搜档网
当前位置:搜档网 › 伺服驱动系统设计方案

伺服驱动系统设计方案

伺服驱动系统设计方案
伺服驱动系统设计方案

?、伸缩缝损坏现状

伺服驱动系统设计方案

伺服电机的原理:

伺服的基本概念是准确、精确.快速定位。与普通电机一样,交流伺服电机也由定子和转子构成。;^^子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间柑差90°电角度。

伺服电机内部的转子是永磁铁,驱动控制的U/V/W三相电形成电磁场转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反惯值与目标值进行比较,调整转子转动的角度0伺服电机的精度决世于编码器的精度{线数)。

伺服电动机又称执行电动机?在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出.其主要特点是,当信号电压为零时无自转现彖.转速随着转矩的增加而匀速下降作用:伺服电机/可使控制速度,位置精度非常准确。

交流伺服电机的工作原理和单相感应电动机无本质上的差异。但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转"现象,即无控制信号时,它不应转动,特别是当它已在转动时.如果控制信号消失,它应能立即停止转动。而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。

交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点:

lx起动转矩大

由于转子电阻大,苴转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2

相比,有明显的区别。它可使临界转差率so>r这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩0因此,当;^子一有控制电压,转子立即转动,即具有起动快、灵敏度髙的特点。

2.运行范围较宽

如图3所示,较差率S在0到1的范围内伺服电动机都能稳定运转。

3、无自转现象

正常运转的伺服电动机,只要失去控制电压,电机立即停止运转0当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,企子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(Ti-Sl. T2-S2曲线〉以及合成转矩特性(T-S曲线)

如图4所示,与普通的单相异步电动机的转矩特性(图中r-s曲线)不同.这时的合成转

图4伺服电动机单相运行时的转矩特性

图5是伺服电动机单相运行时的机械特性曲线。负载一世时,控制电压Uc愈髙,转速也愈高,在控制电压一泄时,负载增加,转速下降。

图5伺服电动机的机械特性

交流伺服电动机的输出功率一般是OmiOOW。当电源频率为SOHz.电爪有36VsllOV.

220、380V:当电源频率为400Hz.电压有20V、26V、36V、115V等多种。

交流伺服电动机运行平稳、噪音小。但控制特性是非线性,并且由于转子电阻大,损耗大,效率低,因此与同容量直流伺服电动机相比,体积大、重疑重,所以只适用于0.5-100W 的小功率控制系统。

转矩指令

速度指令

皿^鵰亠醍亠豔十0口瓷功率电路

▲▲▲巴4 ZC —?

杯*机器手伺服控制系统设计分析

变频与伺服的关系-目前市场上变频控制器的用途要大大的大于伺服机构,有必要搞清伺服和变频两个系统之间的关系,以便提高可参考设计的途径,这样才能以最低的成本达到设计出自己的伺服控制的目的。

简单的说:变频只是伺服的一个部分,伺服是在变频的基础上进行闭环的精确控制从而达到更理想的效果0

我们的目标和步骤要在变频系统的基础上,首先解决电机的驱动问题,达到调速目的,然后加入对反馈的釆样,设计自己的PID算法,最终完成闭环控制。

当然,这种系统的设计是有难度的,因为简单的看如果系统完成仅仅做一个单独的伺服电机的控制系统就已经能有一定的市场,如果系统简单的话,伺服系统的价格应该不是现在的价位!所以正确的分析系统难度是保证系统的正确完成的基础?

首先控制部分的算法是各厂家保密的技术环节,如果仅仅使用传统的调节电容移相的控制方式不

适合于高?度定位控制的需要-那么我们必然要选择AC DC-AC的过程,

这中间的DC-AC的三相逆变技术是必须要攻克的.如果简单的PWM电机调速使用通常的技术手段可以实现,但是相对高频的(400HZ)三相逆变需要系统处理要有很高的速度。

其次DSP技术的应用需要比较高的理论基础,这对我们是一种挑战,合理的算法和处理机制是实现最终控制的必然途径.要克服理论上的差距,必要的学习和钻研过程是不可避免的。这中间和熟悉的技术开发产品的差异是时间的损耗!

皿的控制算法是销售伺服控制系统公司的技术命脉,PID算法的好坏直接决定下一步机械手系统的运转的平稳和系统精度的保证。对任何公司来说,设计专用的PID 算法都是公司技术含*最高的部分?这部分包含自动控制算法、错误的处理和动作判断以及控制方式的选择?

伺服电机的选择:

目前定型为松下400HZ36V三相交流伺服电机?(原因)

伺服电机的驱动原理:

交流伺服的技术本身就是借鉴井应用了变频的技术,在宜流电机的伺服控制的基础上通过变频的PWM方式模仿宜流电机的控制方式来实现的,也就是说交流伺服电机必然有变频的这一环节:变频就是将工频的50、60HZ的交流电先整流成宜流电,然后通过可控制门极的乞类晶体管(IGBT, IGCT等)通过载波频率和PWM调节逆变为频率可调的波形类似于

正余弦的脉动电.由于频率可调,所以交流电机的速度就可调了(n=60f/2p , n

转速,f

频率,P极对数)。

交流伺服系统根据其处理信号的方式不同,可以分为模拟式伺服、数字模拟混合式伺服和全数字式伺服:如果按照使用的伺服电动机的种类不同,又可分为两种:一种是用永磁同步伺服电动机构成的伺服系统,包括方波永磁同步电动机(无刷直流机)伺服系统和正弦波永磁同步电动机伺服系统:另一种是用鼠笼型异步电动机构成的伺服系统。二者的不同之处在于永磁同步电动机伺服系统中需要采用磁极位置传感器而感应电动机伺服系统中含有滑差频率计算部分。若采用微处理器软件实现伺服控制,可以使永磁同步伺服电动机和鼠笼型异步伺服电动机使用同一套伺服放大器。

1、转矩控制:转矩控制方式是通过外部模拟量的输入或宜接的地址的賦值来设崔电机

轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设世为SV 时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2?5Nm时电机不转,大于2SNm 时电机反转〔通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设世的力矩大小?也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备?转矩的设;4^要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。

2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确;1^转动速度的

大小,通过脉冲的个数来确泄转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严榕的控制,所以一般应用于定位装置。

应用领域如数控机床、印刷机械等等0

3.速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有

上位控制装置的外环PID控制时速度模式也可以进行;^^位,但必须把电机的位背^信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号?此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少

中间传动过程中的误差,增加了整个系统的圧位精度。

交流伺服电动机有以下三种转速控制方式:

