搜档网
当前位置:搜档网 › 磁场及带电粒子在磁场中的运动典型题目(含答案)

磁场及带电粒子在磁场中的运动典型题目(含答案)

磁场及带电粒子在磁场中的运动典型题目(含答案)
磁场及带电粒子在磁场中的运动典型题目(含答案)

第9讲磁场及带电粒子在磁场中的运动

一、选择题(本题共8小题,其中1~4题为单选,5~8题为多选) 1.(2018·山东省潍坊市高三下学期一模) 如图所示,导体棒ab用绝缘细线水平悬挂,通有由a到b的电流。ab正下方放一圆形线圈,线圈通过导线,开关与直流电源连接。开关闭合瞬间,导体棒ab将(B )

A.向外摆动

B.向里摆动

C.保持静止,细线上张力变大

D.保持静止,细线上张力变小

[解析]开关闭合瞬间,圆形线圈的电流顺时针方向,根据右手螺旋定则可知导体棒ab的磁场方向竖直向下,根据左手定则可知导体棒ab将向里摆动,故B正确,ACD错误;故选B。2 (2018·山东省历城高三下学期模拟)如图所示,用绝缘细线悬挂一个导线框,导线框是由两同心半圆弧导线和在同一条水平直线上的直导线EF、GH连接而成的闭合回路,导线框中通有图示方向的电流,处于静止状态。在半圆弧导线的圆心处沿垂直于导线框平面的方向放置一根长直导线O。当O中通以垂直纸面方向向里的电流时(D )

A.长直导线O产生的磁场方向沿着电流方向看为逆时针方向B.半圆弧导线ECH受安培力大于半圆弧导线FDG受安培力C.EF所受的安培力方向垂直纸面向外

D.从上往下看,导线框将顺时针转动

[解析]当直导线O中通以垂直纸面方向向里的电流时,由安培定则可判断出长直导线O产生的磁场方向为顺时针方向,选项A错误;磁感线是以O为

Word 文档

Word 文档

圆心的同心圆,半圆弧导线 与磁感线平行不受安培力,选项B 错误;由左手定则可判断出直导线EF 所受的安培力方向垂直纸面向里,选项C 错误;GH 所受的安培力方向垂直纸面向外,从上往下看,导线框将顺时针转动,选项D 正确;故选D 。

3 (2018·河南省郑州市高三下学期模拟)如图所示,在边长为L 的正方形ABCD 阴影区域内存在垂直纸面的匀强磁场,一质量为m 、电荷量为q (q <0)的带电粒子以大小为v 0的速度沿纸面垂直AB 边射入正方形,若粒子从AB 边上任意点垂直射入,都只能从C 点射出磁场,不计粒子的重力影响。下列说法正确的是 ( D )

A .此匀强磁场的方向可能垂直纸面向外

B .此匀强磁场的磁感应强度大小为qL mv 0

2

C .此匀强磁场区域的面积为42

L

π

D .此匀强磁场区域的面积为2

)2(2

L -π [解析] 若保证所有的粒子均从C 点离开此区域,则由左手定则可判断匀强磁场的方向应垂直纸面向里,A 错误;由A 点射入磁场的粒子从C 点离开磁

场,结合图可知该粒子的轨 道半径应为R =L ,则由qBv 0=m L

v 2

,可解得B

qL

mv 0

,B 错误;由几何关系可知匀强磁场区域 的面积应为 S =2×(222

1

41L L -π)=2)2(2L -π,C 错误,D 正确。

4 (2018·河北省张家口市高三下学期模拟)如图所示,在边长ab =1.5L ,bc =3L 的矩形区域内存在着垂直纸面向里,磁感应强度为B 的匀强磁场,在ad 边中点O 处有一粒子源,可以垂直磁场向区域

内各方向发射速度大小相等的同种带电粒子,若沿Od 方向射入的粒子从磁场边界cd 离开磁场,该粒子在磁场中运动的时间为t 0,圆周运动半径为L ,不计粒子的重力和粒子间的相互作用,下列说法正确的是( D ) A .粒子带负电

