v min=g(R+r)

B.小球通过最高点时的最小速度v min=0

C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力

D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力

8.如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m的两个物体A和B,它们

分居圆心两侧,与圆心距离分别为R A=r,R B=2r,与盘间的动摩擦因数μ相同,当圆盘转速加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩

擦力,则下列说法正确的是( ) A.此时绳子张力为3μmg

B.此时圆盘的角速度为2μg r

C.此时A所受摩擦力方向沿半径指向圆外

D.此时烧断绳子,A仍相对盘静止,B将做离心运动

三、非选择题

9.为了研究过山车的原理,某物理小组提出了下列的设想:取一个与水平方向夹角为θ=60°,长为L1=

2 3 m的倾斜轨道AB,通过微小圆弧与长为L2=

3

2

m的水平轨道BC相连,然后在C处设计一个竖直完

整的光滑圆轨道,出口为水平轨道D,如图所示。现将一个小球从距A点高为h=0.9 m的水平台面上以一定的初速度v0水平弹出,到A点时速度方向恰沿AB方向,并沿倾斜轨道滑下。已知小球与AB和BC

间的动摩擦因数均为μ=

3

3

。g取10 m/s2,求:21教育网

(1)小球初速度v0的大小;

(2)小球滑过C点时的速率v C;

(3)要使小球不离开轨道,则竖直圆弧轨道的半径R应该满足什么条件。

10.如图所示,一水平传送带AB长为L=6 m,离水平地面的高为h=5 m,地面上C点在传送带右端点B的

正下方。一物块以水平初速度v0=4 m/s自A点滑上传送带,传送带匀速转动,物块与传送带间的动摩擦因数为μ=0.2,重力加速度为g=10 m/s2。

(1)要使物块从B点抛出后的水平位移最大,传送带运转的速度应满足什么条件?最大水平位移多大?

(2)若物块从A点滑上传送带到落地所用的时间为2.3 s,求传送带运转的速度(10=3.162,14.24=

3.77,结果保留三位有效数字)。2·1·c·n·j·y

战术指导直击高考

(2016年上海卷.31)风洞是研究空气动力学的实验设备。如图,将刚性杆水平固定在风洞内距地面高度H=3.2 m处,杆上套一质量m=3 kg,可沿杆滑动的小球。将小球所受的风力调节为F=15 N,方向水平向左。小球以初速度v0=8 m/s向右离开杆端,假设小球所受风力不变,取g=10m/s2。求:

(1)小球落地所需时间和离开杆端的水平距离;

(2)小球落地时的动能。

(3)小球离开杆端后经过多少时间动能为78 J?

25.(2016年全国卷1)如图,一轻弹簧原长为2R,其一端固定在倾角为37°的固定直轨道AC的底端A

处,另一端位于直轨道上B处,弹簧处于自然状态,直轨道与一半径为5

6

R的光滑圆弧轨道相切于C点,

AC=7R,A、B、C、D均在同一竖直平面内。质量为m的小物块P自C点由静止开始下滑,最低到达E点

(未画出),随后P沿轨道被弹回,最高点到达F点,AF=4R,已知P与直轨道间的动摩擦因数

1

=

4μ,重

力加速度大小为g。(取

34 sin3737

55

?=?=

,cos)

(1)求P第一次运动到B点时速度的大小。

(2)求P运动到E点时弹簧的弹性势能。

(3)改变物块P的质量,将P推至E点,从静止开始释放。已知P自圆弧轨道的最高点D处水平飞出后,

恰好通过G点。G点在C点左下方,与C点水平相距7

2

R、竖直相距R,求P运动到D点时速度的大小和

改变后P的质量。

S(Summary-Embedded)——归纳总结

重点回顾

名师点拨

1.如图所示,“旋转秋千”中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是( )

A.A的速度比B的大

B.A与B的向心加速度大小相等

C.悬挂A、B的缆绳与竖直方向的夹角相等

D.悬挂A的缆绳所受的拉力比悬挂B的小

2.(2014年高考·课标全国卷Ⅰ)(多选)如图,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l.木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )

A.b一定比a先开始滑动

B.a、b所受的摩擦力始终相等

C.ω=kg

2l

是b开始滑动的临界角速度

D.当ω=2kg

3l

时,a所受摩擦力的大小为kmg

3.(2016年江西南昌第三中学月考)(多选)如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴OO1转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到OO1轴的距离为物块A到OO1轴的距离的两倍,现让该装置从静止开始转动,使转速逐渐增大,在从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是( )

A.B受到的静摩擦力一直增大

B.A受到的静摩擦力一直增大

C.A、B受到的合外力之比不变

D.A受到的合外力一直在增大

学霸经验

?本节课我学到了

?我需要努力的地方是

平抛运动中临界问题的分析(含答案)

平抛运动中临界问题的分析 1、如图所示,在水平路面上一运动员驾驶摩托车跨越壕沟,壕沟 两侧的高度差为0.8 m ,水平距离为8 m ,则运动员跨越壕沟的 初速度至少为(取g =10 m/s 2) ( ) A .0.5 m/s B .2 m/s C .10 m/s D .20 m/s 答案 D 解析 运动员做平抛运动的时间t = 2Δh g =0.4 s ,v =x t =8 0.4 m/s =20 m/s. 2、《愤怒的小鸟》是一款时下非常流行的游戏,游戏中的故事也相当有趣,如图甲所示,为 了报复偷走鸟蛋的肥猪们,鸟儿以自己的身体为武器,如炮弹般弹射出去攻击肥猪们的堡垒.某班的同学们根据自己所学的物理知识进行假设:小鸟被弹弓沿水平方向弹出,如图乙所示,若h 1=0.8 m ,l 1=2 m ,h 2=2.4 m ,l 2=1 m ,小鸟飞出后能否直接打中肥猪的堡垒?请用计算结果进行说明.(取重力加速度g =10 m/s 2) 答案 不能 解析 (1)设小鸟以v 0弹出后能直接击中堡垒,则 ????? h 1+h 2=12gt 2 l 1+l 2=v 0t t = 2(h 1+h 2) g = 2×(0.8+2.4) 10 s =0.8 s 所以v 0=l 1+l 2t =2+1 0.8 m/s =3.75 m/s 设在台面的草地上的水平射程为x ,则 ???? ? x =v 0t 1h 1=12gt 21 所以x =v 0 2h 1 g =1.5 m

