搜档网
当前位置:搜档网 › 核电用316LN不锈钢的热机械疲劳性能研究

核电用316LN不锈钢的热机械疲劳性能研究

核电用316LN不锈钢的热机械疲劳性能研究
核电用316LN不锈钢的热机械疲劳性能研究

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

铝合金焊接接头疲劳性能研究 张禧铭

铝合金焊接接头疲劳性能研究张禧铭 摘要:测定了6061铝合金焊接件焊接接头的疲劳性能,介绍了铝合金焊接件焊 接接头的疲劳特征,分析了铝合金焊接件焊接接头中缺陷对其疲劳性能的影响。 结果表明铝合金焊接件焊接接口处气孔、夹杂物及未焊透三个焊接缺陷均会零件 的应力集中创造条件,对铝合金焊接件焊接接头疲劳性能有重大影响。气孔的大小、数量,未焊透的分布位置及形式明显地影响铝合金焊接件焊接接头的疲劳性 能 0.引言 铝合金由于其质量轻、强度高、无磁性、耐腐蚀性好,广泛应用于汽车、铁路、航空航天等领域。焊接是铝合金零件最常见的连接方式,在铝合金焊接零件 在重复外力作用下会发生疲劳断裂,而疲劳破坏过程又这些问题往往会给用户造 成不可估量的巨大损失[1]。通过研究发现,铝合金焊件焊接接头发生疲劳破坏是 铝合金焊接断裂的主要原因,因此对铝合金焊接件进行全面分析,找出原因并提 出解决方案,提高铝合金焊接件有着重大意义[2,3]。近些年过高校和科研院所 对铝合金焊接件焊接接口做了大量研究工作,并取得了重大成果。周进等人通过 对5A02 铝合金焊接接头的疲劳性能进行分析,得出了补焊可以降低铝合金焊接 件焊接接口的疲劳强度(下降将近20%),可作为一种可靠的补救措施[4]。王德 俊通过对铝合金焊接接头焊缝几何特征的研究,得出了十字接头焊接方式比对接 接头焊接方式应力集中更严重的结论[5]。本文以6061铝合金为研究对象,分析 焊接缺陷铝合金焊接件疲劳性能的研究。 1.试验材料及试验方法 本试验需要的材料为铝合金和焊丝,其中铝合金选用6061铝板,焊丝选用5356焊丝,铝板采用对接焊接。这两种材料的化学成分如表1所示。 试验材料化学成分/% 将铝板通过焊丝分别用MIG焊和TIG焊两种方法进行焊接,不仅仅能够保证 铝合金焊接件内部化学成分的完整性,而且也可以提高铝合金焊接件的焊接质量。 在进行全部焊接之后还需要采用合理的方法对焊接物进行验伤处理,找出其 中存在的问题,并对出现问题的原因进行全面分析。焊后进行X射线探伤检验, 找出存在的问题并找到原因及时解决,将样品进行铣削加工,去除焊缝余高。为 获得样品真实状态,将样品铣削加工后再进行X射线探伤检测。在MTS万能试验机上进行疲劳试验,用JSM-35C显微镜对断口形状进行合理观察。 2.试验结果及分析 2.1疲劳试验 试验结果如表2所示,对试验结果进行整理、对比,可以发现无论6061铝合金焊接件的焊缝有无缺陷,发生疲劳破坏的均为焊接口。但是整个焊接过程是否 存在缺陷对存在的疲劳现象和相应寿命还有很重要的作用。但焊缝有无缺陷对其 寿命有明显影响,即有焊缝缺陷的样品其寿命明显低于无焊缝缺陷的样品,并且 随着缺陷尺寸的增大,疲劳寿命下降越多。 6061铝合金焊接接头疲劳性能 2.2疲劳断口特征 按照焊接接头的断裂过程疲劳断口一般分为裂纹源、疲劳裂纹扩展和最后断

影响金属材料疲劳强度的八大因素

影响金属材料疲劳强度的八大因素 Via 常州精密钢管博客 影响金属材料疲劳强度的八大因素 材料的疲劳强度对各种外在因素和内在因素都极为敏感。外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分,组织状态、纯净度和残余应力等。这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 各种因素对疲劳强度的影响是疲劳研究的重要方面,这种研究将为零件合理的结构设计、以及正确选择材料和合理制订各种冷热加工工艺提供依据,以保证零件具有高的疲劳性能。 应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,然而,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt :在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf:光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。 疲劳缺口敏感度系数q:疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算。 q的数据范围是0-1,q值越小,表征材料对缺口越不敏感。试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 尺寸因素的影响