幅值控制控制电流与励磁电流的相位差保持90。不变?改变控制电压的大

柑位控制控制电压与励磁电斥的大小,保持额世值不变,改变控制电压的相位。

幅值一相位控制同时改变控制电压幅值和柑位。交流伺服电动机转轴的转向随控制电压相位的反相而改变。

1PM

伺服驱动器功能模块

伺服电机控制部分框图

系统的设计步骤:

制定控制方案的技术路线,确定驱动电机转动的控制电路:

找出使用该信号控制器驱动伺服电机的模型;(最好可以演示) 绘制控制部

分原理图和PCB 图通过试验手段,试验各种控制模式下

电机的运转;

d )封装硬件及软件模块;

(2)本阶段总结上一阶段的试验成果,吸收并进一步测试各种控W 的适

a) 首先确认使用DSP 的厂家型号;

故障信号

内部a 供电源

电流采祥

i ▲

交流电源

?1

I

整流滤波

电流传感器

或采样电ffi

?:开关电源

功率板 ▲匸「

PWM 控制

控制板

(1) b) C )

一般伺服电机驱动系统框图

用范围,制定电机控制模块的通讯协议、控制模式和PID控制的指导方案:

a) 测试反馈信号和处理速度之间的匹配;

b) 封装模块的适用范围测试;

C)论证机械手系统适用的伺服电机控制方式;

d) 确认系统整体功能需求?

整体系统方案确认阶段:

a)机械手综合控制单元的功能确认;

b)人机界而2按键和显示单元的模块试验:

C)通讯方式的测试和联机调试;

d)逐次增加电机的数:ft,测试电机的协调性动作和模块封装;

e)电路安装的结构方案设计.

(4)综合设计阶段:

a)全部硬件的综合性能调试;

b)不同控制模式和不同动作下,细致动作的准确性测试;

C)复杂动作的压力测试和快速反应的数据流量测试;

d)整体功耗测试和烤机测试.

联机调试阶段:

a)脱机操作的各种动作的稳定性测试;

b)待机状态的EMC测试和硬件电路的抗干扰设计验证;

C)联机状态下的综合动作测试及到位反馈;

d)模拟实际现场的烤机测试。

相位相差120。,幅值相等的三相交流电压波形图

伺服驱动系统设计方案教学总结

伺服驱动系统设计方案 伺服电机的原理: 伺服的基本概念是准确、精确、快速定位。与普通电机一样,交流伺服电机也由定子和转子构成。定子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间相差90°电角度。伺服电机内部的转子是永磁铁,驱动控制的u/V/W三相电形成电磁场转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度{线数)。 伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降作用:伺服电机,可使控制速度,位置精度非常准确。 交流伺服电机的工作原理和单相感应电动机无本质上的差异。但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转”现象,即无控制信号时,它不应转动,特别是当它已在转动时,如果控制信号消失,它应能立即停止转动。而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 图3 伺服电动机的转矩特性

伺服系统概要

衡量伺服系统性能的主要指标有频带宽度和精度。 频带宽度简称带宽,由系统频率响应特性来规定,反映伺服系统的跟踪的快速性。带宽越大,快速性越好。伺服系统的带宽主要受控制对象和执行机构的惯性的限制。惯性越大,带宽越窄。一般伺服系统的带宽小于15HZ,大型设备伺服系统的带宽则在1~2HZ以下。自20世纪70年代以来,由于发展了力矩电机及高灵敏度测速机,使伺服系统实现了直接驱动,革除或减小了齿隙和弹性变形等非线性因素,使带宽达到50HZ,并成功应用在远程导弹、人造卫星、精密指挥仪等场所。 伺服系统的精度主要决定于所用的测量元件的精度。因此,在伺服系统中必须采用高精度的测量元件,如精密电位器、自整角机、旋转变压器、光电编码器、光栅、磁栅和球栅等。此外,也可采取附加措施来提高系统的精度,例如将测量元件(如自整角机)的测量轴通过减速器与转轴相连,使转轴的转角得到放大,来提高相对测量精度。采用这种方案的伺服系统称为精测粗测系统或双通道系统。通过减速器与转轴啮合的测角线路称精读数通道,直接取自转轴的测角线路称粗读数通道。 伺服系统按所用驱动元件的类型可分为机电伺服系统、液压伺服系统和气动伺服系统。 最基本的伺服系统包括伺服执行元件(电机、液压缸等)、反馈元件和伺服驱动器,但是要让这个系统运转起来还需要一个上位机构:PLC、专门的运动控制卡、工控机+PCI卡、以便于给伺服驱动器发送指令。 在一个运动控制系统中“上位控制”和“执行机构”是系统中举足轻重的两个组成部分。“执行机构”部分一般不外乎:步进电机,伺服电机,以及直流电机等。它们作为执行机构,带动刀具或工件动作,我们称之为“四肢”;“上位控制”单元的方案主要有四种:单片机系统,专业运动控制PLC,PC+运动控制卡,专用控制系统。“上位控制”是“指挥”执行机构动作的,我们也称之为“大脑”。随着PC(Personal Computer)的发展和普及,采用PC+运动控制卡作为上位控制将是运动控制系统的一个主要发展趋势。这种方案可充分利用计算机资源,用于运动过程、运动轨迹都比较复杂,且柔性比较强的机器和设备。从用户使用的角度来看,基于PC机的运动控制卡主要是功能上的差别:硬件接口(输入/输出信号的种类、性能)和软件接口(运动控制函数库的功能函数)。按信号类型一般分为:数字卡和模拟卡。数字卡一般用于控制步进电机和伺服电机,模拟卡用于控制模拟式的伺服电机;数字卡可分为步进卡和伺服卡,步进卡的脉冲输出频率一般较低(几百K左右的频率),适用于控制步进电机;伺服卡的脉冲输出频率较高(可达几兆的频率),能够满足对伺服电机的控制。目前随着数字式伺服电机的发展和普及,数字卡逐渐成为运动控制卡的主流。 伺服驱动器是用来控制伺服电机的一种控制器,属于伺服系统的一部分,其作用类似于变频器作用于普通交流马达。目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法、数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。功率驱动单元首先通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。经过整流好的三相电或市电,再通过三相正弦PWM电压型逆变器变频来驱动三相永磁式同步交流伺服电机。功率驱动单元的整个过程可以简单的说就是AC-DC-AC 的过程。整流单元(AC-DC)主要的拓扑电路是三相全桥不控整流电路。伺服驱动器一般可以采用位置、速度和力矩三种控制方式,主要应用于高精度的定位系统,目前是传动技术的