Word 文档

B .粒子在磁场中做匀速圆周运动的周期为4t 0

C .粒子的比荷为0

Bt π

D .粒子在磁场中运动的最长时间为2t 0

[解析] 由题设条件作出以O 1为圆心的轨迹圆弧,如图所示。由左手定则,可知该粒子带正电,选项A 错误;由图中几何关系可得sin θ

2

3

。解得 θ =3

π

,可得T =6t 0,选项B 错误;根据洛伦兹

力公式和牛顿第二定律可得T =

qB

m

π2, 解得03Bt m q π=,选项C 错误;根

据周期公式,粒子在磁场中运动时间t =

qB

m α

,在同一圆中, 半径一定时,弦越长,其对应的圆心角α越大,则粒子在磁场中运动时间最长时的轨迹是

以O 2为圆心的圆弧,如图所示,由图中几何关系,α=π3

2

,解得t =2t 0,选项D 正确。

5 (2018·湖北省襄阳市高三下学期模拟)如图所示,在x 轴上方存在垂直纸面向里的磁感应强度大小为B 的匀强磁场,在x 轴下方存在垂直纸面向外的磁感应强度大小为B /2的匀 强磁场。一带负电的粒子(不计重力)从原点O 与x 轴成30°角斜向上射入磁场,且在x 轴上方运动的半径为R 。则 ( CD )

A .粒子经偏转一定能回到原点O

B .粒子完成一次周期性运动的时间为

qB

m

C .粒子射入磁场后,第二次经过x 轴时与O 点的距离为3R

D .粒子在x 轴上方和下方的磁场中运动的半径之比为1∶2 [解析] 根据左手定则判断洛伦兹力的方向可知,粒子运动的过程中始终处于

Word 文档

磁场内,离O 点越来越远,粒子一定不能回到原点,A 错误;由几何关系可知,粒子在一次周期性运动时间内,在x 轴上方运动的时间t 1=qB

m

T 36

1

π=

在x 轴下方运动的时间t 2=qB

m

T 32'61π=, 粒子完成一次周期性运动的时间

为t 1+t 2=qB m π,B 错误;根据Bqv =m r v 2得:r =Bq

mv

,在x 轴下方的轨道

半径是在x 轴上方的2倍,即r =2R ,由粒子在磁场运动时的偏转角及几何关系可知,粒子射入磁场后第一次经过x 轴时与O 点的距离为R ,第二次经过x 轴时与第一次经过x 轴时的距离为2R ,所以第二次经过x 轴时与O 点的距离为3R ,C 、D 正确。

6 (2018·广东省汕头市高三下学期4月模拟)如图所示,虚线MN 将平面分成Ⅰ和Ⅱ两个区域,两个区域分别存在着与纸面垂直的匀强磁场。一带电粒子仅在磁场力作用下由Ⅰ区运动到Ⅱ区。曲线aPb 为运动过程中的一段轨迹,其中aP 弧、Pb 弧的弧长之比为2∶1,且粒子经过a 、b 点时的速度方向均水平向右,下列判断正确的是( AB )

A .Ⅰ、Ⅱ区域两个磁场的磁感应强度方向相反,大小之比为1∶2

B .粒子在Ⅰ、Ⅱ区域两个磁场中的运动半径之比为2∶1

C .粒子通过aP 、Pb 两段弧的时间之比为1∶1

D .aP 弧与Pb 弧对应的圆心角之比为2∶1

[解析] 粒子在磁场中运动,洛伦兹力不做功,所以在两个区域内粒子的速率相同。由两弧长之比为2∶1,速率相同,可知时间之比为2∶1,故C 错误;由于粒子经过a 、b 点时的速度方向均水平向右可知粒子在磁场中运动的圆心角相等,故D 错误;根据θ=ωt 知角 速度之比为1∶2,由v =ωr 可知半径

之比为2∶1,故B 正确;根据qvB =m r

v 2

,得r =Bq mv ,所以磁感应强度大

小之比为1∶2,且根据运动方向可知两个磁场的方向相反,故A 正确;故选AB 。

7 (2018·厦门市高三下学期第二次质量检测)在一次南极科考中,科考人员使用磁强计测定地磁场的磁感应强度。其原理如图所示,电

Word 文档

路中有一段长方体的金属导体,它长、宽、高分别为a 、b 、c ,放在沿y 轴正方向的匀强磁场中,导体中电流强度沿x 轴正方向,大小为I 。已知金属导体单位体积中的自由电子数为n ,电子电荷量为

e ,自由电子做定向移动可视为匀速运动,测出金属导体前后两个侧面间电压为U ,则( AD ) A .金属导体的前侧面电势较低 B .金属导体的电阻为

I

U C .自由电子定向移动的速度大小为neab

I D .磁感应强度的大小为

I

necU

[解析] 根据左手定则(注意电子带负电)可知电子打在前侧面,即前侧面带负电,电势较低,A 正确;电流方向为从左向右,而题中U 表示的是导体前后两个侧面的电压,故导体的电阻不等于