3、乒乓球在我国有广泛的群众基础,并有“国球”的美誉,现 讨论乒乓球发球问题,已知球台长L ,网高h ,若球在球台 边缘O 点正上方某高度处,以一定的垂直球网的水平速度 发出,如图所示,球恰好在最高点时刚好越过球网.假设乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力,则根据以上信息可以求出(设重力加速度为g ) ( ) A .球的初速度大小 B .发球时的高度 C .球从发出到第一次落在球台上的时间 D .球从发出到被对方运动员接住的时间 答案 ABC 解析 根据题意分析可知,乒乓球在球台上的运动轨迹具有重复和对称性,故发球时的高度等于h ;从发球到运动到P 1点的水平位移等于1 4L ,所以可以求出球的初速度大小, 也可以求出球从发出到第一次落在球台上的时间.由于对方运动员接球的位置未知,所以无法求出球从发出到被对方运动员接住的时间,故本题选A 、B 、C. 4、2011年6月4日,李娜获得法网单打冠军,实现了大满贯这一梦想,如图所示为李娜将球在边界A 处正上方B 点水平向右击出,球恰好过网C 落在D 处(不计空气阻力)的示意图,已知AB =h 1,AC =x ,CD =x 2 ,网高为h 2,下列说法中正确的是( ) A .击球点高度h 1与球网的高度h 2之间的关系为h 1=1.8h 2 B .若保持击球高度不变,球的初速度v 0只要不大于x 2gh 1 h 1 ,一定落在对方界内 C .任意降低击球高度(仍高于h 2),只要击球初速度合适(球仍水平击出),球一定能落在对方界内 D .任意增加击球高度,只要击球初速度合适(球仍水平击出),球一定能落在对方界内 答案 AD 解析 由平抛运动规律可知h 1=12gt 21,1.5x =v 0t 1,h 1-h 2=12gt 2 2,x =v 0t 2,得h 1=1.8h 2, A 正确;若保持击球高度不变,球的初速度v 0较小时,球可能会触网, B 错误;任意降低击球高度,只要初速度合适,球可能不会触网,但球会出界, C 错误;任意增加击球高度,只要击球初速度合适,使球的水平位移小于2x ,一定能落在对方界内, D 正确. 5、如图所示,水平屋顶高H =5 m ,围墙高h =3.2 m ,围墙到房子 的水平距离L =3 m ,围墙外马路宽x =10 m ,为使小球从屋顶水平飞出 落在围墙外的马路上,求小球离开屋顶时的速度v 的大小范围.(g 取

高中物理专题训练含答案-19--平抛运动的临界问题

19 平抛运动的临界问题 【核心方法点拨】 涉及平抛运动的临界问题关键是找出“恰好”“刚好”对应的状态物理量关系。 【训练】 (2016·宁夏银川高三质检)如图所示为四分之一圆柱体OAB 的竖直截面,半径为R ,在B 点上方的C 点水平抛出一个小球,小球轨迹恰好在D 点与圆柱体相切,OD 与OB 的夹角为60°,则C 点到B 点的距离为( ) A .R B.R 2 C.3R 4 D.R 4 【解析】设小球平抛运动的初速度为v 0,将小球在D 点的速度沿竖直方向和水平方向分解,则有v y v 0=tan 60°,得gt v 0=3。小球平抛运动的水平位移x =R sin 60°,x =v 0t ,解得v 20 =Rg 2,v 2y =3Rg 2。设平抛运动的竖直位移为y ,v 2 y =2gy ,解得y =3R 4,则BC =y -(R -R cos 60°)=R 4,D 选项正确。 【答案】D (2014·上海)如图所示,宽为L 的竖直障碍物上开有间距d =0.6 m 的矩形孔,其下沿离地高h =1.2 m .离地高H =2 m 的质点与障碍物相距x ,在障碍物以v 0=4 m/s 匀速向左运动的同时,质点自由下落,为使质点能穿过该孔,L 的最大值为______m ;若L =0.6 m ,x 的取值范围是________m .(取g =10 m/s 2) 【解析】以障碍物为参考系,相当于质点以v 0的初速度,向右平抛,当L 最大时,从抛出点经过孔的左上边界飞到孔的右下边界时,L 最大,y 1=H -d -h =12gt 21,x 1=v 0t 1;y 2=H - h =12gt 22,x 2=v 0t 2;解得t 1=0.2 s ,t 2=0.4 s ,x 1=0.8 m ,x 2=1.6 m ,L =x 2-x 1=0.8 m ;从孔的左上边界飞入小孔的临界的值x ′1=v 0t 1=0.8 m ,x ′2+0.6 m =v 0t 2,解得x ′2=1 m ,知0.8 m≤x ≤1 m. 【答案】0.8 0.8 m≤x ≤1 m