基于PLC的交流伺服系统设计

机电伺服系统设计

基于PLC 的交流伺服系统设计 1.设计要求 以教材P133页机械传动系统为例,试根据给定参数(必须改变Z2:Z1)选择松下或者安川交流伺服系统并进行校核。 确定伺服系统的电子齿轮参数,并在此基础上以plc 作为控制器,采用位置模式(或者速度模式)对伺服系统进行控制,试设计实验系统并调试运行,完成设计报告。给出电路图,plc 程序以及电机参数设计。 伺服系统的结构如教材P133图6-18所示,参数如下: 齿数比:4/5/12=Z Z ; 指令脉冲当量:脉冲/01.0mm l g =?; 编码器每转反馈脉冲数:r p f /12000脉冲= ; 丝杠螺距:mm d B 10=; 快进速度:min /12000mm v F =; 丝杠飞轮惯量:22 2 10 94.2m N GD B ??=-; 齿轮2飞轮惯量:22 221064.17m N GD ??=-; 齿轮1飞轮惯量:22 2 11045.2m N GD ??=-; 每次进给长度:l =150mm ; 每次进给时间:s t 10≤; 每次进给次数:N =20; 工作台轴向运动力:m N Fc ?=1960; 驱动效率:9.0=η; 摩擦系数:1.0=μ。 2.设计过程 1) 电动机每转位移量mm Z Z d S B 85 4 1021=?==?; 2) 脉冲当量(位置分辨率)l ?,反馈脉冲当量l ?=pulse mm P s l f /00067.012000 8 ==?= ?,脉冲当量为0.01mm/pulse,两者不符,故使用电子齿轮。

pulse mm pulse mm B A B A l l g /01.0/120008=?=?=?, 所以 158 1200001.0=?=B A ,100,1500==B A ; 3) 电动机转速 因快进速度min /12000mm v F =,mm d B 10=,4/5/21=Z Z ,所以电动机应有的最高转速为min /15004 5 1012000r n =?= ; 4) 指令脉冲频率 s l v f g F g 脉冲3102060 1 01.012000601?=?=??= 每次进给位置信息存储地址数1500001 .0150 ==?=g l m ; 5) 负载转矩 ()m N S W F S F M c L ?=?????+= ??+=???= 05.38109.028.92001.020******** 33ππημπ 6) 负载飞轮惯量2 GD ,工作台换算到电动机轴上 22 32320127.01028196041024m N S W GD T ?=? ? ? ?????=??? ????=ππ 换算到电动机轴上的负载总飞轮惯量 () ()2 2 2 22222122168912.025 16 0294.01764.00245.00127.054m N GD GD GD GD GD GD B T L ?=?+++=? ?? ???++++= 7) 选定伺服电动机 电动机的额定转矩N M 应大于或等于m N M L ?=1.62, ??-=?? ? ??-=222 )02852.00095.0(311m N G GD L m 额定转速m in /1500r , 选择预选松下伺服伺服电动机MSMA202A1G ,小惯量20W 带键槽200V 的无制动器的伺服电机。选用的是r p /2500五线制增量式编码器(分辨率为10000)额定功率200V ,额定转速 m in /3000r 。驱动器选择与之配套的松下MINAS-A4系列MSDA203A1A ,所选电机及驱动器满足 要求。

伺服系统的发展及展望

伺服系统的发展及展望 摘要:本文主要介绍了伺服系统的三个发展阶段,包括步进电动机开环伺服系统阶段、直流伺服电动机闭环伺服系统阶段、无刷直流伺服电动机、交流伺服电动机伺服系统阶段,并分析了伺服系统的发展趋势:交流化、智能化、网络化、小型化。 关键词:伺服;智能化;小型化 伺服系统也叫位置随动系统,它的根本任务是实现执行机械对位置指令(给定量)的准确跟踪,当给定量随机变化时,系统能使被控制量准确无误地跟随并复现给定量,是一个位置反馈控制系统[1],主要包括电机和驱动器两部分,广泛用于航空、航天、国防及工业自动化等自动控制领域。随着电力电子、控制理论、计算机术等技术的快速发展以及电机制造工艺水平的不断提高,伺服系统近年来获得了迅速发展。 1伺服系统的发展阶段 伺服系统的发展与伺服电动机的不同发展阶段相联系,

由直流电机构成的伺服系统是直流伺服系统,由交流电机构成伺服系统是交流伺服系统。伺服电动机至今经历了三个主要发展阶段: 1.1 第一个发展阶段(20世纪60年代以前):步进电动机开环伺服系统 伺服系统的驱动电机为步进电动机或功率步进电动机,位置控制为开环系统。步进电机是一种将电脉冲转化为角位移的执行机构,两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72°、0.36°。 步进电机存在一些缺点:在低速时易出现低频振动现象;一般不具有过载能力;步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转现象,停止时转速过高易出现过冲现象。 1.2 第二个发展阶段(20世纪60-70年代):直流伺服电动机闭环伺服系统 由于直流电动机具有优良的调速性能,很多高性能驱动装置采用了直流电动机,伺服系统的位置控制也由开环系统发展成为闭环系统。在数控机床的应用领域,永磁式直流电动机占统治地位,其控制电路简单,无励磁损耗,低速性能好。 1.3 第三个发展阶段(80年代至今):无刷直流伺服电动机、交流伺服电动机伺服系统

交流伺服驱动器用户手册2

1.SA系列交流伺服简介 SA系列数字式交流永磁同步电机伺服驱动器(以下简称伺服驱动器)采用了国际上先进的DSP 芯片(数字信号处理器)对电机的位置、转速、转矩进行数字化智能控制。该伺服驱动器不仅可靠性高、性能优异,而且可以通过设定用户参数,对系统进行任意组态。例如:可以组成位置控制系统、速度控制系统、转矩控制系统等。 1.1SA系列交流伺服的使用方法 1.1.1 速度控制方式 速度控制方式的伺服驱动器标准使用方法,如下图所示: 如上图所示,在上位机侧组成位置控制环。在上位机中,进行位置指令和位置反馈的比较操作,即进行位置环调节的计算,输出模拟速度指令给伺服驱动器。 伺服驱动器接收上位机的模拟速度指令,进行速度环控制。 在这种控制方式下,上位机的位置反馈可以是伺服驱动器输出的电机编码器信号,也可以是安装在机械上的直线位置测量信号(例如光栅尺、磁栅尺、感应同步器等),即可以组成位置全闭环系统。 1.1.2 位置控制方式 位置控制方式的伺服驱动器标准使用方法,如下图所示: 1

