搜档网
当前位置:搜档网 › 电容的测量方法

电容的测量方法

电容的测量方法
电容的测量方法

关于电容器的电容的测量方法电容器作为非常重要的一个电学元件在现代电子技术中有着非常广泛的用途,其作用和相关应用在我们《高中物理》第二册、第十三章、第八节中已有适当的介绍。在此,我并不想进一步来介绍其相关的知识和应用,而是想谈谈关于描述电容器的一个非常重要的物理量——电容的测量方法。

《高中物理》课本中将电容器的电容定义为:电容器所带的电荷量Q与电容器两极板间的电势差U的的比值。即:

Q

C=

U

显然,通过上式我们可以看出对于电容器电容C的测量的关键在于式中的另外两个物理量——加在电容器两板间的电压U和电容器所带的电量Q。至于加在电容器两板间的电压U我们可以直接通过电压表来测量,但是电容器所带的电量Q恐怕就没那么容易去直接测量了吧!也就是说,要想测量电容器的电容,最大的困难就在于:如何测量电容器所带的电量Q。那么究竟用什么方法?怎样才能测得电容器所带的电量Q呢?下面我就由这两个问题谈谈我的一点看法。

一.实验原理

显然在实验中我们要想测量电容器所带的电量Q,只有让其放电才有办法将其显示出来。当然,由Q=It,大家都清楚:要测量电流I,我们可以选用仪器——电流计来显示,而要测量时间t我们则可以选用秒表来记录;但是,我们又知道:在电路中,如果电阻太小,则电流太大导致放电时间太短,这样不便于我们观察和记录,故为了延长放电时间我们必须选择很大的电阻接到电路中来实现延长放电时间。这种方法,我们就叫它高阻放电法。这也就是我要介绍的一种测量电容器的电容的方法——高阻放电法测电容器的电容。

其原理图如下:Array

原理分析:电容器的电容C=Q/U,先测定电容器充电结束后的电压U,再通过对高阻值电阻放电的过程测量放电时的电流I和时间t的关系。由于电路中的电压U会随着电量Q的减小而减小(由U=Q/C可知),同时电路中的电流I也会随着放电过程中电容器两板间的电压U的减小而减少(由I=U/R可知)。故电容器在放电过程中的不同时间段内的放电量并不相等,即Q=It并非一个恒量,也就是说I随时间t的变化关系为一曲线。显然,我们要求出电容器所带的电量值,绝对不能简单地记录一个或几个值I和放电的总时间t 然后用它们相乘用求平均值就可以的。要解决这一问题我们必须将放电时间分成无数个时间段,而每一段小段时间内又可近似地看成电流I是恒定的,这样我们就可以求出其电量

了——这就是我们所说的微元法。而事实上解决这一问题的最好办法又是图象法,如果我

们在实验中认真记录多组I 、t 数据,然后用描点法在I ——t 图中绘出其相应曲线,则该曲线与两坐标所围成的面积就是电容器在放电过程中所放的电量Q 。如果我们再将这一图绘到坐标纸上则只要数数曲线与两坐标所围成的图形中的格数就可以了。

二.实验步骤及测量方法 1.实验仪器选择

干电池两节,已标明电容值的电容器一个,伏特表一只,小量程微安表一只,电阻箱几只,开关一只,导线若干。

2.实验操作步骤

(1)按图1-1所示电路连接好实验电路 (2)预放电

①接通开关S,电容器开始充电,并记录此时的电压值。

②断开开关S 进行放电,同时开始计时,记录下此次放电的总时间t 。

③如果t 太小,则改变电阻(增大阻值)重复①②步直到t 足够大(t ≥60s )。 (3)接通开关S,电容器开始充电,同时调节电阻箱R 的阻值,使微安表的指针偏转接近满偏刻度,记录下这时的电流表的示数I 0、电压表的示数U 0,而此时电流表的示数I 0和电压表的示数U 0分别是电容器放电的初始电流和初始电压。

(4)断开开关S (电容器开始放电),同时开始计时,每隔2秒或5秒测读一次电流

(5).继续调节电阻值,重复上述实验步骤(3)、(4)多次,并填好表格。 3图:(图样如下)

将此图绘在坐标纸上(如例样图1-3)则只要数数方格数就可以用方格数所对应的面积就表示整个过程中电容器所释放的总电量Q 。

4.数据处理

利用上面所测量的电压U 0和电量Q ,再结合电容的定义式C =Q /U 0就可以计算出多次不

5s

图1-3

同电压下的电容值。

5.误差分析(一验证实验的可行性)

将实验测量计算得到的电容值与该电容器的电容的真实值进行比较,并计算出其相对误差值,一验证实验的可行性。(说明:笔者在实际操作中的测量误差在6~8%之间。)以上所介绍,即为如何利用高阻放电法测量电容器的电容的一种方法及其过程。

希望通过本文,首先能让大家了解一种测量电容器电容的方法;其次,让学生能从本文悟出关于物理学习和研究的方法:发现问题——提出问题——利用所学知识、规律进行理论分析——找出解决问题的方法——进行实际操作、验证——对实验结果进行分析、归纳、总结——获得知识和方法,进一步提高综合能力。

最新DRL300P配网电容电流测试仪说明书汇总

D R L300P配网电容电 流测试仪说明书

配网电容电流测试仪 使用说明书 上海菲柯特电气科技有限公司

目录 一、仪器的用途及特点 (2) 二、主要技术指标及使用条件 (2) 三、面板及各键功能介绍 (3) 四、测量原理 (3) 五、配电网中PT接线方式及PT的变比 (4) 六、从变压器中性点测量配网电容电流的方法 (10) 七、仪器使用方法 (11) 八、测量其他电压等级电网的电容电流的方法 (13) 九、仪器检验和日常校准 (14) 十、常见的故障及处理 (14)

十一、仪器成套性 (14) 十二、维修保养和售后服务: (14) 一、仪器的用途及特点 目前,我国配电系统的电源中性点一般是不直接接地的,所以当线路单相接地时流过故障点的电流实际是线路对地电容产生的电容电流。据统计,配电网的故障很大程度是由于线路单相接地时电容过大而无法自行熄弧引起的。因此,我国的电力规程规定当10kV和35kV 系统电容电流分别大于30A和10A时,应装设消弧线圈以补偿电容电流,这就要求对配网的电容电流进行测量以做决定。另外,配电网的对地电容和PT的参数配合会产生PT铁磁谐振过电压,为了验证该配电系统是否会发生PT谐振及发生什么性质的谐振,也必须准确测量