圆周运动中的临界问题

第 1 页 图 4 圆周运动中的临界问题 1、在竖直平面内作圆周运动的临界问题 ⑴如图1、图2所示,没有物体支承的小球,在竖直平面作圆周运动过最高点的情 况 ① 临界条件:绳子或轨道对小球没有力的作用 v 临界= Rg ② 能过最高点的条件:v ≥ Rg ,当 v > Rg 时,绳对球产生拉力,轨道对球产 生压力。 ③ 不能过最高点的条件:v Rg ,N 为拉力,有 N >0,N 随 v 的增大而增大 例 1 (99 年高考题)如图 4 所示,细杆的一端与一小球相连,可绕过 O 的水平轴自 由转动。现给小球一初速度,使它做圆周运动。图中 a 、b 分别表示小球轨道的最低点和 最高点,则杆对球作用力可能是 ( ) A 、a 处为拉力,b 处为拉力 B 、a 处为拉力,b 处为推力 C 、a 处为推力,b 处为拉力 D 、a 处为推力,b 处为推力 图 1 图 2 图 3 b a

例 2 长度为L =0.5m 的轻质细杆OA,A 端有一质量为m= 3.0kg 的小球,如图 5 所示,小球以O 点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是 2.0m/s, g 取10m /s2,则此时细杆OA 受到() A、6.0N 的拉力 B、6.0N 的压力 C、24N 的拉力 D、24N 的压力 例3 长L=0.5m,质量可以忽略的的杆,其下端固定于O 点,上端 图5 连接着一个质量m=2kg 的小球A,A 绕O 点做圆周运动(同图5), 在 A 通过最高点,试讨论在下列两种情况下杆的受力: ①当 A 的速率v1=1m/s 时 ②当 A 的速率v2=4m/s 时 2、在水平面内作圆周运动的临界问题 在水平面上做圆周运动的物体,当角速度ω变化时,物体有远离或向着圆心运动的(半径有变化)趋势。这时,要根据物体的受力情况,判断物体受某个力是否存在以及这个力 存在时方向朝哪(特别是一些接触力,如静摩擦力、绳的拉力等)。 例 4 如图 6 所示,两绳系一质量为m =0.1kg 的小球,上面绳长L =2m ,两端都拉直时与轴的夹角分别为30 °与45 °,问球的角速度在 什么范围内,两绳始终张紧,当角速度为 3 rad/s 时,上、下两绳拉力分 别为多大? 图6

【第14课时平抛运动】考点三 平抛运动中的临界问题(

考点三平抛运动中的临界问题(高频17) 处理平抛运动中的临界问题要抓住两点 (1)找出临界状态对应的临界条件. (2)要用分解速度或者分解位移的思想分析平抛运动中的临界问题. 命题点1 用极端分析法分析临界问题 所谓极端分析法,是指两个变量之间的关系,若是单调上升或单调下降的函数关系,可以通过连续地改变某个变量甚至达到变化的极端,来对另一个变量进行判断的研究方法. 6.如图所示,排球场总长为18 m,设球网高度为2 m,运动员站在离网3 m的线上(图中虚线所示)正对网前跳起将球水平击出.(不计空气阻力,取g=10 m/s2)

(1)设击球点在3 m线正上方高度为2.5 m处,试问击球的速度在什么范围内才能使球既不触网也不越界? (2)若击球点在3 m线正上方的高度小于某个值,那么无论击球的速度多大,球不是触网就是越界,试求这个高度. 【解析】(1)如图甲所示,设球刚好擦网而过,则击球点到擦网点的水平位移 x 1=3 m,竖直位移y1=h2-h1=(2.5-2)m=0.5 m,根据位移关系x=vt,y= 1 2 gt2,可得v=x g 2y ,代入数据可得v1=310 m/s,即所求击球速度的下限. 设球刚好打在边界线上,则击球点到落地点的水平位移x2=12 m,竖直位移y2=

h 2=2.5 m,代入上面的速度公式v=x g 2y ,可求得v2=12 2 m/s,即所求击 球速度的上限. 欲使球既不触网也不越界,则击球速度v应满足 310 m/s

平抛物体的运动临界问题

平抛物体的运动临界问题 一、【模型】:排球不触网且不越界问题 模型简化(运动简化):将排球看成质点,把排球在空中的运动看成平抛运动。 问题:标准排球场:场总长为l 1=18m ,宽l 2 = 9m 女排网高h=2.24m 如上图所示。若运动员在3m 线上方水平击球,则认为排球做类平抛运动。 分析方法:设击球高度为H ,击球后球的速度水平为v 0。当击球点高度为H 一定时,击球速度为υ1时恰好触网;击球速度为υ2时恰好出界。当击球点高度为H 时,击球速度为υ时,恰好不会触网,恰好不会出界,其运动轨迹分别如下图 中的(a )、(b )、(c )所示。 1、不出界: 如图(a )、(b)当击球点高度为H 一定时,要不越界,需飞行的水平距离m m l l 12321=+? 由于 时,不越界。 因此,m g H v l gt H t v l 1222 102 0?=== 结论: ① 若H 一定时,则v 0越大越易越界,要不越界,需H g g H v 2122120=< ② 若v 0一定时,则H 越大越易越界,越不越界,需0 0022722144212v g v g v g H = =< 2、不触网: 如图(c )要不触网,则需 竖直高度:2 2 1gt h H > - 水平距离:m t v 30= 以上二式联立得:0 2 29v t h H >- 结论: ①若H 一定(()一定h H -)时,则v 0越小,越易触网。要不触网,需() h H g v ->230 ②若v 0一定时,则H 越小,越易触网。要不触网,需2 29v g h H +> 3、总结论: ①当H 一定时,不触网也不越界的条件是:()??? ? ? ?=<<-H g g H v h H g 21221223 0 (即当H 一定时,速度太大太小均不行,太小会触网,太大又易越界) ② 若v 0一定时,且v 0在()??? ? ? ?=< <-H g g H v h H g 21221223 0之外 ()????? ?? ??<>h H g v g H v -2321200或即 则无论初速度多大,结果是或越界或触网。 简言之:g H H g 21223>??? ??