上位机进行完定位及插补计算后,将位置指令以脉冲串的形式传送给伺服驱动器,由伺服驱动器进行位置指令和位置反馈的比较操作,即进行位置环调节的计算。这种形式的伺服驱动器包含了位置控制环。 作为位置指令的脉冲串,可以是下面的任一种,在伺服驱动器侧可以通过设定用户常数进行选择: 1)符号位+脉冲列 2)具有90°相位差的两相脉冲序列 3)正转脉冲序列+ 反转脉冲序列 1.2 SA系列交流伺服驱动器的内置功能 SA系列伺服控制器的内置功能说明如下: 1)控制方式转换 通过数字操作器设定用户常数,可以使伺服驱动器工作于位置控制方式或速度控制方式。为了防止误操作,在伺服电机运行时(伺服使能状态),不能改变控制方式。2)再生能量处理功能 伺服驱动器内置再生能量处理电路和再生制动电阻。当伺服电机起制动频繁或负载惯量过大时,则必须使用外置再生制动电阻。 3)能耗制动功能 在伺服驱动器断电、伺服驱动器故障时,电机处于不受控状态。能耗制动功能可以使电机处于能耗制动状态,使电机马上停止,避免机械部件受损。 4)双电子齿轮功能 为满足机械加工的需要,伺服驱动器内置有双电子齿轮功能,即通过外部触点信号来切换第一电子齿轮比和第二电子齿轮比。 5)位置信号输出功能 伺服驱动器将光电编码器信号经长线驱动器输出,可以用作上位机的位置反馈信号。 6)内部速度指令功能 伺服驱动器可以通过外部接点选择内部预置的四种速度。

交流伺服电机及驱动系统地发展与应用

Abstract 简要介绍交流伺服电机及驱动系统的发展与应用。目前对同步伺服电动机的控制方法 多采用自适应控制和磁场定向矢量控制。随着应用场合与控制对象的不同采用不同的 控制策略。DSP控制技术的应用使现代控制理论中先进的、复杂的算法得以实现。现今,随着电机、功率器件、传感器、微电子器件及控制理论控制算法的不断发展,经历了 几代的应用结合,伺服驱动装置正朝着交流化、数字化、大功率方向 关键词:交流伺服电机;驱动系统;特点;发展;应用 引言 近年来随着物流仓储设备的快速发展,有很多物流仓储设备都选用多功能工业门机作 为大宗货物进出仓库的阀门。工业门机具有快速、全自动、安全、可靠、多功能等多 种优点,可以高效便捷的使货物进出仓库,保证仓库内的环境清洁和安全,成为先进物 流仓储设备的重要组成部分。伺服驱动控制系统是80年代国际上崛起的高性能产品, 具有良好的控制性能和较高的动态品质,并以调速范围广、稳速精度高、动态响应性 能好、使用简便等优越性能,迅速成为伺服系统发展的必然趋势.因此研究具有必要性. 前言 伺服驱动技术作为数控机床、工业机器人及其它产业机械控制的关键技术之一,在国 内外普遍受到关注。在20世纪最后10年间,微处理器(特别是数字信号处理器——DSP)技术、电力电子技术、网络技术、控制技术的发展为伺服驱动技术的进一步发展 奠定了良好的基础。如果说20世纪80年代是交流伺服驱动技术取代直流伺服驱动技 术的话,那么,20世纪90年代则是伺服驱动系统实现全数字化、智能化、网络化的 10年。这一点在一些工业发达国家尤为明显。 1交流伺服电机及驱动系统概述

1.1伺服驱动系统的概述 伺服驱动系统是CNC装置和机床的联系环节。CNC装置发出的控制信息,通过伺服驱动系统,转换成坐标轴的运动,完成程序所规定的操作。伺服驱动系统是数控机床的重要组成部分。伺服驱动系统的作用归纳如下: 1.1.1伺服驱动系统能放大控制信号,具有输出功率的能力; 1.1.2伺服驱动系统根据CNC装置发出的控制信息对机床移动部件的位置和速度进行控制。 1.2交流伺服电机及驱动系统的特点 1.2.1交流伺服电机特点 a精度:实现了位置,速度和力矩的闭环控制;克服了步进电机失步的问题; b、转速:高速性能好,一般额定转速能达到2000~3000转; c、适应性:抗过载能力强,能承受三倍于额定转矩的负载,对有瞬间负载波动和要求快速起动的场合特别适用; d、稳定:低速运行平稳,低速运行时不会产生类似于步进电机的步进运行现象。适用于有高速响应要求的场合; f、及时性:电机加减速的动态相应时间短,一般在几十毫秒之内; e、舒适性:发热和噪音明显降低。 简单点说就是:我们平常看到的那种普通的电机,断电后它还会因为自身的惯性再转一会儿,然后停下。

伺服控制系统(设计)

第一章伺服系统概述 伺服系统是以机械参数为控制对象的自动控制系统。在伺服系统中,输出量能够自动、快速、准确地跟随输入量的变化,因此又称之为随动系统或自动跟踪系统。机械参数主要包括位移、角度、力、转矩、速度和加速度。 近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及电机制造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步电机、感应电机为伺服电机的新一代交流伺服系统。 目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路制造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性制造系统以及自动化生产线等领域中的应用也迅速发展。 1.1伺服系统的基本概念 1.1.1伺服系统的定义 “伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行停止。 伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵活方便的控制。

1.1.2伺服系统的组成 伺服系统是具有反馈的闭环自动控制系统。它由检测部分、误差放大部分、部分及被控对象组成。 1.1.3伺服系统性能的基本要求 1)精度高。伺服系统的精度是指输出量能复现出输入量的精确程度。 2)稳定性好。稳定是指系统在给定输入或外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。 3)快速响应。响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。 4)调速范围宽。调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。 5)低速大转矩。在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。 6)能够频繁的启动、制动以及正反转切换。 1.1.4 伺服系统的种类 伺服系统按照伺服驱动机的不同可分为电气式、液压式和气动式三种;按照功能的不同可分为计量伺服和功率伺服系统,模拟伺服和功率伺服系统,位置

2012-2016年中国伺服系统市场研究报告

2012-2016年中国伺服系统市场研究报告完成时间:2012年2月编号:YJ628 定价:电子版(PDF)7000元图书版:7500元 〖目录〗 第一章伺服系统行业概述 第一节伺服系统的定义与分类 一、伺服系统的定义 二、伺服系统的分类 第二节伺服系统的作用、组成和基本要求 一、伺服系统的作用及组成 二、伺服系统的基本要求 第三节伺服系统发展概述 一、伺服系统的发展历程 二、伺服系统的发展和优点 第四节伺服电机和伺服传动介绍 一、伺服电机 二、伺服传动 第二章伺服系统行业环境发展分析 第一节我国宏观环境发展分析 一、2012年我国宏观经济整体运行情况 二、2012年我国工业行业发展状况分析 三、2012年我国全社会消费与投资状况分析 第二节相关法规政策 一、国家发改委等五部委联合发布《国家认定企业技术中心管理办法》 二、国家发展改革委启动《节能中长期专项规划》 第三章伺服系统技术发展趋势 第一节伺服系统相关技术发展现状 一、逆变器及调制技术发展现状 二、速度检测技术发展现状 三、PID参数自整定发展现状 四、无位置传感器控制技术发展现状 第二节伺服系统技术发展特征 第三节伺服系统技术发展趋势和发展方向 一、交流化