配电网的对地电容值。传统的测量配网电容电流的方法有单相金属接地的直接法、外加电容间接测量法等,这些方法都要接触到一次设备,因而存在试验危险、操作繁杂,工作效率低等缺点。 为解决这些问题,我菲柯特公司与大专院校及试验研究院共同潜心研制,开发出配网电容电流测试仪。该新型智能化测试仪直接从PT的二次侧测量配电网的电容电流,与传统的测试方法相比,该仪器无需和一次侧直接相连,因而试验不存在危险性,无需做繁杂的安全工作和等待冗长的调度命令,只需将测量线接于PT的开口三角端就可以测量出电容电流的数据。由于从PT开口三角处注入的是微弱的异频测试信号,所以既不会对继电保护和PT本身产生任何影响,又避开了50Hz的工频干扰信号,同时测试仪的输出端可以耐受100V的交流电压,若测量时系统有单相接地故障发生,亦不会损坏PT和测试仪,因而无需做特别的安全措施,使这项工作变得安全、简单、快捷,且测试结果准确、稳定、可靠。 该测试仪采用大屏幕液晶显示,中文菜单,操作非常简便,且体积小、重量轻,便于携带进行户外作业,接线简单,测试速度快,数据准确性高,大大减轻了试验人员的劳动强度,提高了工作效率。 二、主要技术指标及使用条件 1)电容电流测量范围:1A~250A 0.3μF~125μF 2)测量误差:≤5% 3)工作温度:-10℃~50℃ 4)工作湿度:0~80% 5)工作电源:AC 220V±10% 50Hz±1Hz 6)外行尺寸:350mm×200mm×150mm 7)仪器重量:2.5kg 8)电压等级:1KV、3KV、6KV、6.3KV、10KV、20KV、35KV、66KV。 三、面板及各键功能介绍(图一) 1)电流输出端子:输出测量信号,接到PT开口三角端 2)保险管:配置220V/2A保险管,用于保护仪器过载或故障 3):仪器的接地端子 4)液晶屏:显示测试状态和测试数据 5)对比度:调节液晶屏的显示对比度 6)AC220V:电源插座及开关 7)复位键:用于仪器复位初始化或中断测试 8)电压选择键:按该键,可以在1kV、3kV、6kV、6.3KV、10kV、20KV、35kV、66KV系 统线电压间循环选择 9)方式/测量键:多功能键,短按(即按下后立刻松开)时,用于循环选择系统PT的 接线方式;长按(即按下2秒后才松开)时,用于启动测量。

测量电容容值的方法之一

1.测量电容容值的方法之一。 实验开始,我想用电感电容串联的方式,通过改变输入正弦信号的频率,从而在形成谐振的时候得出容值,电路图如下: 已知输入信号幅值不变为5V,电感为x亨,调节输入信号的频率,至电阻两端电压为输出电压的有效值时,电路达到谐振,ω=1/√(LC),ω=2πf,从而求得L的电感值。但苦于实验室没能找到电感,这个方案告停。 其次我又想用一下电路进行测量。已知阻值为200Ω,电容的标称值为10微法,因此估计τ=2ms,输入方波周期应大于五倍的τ,信号发生器输出的方波周期为11.5ms,用示波器测量电容两短信号如下波形: 虽然得到波形,也从图中得知,电容充电时间(即上升时间)约为2ms,,但误差较大。 最终选用最直接的方法,电路依然由电阻和电串联而成,输入信号为正弦波。 输入信号频率为100Hz幅值为14.3V,电阻阻值为33欧姆,将电阻两端输出信号以及电容两端输出信号分别接至示波器,得到两个正弦波,且相位相差90度,分别测量两电压幅值电阻两端电压为9.1V,电容两端电压为5.1V。这样得到电容容值为10.7nF,与标称值10nf较为接近误差为百分之七。 2.射极电压跟随器的不同端的电压测量。 电路图如下所示 电阻阻值为15M欧,信号发生器的输出电压为正弦交流电,输入峰值为3.17V,当不加电阻时,U1为2.18V,U2=2.18V,当加入电阻时,测得U1为2.18V,U2=1.92V。 这种现象的出现验证了上课老师说的那种结果。由于信号发生器的内阻值很小,分压效果不明显,因此U1和U2数值相等,加入电阻后,由于电压阻值也在10M以上,因此分压效果比较明显,U1大于U2。 3.如何用二极管档或者电阻档测出三极管的三个管脚分别是什么? 首先,三极管由PN结构成,根据PN结的原理可知,PN结是正向导电的,反向时类似一个阻值很大的电阻,因此,可以用二极管档或者电阻档检验各两管脚阻值的大小。实验可知当红表笔接中间,黑表笔分别接两边时,电阻阻值有示数,而二极管亦发出蜂鸣声。说明中间管脚为B端。要想测得另外两个哪个是C哪个是E,则应该用三极管档,即万用表的八个插孔检测三极管管脚。当正确时,万用表会有示数,大约为205。由此可以得到三极管准确的管脚辨别。

电容二极管升压电路图大全(六款电容二极管升压电路设计原理图详解)

电容二极管升压电路图大全(六款电容二极管升压电路设计原理图详解)电容二极管升压电路图(一)如图为晶体二极管-电容十倍升压电路。该电路可作为臭氧产生器、助燃器等直流电压电路。 当电路未通电时,各处电平都是0V。 当通电时,右上角+5V_ALWP通过D32的1引脚对C710、C722、C715、C719进行充电,此时电容上两端的电位如上图所示。此时+15V_ALWP输出端口的实际电平为5V。 当U64的Y引脚开始输出幅值为5V的方波,当Y第一次处于5V电位时: 1.由于电容两端的电压不能突变,此时C715两端的电压为左边5V,右边为10V,然后电流经过D35的2引脚对C719电容充电,充完电后C719的电压升到了10V。 2.同时,Y输出的5V也对C710进行充电,C710两端的电压为左边5V,右边为10V,然后电流经过D32的2引脚对C722进行充电,充完电后C722的电压升到了10V。 此时+15V_ALWP输出端口的实际电平为10V。 当U64的Y引脚开始输出幅值为5V的方波,当Y第一次处于0V电位时: 1.由于电容两端的电位不能突变,此时C715两端的电压为左边0V,右边5V。当C715电压为5V后,由于C722电压10V大于C715的5V,C722会对C715充电。充电后C715=C722=7.5V。此时C715的电压依然比C719的电压低。但是由于D32二极管反向截止,所以C719不会对C715充电。C719的电压保持在10V。 2.同时,C710的电压为左边0V,右边5V,C722的左端电压为7.5V,由于D32的2引脚的反向截止,C722依然不会对C710充电,C722保持在7.5V。 当Y第二次处于5V时,C722通过C710、D32的2引脚又被充电为10V。当Y又处于低电平时,C722(10V)对C715(7.5V)充电。C715的电压变为8.75V。经过数次过程后,C715两端的电压差上升为了10V,当Y再次为5V时,C715的右端的电位变为了15V。当然,在整个过程中,C715都在通过D35的2引脚向C719充电。 最终+15V_ALWP输出端口的电平变为了15V。 电容二极管升压电路图(三)