纤维增强复合材料疲劳性能研究进展

纤维增强复合材料疲劳性能研究进展 宋磊磊李嘉禄 (天津工业大学复合材料研究所天津市和教育部共建先进纺织复合材料重点实验室天津 300160) 摘要:随着科技的发展,纤维增强复合材料作为一种新型材料越来越多的应用于众多领域。然而,纤维增强复合材料的疲劳性能对应用具有重要影响。本文根据近年来国内有关复合材料疲劳性能的研究和探索,综述了纤维增强复合材料疲劳性能的定义、机理以及影响因素,并提出了当前存在的一些问题。 关键词:纤维增强复合材料疲劳 1 前沿 随着科技的进步,很多工业特别是高新技术工业对材料的要求不断提高。复合材料由于比强度和刚度高、质量轻、耐磨性和耐腐蚀性好等优点,广泛应用于船舶、汽车、基础设施和航空航天等领域,以及文体用品、医疗器械、生物工程、建筑材料、化工机械等方面。 在复合材料构件的使用过程中,由于应力和环境等因素的影响,会逐渐产生构件的损伤以至破坏,其主要破坏形式之一是疲劳损伤。疲劳损伤的产生、扩展与积累会加速材料的老化,造成材料耐环境性能严重下降以及强度与刚度的急剧损失,大大降低其使用寿命,甚至报废。为了使复合材料的应用更加广泛和深入,本文综述了近年来在纤维增强复合材料疲劳性能方面的研究。 2 复合材料疲劳性能及损伤机理 在周期性交变载荷作用下材料发生的破坏行为称为疲劳,它记述了材料经受周期应变或应变时的失效过程。复合材料疲劳主要是指复合材料构件在交变荷载作用下的疲劳损伤机理、疲劳特性(强度、刚度随着时间变化规律及其破坏规律)、寿命预测及疲劳设计。 复合材料是非均质(在大尺度上)和各向异性的,它以整体的方式积累损伤,且失效并不总是由一个宏观裂纹的扩展导致。损伤积累的微观机构机理,包括纤维断裂基体开裂、脱粘、横向层开裂和分层等,这些机理有时独立发生,有时以互相作用的方式发生,而且材料参数和试验条件可能强烈影响其主要优势。多种损伤及其组合,使疲劳损伤扩展往往缺乏规律性,完全不像大多数金属材料那样能观察到明显的单一主裂纹扩展,复合材料不仅初始缺陷/损伤大,而且在疲劳破坏发生之前,疲劳损伤已有了相当大的扩展。 3 影响复合材料疲劳性能的主要因素 3.1 基体材料 Boller研究了基体材料对玻璃纤维增强复合材料疲劳性能的影响,研究证明,不同的基体材料具有完全不同的疲劳性能。一般情况下,疲劳性能最好的是环氧树脂。 很多复合材料的疲劳试验证明,基体和界面是薄弱环节。尽管树脂含量的变化在106次循

材料的疲劳性能

材料的疲劳性能一、疲劳破坏的变动应力 材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。变动载荷指大小或方向随着时间变化的载荷。变动载荷在单位面积上的平均值称为变动应力,分为规则周期变动应力(或称循环应力)和无规则随 1 /2; min) 2 应力; ②不对称循环:σm≠0,-1σm>0,-10,r=0,齿轮的齿根及某些压力容器承受此类应力。σm=σa<0,r=∞,轴承承受脉动循环压应力;

④波动循环:σm>σa,0

②疲劳破坏属于低应力循环延时断裂,对于疲劳寿命的预测显得十分重要和必要; ③疲劳对缺陷(缺口、裂纹及组织)十分敏感,即对缺陷具有高度的选择性。因为缺口或裂纹会引起应力集中,加大对材料的损伤作用;组织缺陷(夹杂、疏松、白点、脱碳等)将降低材料的局部强度。二者综合更加速疲劳破坏 出现两个疲劳源。 (2)疲劳裂纹扩展区(亚临界扩展区)? 疲劳裂纹扩展区特征为断口较光滑并分布有贝纹线或裂纹扩展台阶。贝纹线是疲劳区最典型的特征,是一簇以疲劳源为圆心的平行弧线,凹侧指向疲劳源,凸侧指向裂纹扩展方向。近疲劳源区贝纹线较细密(裂纹扩展较慢),远