二、全数字化 三、采用新型电力电子半导体器件 四、高度集成化 五、智能化 六、模块化和网络化 七、专用化和多样化 第四章伺服系统国内外市场分析 第一节伺服系统市场发展状况分析 一、伺服系统市场区域分析 二、伺服系统销量与需求量分析 三、伺服系统价格与进出口状况分析 第二节伺服系统市场竞争状况分析 一、国内伺服产品市场发展状况 二、伺服市场品牌竞争状况 第五章国内伺服系统生产企业分析 第一节国内伺服系统生产企业整体分析第二节主要企业分析 一、华中数控 二、广州数控 三、埃斯顿 四、和利时 五、中达电通(台达) 六、珠海运控 七、星辰伺服 八、南京高士达 九、深圳步进 十、兰州电机 第六章国外伺服系统生产企业分析 第一节国外伺服系统生产企业整体分析第二节主要企业分析 一、西门子 二、施耐德 三、三菱 四、安川 五、松下

伺服驱动系统的原理与种类

机电一体化系统设计基础课程教学辅导 第四章:伺服驱动系统的原理与种类 一、教学建议 ●通过文字教材掌握伺服驱动的基本原理,了解机电一体化伺服驱动系统的种类及其 特性。 ●流媒体课件第15讲介绍了机电一体化系统伺服驱动的基本原理、种类及其特性; ●在学习的过程中,如果有学习的心得和体会,请在课程论坛上和大家分享;如果有 什么疑惑,也可以在课程论坛寻找帮助。 二、教学要求 1.掌握伺服驱动的基本原理 一般来说,伺服系统组成框图如图1所示。 图1 伺服系统组成框图 (1)控制器:伺服系统中控制器的主要任务是根据输入信号和反馈信号决定控制策略,控制器通常由电子线路或计算机组成。 (2)功率放大器:伺服系统中功率放大器的作用是将信号进行放大,并用来驱动执行机构完成某种操作,功率放大装置主要由各种电力电子器件组成。 (3)执行机构:执行机构主要由伺服电动机或液压伺服机构和机械传动装置等组成。 (4)检测装置:检测装置的任务是测量被控制量,实现反馈控制。无论采用何种控制方案,系统的控制精度总是低于检测装置的精度,因此要求检测装置精度高、线性度好、可靠性高、响应快。 2.了解机电一体化伺服驱动系统的种类及其特性 (1)根据使用能量的不同,可以分为电气式、液压式和气压式等几种类型,特性如表1所示。 表1 伺服驱动系统的特点及优缺点 种类特点优点缺点 电 气 式 可使用普通电源;信号与动力 的传送方向相同;有交流和直 流之别,须注意电压之大小 操作简便;编程容易;能实现定 位伺服;响应快、易与CPU接 口;体积小,动力较大;无污染 瞬时输出功率大,但过载能力差,由于某 种原因而卡住时,会引起烧毁事故,易受 外部噪声影响 气 压 式 空气压力源的压力为(5~7) ×105Pa;要求操作人员技术 熟练 气源方便、成本低;无泄漏污染; 速度快、操作比较简单 功率小,体积大,动作不够平稳;不易小 型化;远距离传输困难;工作噪声大、难 于伺服 液 压 式 要求操作人员技术熟练;液压 源的压力为(20~80)×105Pa 输出功率大,速度快,动作平 稳,可实现定位伺服 设备难于小型化;液压源或液压油要求(杂 质、温度、测量、质量)严格;易泄漏且 有污染

中国伺服系统行业市场调查报告

2011-2015年中国伺服系统行业市场调查及前景预测报告 内容简介 在中国市场,来自伺服系统的销售额大致占整体运动控制市场超过80%的销售额。作为运动控制市场主要的增长动力,伺服系统市场在未来5年的年复合增长率将超过20%,而同期,步进系统的增长大概在10%左右。尽管伺服市场的增长强劲,但竞争日趋激烈。在过去,来自欧美、日本与本地的供应商各自有覆盖的市场,直接的竞争不很多,而随着近期中国台湾与韩国公司的进入,这一局面正在被打破。本地的供应商承受了更大的价格压力,因为来自中国台湾与韩国的产品其价格也比较低。 智研咨询发布的《2011-2015年中国伺服系统行业市场调查及前景预测报告》共十章。首先介绍了中国伺服系统行业的概念,接着分析了中国伺服系统行业发展环境,然后对中国伺服系统行业市场运行态势进行了重点分析,最后分析了中国伺服系统行业面临的机遇及发展前景。您若想对中国伺服系统行业有个系统的了解或者想投资该行业,本报告将是您不可或缺的重要工具。 本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。

报告目录、图表部份 第一章 伺服系统行业概述 第一节 伺服系统简介 一、伺服系统的界定 二、伺服系统的分类 三、伺服系统的发展和优点 第二节 伺服系统的作用、组成和基本要求 一、伺服系统的作用及组成 二、伺服系统的基本要求 第三节 伺服电机和伺服传动介绍 一、伺服电机 二、伺服传动 第二章 中国伺服系统行业运行环境解析 第一节 国内宏观经济环境分析 一、GDP历史变动轨迹分析 二、固定资产投资历史变动轨迹分析 三、2011年中国宏观经济发展预测分析 第二节 中国伺服系统市场政策环境分析 一、国家发改委等五部委联合发布《国家认定企业技术中心管理办法》 二、国家发展改革委启动《节能中长期专项规划》

自动控制原理课程设计 速度伺服控制系统设计

自动控制原理课程设计题目速度伺服控制系统设计 专业电气工程及其自动化 姓名 班级 学号 指导老师 机电工程学院 2009年12月

目录一课程设计设计目的 二设计任务 三设计思想 四设计过程 五应用simulink进行动态仿真六设计总结 七参考文献

一、课程设计目的: 通过课程设计,在掌握自动控制理论基本原理、一般电学系统自动控制方法的基础上,用MATLAB实现系统的仿真与调试。 二、设计任务: 速度伺服控制系统设计。 控制系统如图所示,要求利用根轨迹法确定测速反馈系数' k,以 t 使系统的阻尼比等于0.5,并估算校正后系统的性能指标。 三、设计思想: 反馈校正: 在控制工程实践中,为改善控制系统的性能,除可选用串联校正方式外,常常采用反馈校正方式。常见的有被控量的速度,加速度反馈,执行机构的输出及其速度的反馈,以及复杂系统的中间变量反馈等。反馈校正采用局部反馈包围系统前向通道中的一部分环节以实现校正,。从控制的观点来看,采用反馈校正不仅可以得到与串联校正同样的校正效果,而且还有许多串联校正不具备的突出优点:第一,反馈校正能有效地改变被包围环节的动态结构和参数;第二,在一定