电容电流测试报告

XZZNDQAQ-2014-019 某某煤矿集团西风井35kV变电所6kV电网单相接地电容电流测试报告 徐州智能电气安全研究所 二〇一四年四月

编写:审核:审批:

1. 测量方案 1.1. 测量原理 电网对地电容电流常用的测量方法有:单相直接接地测量法、单相经电阻接地测量法、附加电容测量法和注入法等。其中单相直接接地测量法属于直接测量方法,其它属于间接测量方法。本次测试采用单相经电阻接地测量法,该方法有简单、易实施、测试过程安全、测量精度高、测试时间短、对电网冲击小等优点,并且适用于中性点非有效接地系统各种中性点接地形式,具体原理如下。 R 图1-1 中性点不接地电网绝缘参数测量模型 上图为中性点不接地电网的绝缘参数测量模型,C 、r 分别为各相对地电容和绝缘电阻。考虑到试验的安全性,采用电网单相经电阻接地的方法,电网的一相经接地电阻和电流表接地。接地电阻R 根据电网类型一般在500~1000Ω范围选取,接地电流控制在几安培范围,测量必要的参数,即可求出电网单相直接接地时的接地电流。 电网单相接地电流是电网对地总的零序电流之和,理论推导可知,不管是直接接地,还是经过电阻接地,电网对地总的零序电流(接地电流)是同零序电压成正比关系。因此,测量出电网单相经电阻接地时的零序电压,就能得到单相电网直接接地的电流。其计算公式是: 2 02 l E R U I I U (1-1) 式中:I E 为电网单相直接接地电流 U l2为电压互感器二次线电压 U 02为电网单相经电阻接地时的二次零序电压 I R 为电网单相经电阻接地的电流 因此,只要测得电网的二次线电压、零序电压、单相经电阻接地时电阻流过

电容计算公式

电容定义式 C=Q/U Q=I*T 电容放电时间计算:C=(Vwork+ Vmin)*l*t/( Vwork2 -Vmin2) 电压(V)= 电流⑴x 电阻(R)电荷量(Q)= 电流⑴x 时间(T)功率(P) = V x I (I=P/U; P=Q*U/T)能量(W) = P x T = Q x V 容量F=库伦(C)/电压(V)将容量、电压转为等效电量电量二电压(V) x 电荷量(C)实例估算:电压5.5V仆(1法拉电容)的电量为5.5C (库伦),电压下限是3.8V,电容放电的有效电压差为5.5-3.8=1.7V ,所以有效电量为1.7C。 1.7C=1.7A*S (安秒)=1700mAS(毫安时)=0.472mAh (安时) 若电流消耗以10mA 计算,1700mAS/10mA=170S=2.83min(维持时间分钟) 电容放电时间的计算 在超级电容的应用中,很多用户都遇到相同的问题,就是怎样计算一定容量的超级电 容在以一定电流放电时的放电时间,或者根据放电电流及放电时间,怎么选择超级电容的容 量,下面我们给出简单的计算公司,用户根据这个公式,就可以简单地进行电容容量、放电电流、放电时间的推算,十分地方便。 C(F):超电容的标称容量; R(Ohms):超电容的标称内阻; ESR(Ohms) 1KZ下等效串联电阻;

Vwork(V):正常工作电压 Vmin(V):截止工作电压; t(s):在电路中要求持续工作时间; Vdrop(V):在放电或大电流脉冲结束时,总的电压降; 1(A):负载电流; 超电容容量的近似计算公式, 保持所需能量=超级电容减少的能量。 保持期间所需能量=1/2l(Vwork+ Vmi n)t ; 超电容减少能量=1/2C(Vwork -Vmin ), 因而,可得其容量(忽略由IR引起的压降) C=(Vwork+ Vmin)*l*t/( Vwork 2 -Vmin 2) 举例如下: 如单片机应用系统中,应用超级电容作为后备电源,在掉电后需要用超级电容维持 100mA的电流,持续时间为10s,单片机系统截止工作电压为4.2V,那么需要多大容量的超级电容能够保证系统正常工作? 由以上公式可知: 工作起始电压Vwork = 5V 工作截止电压Vmin= 4.2V 工作时间t=10s 工作电源I = 0.1A 那么所需的电容容量为:

配电网电容电流计算

配电网电容电流计算 一、概述 目前,电容电流得测定方法很多,通常采用附加电容法与金属接地法进行测量与计算,但前者测量方法复杂,附加电容对测量结果影响较大,后者试验中具有一定危险性。目前,根据各种消弧线圈不同得调谐原理,有多种间接测量电网电容电流得方法。其根本思想都就是利用电网正常运行时得中性点位移电压、中性点电流以及消弧线圈电感值等参数,计算得到电网得对地总容抗,然后由单相故障时得零序回路,计算当前运行方式下得电容电流。 在实际运行中,对于出线数较多、线路较长或包含大量电缆线路得配电系统,当其发生单相接地故障时,对地电容电流会相当大,接地电弧如果不能自熄灭,极易产生间隙性弧光接地过电压或激发铁磁谐振,持续时间长,影响面大,线路绝缘薄弱点往往还会发展成两相短路事故。因此,DL/T620-1997《交流电气装置得过电压保护与绝缘配合》规定:3~10kV钢筋混凝土或金属杆塔得架空线路构成得系统与所有35kV、66kV系统,当单相接地故障电流大于10A时应装设消弧线圈;3~10kV电缆线路构成得系统,当单相接地故障电流大于30A,又需在接地故障条件下运行时,应采用消弧线圈接地方式。消弧线圈一般为过补偿运行(即流过消弧线圈得电感电流大于电容电流),也就就是说装设得消弧线圈得电感必须根据对地电容电流得大小来确定,以防止中性点不接地系统发生单相接地而引起弧光过电压。 故障后,消弧线圈必须快速合理地补偿电容电流,以使接地电弧快速自熄,所以消弧线圈应实时跟踪电网运行方式得变化,在电网正常运行时,测量计算当前运行方式下得电容电流,以合理调节消弧线圈得出力。显然,电网电容电流得计算精度,将直接影响消弧线圈得调谐与补偿效果。 随着电力系统对安全可靠性要求得日益提高,用户对消弧线圈调谐精度与补偿效果得要求也越来越高。而现有得各种消弧线圈自动跟踪补偿装置中所采用得计算理论与方法,无法很好满足用户得要求。要提高消弧线圈得调谐精度与补偿效果,首先就要进一步提高电容电流得计算精度。本章对电容电流得计算理论与计算方法作了进一步深入得研究,减小与消除了对地容抗计算得误差,并计及电网不平衡对电容电流计算得影响,提高了电容电流得计算精度。