材料的疲劳性能

材料的疲劳性能 一、疲劳破坏的变动应力 材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。变动载荷指大小或方向随着时间变化的载荷。变动载荷在单位面积上的平均值称为变动应力,分为规则周期变动应力(或称循环应力)和无规则随机变动应力两种。 1、表征应力循环特征的参量有: ①最大循环应力:σmax; ②最小循环应力:σmin; ③平均应力:σm=(σmax+σmin)/2; ④应力幅σa或应力范围Δσ:Δσ=σmax-σmin,σa=Δσ/2=(σmax-σmin)/2; ⑤应力比(或称循环应力特征系数):r=σmin/σmax。 2、按平均应力和应力幅的相对大小,循环应力分为: ①对称循环:σm=(σmax+σmin)/2=0,r=-1,大多数旋转轴类零件承受此类应力; ②不对称循环:σm≠0,-1σm>0,-1

③脉动循环:σm=σa>0,r=0,齿轮的齿根及某些压力容器承受此类应力。σm=σa<0,r=∞,轴承承受脉动循环压应力; ④波动循环:σm>σa,0

轴的常用材料及其机械性能

轴的常用材料及其机械性能 轴的材料种类很多,选用时主要根据对轴的强度、刚度、耐磨性等要求,以及为实现这些要求而采用的热处理方式,同时考虑制造工艺问题加以选用,力求经济合理。 轴的常用材料是优质碳素钢35、45、50,最常用的是45和40Cr钢。对于受载较小或不太重要的钢,也常用Q235或Q275等普通碳素钢。对于受力较大,轴的尺寸和重量受到限制,以及有某些特殊要求的轴,可采用合金钢,常用的有40Cr、40MnB、40CrNi 等。 球墨铸铁和一些高强度铸铁,由于铸造性能好,容易铸成复杂形状,且减振性能好,应力集中敏感性低,支点位移的影响小,故常用于制造外形复杂的轴。 特别是我国研制成功的稀土-镁球墨铸铁,冲击韧性好,同时具有减摩、吸振和对应力集中敏感性小等优点,已用于制造汽车、拖拉机、机床上的重要轴类零件,如曲轴等。 根据工作条件要求,轴都要整体热处理,一般是调质,对不重要的轴采用正火处理。对要求高或要求耐磨的轴或轴段要进行表面处理,以及表面强化处理(如喷丸、辐压等)和化学处理(如渗碳、渗氮、氮化等),以提高其强度(尤其疲劳强度)和耐磨、耐腐蚀等性能。 在一般工作温度下,合金钢的弹性模量与碳素钢相近,所以只为了提高轴的刚度而选用合金钢是不合适的。 轴一般由轧制圆钢或锻件经切削加工制造。轴的直径较小时,可用圆钢棒制造;对于重要的,大直径或阶梯直径变化较大的轴,多采用锻件。为节约金属和提高工艺性,直径大的轴还可以制成空心的,并且带有焊接的或者锻造的凸缘。 对于形状复杂的轴(如凸轮轴、曲轴)可采用铸造。 轴的常用材料及其机械性能(MPa)

各种发动机曲轴材料及热处理

(重)常见材料的力学性能

附录常用材料的力学及其它物理性能 一、玻璃的强度设计值 f g(MPa) JGJ102-2003表5.2.1 二、铝合金型材的强度设计值 (MPa) GB50429-2007表4.3.4 三、钢材的强度设计值(1-热轧钢材) f s(MPa) JGJ102-2003表5.2.3 四、钢材的强度设计值(2-冷弯薄壁型钢) f s(MPa) 五、材料的弹性模量E(MPa) JGJ102-2003表5.2.8、JGJ133-2001表5.3.9

六、 材料的泊松比υ JGJ102-2003表5.2.9、JGJ133-2001表5.3.10、GB50429-2007表4.3.7 七、 材料的膨胀系数α(1/℃) JGJ102-2003表5.2.10、JGJ133-2001表5.3.11、GB50429-2007表4.3.7 八、 材料的重力密度γg (KN/m ) JGJ102-2003表5.3.1、GB50429-2007表4.3.7 九、 板材单位面积重力标准值(MPa ) JGJ133-2001表5.2.2 十、 螺栓连接的强度设计值一(MPa) JGJ102-2003表B.0.1-1

十一、螺栓连接的强度设计值二(MPa) 十二、焊缝的强度设计值(MPa) JGJ102-2003表B.0.1-3

十三、不锈钢螺栓连接的强度设计值(MPa) JGJ102-2003表B.0.3 十四、楼层弹性层间位移角限值 GB/T21086-2007表20 十五、部分单层铝合板强度设计值(MPa)JGJ133-2001表5.3.2