条件下,反馈校正装置的特性可以完全取代被包围环节的特性,反馈校正系数方框图从而可大大削弱这部分环节由于特性参数变化及各种干扰带给系统的不利影响。 该设计应用的是微分负反馈校正: 如下图所示,微分负反馈校正包围振荡环节。其闭环传递函数为 B G s ()=00t G s 1G (s)K s +() =22t 1T s T K s ζ+(2+)+1 =22'1 T s 21Ts ζ++ 试中,' ζ=ζ+ t K 2T ,表明微分负反馈不改变被包围环节的性质,但由于阻尼比增大,使得系统动态响应超调量减小,振荡次数减小,改善了系统的平稳性。 微分负反馈校正系统方框图

中国高精度伺服行业市场现状分析报告

中国高精度伺服行业市场现状分析报告

目录 第一节高精度伺服:运动控制核心中枢,高端装备精确定位必备 (5) 一、伺服控制应用广泛 (5) 二、高精度伺服,精益制造的神经中枢 (6) 三、位移控制是核心功能,交流电气伺服是趋势 (9) 第二节政策力推,装备智能化创新刻不容缓 (13) 一、装备智能化,高精度伺服首当其冲 (13) 二、从伺服控制到下游应用,支持政策纷纷落地 (14) 第三节市场空间:三大下游驱动,“十三五”迈向千亿 (16) 一、伺服控制:2020年有望达到千亿市场规模 (16) 二、机器人:将成为智能装备的代名词 (17) 三、机床:数控化率规划明确 (23) 四、电子制造设备:消费电子成长空间大 (27) 五、塑料机械:节能增效持续受到市场关注 (28) 第四节进口替代成就中国智造,国内龙头争寻定价权 (31) 一、进口替代:变频的今日,伺服的明天 (31) 二、成长中的国内龙头:夹缝中起步,使命中前行 (35) 三、产品+行业认知门槛双高,技术壁垒带来定价权 (38) 第五节部分相关企业分析 (43) 一、汇川技术:工业4.0龙头,打造智能制造和新能源全产业链带来持续增长空间 (43) 二、新时达:内生+外延,机器人和智能制造布局突飞猛进 (44) 三、英威腾:聚焦智能制造,新兴产业多点发力 (45) 四、华中数控:中国数控翘楚,发力3C市场逆境突围 (47)

图表目录 图表1:伺服控制系统组成及应用 (5) 图表2:伺服电机及驱动器是机器人工控部分 (7) 图表3:典型工业自动化产品所处的生命周期 (8) 图表4:2009-2015中国工控市场产品占比变化 (8) 图表5:伺服控制系统核心部件市场规模(单位:亿元) (9) 图表6:伺服控制系统核心部件市场规模(单位:亿元) (9) 图表7:伺服系统的分类 (11) 图表8:伺服系统原理图 (11) 图表9:伺服电机+驱动器在《中国制造2025》被重点提及 (13) 图表10:机器人“十三五”规划重点突破核心零部件 (13) 图表11:各省市落实《中国制造2025》的“十三五”规划,机器人和数控机床是重点 (15) 图表12:伺服控制系统市场规模预测(单位:亿元,人民币) (16) 图表13:伺服控制行业应用及预测(2014~2019) (17) 图表14:全球机器人本体成本组成 (18) 图表15:中国机器人本体成本组成 (18) 图表16:工业机器人中的电气伺服产品 (19) 图表17:2014年各国工业机器人密度(台/万工人) (20) 图表18:中国机器人市场规模及预测(台) (21) 图表19:中国人口红利正在消失:抚养率比较 (22) 图表20:中国电子商务带动从业人员数量 (22) 图表21:中国金属切割数控机床产量及数控化率 (23) 图表22:中国金属成型数控机床产量及数控化率 (23) 图表23:中国数控机床及机床电气市场规模 (24) 图表24:中国机床电气细分领域占比(2014年) (25) 图表25:机床数控系统的组成 (25) 图表26:机床数控系统的功能与逻辑 (26) 图表27:中国数字化研发及数控化率的现状及目标 (26) 图表28:中国3C行业固定资产投资保持高速增长 (27) 图表29:中国锂电池制造设备规模及产值 (28) 图表30:中国注塑机产值及规划 (29) 图表31:注塑机伺服系统组成 (29) 图表32:中国市场发展历程比较:伺服vs变频 (31) 图表33:原理比较:伺服vs变频 (32) 图表34:内部结构比较:伺服vs变频 (32) 图表35:低压变频器和电气伺服的本土化率比较(含台资) (33) 图表36:中国低压变频器市场本土化进程 (34) 图表37:通用伺服流通渠道 (35) 图表38:电梯市场是中国低压变频器的重要突破 (36) 图表39:国内外工控龙头研发占比一览 (37) 图表40:中国本土伺服企业SWOT分析 (38) 图表41:国内主要上市公司伺服产品毛利率 (39) 图表42:相关产品本土比例 (39)

松下伺服系统国内市场情况调查

松下伺服系统国内市场情况调查 松下电机其在中国市场的主要销售企业为松下电器机电(中国)有限公司,除电机外,该公司还负责销售松下元器件、汽车电子、工业控制产品、家用电器产品等。该公司在成都、厦门、杭州、苏州设有办事处。该公司销售伺服系统的部门为FA事业部。 松下伺服系统的生产为珠海松下马达有限公司,该公司生产的伺服电机除销往我国以外,还向世界其他国家销售,出口比例约为50%。该公司是松下电机主要的生产企业,2010年该公司共生产伺服电机大约14万台。 松下电机在国内主要是通过代理商进行销售,最主要的代理商为上海会通自动化科技发展有限公司。该公司承担松下电机90%的销售额,2010年该公司松下伺服系统的销售额为约为3亿元。该公司在国内设立了17个办事处和若干二级代理商。 目前松下伺服电机在国内销售的主打型号为:MSME系列产品,该系列产品转速为3000转,功率从50瓦—5K瓦,属于低惯量、中小容量电机。经市场部调查,松下伺服电机典型产品价格(面价)如下: MSMD042P1U(输出功率:0.4KW,额定电压:220V,额定转速:3000rpm):通用伺服电机+A5驱动器约为3500元/套; MSMA102P1G(输出功率:1KW,额定电压:220V,额定转速:3000rpm):通用伺服电机+A5驱动器约为5500元/套; MSMA202P1G(输出功率:2KW,额定电压:220V,额定转速:2000rpm):通用伺服电机+A5驱动器约为5800元/套。 松下伺服电机行业特点: 松下伺服电机在数控、电子/半导体、纺织、印刷、包装、医疗几个行业的中小功率的伺服系统市场具有优势。由于这些行业在09、10年增长迅速,也带动了松下伺服电机销量的迅速增长。