电容电流计算书

电容电流的计算书 电网的电容电流,应包括有电气连接的所有架空线路、电缆线路、发电机、变压器以及母线和电器的电容电流,并应考虑电网5~10年的发展。 1.架空线路的电容电流可按下式估算: I C =(2.7~3.3)U e L×10-3 (F-1) 式中:L——线路的长度(㎞); U e——线路系统电压(线电压KV) I C ——架空线路的电容电流(A); 2.7 ——系数,适用于无架空地线的线路; 3.3 ——系数,适用于有架空地线的线路; 同杆双回线路的电容电流为单回路的1.3~1.6倍。 亦可按附表1所列经验数据查阅。 附表1 架空线路单相接地电容电流(A/km) 2.电缆线路的电容电流可按(F-2)式估算,亦可进行计算 I C=0.1U e L (F-2) 按电容计算电容电流 具有金属保护层的三芯电缆的电容值见附表2。 附表2 具有金属保护层的三芯电缆每相对地电容值(μF/㎞)

将求得的电缆总电容值乘以1.25即为全系统总的电容近似值(即包括变压器绕组、电 动机以及配电装置等的电容)。单相接地电容电流可由下式求出: I C = 3 U e ωC ×10-3 (F-3) 其中 ω=2πf e 式中 I C —— 单相接地电容电流(A ); U e —— 厂用电系统额定线电压(kV ); ω —— 角频率; f e —— 额定功率(Hz ); C —— 厂用电系统每相对地电容(μF ); 2.2、6~10 kV 电缆和架空线的单相接地电容电流I C 也可通过下式求出近似值。 6kV 电缆线路 = I C 6S 22002.84S 95++U e (A ) (F-4) 10kV 电缆线路 =I C 0.23S 22001.44S 95++U e (A ) (F-5) 式中 S —— 电缆截面 (㎜2) U e —— 厂用电系统额定电压(kV ) 2.3 电容电流的经验值见附表3。 附表3 6~35kV 电缆线路单位长度的电容电流(A/㎞) 2.4 6~10 kV 交联聚乙烯绝缘电力电缆的接地电容电流。 前述各公式主要用于油浸纸绝缘电力电缆,而目前广泛采用的交联聚乙烯绝缘电力电 缆,由于其结构特点,其单独接地电容电流比同截面的纸绝缘电缆的电容电流大,根据厂家提供的参数和现场实测数据,大约增大20%左右,其值见附表4。 附表4 6~10 kV 交联聚乙烯绝缘电缆的接地电容电流

自举电路的应用

自举电路在电路设计中的应用 朱丽华 (福建信息职业技术学院福州, 350003) 摘要:在电路的设计中,常利用自举电容构成的自举电路来改善电路的某些性能指标,如利用自举提高射随器的输入阻抗、利用自举提高电路增益及扩大电路的动态范围等。本 文就自举电路的工作原理及典型应用作一介绍。 关键词:自举;自举电容;自举电路 在电路的设计中,常利用自举电容构成自举电路来改善电路的某些性能指标,如利用自举电路提高射随器的输入阻抗,利用自举电路提高放大器增益或扩大电路的动态范围等等。现就自举电路的工作原理及典型应用作一介绍。 一、自举电路的工作原理 自举电路的本质是利用电容两端电压瞬间不能突变的特点来改变电路中某一点的瞬时电位。图1是一射极跟随器电路,在偏置电路中加入电阻R3的目的在于提高输入电阻,因为输入电阻为 Ri = [R3+(R1//R2)]//[r be+(1+β)(R4//R L)] 只要将R3值取大,就可以使输入电阻增大。 但是R3取值是不能任意选大的,R3太大将使静态工作点偏离要求,因此,这种偏置方式虽然可以提高输入阻抗,但效能是有限的。 若在该电路中加一电容C3时(如图2所示),只要电容C3的容量足够大,则可认为B点的电压变化与输出端电压变化相同,R 两端的电压变化为-,此时流过R3的电流为 =(-)/ R 3=(-)/ R3 由于电路的跟随着变化而变化,即≈,所以流过R3的电流极小,说明R3此时对交流 呈现出极高的阻抗(比R3的实际阻值要大得多),这就使射极跟随器的输入阻抗得到极大提高。这种利用电容一端电位的提高来控制另一端电位的方法称为“自举”,所以称电容C3为自举电容。自举从本质上说是一种特殊形式的正反馈。 二、应用实例 1.利用自举电路提高射极跟随器的输入电阻 射随器具有输入阻抗高、输出阻抗低的特点,所以在电子线路中的应用是极为广泛的。图3是一典型射极跟随器电路,由于基极采用的是固定偏置电路,所以无法保证工点的稳定。如果将它改为如图4所示