十六、铝塑复合板强度设计值(MPa) JGJ133-2001表5.3.3 十七、蜂窝铝板强度设计值(MPa) JGJ133-2001表5.3.4 十八、不锈钢板强度设计值(MPa) 附录常用材料的力学及其它物理性能十九、玻璃的强度设计值 f g(N/mm2) 二十、铝合金型材的强度设计值 f a(N/mm2)

材料的力学性能

材料的力学性能 mechanical properties of materials 主要是指材料的宏观性能,如弹性性能、塑性性能、硬度、抗冲击性能等。它们是设计各种工程结构时选用材料的主要依据。各种工程材料的力学性能是按照有关标准规定的方法和程序,用相应的试验设备和仪器测出的。表征材料力学性能的各种参量同材料的化学组成、晶体点阵、晶粒大小、外力特性(静力、动力、冲击力等)、温度、加工方式等一系列内、外因素有关。材料的各种力学性能分述如下: 弹性性能材料在外力作用下发生变形,如果外力不超过某个限度,在外力卸除后恢复原状。材料的这种性能称为弹性。外力卸除后即可消失的变形,称为弹性变形。表示材料在静载荷、常温下弹性性能的一些主要参量可以通过拉伸试验进行测定。 拉伸试样常制成圆截面(图1之a)或矩形截面(图1之b)棒体,l为标距,d为圆形试样的直径,h和t分别为矩形截面试样的宽度和厚度,图中截面形状用阴影表示,面积记为A。长度和横向尺寸的比例关系也有如下规定:对于圆形截面试样,规定l=10d或l=5d;对于矩形截 面试样,按照面积换算规定或者。试样两端的粗大部分用以和材料试验 机的夹头相连接。试验结果通常绘制成拉伸图或应力-应变图。图2为低碳钢的拉伸图,横坐标表示试样的伸长量Δl(或应变ε=Δl/l),纵坐标表示载荷P(或应力σ=P/A)。图中的曲线从原点到点p为直线,pe段为曲线,载荷不大于点e所对应的值时,卸载后试样可恢复原状。反映材料弹性性质的参量有比例极限、弹性极限、弹性模量、剪切弹性模量和泊松比等。 比例极限应力和应变成正比例关系的最大应力称为比例极限,即图中点p所对应的应力,以σp表示。在应力低于σp的情况下,应力和应变保持正比例关系的规律叫胡克定律。载荷超过点p对应的值后,拉伸曲线开始偏离直线。 弹性极限试样卸载后能恢复原状的最大应力称为弹性极限,即图中点e所对应的应力,以σe表示。若在应力超出σe后卸载,试样中将出现残余变形。比例极限和弹性极限的测试值敏感地受测试精度的影响,并不易测准,所以在有关标准中规定,对于拉伸曲线的直线部分产生规定偏离量(用切线斜率的偏差表示)的应力作为"规定比例极限"。对于弹性

机械材料的力学性能(正式版)

文件编号:TP-AR-L3658 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 机械材料的力学性能(正 式版)

机械材料的力学性能(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 材料在常温、静载作用下的宏观力学性能。是确 定各种工程设计参数的主要依据。这些力学性能均需 用标准试样在材料试验机上按照规定的试验方法和程 序测定,并可同时测定材料的应力-应变曲线。 对于韧性材料,有弹性和塑性两个阶段。 弹性阶段的力学性能有: ①比例极限 应力与应变保持成正比关系的应力最高限。当应 力小于或等于比例极限时,应力与应变满足胡克定 律,即应力与应变成正比。 ②弹性极限

弹性阶段的应力最高限。在弹性阶段内,载荷除去后,变形全部消失。这一阶段内的变形称为弹性变形。绝大多数工程材料的比例极限与弹性极限极为接近,因而可近似认为在全部弹性阶段内应力和应变均满足胡克定律。 ③弹性模量 弹性阶段内,纵向应力与纵向应变的比例常数(E )。 ④剪切弹性模量 弹性阶段内,剪应力与剪应变的比例常数 (G )。 ⑤泊松比 横向应变与纵向应变之比(ν)。上述3种弹性常数之间满足G=E/2(1+v)。塑性阶段的力学性能有:

金属材料 疲劳试验 应变控制热机械疲劳试验方法(标准状态:现行)