伺服驱动系统设计方案

?、伸缩缝损坏现状 伺服驱动系统设计方案 伺服电机的原理: 伺服的基本概念是准确、精确.快速定位。与普通电机一样,交流伺服电机也由定子和转子构成。;^^子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间柑差90°电角度。 伺服电机内部的转子是永磁铁,驱动控制的U/V/W三相电形成电磁场转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反惯值与目标值进行比较,调整转子转动的角度0伺服电机的精度决世于编码器的精度{线数)。 伺服电动机又称执行电动机?在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出.其主要特点是,当信号电压为零时无自转现彖.转速随着转矩的增加而匀速下降作用:伺服电机/可使控制速度,位置精度非常准确。 交流伺服电机的工作原理和单相感应电动机无本质上的差异。但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转"现象,即无控制信号时,它不应转动,特别是当它已在转动时.如果控制信号消失,它应能立即停止转动。而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: lx起动转矩大 由于转子电阻大,苴转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2 相比,有明显的区别。它可使临界转差率so>r这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩0因此,当;^子一有控制电压,转子立即转动,即具有起动快、灵敏度髙的特点。

伺服电机之中国市场

伺服电机之中国市场 近年来,中国从制造业大国正向制造业强国发展,由于国家对制造装备及其技术改造工作的重视,随着全数字式交流永磁伺服系统的性能价格比逐步提高,交流伺服电机作为控制电机类高档精密部件,其市场需求将稳步增长,近5年内其应用前景将十分看好。 1990年以前,由于技术成本等原因,国内伺服电机以直流永磁有刷电机和步进电机为主,而且主要集中在机床和国防军工行业。1990年以后,进口永磁交流伺服电机系统逐步进入中国,此期间得益于稀土永磁材料的发展、电力电子及微电子技术日新月异的进步,交流伺服电机的驱动技术也很快从模拟式过渡到全数字式。由于交流伺服电机的驱动装置采用了先进全数字式驱动控制技术,硬件结构简单,参数调整方便,产品生产的一致性可靠性增加,同时可集成复杂的电机控制算法和智能化控制功能,如增益自动调整、网络通讯功能等,大大拓展了交流伺服电机的适用领域;另外随着各行业,如机床、印刷设备、包装设备、纺织设备、激光加工设备、机器人、自动化生产线等,对工艺精度、加工效率和工作可靠性等要求不断提高,这些领域对交流伺服电机的需求将迅猛增长,交流伺服将逐步替代原有直流有刷伺服电机和步进电机。 2002年从北京和利时电机技术公司的客户查询统计可知,有近51%的原用直流伺服和步进电机的客户准备更换永磁交流伺服系统,功率在3kW以内,其中有85%为1000W以下的伺服电机。 针对客户具体单一应用,由于其特殊的技术和成本指标,通用伺服产品(包括进口产品)很难达到要求,这就需要量身定制,在原有伺服电机驱动器中嵌入用户特定的运动控制功能,可大大降低产品成本。这些典型行业客户需求具备一定批量,同时要求有较高的可靠性。北京和利时电机技术有限公司的数字伺服产品在纺织设备、印刷设备、电梯设备、机器人等行业已有成熟的应用。 在通用伺服驱动器的基础上,附加一些PL C和运动控制功能,加上本身具备的网络通信功能,形成一个独立的单轴运动控制器,独立完成一定的运动控制功能,如:点到点定位等,可广泛用于自动化生产线等应用领域。 截至1999年底,国产交流伺服电机及其全数字式伺服驱动器基本自主开发成功,但产业化方面比较滞后,尚未形成商品化和批量生产能力,国内对精密交流伺服电机控制系统的需求还主要依赖进口,如日本三菱、松下、富士和德国西门子等。近几年,华中数控、广州数控、航天数控、兰州电机等的伺服驱动器及电机产品已相继进入产业化阶段,但还主要是集中在数控机床行业,功率规格在400W以上,没有针对整个自动化控制行业形成全系列规格标准产品。由于中国为制造业大国,除数控机床行业外,其他行业对各种规格伺服电机需求量逐年增长,为此,国外伺服电机生产厂商陆续计划或已经在国内设置独资工厂,利用本地资源和廉价劳动力,批量生产各种规格的通用型伺服电机产品。 国内伺服电机的设计生产技术已趋于完善,目前主要是朝标准化,系列化,规模化方向发展,只有一定规模才能有高可靠性和价格低廉而富有竞争力的产品。但国内伺服电机的全数字驱动器技术还比较落后,主要局限于欠缺实用的电机数字控制算法和高可靠的功率模块,这样大大限制了国产伺服电机的推广。 北京和利时电机技术有限公司是一家专注于运动控制电机及其驱动器研发和生产的民营高科技公司,在电机独立设计及其驱动器自主研发方面有着丰富经验和深厚的技术背景,创业初期曾率先在国内推出全系列规格的步进电机及其驱动器产品。该公司目前已成功完成了全系列规格伺服电机的设计生产及ES系列全数字式伺服驱动器的研制,计划明年3月针对整个自动化控制行业推出3kW以

喷绘机伺服驱动系统设计

第四章 喷绘机伺服驱动系统设计 4.1 喷绘机伺服驱动系统原理 4.1.1 喷绘机原理概述 电脑雕刻机和喷绘机都是大型喷墨打印机。喷绘机按工作原理可分为固体喷墨和液体喷墨两种,当今主流的喷墨打印机为液体喷绘机打印机。电脑雕刻 喷墨方式可分为雕刻机气泡式与液体压电式。气泡技术是通过加热喷嘴,使墨水产生气泡,喷到打印介质上的。墨水在高温下易发生化学变化,性质不稳定,所以打出的色彩真实性就会受到一定程度的影响;另一方面由于印花机墨水是通过气泡喷出的,刻字机墨水微粒的方向性与体积大小不好掌握,写真机打印线条边缘容易参差不齐,一定程度的影响了打印质量。压电式喷墨技术,墨水是由一个和热感应式喷墨技术类似的喷嘴所喷出,但是墨滴的形成方式是藉由缩小墨水喷出的电脑雕刻机区域来形成。而喷出区域的缩小,是藉由施加电压到喷出区内一个或多个压电板来控制的。由于微压电打印头技术是利用晶体加压时放电的特性,在常温状态下稳定的将墨水喷出。它有着对墨滴控制能力强的特点,容易实现1440dpi 的高精度打印质量,且微压电喷墨时无需加热,喷绘机墨水就不会因受热而发生化学变化,故大大降低了对墨水的要求。 4.1.2 喷绘机原理框图 原理框图如下: 三相交流电源 可熔断熔断器 松下驱动器 PCI 运动控制卡 伺服 电机 PC 总线 编 码 器 工作台生产机械 反馈信号