圆周运动的临界问题

圆周运动的临界问题 1.圆周运动中的临界问题的分析方法 首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值. 2.竖直平面内作圆周运动的临界问题 竖直平面内的圆周运动是典型的变速圆周运动。一般情况下,只讨论最高点和最低点的情况,常涉及过最高点时的临界问题。 1.“绳模型”如图6-11-1所示,小球在竖直平面内做圆周运动过最高点情况。 (注意:绳对小球只能产生拉力) (1)小球能过最高点的临界条件:绳子和轨道对小球刚好没有力的作用 mg =2 v m R v 临界 (2)小球能过最高点条件:v (当v (3)不能过最高点条件:v (实际上球还没有到最高点时,就脱离了轨道) 2.“杆模型”如图6-11-2所示,小球在竖直平面内做圆周运动过最高点情况 (注意:轻杆和细线不同,轻杆对小球既能产生拉力,又能产生推力。) (1)小球能最高点的临界条件:v = 0,F = mg (F 为支持力) (2)当0< v F 随v 增大而减小,且mg > F > 0(F 为支持力) (3)当v 时,F =0 (4)当v F 随v 增大而增大,且F >0(F 为拉力) 注意:管壁支撑情况与杆一样。杆与绳不同,杆对球既能产生拉力,也能对球产生支持力. 由于两种模型过最高点的临界条件不同,所以在分析问题时首先明确是哪种模型,然后再利用条件讨论. (3)拱桥模型 如图所示,此模型与杆模型类似,但因可以离开支持面,在最高点当物体速度达v =rg 时,F N =0,物体将飞离最高点做平抛运动。若是从半圆顶点飞出,则水平位移为s = 2R 。 a b 图6-11-2 b

圆周运动的临界条件

第3.5节 圆周运动的应用 答案 例题2: 练1:解析:要使悬线碰钉后小球做完整的圆周运动,须使小球到达以P 点为圆心的圆周最高点M ,当刚能到达最高点M 时,小球只受重力mg 作用,此时悬线 拉力为零,即有mg =m R v 2 min ,其中R 为以P 点为圆心的圆周的半径,v min 为小球到达M 点的最小速度,而根据机械能守恒定律,有mg (L -2R )=2 1mv min 2 联立解得R =52L ,此为小球以P 点为圆心的最大半径,所以OP =L -R =53L 为OP 间的最小距离. 故OP 段的最小距离是5 3L . 例题3:解析】 两根绳张紧时,小球受力如图4-3-7所示,当ω由0逐渐增大时,ω可能出现以下两个临界值. (1)BC 恰好拉直,但F 2仍然为零,设此时的角速度为ω1,则有F 1sin30°=m ω12L sin30° F 1cos30°=mg 代入数据解得ω1=2.4 rad/s. (2)AC 由拉紧转为恰好拉直,但F 1已为零,设此时的角速度为ω2,则有F 2sin45°=m ω22LBC sin45°

F2cos45°=mg 代入数据解得ω2=3.16 rad/s 可见,要使两绳始终张紧,ω必须满足2.4 rad/s≤ω≤3.16 rad/s. 【答案】 2.4 rad/s≤ω≤3.16 rad/s 练2:D 练3:解析:要使B静止,A必须相对于转盘静止——具有与转盘相同的角速度.A 需要的向心力由绳的拉力和静摩擦力的合力提供.角速度取最大值时,A有离心趋势,静摩擦力指向圆心O;角速度取最小值时,A有向心运动的趋势,静摩擦力背离圆心O. 对于B:F T=mg 对于A:F T+Ff=Mrω12 或F T-Ff=Mrω22 代入数据解得 ω1=6.5 rad/s,ω2=2.9 rad/s 所以2.9 rad/s≤ω≤6.5 rad/s. 答案:2.9 rad/s≤ω≤6.5 rad/s

高中物理圆周运动中的临界问题分析教案教学设计

《圆周运动中的临界问题》教学设计 一、教材分析 圆周运动的临界问题继是人教版高中《物理》必修2第五章的内容。在此之前,学生已经学习了直线运动的相关内容,和曲线运动的基本知识,自然界和日常生活中运动轨迹为圆周的许多事物也为学生的认知奠定了感性基础,本节课主要是帮助学生在原有的感性基础上进一步认识圆周运动,为今后学习万有引力等知识打下基础。 二、学情分析 高一(14)班是二层次班级,学生基础、领会能力相对较弱。不过学生已经学习了圆周运动、向心加速度、向心力等圆周运动的相关知识,已基本了解和掌握了圆周运动的特点和规律,对圆周运动的临界问题的学习已打下了基础。 三、学习目标 1.通过学生讨论,小组合作,老师引导,让学生进一步熟练圆周运动问 题的解题步骤; 2.通过学生讨论,小组合作,老师讲解,达到知道临界状态的目标; 3.通过学生讨论,小组合作,老师讲解,达到知道圆周运动中的临界问 题,并能正确解题的目标。 四、教学重难点 1.重点 a圆周运动问题的解题步骤 b 竖直水平圆周运动的临界状态 c 运用所学知识解决圆周运动中的临界问题 2.难点 a 竖直水平圆周运动的临界状态 b 运用所学知识解决圆周运动中的临界问题 五、导入 播放视频—电唱机做匀速圆周运动,创设情境,导入新课 六、教学设计 (一)预习案 1.公式默写 角速度: 2v t T r θπ ω===