发电机电容电流的测量及数据分析

发电机电容电流的测量及数据分析 摘要:凌津滩电厂装机9台,总容量27万千瓦,是我国大容量、灯泡式贯流式机组的电厂。其中#1—#5机组为日立公司生产,#6—#9机组为日立设计哈尔滨电机厂生产。单机容量为30MW,额定电压10.5KV,发电机中性点不接地。 关键词:发电机电容电流测量数据分析 0 前言 凌津滩电厂装机9台,总容量27万千瓦,是我国大容量、灯泡式贯流式机组的电厂。其中#1—#5机组为日立公司生产,#6—#9机组为日立设计哈尔滨电机厂生产。单机容量为30MW,额定电压10.5KV,发电机中性点不接地。 根据《凌津滩电厂水轮发电机组及其附属设备》合同: 1)第6.6.3.8中第2条《中性点装置》第3项中规定:两台机联合运行,单相接地电容电流大于3A时,若不能保证机组安全运行2小时,则各机组中性点均应采取补偿措施,补偿装置由卖方配套供货。 2)附件6.3条设备性能保证及参数中规定:定子绕组每相对地电容0.3μF。 3)第6.8条规定现场试验:6.8.3.8条定子对地电容电流测量。这一条明确规定与电机交流耐压并列,即每台机都应作电容电流测量。 1发电机电容的计算 凌津滩电厂发电机定子绕组为波绕双层、每槽两根线棒,定子线棒采用真空压力浸渍环氧树脂浸透线圈、线圈表面涂阻燃林料,分上下层嵌放到定子槽内。定子Z=342槽、计684根线棒,单支路每相线棒N=228根。 定子绕组对地电容,由线圈的机械尺寸、绝缘材料的电介系数所确定。按机械尺寸、交流耐压及单相接地三种方法可计算得出,以#1机为例,分述如下。 1.1 机械尺寸进行电容的计算 一般的平板极电容计算,电容与电介系数εO及εr、极板面积 S成正比,与极间距离d成反比。 常用式子 C0=εOεr S/d 发电机的绕组电容计算,可将线棒导体展开成为一极。包有半导体材料的线棒与铁芯是紧靠的,当另外一极同时展开。中间的绝缘材料也展开,这是极板间的介质。 线棒导体的面积 S1=(2b1+2h1)L 包半导体的面积 S2=(2b2+2h2)L

电解电容器测试方法详解

电解电容器测试方法详解 1目的 为了规范电解电容器来料检验及抽样计划,并促进来料质量的提高,特制定该检验规范。 2适用范围 适用于本公司IQC对电解电容器来料的检验。 3准备设备、工具: 所需工具及其规格型号如表一所示: 表一(工具规格型号) 品名规格/型号数量品名规格/型号数量 调压器0V~450V/三相1台电流表UNI-T 1台 万用表FLUKE-117C 1台游标卡尺mm/inch 1把电桥测试仪Zen tech 1台双综示波器LM620C型1台高低温交变湿 1台温度计1支热试验箱 4外观物理检测 4.1首先需检查待测电容是否有正规的《产品规格说明书》,其中需包括产品名称、规格型号、安装尺寸、工艺要求、技术参数以及供应商名称、地址及其联系方式,以确保此批次产品是由正规厂商提供。电容器上的标识应包括:商标、工作电压、标准静电容量、极性、工作温度范围。4.2参考《产品规格说明书》的工艺参数,观察电容的外观、颜色、及其材质等参数是否与其所标注的工艺指标一致。 4.3用游标卡尺对电容的安装尺寸进行确认,确保电容的直径、高度以及引出端的直径与间距等参数在产品工艺的误差范围之内,且外观尺寸要符合本公司选用要求。 4.4 检查电容的外观,确保其外观整洁、无明显的变形、破损、裂纹、花斑、污浊、锈蚀等不良状况;且其标识清晰牢固、正确完整。 4.5检查其引出端子,保证其端子端正、无氧化、无锈蚀、无影响其导电性能等状况,且引出端子无扭曲、变形和影响插拔的机械损伤。 4.6 检查电解电容标注的生产日期不应超过半年,并作好记录。 5容量与损耗测试 5.1用电桥测试其实际容量与标称容量是否一致(电解电容一般会有±20%的误差范围),其损耗角正切值tanθ(即D值)大小是否符合国家标准(电解电容器tanθ≤0.25)。 5.2对Zen tech电桥测试仪的使用方法:正确连接电源以后,按“POWER”键开启测试仪的工作电压;按“LCR”键选择测试类型(L:电感,C:电容,R:电阻)。

电容电流估算方法

1.1.1 电容电流估算方法 1.1.1.1 6~10kV 电网单相接地电流的计算 在中性点不接地的6~10kV 电网中,电网每相对地存在着分布电容和分布绝缘电阻,在计算接地电流时,可以把它们用集中参数来表示,如图8所示。当电网某相发生单相经电阻接地时(电阻为零便为直接接地),在接地点有一接地电流流过,下面分析一下接地电流的计算。 图8 6~10kV 供电系统 A U 、B U 、C U ——电网各相电源电压;A U ' 、B U ' 、C U ' ——电网各相对地电压; C ——电网每相对地电容;R ——电网每相对地绝缘电阻;E R ——接地电阻 当电网某相(如图8中的A 相)经电阻E R 接地时,按照对称分量法的原理, 可以将故障点处的三相电流、电压分解成正序电流(1A I 、1B I 、1C I )、电压(1A U 、1 B U 、1 C U );负序电流(2A I 、2B I 、2C I )、电压(2A U 、2B U 、2C U )和零序电流0I 、零序电压0U 。可以求出流过电阻E R 的电流E I 和各序电流之间]的关系为: E A A I I I I 3 1021=== (31) 由(31)式得出复合序网如图9所示。 C U

图 9 单相接地故障的复合序网 图9中1Z 、2Z 、0Z 分别表示电网的正序阻抗、负序阻抗、零序阻抗,由于1Z 、2Z 是电网线路和变压器的漏抗与电网对地阻抗的并联,很小,均可忽略,0Z 是电网线路阻抗与电网对地阻抗的串联,有:1Z =2Z ≈0,0Z ≈Z = C j R ω+1 1。 根据对称分量的原理,故障点处的对地电压: ?????++='++='++='0 21021021U U U U U U U U U U U U C C C B B B A A A (32) 可以得出: ???????======0 22211 1C B A C C B B A A U U U U U U U U U (33) 所以在故障点存在有正序电压和零序电压,负序电压接近于零。 下面分析计算一下零序电压和零序电流以及接地电流。根据前面的分析我们知道:流过每相对地电容和对地绝缘电阻及流过接地电阻的电流分别为: E R 3