I C S77.040.10 H22 中华人民共和国国家标准 G B/T33812 2017 金属材料疲劳试验应变控制 热机械疲劳试验方法 M e t a l l i cm a t e r i a l F a t i g u e t e s t i n g S t r a i n-c o n t r o l l e d t h e r m o m e c h a n i c a l f a t i g u e t e s t i n g m e t h o d (I S O12111:2011,MO D) 2017-05-31发布2017-12-01实施 中华人民共和国国家质量监督检验检疫总局 中国国家标准化管理委员会发布

目 次 前言Ⅰ 引言Ⅱ 1 范围1 2 规范性引用文件1 3 术语和定义1 4 符号3 5 试验装置4 6 试样6 7 试验程序11 8 试验结果表达16 9 试验报告16 附录A (资料性附录) 典型图形18 附录B (资料性附录) 测定弹性模量21 参考文献22 G B /T 33812 2017

G B/T33812 2017 前言 本标准按照G B/T1.1 2009给出的规则起草三 本标准使用重新起草法修改采用I S O12111:2011(E)‘金属材料疲劳试验应变控制热机械疲劳试验方法“(英文版)三 本标准在结构上与国际标准一致,内容上对国际标准在以下方面进行了修改和补充,并在正文中它们所涉及的条款的页边空白处用垂直单线标识三 在第1章增加了 注2:试验的温度一般不超过1200? ; 关于规范性引用文件,本标准做了具有技术性差异的调整,以适应我国技术条件,调整的情况集中反映在第2章 规范性引用文件 中,具体调整如下: ?用注日期引用的等同采用国际标准的我国标准G B/T12160 2002代替不注日期引用的 相应国际标准I S O9513; ?增加了引用文件G B/T25917二J J G141二J J G351和J J G617; 删除了3.16的注; 第4章中增加了 平行长度 和 循环数 的符号,同时增加了弹性二非弹性和塑性的脚标说明(见表1); 增加了传感器和其相关的电器的校准的相关规定(见5.5); 在6.1.2.7中增加了图5和图6三 本标准做了下列编辑性修改: 为了便于使用,将第4章符号以表格的形式给出(见表1),将6.1.2.2中典型试样尺寸以表格的形式给出(见表2),同时将I S O标准中的表1改为表3三 本标准由中国钢铁工业协会提出三 本标准由全国钢标准化技术委员会(S A C/T C183)归口三 本标准起草单位:钢铁研究总院二北京航空材料研究院二冶金工业信息标准研究院三 本标准主要起草人:高怡斐二金磊二张仕朝二董莉三 Ⅰ

材料的疲劳性能

材料的疲劳性能 一.本章的教学目的与要求 本章主要介绍材料的疲劳性能,要求学生掌握疲劳破坏的定义和特点,疲劳断口的宏观特征,金属以及非金属材料疲劳破坏的机理,各种疲劳抗力指标,例如疲劳强度,过载持久值,疲劳缺口敏感度,疲劳裂纹扩展速率以及裂纹扩展门槛值,影响材料疲劳强度的因素和热疲劳损伤的特征及其影响因素,目的是为疲劳强度设计和选用材料建立基本思路。 二.教学重点与难点 1. 疲劳破坏的一般规律(重点) 2.金属材料疲劳破坏机理(难点) 3. 疲劳抗力指标(重点) 4.影响材料及机件疲劳强度的因素(重点) 5热疲劳(难点) 三.主要外语词汇 疲劳强度:fatigue strength 断口:fracture 过载持久值:overload of lasting value 疲劳缺口敏感度:fatigue notch sensitivity 疲劳裂纹扩展速率:fatigue crack growth rate 裂纹扩展门槛值:threshold of crack propagation 热疲劳:thermal fatigue 四. 参考文献 1.张帆,周伟敏.材料性能学.上海:上海交通大学出版社,2009 2.束德林.金属力学性能.北京:机械工业出版社,1995 3.石德珂,金志浩等.材料力学性能.西安:西安交通大学出版社,1996 4.郑修麟.材料的力学性能.西安:西北工业大学出版社,1994 5.姜伟之,赵时熙等.工程材料力学性能.北京:北京航空航天大学出版社,1991 6.朱有利等.某型车辆扭力轴疲劳断裂失效分析[J]. 装甲兵工程学院学报,2010,24(5):78-81 五.授课内容