线速度: 运行周期: 向心加速度: 向心力: 复习巩固 (二) 探究案 1. 圆周运动问题的解题步骤 例、例. 如图所示,半径为R 的圆筒绕竖直中心轴 OO ′转动, 小物块A 靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要 使A 不下落,则圆筒转动的角速度ω至少为( D ) 2s r v r t T πω===22r T v ππω==22222222444n v r a r v n r f r r T πωωππ======22 222222444n n v F ma m m r m v mr n mr f mr r T πωωππ====== =

平抛运动中临界问题的分析 (含答案)

平抛运动中临界问题的分析 1、如图所示,在水平路面上一运动员驾驶摩托车跨越壕沟,壕沟 两侧的高度差为0.8 m,水平距离为8 m,则运动员跨越壕沟的初速度至少为(取g=10 m/s2) ( ) A.0.5 m/s B.2 m/s C.10 m/s D.20 m/s 答案 D 解析 运动员做平抛运动的时间t==0.4 s,v== m/s=20 m/s. 2、《愤怒的小鸟》是一款时下非常流行的游戏,游戏中的故事也相当有 趣,如图甲所示,为了报复偷走鸟蛋的肥猪们,鸟儿以自己的身体为武器,如炮弹般弹射出去攻击肥猪们的堡垒.某班的同学们根据自己所学的物理知识进行假设:小鸟被弹弓沿水平方向弹出,如图乙所示,若h1=0.8 m,l1=2 m,h2=2.4 m,l2=1 m,小鸟飞出后能否直接打中肥猪的堡垒?请用计算结果进行说明.(取重力加速度g =10 m/s2)

答案 不能 解析 (1)设小鸟以v0弹出后能直接击中堡垒,则 t== s=0.8 s 所以v0== m/s=3.75 m/s 设在台面的草地上的水平射程为x,则 所以x=v0=1.5 m

虑乒乓球的旋转和空气阻力,则根据以上信息可以求出(设重力加速度为g) ( ) A.球的初速度大小 B.发球时的高度 C.球从发出到第一次落在球台上的时间 D.球从发出到被对方运动员接住的时间答案 ABC 解析 根据题意分析可知,乒乓球在球台上的运动轨迹具有重复和对称性,故发球时的高度等于h;从发球到运动到P1点的水平位移等于L,所以可以求出球的初速度大小,也可以求出球从发出到第一次落在球台上的时间.由于对方运动员接球的位置未知,所以无法求出球从发出到被对方运动员接住的时间,故本题选A、B、C. 4、2011年6月4日,李娜获得法网单打冠军,实现了大满贯这一梦想,如 图所示为李娜将球在边界A处正上方B点水平向右击出,球恰好过网C 落在D处(不计空气阻力)的示意图,已知AB=h1,AC=x,CD=,网高为h2,下列说法中正确的是( ) A.击球点高度h1与球网的高度h2之间的关系为h1=1.8h2 B.若保持击球高度不变,球的初速度v0只要不大于,一定落在对方界内 C.任意降低击球高度(仍高于h2),只要击球初速度合适(球仍水平击出),球一定能落在对方界内 D.任意增加击球高度,只要击球初速度合适(球仍水平击出),球一定能落在对方界内 答案 AD

圆周运动中的临界问题

圆周运动中的临界问题 1、在竖直平面内作圆周运动的临界问题 ⑴如图1、图2所示,没有物体支承的小球,在竖直平面作圆周运动过最高点的情况 ①临界条件:绳子或轨道对小球没有力的作用 v 临界=Rg ②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力。 ③不能过最高点的条件:v <v 临界(实际上球没到最高点时就脱离了轨道)。 ⑵如图3所示情形,小球与轻质杆相连。杆与绳不同,它既能产生拉力,也能产生压力 ①能过最高点v 临界=0,此时支持力N =mg ②当0<v <Rg 时,N 为支持力,有0<N <mg ,且N 随v 的增大而减小 ③当v =Rg 时,N =0 ④当v >Rg ,N 为拉力,有N >0,N 随v 的增大而增大 例1 (99年高考题)如图4所示,细杆的一端与一小球相连,可绕过O 的水平轴自由转动。现给小球一初速度,使它做圆周运动。图中a 、b 分别表示小球轨道的最低点和最高点,则杆对球作用力可能是 ( ) A 、a 处为拉力,b 处为拉力 B 、a 处为拉力,b 处为推力 C 、a 处为推力,b 处为拉力 D 、a 处为推力,b 处为推力 图 1 v 0 图 2 图 3

例2 长度为L =0.5m 的轻质细杆OA ,A 端有一质量为m =3.0kg 的小球,如图5所示,小球以O 点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m /s ,g 取10m /s 2,则此时细杆OA 受到 ( ) A 、6.0N 的拉力 B 、6.0N 的压力 C 、24N 的拉力 D 、24N 的压力 例3 长L =0.5m ,质量可以忽略的的杆,其下端固定于O 点,上端连接着一个质量m =2kg 的小球A ,A 绕O 点做圆周运动(同图5),在A 通过最高点,试讨论在下列两种情况下杆的受力: ①当A 的速率v 1=1m /s 时 ②当A 的速率v 2=4m /s 时 2、在水平面内作圆周运动的临界问题 在水平面上做圆周运动的物体,当角速度ω变化时,物体有远离或向着圆心运动的(半径有变化)趋势。这时,要根据物体的受力情况,判断物体受某个力是否存在以及这个力存在时方向朝哪(特别是一些接触力,如静摩擦力、绳的拉力等)。 例4 如图6所示,两绳系一质量为m =0.1kg 的小球,上面绳长L =2m ,两端都拉直时与轴的夹角分别为30°与45°,问球的角速度在什么范围内,两绳始终张紧,当角速度为3 rad /s 时,上、下两绳拉力分别为多大? 图 5 C 图 6