电容的检测方法

固定电容器的检测 检测10pF以下的小电容 因10pF以下的固定电容器容量太小,用万用表进行测量,只能定性的检查其是否有漏电,内部短路或击穿现象。测量时,可选用万用表R×10k挡,用两表笔分别任意接电容的两个引脚,阻值应为无穷大。若测出阻值(指针向右摆动)为零,则说明电容漏电损坏或内部击穿。B?检测10PF~0?01μF固定电容器是否有充电现象,进而判断其好坏。万用表选用R×1k挡。两只三极管的β值均为100以上,且穿透电流要小。可选用3DG6等型号硅三极管组成复合管。万用表的红和黑表笔分别与复合管的发射极e和集电极c 相接。由于复合三极管的放大作用,把被测电容的充放电过程予以放大,使万用表指针摆幅度加大,从而便于观察。应注意的是:在测试操作时,特别是在测较小容量的电容时,要反复调换被测电容引脚接触A、B两点,才能明显地看到万用表指针的摆动。C?对于0?01μF以上的固定电容,可用万用表的R×10k挡直接测试电容器有无充电过程以及有无内部短路或漏电,并可根据指针向右摆动的幅度大小估计出电容器的容量。 电解电容器的检测 因为电解电容的容量较一般固定电容大得多,所以,测量时,应针对不同容量选用合适的量程。根据经验,一般情况下,1~47μF间的电容,可用R×1k挡测量,大于47μF的电容可用R×100挡测量。 将万用表红表笔接负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大偏度(对于同一电阻挡,容量越大,摆幅越大),接着逐渐向左回转,直到停在某一

位置。此时的阻值便是电解电容的正向漏电阻,此值略大于反向漏电阻。实际使用经验表明,电解电容的漏电阻一般应在几百kΩ以上,否则,将不能正常工作。在测试中,若正向、反向均无充电的现象,即表针不动,则说明容量消失或内部断路;如果所测阻值很小或为零,说明电容漏电大或已击穿损坏,不能再使用。C?对于正、负极标志不明的电解电容器,可利用上述测量漏电阻的方法加以判别。即先任意测一下漏电阻,记住其大小,然后交换表笔再测出一个阻值。两次测量中阻值大的那一次便是正向接法,即黑表笔接的是正极,红表笔接的是负极。D?使用万用表电阻挡,采用给电解电容进行正、反向充电的方法,根据指针向右摆动幅度的大小,可估测出电解电容的容量。 可变电容器的检测 用手轻轻旋动转轴,应感觉十分平滑,不应感觉有时松时紧甚至有卡滞现象。将载轴向前、后、上、下、左、右等各个方向推动时,转轴不应有松动的现象。B?用一只手旋动转轴,另一只手轻摸动片组的外缘,不应感觉有任何松脱现象。转轴与动片之间接触不良的可变电容器,是不能再继续使用的。C?将万用表置于R×10k挡,一只手将两个表笔分别接可变电容器的动片和定片的引出端,另一只手将转轴缓缓旋动几个来回,万用表指针都应在无穷大位置不动。在旋动转轴的过程中,如果指针有时指向零,说明动片和定片之间存在短路点;如果碰到某一角度,万用表读数不为无穷大而是出现一定阻值,说明可变电容器动片与定片之间存在漏电现象。

配电网电容电流测量方法

配电网电容电流测量方法 系统电容电流是指系统在没有补偿的情况下,发生单相接地时通过故障点的无功电流。测量方法很多,这里介绍几种常用的方法。 一、单相金属接地法 单相金属接地又分为投入消弧线圈补偿接地和不投入消弧线圈两种。 1、不投入消弧线圈 不投入消弧线圈(即中性点不接地)的单相金属接地测量,其接线如图13-10所示,图中,QF为接地断路器;TV为测量用电压互感器;TA1、TA2为保护和测量用电流互感器;W为低功率因数功率表,用以测量接地回路的有功损耗;TA1的1、2端子接QF的过流保护。电流、电压向量图如图13-11所示。 图13-10 不投入消弧线圈的单相金属接地测量原理图 图13-11 不投入消弧线圈的单相接地的电流、电压向量图 试验是在系统单相接地下进行的,当系统一相接地时,其余两相对地电压升为线电压。因此,在测量前应消除绝缘缺陷,以免在电压升高时非接地相对地击穿,形成两相接地短路事故。为使接地断路器能可靠切除接地电容电流,须将三相触头串联使用,且应有保护。若测量过程中发生两相接地短路,要求QF能迅速切断故障,其保护瞬时动作电流应整定为IC的4~5倍。

合上接地断路器QF,迅速读取图中所示各表计的指示数值后,接地开关应立即跳闸。所用表计均不得低于0.5级。测量功率,应用低功率因数功率表。由于三相对地电容不等,一相单相接地难以测得正确的阻尼率,需三相轮流接地测量,取三次测量结果的算术平均值。 测量结果的计算: 上三式中I cp——接地电流的有功分量(安); I cp——接地电流的无功分量(安); I c——系统总接地电流(安); P——接地回路的有功损耗(瓦); U□——中性点不对称电压(伏); d%——系统的阻尼率。 若测量时的电压和频率不是额定值,则需将测得的电流折算到额定电压和额定频率下的数值,即 式中I ce——电压和频率为额定值时的系统接地电容电流(安); f e——额定频率(赫兹); U e——额定电压(伏); U av——三相电压(线电压)的平均值(伏)。 由于这种方法,在测量过程中,非接地两相的电压要升高,一旦发生绝缘击穿,接地断路器虽能切断短路,但由于没有补偿,另一接地点的电弧如不能熄灭,可能扩大事故。同时由于单相接地产生负序分量,接地电流中将有较大的谐波分量,影响测量结果的准确度,所以一般不采用这种方法。 2、投入消弧线圈 中性点投入消弧线圈时,利用单相金属接地,测量系统的电容电流的原理接线如图13-12所示。图中1、2端子接过流保护,其值整定为接地电流的4~5倍,瞬时跳闸。接地时的电流电压向量图如图13-13所示。

电容充放电计算公式

标 签:电容充放电公式 电容充电放电时间计算公式设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)]

再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 = 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函 解读电感和电容在交流电路中的作用 山东司友毓 一、电感 1.电感对交变电流的阻碍作用 交变电流通过电感线圈时,由于电流时刻都在变化,因此在线圈中就会产生自感电动势,而自感电动势总是阻碍原电流的变化,故电感线圈对交变电流会起阻碍作用,前面我们已经学习过,自感电动势的大小与线圈的自感系数及电流变化的快慢有关,自感系数越大,交变电流的频率越高,产生的自感电动势就越大,对交变电流的阻碍作用就越大,电感对交流的阻碍作用大小的物理量叫做感抗,用X L表示,且X L=2πfL。感抗的大小由线圈的自感系数L和交变电流的频率f共同决定。 2.电感线圈在电路中的作用 (1)通直流、阻交流,这是对两种不同类型的电流而言的,因为恒定电流的电流不变化,不能引起自感现象,所以对恒定电流没有阻碍作用,交流电的电流时刻改变,必有自感