镁合金疲劳性能的研究现状_高洪涛

镁合金疲劳性能的研究现状 高洪涛,吴国华,丁文江 (上海交通大学材料科学与工程学院,上海200030) 摘要:针对近几年镁合金疲劳性能的研究进行总结,从冶金因素、形状因素、加载制度、介质和温度等方面考察对镁合金疲劳性能的影响。归纳提高镁合金抗疲劳性能的途径:热处理、滚压强化和喷丸处理等。提出对镁合金疲劳性能研究的展望。 关键词:镁合金;疲劳性能;影响因素;强化途径 中图分类号:TG146.2 文献标识码:A 文章编号:1000-8365(2003)04-0266-03 Review on the Fatigue Behavior of Magnesiu m Alloys GAO Hong-tao,W U Guo-hua,DI NG W en-jiang (Schoo l of M aterials Science and Engineering,Shang hai Jiaotong U niversity,Shang hai200030,China) A bstract:This report provides some of the results of magnesium alloy s studying,especially about its fatigue behavior, in recent years.The facto rs that influence the fatigue behavior of magnesium alloy s can be given from several aspects of metallurgy,form factor,loading system,medium and tem perature.The strengthening methods can be concluded in three aspects.One is heat treatment;the o ther tw o are roller burnishing and shot blasting.In addition,the prospect of fatigue behavio r observation on mag nesium alloy s is discussed. Key words:M ag nesium alloy;Fatigue behavior;Influencing factors;Strengthening approach 综合性能优良的镁合金已大量应用于航空航天、汽车、电子等领域[1]。据预测,从2001~2007年,镁合金铸件在汽车上的用量将以25%~30%速度递增[2]。 随着镁合金需求的急剧增加,对其性能要求也越来越高。本文总结近几年镁合金疲劳性能方面的研究,以及提高其性能的建议。 1 镁合金的疲劳与断裂 M g属于密排六方结构,此类金属的塑性变形取决于c/a(c为点阵的高,a为基面的边长),Mg的c/a=1.6235,略小于按原子为等径刚球模型计算出的轴比1.633。孪晶和疲劳变形与现存孪晶的结合是疲劳变形的主要形式,滑移带沿着孪晶带堆积的区域是一些常见的裂纹源。许多微裂纹是一些微空洞造成的。位错环集团是Mg典型的疲劳位错结构。 镁合金的疲劳断裂是由最大剪应力控制的,并且沿着最大剪应力方向扩展。它的解理断裂发生在高指数面上,并且裂纹的形态因孪晶和滑移而强烈变化着。镁合金疲劳断裂结构中也有一些韧窝特征,它们来源于加载过程中出现并长大直到在塑性应变和塑性断裂条件下联合起来的微空洞,在沉淀相-基体界面处结合力较小,沉淀相或者夹杂物的破碎、局部的应力集中 收稿日期:2003-02-17; 修订日期:2003-03-24 基金项目:国家863计划资助项目,编号:200233AA1100. 作者简介:高洪涛(1976- ),河南洛阳人,博士生.研究方向:镁合金的研究与开发.都可能形成一些微空洞。 2 影响镁合金疲劳性能的因素 2.1 冶金因素 微观组织对疲劳裂纹的萌生和扩展有很大的影响[3]。砂型铸造M g-Zn-Zr合金,不管是铸态还是热处理态,晶粒越粗大,疲劳强度越低。另外,第2相质点或颗粒也影响镁合金的疲劳行为,第2相的切变模量和第2相质点间的平均距离是影响疲劳裂纹扩展速率的重要参数。另外,在小的ΔK区域,镁合金位错密度越高,疲劳裂纹扩展速率就越低。 镁基复合材料的疲劳性能与断裂特征与其基体上增强颗粒和晶须的尺寸和形态关系密切[4],含20% SiC晶须的AZ91D镁基复合材料低周疲劳断裂后发现,由于晶须散乱的分布于基体之上,裂纹表面粗糙并且裂纹扩展路径看起来很弯曲。断裂组织观察表明疲劳断裂扩展区和最后断裂区没有明显区别,并且特征是解理断裂。 在冶炼过程中,不可避免的引进一些夹杂物。这些夹杂物引起应力集中从而降低镁合金的抗疲劳能力,如果夹杂物是尖角,危害更大。夹杂物分布不均匀时,也会降低疲劳强度。 2.2 形状因素 (1)缺口敏感性及表面状况 镁合金比铝合金和钛合金有更大的缺口敏感性,变形镁合金比铸造镁合金有更大的缺口敏感性。 · 266· 铸造技术 FO UN DRY TECHN OLOG Y V ol.24N o.4 Jul.2003