圆周运动中的临界问题

圆周运动中的临界问题 一、水平面内圆周运动的临界问题 关于水平面内匀速圆周运动的临界问题,涉及的是临界速度与临界力的问题,具体来说,主要是与绳的拉力、弹簧的弹力、接触面的弹力和摩擦力有关。 1、与绳的拉力有关的临界问题 例1 如图1示,两绳系一质量为kg m 1.0=的小球, 上面绳长m l 2=,两端都拉直时与轴的夹角分别为 o 30与o 45,问球的角速度在什么范围内,两绳始终张紧, 当角速度为s rad /3时,上、下两绳拉力分别为多大 2、因静摩擦力存在最值而产生的临界问题 例2 如图2所示,细绳一端系着质量为kg M 6.0= 的物体,静止在水平面上,另一端通过光滑小孔吊着 质量为kg m 3.0=的物体,M 的中心与圆孔距离为m 2.0 并知M 与水平面间的最大静摩擦力为N 2,现让此平面 绕中心轴匀速转动,问转动的角速度ω满足什么条件 可让m 处于静止状态。(2/10s m g =) 3、因接触面弹力的有无而产生的临界问题 二、竖直平面内圆周运动的临界问题 对于物体在竖直平面内做变速圆周运动,中学物理中只研究物体通过最高点和最低点的情况,并且也经常会出现临界状态。 1、轻绳模型过最高点 C 图1 图2

如图所示,用轻绳系一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直平面内光滑轨道内侧做圆周运动过最到点的情况相似,都属于无支撑的类型。 临界条件:假设小球到达最高点时速度为0v ,此时绳子的拉力(轨道的弹力) 刚好等于零,小球的重力单独提供其做圆周运动的向心力,即r v m mg 2 0=, gr v =0,式中的0v 是小球过最高点的最小速度,即过最高点的临界速度。 (1)0v v = (刚好到最高点,轻绳无拉力) (2)0v v > (能过最高点,且轻绳产生拉力的作用) (3)0v v < (实际上小球还没有到最高点就已经脱离了轨道) 例4、如图4所示,一根轻绳末端系一个质量为kg m 1=的小球, 绳的长度m l 4.0=, 轻绳能够承受的最大拉力为N F 100max =, 现在最低点给小球一个水平初速度,让小球以轻绳的一端O 为 圆心在竖直平面内做圆周运动,要让小球在竖直平面内做完整 的圆周运动且轻绳不断,小球的初速度应满足什么条件( /10s m g = 2、轻杆模型过最高点 如图所示,轻杆末端固定一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直放置的圆形管道内过最到点的情况相似,都属于有支撑的类型。 临界条件:由分析可知,小球在最高点的向心力是由重力和轻杆(管壁)的作用力的合力提供的,如果在最高点轻杆(管壁)对小球的作用力与重力刚好平衡,那么此时外界提供的向心力为零,即小球过最高点的瞬时速度可以为零,所以小球过最高点的临界速度为00=v 。 (1)0=v ,轻杆(管壁)对小球有向上的支持力N F ,且mg F N =

微专题19平抛运动的临界问题

微专题19 平抛运动的临界问题 【核心法点拨】 涉及平抛运动的临界问题关键是找出“恰好”“刚好”对应的状态物理量关系。 【微专题训练】 (2016·高三质检)如图所示为四分之一圆柱体OAB 的竖直截面,半径为R ,在B 点上的C 点水平抛出一个小球,小球轨迹恰好在D 点与圆柱体相切,OD 与OB 的夹角为60°,则C 点到B 点的距离为( ) A .R B.R 2 C.3R 4 D.R 4 【解析】设小球平抛运动的初速度为v 0,将小球在D 点的速度沿竖直向和水平向分解,则有v y v 0=tan 60°,得gt v 0 =3。小球平抛运动的水平位移x =R sin 60°,x =v 0t ,解得v 2 0= Rg 2 ,v 2 y =3Rg 2。设平抛运动的竖直位移为y ,v 2y =2gy ,解得y =3R 4,则BC =y -(R -R cos 60°)=R 4, D 选项正确。 【答案】D (2014·上海)如图所示,宽为L 的竖直障碍物上开有间距d =0.6 m 的矩形,其下沿离地高h =1.2 m .离地高H =2 m 的质点与障碍物相距x ,在障碍物以v 0=4 m/s 匀速向左运动的同时,质点自由下落,为使质点能穿过该,L 的最大值为______m ;若L =0.6 m ,x 的取值围是________m .(取g =10 m/s 2 )

【解析】以障碍物为参考系,相当于质点以v 0的初速度,向右平抛,当L 最大时,从抛出点经过的左上边界飞到的右下边界时,L 最大,y 1=H -d -h =12gt 21,x 1=v 0t 1;y 2=H -h =1 2 gt 22, x 2=v 0t 2;解得t 1=0.2 s ,t 2=0.4 s ,x 1=0.8 m ,x 2=1.6 m ,L =x 2-x 1=0.8 m ;从的左上边界 飞入小的临界的值x ′1=v 0t 1=0.8 m ,x ′2+0.6 m =v 0t 2,解得x ′2=1 m ,知0.8 m ≤x ≤1 m. 【答案】0.8 0.8 m ≤x ≤1 m (2015·新课标全国Ⅰ)一带有乒乓球发射机的乒乓球台如图所示.水平台面的长和宽分别为 L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同向 水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某围,通过选择合适的向,就能使乒乓球落到球网右侧台面上,则v 的最大取值围是( ) A. L 1 2g 6h <v <L 1g 6h B. L 1 4 g h <v < (4L 2 1+L 2 2)g 6h C. L 1 2 g 6h <v <12 (4L 2 1+L 2 2)g 6h D. L 1 4 g h <v <12 (4L 2 1+L 22)g 6h