电容的测量方法与详细单位换算

电容的测量方法与详细单位换算 电容是板卡设计中必用的元件,其品质的好坏已经成为我们判断板卡质量的一个很重要的方面。 ①电容的功能和表示方法。 由两个金属极,中间夹有绝缘介质构成。电容的特性主要是隔直流通交流,因此多用于级间耦合、滤波、去耦、旁路及信号调谐。电容在电路中用“C”加数字表示,比如C8,表示在电路中编号为8的电容。 ②电容的分类。 电容按介质不同分为:气体介质电容,液体介质电容,无机固体介质电容,有机固体介质电容电解电容。按极性分为:有极性电容和无极性电容。按结构可分为:固定电容,可变电容,微调电容。 ③电容的容量。 电容容量表示能贮存电能的大小。电容对交流信号的阻碍作用称为容抗,容抗与交流信号的频率和电容量有关,容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)。 ④电容的容量单位和耐压。 电容的基本单位是F(法),其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。由于单位F 的容量太大,所以我们看到的一般都是μF、nF、pF的单位。换算关系:1F=1000000μF,1μF=1000nF=1000000pF。 每一个电容都有它的耐压值,用V表示。一般无极电容的标称耐压值比较高有:63V、100V、160V、250V、400V、600V、1000V等。有极电容的耐压相对比较低,一般标称耐压值有:4V、6.3V、10V、16V、25V、35V、50V、63V、80V、100V、220V、400V等。 ⑤电容的标注方法和容量误差。 电容的标注方法分为:直标法、色标法和数标法。对于体积比较大的电容,多采用直标法。如果是0.005,表示0.005uF=5nF。如果是5n,那就表示的是5nF。 数标法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是10的多少次方。如:102表示10x10x10 PF=1000PF,203表示20x10x10x10 PF。 色标法,沿电容引线方向,用不同的颜色表示不同的数字,第一、二种环表示电容量,第三种颜色表示有效数字后零的个数(单位为pF)。颜色代表的数值为:黑=0、棕=1、红=2、橙=3、黄=4、绿=5、蓝=6、紫=7、灰=8、白=9。 电容容量误差用符号F、G、J、K、L、M来表示,允许误差分别对应为±1%、±2%、±5%、±10%、±15%、±20%。 ⑥电容的正负极区分和测量。 电容上面有标志的黑块为负极。在PCB上电容位置上有两个半圆,涂颜色的半圆对应的引脚为负极。也有用引脚长短来区别正负极长脚为正,短脚为负。 当我们不知道电容的正负极时,可以用万用表来测量。电容两极之间的介质并不是绝对的绝缘体,它的电阻也不是无限大,而是一个有限的数值,一般在1000兆欧以上。电容两极之间的电阻叫做绝缘电阻或漏电电阻。只有电解电容的正极接电源正(电阻挡时的黑表笔),负端接电源负(电阻挡时的红表笔)时,电解电容的漏电流才小(漏电阻大)。反之,则电解电容的漏电流增加(漏电阻减小)。这样,我们先假定某极为“+”极,万用表选用R*100或R*1K挡,然后将假定的“+”极与万用表的黑表笔相接,另一电极与万用表的红表笔相接,记下表针停止的刻度(表针靠左阻值大),对于数字万用表来说可以直接读出读数。然后将电容放电(两根引线碰一下),然后两只表笔对调,重新进行测量。两次测量中,表针最后停留的位置靠左(或阻值大)的那次,黑表笔接的就是电解电容的正极。 ⑦电容使用的一些经验及来四个误区。 一些经验:在电路中不能确定线路的极性时,建议使用无极电解电容。通过电解电容的纹波电流不能超过其充许范围。如超过了规定值,需选用耐大纹波电流的电容。电容的工作电压不能超过其额定电压。在进行电容的焊接的时候,电烙铁应与电容的塑料外壳保持一定的距离,以防止过热造成塑料套管破裂。并且焊接时间不应超过10秒,焊接温度不应超过260摄氏度。 四个误区: ●电容容量越大越好。 很多人在电容的替换中往往爱用大容量的电容。我们知道虽然电容越大,为IC提供的电流补偿的能力越强。且不说电容容量的增大带来的体积变大,增加成本的同时还影响空气流动和散热。关键在于电容上存在寄生电感,电容放电回路会在某个频点上发生谐振。在谐振点,电容的阻抗小。因此放电回路的阻抗最小,补充能量的效果也最好。但当频率超过谐振点时,放电回路的阻抗开始增加,电容提供电流能力便开始下降。电容的容值越大,谐振频率越低,电容能有效补偿电流的频率范围也越小。从保证电容提供高频电流的能力的角度来说,电容越大越好的观点是错误的,一般的电路设计中都有一个参考值的。 ●同样容量的电容,并联越多的小电容越好, 耐压值、耐温值、容值、ESR(等效电阻)等是电容的几个重要参数,对于ESR自然是越低越好。ESR与电容的容量、频率、电压、温度等都有关系。当电压固定时候,容量越大,ESR越低。在板卡设计中采用多个小电容并连多是出与PCB空间的限制,这样有的人就认为,越多的并联小电阻,ESR越低,效果越好。理论上是如此,但是要考虑到电容接脚焊点的阻抗,采用多个小电容并联,效果并不一定突出。 ●ESR越低,效果越好。