材料的疲劳性能完整版

材料的疲劳性能 A system office room [HUA 16H-TTMS2A-HUAS8Q8-HUAH1688]

材料的疲劳性能 一、疲劳破坏的变动应力 材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。变动载荷指大小或方向随着时间变化的载荷。变动载荷在单位面积上的平均值称为变动应力,分为规则周期变动应力(或称循环应力)和无规则随机变动应力两种。 1、表征应力循环特征的参量有: ①最大循环应力:0?: ②最小循环应力:0血; ③平均应力:0 F ( o远+0血)/2; ④应力幅o &或应力范围A o : △ o二o ?-0込,o a= A o /2= (o远-o血)/2; ⑤应力比(或称循环应力特征系数):"0血/。远。 2、按平均应力和应力幅的相对大小,循环应力分为: ①对称循环:0尸(。込+o血)/2二0, r-1,大多数旋转轴类零件承受此类应力; ②不对称循环:o.HO, -l O >0, -l

④波动循环:o?Oa, 0

工程材料的机械性能

工程材料的机械性能 -----------------------作者:-----------------------日期:

工程材料 (一)工程材料的机械性能与组织结构 基本要求: 了解工程材料的分类;材料的断裂韧性和材料的高、低温机械性能。 熟悉材料的静载与动载机械性能。 掌握金属的结构与结晶的相关知识。 具体容: 1、工程材料的分类; 2、材料静载的机械性能; 3、材料动载的机械性能; 4、常用金属的晶体结构的类型; 5、金属的实际结构和晶体缺陷; 6、金属的结晶。 (二)铁碳合金 基本要求: 了解铁碳相图的相关知识。 熟悉典型铁碳合金的平衡结晶过程。

掌握钢中常存杂质元素对钢的性能的影响;钢锭种类;碳钢的分类、编号和用途。 具体容: 1、铁碳合金中的基本相; 2、铁碳合金的相图分析; 3、铁碳合金分类; 4、典型铁碳合金的平衡结晶过程分析; 5、含碳量对铁碳合金平衡组织和性能的影响; 6、钢中常存杂质元素对钢的性能的影响; 7、钢锭的种类; 8、碳钢的分类、编号和用途。 (三)金属的塑性变形与再结晶 基本要求: 了解单晶体和多晶体金属的塑性变形。 掌握塑性变形对金属的组织和性能的影响、再结晶温度的计算;金属的热加工的相关知识。 具体容: 1、单晶体和多晶体金属的塑性变形; 2、塑性变形对金属的组织和性能的影响; 3、再结晶的温度的计算; 4、材料热加工对金属组织和性能的影响。

(四)钢的热处理 基本要求: 了解钢的热处理的概念。 熟悉钢在加热时的转变、钢的冷却转变。 掌握钢的普通热处理的工艺、钢的表面热处理;热处理的缺陷及防止方法。 具体容: 1、热处理的概念; 2、钢在加热时的转变; 3、钢的冷却转变; 4、钢的退火与正火,钢的淬火,钢的回火; 5、钢的表面热处理; 6、热处理的缺陷及防止方法。 (五)合金钢 基本要求: 了解合金元素的作用及合金钢的分类。 熟悉合金钢的分类及牌号。 掌握合金结构钢的相关知识。 具体容: 1、合金元素在钢中的作用; 2、合金钢的分类及牌号;

高温复合加载热机械疲劳试验系统

高温复合加载热机械疲劳试验系统 2004年通过“10.5”学科建设费建设的可用于高温复合加载的疲劳试验 系统。如图2.1所示。 系统主要由以下几部分组成: 1. 809液压伺服材料试验台架 高刚度框架: 载荷能力:动静态+/- 250kN. 扭矩:动静态+/-2200 N-m。 拉扭复合载荷传感器:拉伸:动静态+/- 250kN. 扭矩:动静态+/-2200 N-m。 抗侧载荷静压作动缸。 作动缸线性行程:动静态150mm. 作动缸扭角行程:动态90°,静态100°。 2. 油源 静音、柱塞式变量泵。 -流量:60LPM, -压力:21Mpa -噪音:满功率输出,3米处测量为63分贝。 3. TestStar高速全数字控制系统: 闭环控制速度:6kHz 自适应补偿控制,调节相位和波形,调节速率6kHz. 信号调节分辨率:24Bit. 可施加各种波形:正弦,三角,方波,块波,及各种实采波形 控制模式:物理量及函数量控制(载荷,位移,应变,温度等物理量控制,及上述量的函数组合量控制)。各种控制模式可在线自动无冲击切换。 支持多种数据采集模式:等时间,等间隔,最大最小值,峰谷值,指定区间等。不同数采模式可同时使用。 4. 动静态拉扭复合夹具 适用于常温至高温试验。