高三-平抛运动、圆周运动的临界问题(学)

学科教师辅导讲义 前情回顾 体系搭建 突破一平抛运动中的临界问题 1.有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程中存在着临界点。

2.若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程中存在着“起止点”,而这些起止点往往就是临界点。 3.若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程中存在着极值,这些极值点也往往是临界点。 【例1】 (2015·新课标全国卷Ⅰ,18)一带有乒乓球发射机的乒乓球台如图所示。水平台面的长和宽分别为L 1和L 2,中间球网高度为h 。发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h 。不计空气的作用,重力加速度大小为g 。若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( ) A. L 1 2g 6h <v <L 1g 6h B. L 1 4 g h <v <(4L 2 1+L 2 2)g 6h C. L 1 2 g 6h <v <12(4L 2 1+L 2 2)g 6h D. L 1 4 g h <v <12 (4L 2 1+L 22)g 6h 规律总结 处理平抛运动中的临界问题要抓住两点 (1)找出临界状态对应的临界条件。 (2)要用分解速度或者分解位移的思想分析平抛运动的临界问题。 【变式训练】 1.(多选)如图所示,水平屋顶高H =5 m ,围墙高h =3.2 m ,围墙到房子的水平距离L =3 m ,围墙外马路宽x =10 m ,为使小球从屋顶水平飞出落在围墙外的马路上,小球 离开屋顶时的速度v 0的大小的可能值为(g 取10 m/s 2 )( )

圆周运动中的临界问题

圆周运动中的临界问题 一.竖直面内的临界问题: a 无支撑模型: 1、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况: ①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供其做圆周运动的向心力,即mg= r mv 2临界 上式中的v 临界是小球通过最高点的最小速度,通常叫临界速度,v 临界=rg . ②能过最高点的条件:v ≥v 临界. 此时小球对轨道有压力或绳对小球有拉力mg r v m N -=2 ③不能过最高点的条件:vN>0. 当v=rg 时,N=0; 当v>rg 时,杆对小球有指向圆心的拉力mg r v m N -=2 ,其大小随速度的增大而增大. ③图(b )所示的小球过最高点时,光滑硬管对小球的弹力情况是 当v=0时,管的下侧内壁对小球有竖直向上的支持力,其大小等于小球的重力,即N=mg. 当0

增大而减小,其取值范围是mg>N>0. 当v=gr 时,N=0. 当v>gr 时,管的上侧内壁对小球有竖直向下指向圆心的压力mg r v m N -=2 ,其大小随速度的增大而增大. ④图(c)的球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最高点的v 临界 =gr .当 v>gr 时,小球将脱离轨道做平抛运动. c 类似问题扩展 如图所示,在倾角为θ的光滑斜面上,有一长为l 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球,现使小球恰好能在斜面上做完整的圆周运动,已知O 点到斜面底边的距离s OC =L ,求:小球通过最高点A 时的速度v A . 二.平面内的临界问题 如图所示,用细绳一端系着的质量为M=0.6kg 的物体A 静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O 吊着质量为m=0.3kg 的小球B ,A 的重心到O 点的距离为0.2m .若A 与转盘间的最大静摩擦力为f=2N ,为使小球B 保持静止,求转盘绕中心O 旋转的角速度ω 的取值范围.(取g=10m/s 2 ) 三.绳的特性引发的临界问题 如图所示,质量为m =0.1kg 的小球和A 、B 两根细绳相连,两绳固定在细杆的A 、B 两点,其中A 绳长L A =2m ,当两绳都拉直时,A 、B 两绳和细杆的夹角θ1=30°,θ2=45°,g =10m/s 2.求: (1)当细杆转动的角速度ω在什么范围内,A 、B 两绳始终张紧? (2)当ω=3rad/s 时,A 、B 两绳的拉力分别为多大? 模型一 圆周运动中的渐变量和突变量 例1:如图所示,细线栓住的小球由水平位置摆下,达到最低点的速度为v ,当摆线碰到钉子P 的瞬时( ) A .小球的速度突然增大 B .线中的张力突然增大 P 小球 C O B A θ θ ω A B 30° 45° C

微专题19平抛运动的临界问题电子教案

微专题19平抛运动的临界问题

微专题19 平抛运动的临界问题 【核心法点拨】 涉及平抛运动的临界问题关键是找出“恰好”“刚好”对应的状态物理量关系。 【微专题训练】 (2016·高三质检)如图所示为四分之一圆柱体OAB 的竖直截面,半径为R ,在B 点上的C 点水平抛出一个小球,小球轨迹恰好在D 点与圆柱体相切,OD 与OB 的夹角为60°,则C 点到B 点的距离为( ) A .R B.R 2 C. 3R 4 D.R 4 【解析】设小球平抛运动的初速度为v 0,将小球在D 点的速度沿竖直向和水平向分解,则有v y v 0=tan 60°,得gt v 0 =3。小球平抛运动的水平位移x =R sin 60°,x =v 0t ,解得v 2 =Rg 2,v 2 y =3Rg 2 。设平抛运动的竖直位移为y ,v 2y =2gy ,解得y =3R 4,则BC =y -(R -R cos 60°)=R 4,D 选项正确。 【答案】D (2014·上海)如图所示,宽为L 的竖直障碍物上开有间距d =0.6 m 的矩形,其下沿离地高h =1.2 m .离地高H =2 m 的质点与障碍物相距x ,在障碍物以v 0=4 m/s 匀速向左运动的同时,质点自由下落,为使质点能穿过该,L 的最大值为______m ;若L =0.6 m ,x 的取值围是________m .(取g =10 m/s 2)