测试贴片电容、电阻好坏的方法

如今,贴片元器件已经被广大市场所应用,无论是在计算机、移动通信设备、医疗电子产品等高科技产品和液晶彩电、PDP彩电、液晶彩显、摄录一体机、手机、clarkson空气净化器等众多电子电器设备中得到了广泛地应用。但是现在的不少工程对于这些电子元件了解的都不是太透彻,新晨阳电子是专业生产贴片电容,贴片钽电容的,今天我们参照《新晨阳电子产品知识手册》来给大家讲解一下如何测试电阻、贴片电容、二极管、三极管。 第一我们首先要了解阻作用:降压、分压、限流、分流等作用一般用在主板供电部分。电阻在电路中的运用。电阻串联阻值增大,电阻并联阻值减小;把数字万用表打到略比电阻标称值基本相符档位用两表笔直接测量电阻两端,若测得阻值鱼标称基本相符,则表示电阻是好的,若测的阻值明显偏大或无穷大则表示电阻已坏。 排阻作用:排阻分为a:八脚排阻;b:十脚排阻;c十六脚排阻

c测量办法与测量普通电阻相同 电容作用:滤波、耦合旁落与电阻组成RC定时电路与电感组成LC 谐振电路,电容还有通交流,隔直流、通高频阻低频的特性 贴片电容的判断:把数字万用表打打到二极管档,两表笔直接量电容两端,好的电容万用表读数为无穷大;若万用表读数为零,则表示电容击穿短路,贴片电容漏电时无法用万用表测量,只能用替换法判断好坏。 电解电容判断:电解电容从外观上表现为法鼓、漏液、变形等打数字万用表打到二极管档,用两表笔任意触碰电容两端然后调换表笔再测量一次,好的电容万用表万用表读数应从负值迅速跳变到无穷大位置,若万用表读数跳变到某一数值后停止不动或跳变比较缓慢则表明电容漏电;若万用表读数为零则表示电容短路。 二极管作用:检波、整流、稳压、箔位、限幅和作开关用等二极管有单向导电性 二极管的好坏判断:把数字万用表打到二极管档,用表笔测量二极管任意两端,其中一组读数为600欧左右,而另一组为无穷大说明此管为好管反之为坏管

利用电桥法测量电容

利用电桥法测量电容 The latest revision on November 22, 2020

利用电桥法测量电容 与在水箱里储水的方式完全一样,电荷也可以被储存在一个被称为电容的装置里。在实际应用中,会出于不同的原因而利用电容器产生短而强的电流脉冲。尽管实际中应用的电容器有各种存在形式,但有一点是相同的,即它们都是由2块导电板或被绝缘体隔开的2块板子构成的。如果这2块板子之间有电势差,那么它们会带上等量异号的电荷,携带的电荷量与电压成正比。这是电容器的典型特征,这个恒定不变的比值即是电容器的电容。本实验的目的是探究电桥法测量电容并验证串、并联电容器的电容计算公式。 1 实验原理 电容器主要是由2块金属板构成的,它们用被称为电介质的一种绝缘材料隔开。这样的结构安排之所以能够储存电荷,是因为如果将电压源与2块板子相连,那么正电荷就会从一块板子流向另一块,同时使那块板子带上负电荷,此过程直到电介质内的磁场足够强以致阻止电流的进一步流动时为止。这时,一定量的电荷(一端为正,另一端为负)被分别储存在2块板子上,电势差等于它们之间的电源电压。电荷与电势差的比值是一个常数,称为电容器的电容,因此,C=Q/V。公式中,C表示电容,单位是法拉;Q表示电荷,单位是库伦;V表示电势差,单位是伏特。值得注意的是:电容的单位实际上是库伦的平方/牛顿米,但它还是被称

为法拉,一方面是为了纪念迈克尔法拉第,另一方面是为了简洁方便。因为法拉这个单位太大,在现实中应用得很少,所以常常会用到微法拉(1法拉的百万分之一),也会经常用到皮法拉(亦称微微法拉,10-12F)。 当把电容器连接到交流电路中时,交替地充电和放电使电容器看起来像是通上交流电。交流电压和通过的电流之间的线性关系很像欧姆定律中电阻的特性。电压和电流之间的比值Xc被称作电容器的容抗。所以,可以用类似测电阻的方法来测容抗。然而,容抗是与电容有关的,即:Xc=1/(2×π×f×C)。公式中,Xc表示电容的容抗值,单位是欧姆;C是电容值,单位是前面提到的法拉;f是交流电的频率,单位是转/秒(或赫兹)。所以容抗不同于阻抗,它取决于频率,当频率接近于0时,容抗趋向无穷大。这表明一个事实,即在直流电路中(f=0),电容器实际上是开路的。但是对于特定频率的交流电,电容器在许多方面就像电阻器。因此可以采用类似于惠斯登电桥电路(见图1a)的方法进行电容的测量。所不同的只是用电容器替代桥臂一侧的电阻器,用交流电源(本实验采用信号发生器)替代电池,用一个合适的交流电检测器(该实验使用耳机)替代检流计(图1b)。与惠斯登桥式电路比较,若用C1和C2替代R1和R2,那么用容抗 Xc1=1/(2×π×f×C1),Xc2=1/(2×π×f×C2)分别替代惠斯登桥式电路中对应的电阻,其等式变为 (2×π×f×C2)/(2×π×f×C1)=C2/C1=R3/R4。

电容电流试报告

试验报告 峰峰集团公司小屯矿35KV系统 电容电流测试 峰峰集团监测检验中心 2004.11

报告名称: 试验时间: 项目负责人:项目参加人员:参加项目单位:编写时间: 编制: 校阅: 审核: 批准:

1、测试目的 为检验小屯矿35KV站供电系统中性点电压平衡状态,以及电容电流的情况。本测试方法为单相金属接地法,对小屯矿35KV站供电系统电容电流进行了测试。 2、依据 DL/T620-1997《交流电气装置的过电压保护和绝缘配合》。 3、测试方法及内容 (1)、35KV系统中性点不平衡电压测量; 将38#、39#(消弧线圈)停电,用绝缘杆在35KV1#主变接入静电电压表,取数值即为不平衡电压。 (2)、不投入消弧线圈的单相金属接地法测试35KV系统接地电容电流;35KV站负荷全部供电,将将38#、39#(消弧线圈)停电,在任一开关刀闸间分别将A、B、C三相人为接地,测得电流即为三相容性电流。用相似的方法也可测得阻性电流。 当全输出运行时分别测得电容电流,并记录。 4、运行方式 35KV系统实现正常运行方式,站内出线全部运行,电缆线路1200m。5、测试结果 (1)、三相不平衡电压为(三次): 826V,813V,821V;取平均值820V。

计算不平衡电压率: U 不平衡电压/U 额定=2.34%,即电压不平衡度为2.34%。 (2)、测试结果数据 35KV 站系统电容电流测试数据 A 相19.0A , B 相19.3A , C 相19.0A 相;平均值为19.1A , 观察电压指示为36.5KV ,测得频率为50.3Hz 。 将测量值折算到额定电压和额定频率下的数值,即 Ice =Ic* Uav U e * f fe 式中:Ic ―系统电容电流(A ); fe ―额定频率(Hz ) f ―测试频率(Hz ) Ue ―额定电压(KV ) Uav -三相线电压的平均值(KV )

相关主题