夹具内设计有空气冷却通道,允许对空心筒状试件作内部冷却,适用于TMF试验。 载荷能力:动静态+/- 250kN. 扭矩:动静态+/-2200 N-m 精密水冷液压夹具, 适用试件范围: 圆棒试件6.4~26.2mm。 平板试件1-17mm。 固定圆直径试件30mm,20mm 夹持压力7-70Mpa可调,压力稳定1%的压力设置。 5. 各类引伸计及其传感器 1)断裂力学紧凑拉伸夹具 试件厚度:12.7mm。 销钉直径:12.2mm. 动态载荷:30kN, 静态载荷:60kN。 2)动静态三点弯曲夹具 动态载荷:100kN。 跨距:305mm内可调 3)动静态轴向引伸计 标距:25mm。 应变范围:-10%~50%。 适用平板及圆棒试件。 4)动静态轴向引伸计 标距:50mm。 应变范围:-10%~50%。 适用平板及圆棒试件。 5)高温动静态拉扭复合引伸计 轴向标距:25mm。 固定试件直径:10mm。 轴向行程:+/-10% 试件直径:10mm

材料的疲劳性能汇总

一.本章的教学目的与要求 本章主要介绍材料的疲劳性能,要求学生掌握疲劳破坏的定义和特点,疲劳断口的宏观特征,金属以及非金属材料疲劳破坏的机理,各种疲劳抗力指标,例如疲劳强度,过载持久值,疲劳缺口敏感度,疲劳裂纹扩展速率以及裂纹扩展门槛值,影响材料疲劳强度的因素和热疲劳损伤的特征及其影响因素,目的是为疲劳强度设计和选用材料建立基本思路。 二.教学重点与难点 1. 疲劳破坏的一般规律(重点) 2.金属材料疲劳破坏机理(难点) 3. 疲劳抗力指标(重点) 4.影响材料及机件疲劳强度的因素(重点) 5热疲劳(难点) 三.主要外语词汇 疲劳强度:fatigue strength 断口:fracture 过载持久值:overload of lasting value 疲劳缺口敏感度:fatigue notch sensitivity 疲劳裂纹扩展速率:fatigue crack growth rate 裂纹扩展门槛值:threshold of crack propagation 热疲劳:thermal fatigue 四. 参考文献 1.张帆,周伟敏.材料性能学.上海:上海交通大学出版社,2009 2.束德林.金属力学性能.北京:机械工业出版社,1995 3.石德珂,金志浩等.材料力学性能.西安:西安交通大学出版社,1996 4.郑修麟.材料的力学性能.西安:西北工业大学出版社,1994 5.姜伟之,赵时熙等.工程材料力学性能.北京:北京航空航天大学出版社,1991 6.朱有利等.某型车辆扭力轴疲劳断裂失效分析[J]. 装甲兵工程学院学报,2010,24(5):78-81 五.授课内容

力学性能是材料最重要的性能树脂基复合材料具有比强度.

力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,

材料的疲劳性能完整版

材料的疲劳性能 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

材料的疲劳性能 一、疲劳破坏的变动应力 材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。变动载荷指大小或方向随着时间变化的载荷。变动载荷在单位面积上的平均值称为变动应力,分为规则周期变动应力(或称循环应力)和无规则随机变动应力两种。 1、表征应力循环特征的参量有: ①最大循环应力:σmax ; ②最小循环应力:σmin ; ③平均应力:σm =(σmax +σmin )/2; ④应力幅σa 或应力范围Δσ:Δσ=σmax -σmin ,σa =Δσ/2=(σmax -σmin )/2; ⑤应力比(或称循环应力特征系数):r=σmin /σmax 。 2、按平均应力和应力幅的相对大小,循环应力分为: ①对称循环:σm =(σmax +σmin )/2=0,r=-1,大多数旋转轴类零件承受此类应力; ②不对称循环:σm ≠0,-1σm >0,-10,r=0,齿轮的齿根及某些压力容器承受此类应力。σm =σa <0,r=∞,轴承承受脉动循环压应力;

④波动循环:σ m >σ a ,0

相关主题