【解析】以障碍物为参考系,相当于质点以v0的初速度,向右平抛,当L最大 时,从抛出点经过的左上边界飞到的右下边界时,L最大,y1=H-d-h=1 2 gt21,x1=v0t1;y2=H-h=1 2 gt22,x2=v0t2;解得t1=0.2 s,t2=0.4 s,x1=0.8 m, x2=1.6 m,L=x2-x1=0.8 m;从的左上边界飞入小的临界的值x′1=v0t1=0.8 m,x′2+0.6 m=v0t2,解得x′2=1 m,知0.8 m≤x≤1 m. 【答案】0.8 0.8 m≤x≤1 m (2015·新课标全国Ⅰ)一带有乒乓球发射机的乒乓球台如图所示.水平台面的长和宽分别为L1和L2,中间球网高度为h.发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同向水平发射乒乓球,发射点距台面高度为3h.不计空气的作用,重力加速度大小为g.若乒乓球的发射速率v在某围,通过选择合适的向,就能使乒乓球落到球网右侧台面上,则v的最大取值围是( ) A.L1 2 g 6h <v<L1 g 6h B.L1 4 g h< v< (4L21+L22)g 6h C.L1 2 g 6h <v< 1 2 (4L21+L22)g 6h

圆周运动中的临界问题专题

圆周运动中的临界问题专题

课题28圆周运动中的临界问题 一、竖直面内圆周运动的临界问题 (1)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况: 特点:绳对小球,轨道对小球只能产生指向圆心的弹力 ①临界条件:绳子或轨道对 小球没有力的作用: mg=mv2/R→v临界=Rg (可理解为恰好转过或恰好转不过的速度) 即此时小球所受重力全部提供向心力 注意:如果小球带电,且空间存在电、磁场时,临界条件应是小球重力、电场力和洛伦兹力的合 ≠Rg 力提供向心力,此时临界速度V 临 ②能过最高点的条件:v≥Rg,当v>Rg时,绳对球产生拉力,轨道对球产生压力. ③不能过最高点的条件:v<V (实际上球还 临界 没到最高点时就脱离了轨道做斜抛运动) 【例题1】如图所示,半径为R的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬时得到一个水平初速0,若v0≤ 10,则有关小球能够上升到最大高度(距离底gR 3

部)的说法中正确的是( ) A 、一定可以表示为g v 220 B 、可能为3R C 、可能为R D 、可能为35R 【延展】汽车过拱形桥时会有限速,也是因为当汽车通过半圆弧顶部时的速度gr v 时,汽车对弧顶的压力F N =0,此时汽车将脱离桥面做平抛运动,因为桥面不能对汽车产生拉力. (2)如右图所示,小球过最高点时,轻质杆(管)对球产生的弹力情况: 特点:杆与绳不同,杆对球既能 产生拉力,也能对球产生支持 力. ①当v =0时,F N =mg (N 为支持力) ②当 0<v < Rg 时, F N 随v 增大而减小,且mg >F N >0,F N 为支持力. ③当v =Rg 时,F N =0 ④当v >Rg 时,F N 为拉力,F N 随v 的增大而增

匀速圆周运动临界问题专题

匀速圆周运动临界专题 任务一:水平面内的圆周运动:物体在水平面内做的一般是 匀速圆周运动.这样的物体在竖直方向上受力平衡, 在水平 方向 上受的合外力提供它做圆周运动所需的向心力. 同学们通过下面的练习,体会下面在水平面内的匀速圆 周运动特点。 1. 如图所示,水平转盘上放一小木块。转速为 60rad/ min 时,木块 离轴8cm 恰好与转盘无相对滑动,当转速增加到 120rad/min 时,为 使小木块刚好与转盘保持相对静止,那么木块应放在离轴多远的地 方?(注:汽车在水平面上转弯类似这种情况) 任务二:竖直平面内的圆周运动:物体在竖直面内作圆周运动的情况 关键在于:最高点和最低点的状态分析。依据物体在圆周最高点的受 力状态可以大致分为:物体最高点无支撑力的情况(例:绳球模型) 和物体最高点有支撑力的情况(例:杆球模型) 同学们通过下面的练习,体会下面在水平面内的匀速圆周运动特 ?(第i 题)

.0 图1绳球模型图2圆环轨道图3轻杆模型图4圆管轨道1.如图1、2所示,没有支撑物的小球在竖直平面作圆周运动过最高点的情 况 ①临界条件__________________________ ②能过最高点的条件___________________ ,此时绳或轨道对球分别产 生________________ ③不能过最高点的条件________________________ 2.如图3、4所示,为有支撑物的小球在竖直平面做圆周运动过最高 点的情况 竖直平面内的圆周运动,往往是典型的变速圆周运动。对于物体在竖直平面内的变速圆周运动问题,中学阶段只分析通过最高点和最低点的情况,并且经常出现临界状态,下面对这类问题进行简要分析。 ③能过最高点的条件______________ ,此时杆对球的作用力 ②当0 .. gr时,杆对小球的力为________________________ 其大小为 讨论:绳与杆对小球的作用力有什么不同? 例2.长度为L=0.50m的轻质细杆OA A端有一质量为m=3.0kg的小 球,如图3所示,小球以0点为圆心在竖直平面内做圆周运动,通过

相关主题