4.1.3 喷绘机原理单元介绍 (1)熔断器 熔断器是根据电流超过规定值一定时间后,以其自身产生的热量使熔体熔化,从而使电路断开的原理制成的一种电流保护器。熔断器广泛应用于低压配电系统和控制系统及用电设备中,作为短路和过流保护是应用最普遍的保护器件之一。 熔断器是一种过电流保护电器。熔断器主要由熔体和熔管两个部分及外加填料等组成。使用时,将熔断器串联于被保护电路中,当被保护电路的电流超过规定值,并经过一定时间后,由熔体自身产生的热量熔断熔体,使电路断开,起到保护的作用。 (2)运动控制卡 运动控制卡是一种上位控制单元,可以控制伺服电机,是基于PC总线,利用高性能微处理器(如DSP )及大规模可编程器件实现多个伺服电机的多轴协调控制的一种高性能的步进/伺服电机运动控制卡包括脉冲输出、脉冲计数、数字输入、数字输出、D/A输出等功能,它可以发出连续的、高频率的脉冲串,通过改变发出脉冲的频率来控制电机的速度,改变发出脉冲的数量来控制电机的位置,它的脉冲输出模式包括脉冲/方向、脉冲/脉冲方式。脉冲计数可用于编码器的位置反馈,提供机器准确的位置,纠正传动过程中产生的误差。数字输入/输出点可用于语限位、原点开关等。产品广泛应用于工业自动化控制领域中需要精确定位、定长的位置控制系统和基于PC的NC控制系统。具体就是将实现运动控制的底层软件和硬件集成在一起,使其具有伺服电机控制所需的各种速度、位置控制功能。这些功能能通过计算机方便地调用。 运动控制卡不仅要发送脉冲给电机驱动器,同时接受伺服电机编码器反馈的脉冲数,还接受光栅尺反馈信号,进而控制伺服电机的转速。伺服驱动器既要与运动控制卡有数据线连接,其本身还要连接插座电源。 如果你的运动控制卡时比较好的卡,伺服刷新率可以达到要求,可以把编码器反馈直接接到运动控制卡,形成一个整体的闭环。若对对精度有很高的要求可以用双闭环,运动控制卡就是根据要求x-y平台运行的位置,控制电机运动到准确的位置。

伺服系统介绍

一、相关概念 伺服系统(servomechanism)又称随动系统,是用来精确地跟随或复现某个过程的反馈控制系统。伺服系统使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。它的主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制非常灵活方便。 在机器人中,伺服驱动器控制电机的运转。驱动器采用速度环,位置环,电流环三环闭环电路,内部还设有错误检出和保护电路。驱动器通过通信连接器,控制连接器,编码连接器跟外部输入信号和输出信号相连。通信连接器主要用于跟电脑或控制器通信。控制连接器用于跟伺服控制器联接,驱动器所需的输入信号、输出信号、控制信号和一些方式选择信号都通过该控制连接器传输,它是驱动器最为关键的连接器。编码连接器跟电机编码器连接,用于接收编码器闭环反馈信号,即速度反馈和换向信号。 伺服电机主要用于驱动机器人的关节。关节越多,机器人的柔性和精准度越高,所需要使用的伺服电机的数量就越多。机器人对伺服电机的要求非常高,必须满足快速响应、高起动转矩、动转矩惯量比大、调速范围宽,要适应机器人的形体做到体积小、重量轻,还必须经受频繁的正反向和加减速运行等苛刻的条件,做到高可靠性和稳定性。伺服电机分为直流、交流和步进,工业机器人用的较多的是交流。

机器人用伺服电机 二、伺服系统的技术现状 2.1视觉伺服系统 随着机器人技术的迅猛发展,机器人承担的任务更加复杂多样,传统的检测手段往往面临着检测范围的局限性和检测手段的单一性.视觉伺服控制利用视觉信息作为反馈,对环境进行非接触式的测量,具有更大的信息量,提高了机器人系统的灵活性和精确性,在机器人控制中具有不可替代的作用。 视觉系统由图像获取和视觉处理两部分组成,图像的获取是利用相机模型将三维空间投影到二维图像空间的过程,而视觉处理则是利用获取的图像信息得到视觉反馈的过程。基本的相机模型主要包括针孔模型和球面投影模型,统一化模型是对球面模型的推广,将各种相机的图像映射到归一化的球面上。视觉伺服中的视觉反馈主要有基于位置、图像特征和多视图几何的方法。 其中,基于位置的方法将视觉系统动态隐含在了目标识别和定位中,从而简化了控制器的设计,但是一般需要已知目标物体的模型,且对图像噪声和相机标定误差较为敏感。基于图像特征的视觉反馈构造方法,其中基于特征点的方法在以往的视觉伺服中应用较为广泛,研究较为成熟,但是容易受到图像噪声和物体遮挡的影响,并且现有的特征提取方法在发生尺度和旋转变化时的重复性和精度都不是太好,在实际应用中存在较大的问题。因此,学者们提出了基于全局图像特征的视觉反馈方法,利用更多的图像信息对任务进行描述,从而增强视觉系统的鲁棒性,但是模型较为复杂,控制器的设计较为困难,且可能陷入局部极小点。目前针对这一类系统的控制器设计的研究还比较少,一般利用局部线性化模型进行控制,只能保证局部的稳定性。多视图几何描述了物体多幅图像之间的关系,间接反映了相机之间的几何关系。相比于基于图像特征的方法,多视图几何与笛卡尔空间的关系较为直接,简化了控制器的设计。常用的多视图几何包括单应性、对极几何以及三焦张量。 2.2伺服系统控制技术 现代的机器人伺服系统多采用交流伺服驱动系统,而且正在逐渐向数字化方向转变。数字控制技术已经五孔不入,如信号处理技术中的数字滤波、数字控制器,把功能更加强大的控制器芯片已经各种智能处理模块应用到工业机器人交流伺服系统中,可以实现更好的控制性能。 最近几十年,由于微电子技术的进步,各种方便用户开发的微控制器与数字信号处理器件大量涌现市场,为各种先进的智能控制算法在控制系统中的应用提供了可能。如今,各种新型的伺服控制策略大量涌现,大有与传统控制策略一较高低的趋势下面简单介绍几种:

相关主题