I

U

,B 错误;在t 时间内通过的电荷量为q =n (bcvt )e ,又I =nbcvte /t =nbcve ,解得v =

necb

I

①,C 错误;因为当金属导体中自由电子定向移动时受洛伦兹力作用向前侧面偏转,使得前后两侧面间产生电势差,当电子所受的电场力与洛伦兹力平衡时,前后两侧面间产生恒定的电势差。因而可得

b

eU

=Bev ②,联立①②可得B =I

necU

,D 正确. 8 (2018·山东省淄博市高三下学期第二次模拟)如图所示,在Ⅰ、Ⅱ两个区域内存在磁感应强度大小均为B 的匀强磁场,磁场方向分别垂直于纸面向外和向里,AD 、AC 边界的夹角∠DAC =30°,边界

AC 与边界MN 平行,Ⅱ区域宽度为d ,长度无限大,Ⅰ区磁场右边界距A 点无限远。质量为m 、带电量为q 的正粒子可在边界AD 上的不同点射入。入射速度垂直于AD 且垂直于磁场,若入射速度大小为 qBd /m ,不计粒子重力,则( BD )

Word 文档

A .粒子距A 点0.5d 处射入,不会进入Ⅱ区

B .粒子在磁场区域内运动的最长时间为

qB

m

π C .粒子在磁场区域内运动的最短时间为

qB

m

32π D .从MN 边界出射粒子的区域长为 (3+1)d

[解析] 粒子做匀速圆周运动,洛伦兹力提供向心力,根据牛顿第二定律,有:

qvB =m r v 2,得r =Bq

mv

=d ,画出恰好不进入Ⅱ区的临界轨迹,如图所示:

结合几何关系,有:AO =

d r r

o

2230sin ==;故从距A 点0.5d 处射入,会

进入Ⅱ区,故 A 错误;粒子在磁场中转过的最大的圆心角为180°,即在Ⅰ区内运动的轨迹为半个圆周, 故最长时间为t =T /2=

qB

m

π,故B 正确;从A 点进入的粒子在磁场中运动的轨迹最短(弦长也 最短),时间最短,轨迹如图所示:

轨迹对应的圆心角为60°,故时间为:t =T /6=

qB

m

3π,故C 错误;临界轨迹

情况如图所示:根据几何关系可得

从MN 边界出射粒子的区域长为l =r tan30° +r = (3+1)d ,故D 正 确;

故选BD 。

9 如图甲所示,一个质量为m 、电荷量为q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于匀强磁场中,不计空气阻力,现给圆环向右的初速度v 0,圆环在以后的运动过程中的速度-时间图象如图乙所示.关于圆环所带的电性、匀强磁场的磁感应强度

Word 文档

B 和圆环克服摩擦力所做的功W ,下列说法正确的是(重力加速度为g)( )

A. 圆环带负电,B =

qv mg B.圆环带正电,B =02qv mg

B. 圆环带负电,W =2043

mv D.圆环带正电,W =204

3mv

[解析] B

10 如图所示,在光滑绝缘的水平面上叠放着两个物块A 和B ,A 带负电、质量为m 、电荷量为q ,B 不带电、质量为2m ,A 和B 间的动摩擦因数为0.5.初始时A 、B 处于静止状态,现将大小为F =mg 的水平恒力作用在B 上,g 为重力加速度.A 、B 处于水平向里的磁场之中,磁感应强度大小为B 0.若A 、B 间的最大静摩擦力等于滑动摩擦力,物块B 足够长,则下列说法正确的是( )

A.水平力作用瞬间,A 的加速度大小为g

2

B.A 做匀加速运动的时间为m

qB 0

C.A 的最大速度为

mg qB 0

D.B 的最大加速度为g

[解析] BC [F 作用在B 上瞬间,假设A 、B 一起加速,则对A 、B 整体有F =3ma =mg ,对A 有F f A =ma =13mg <μmg =1

2

mg ,假设成立,因此A 、B 共同

做加速运动,加速度为g

3,A 选项错误;A 、B 开始运动后,整体在水平方向上只受到F 作用,做匀加速直线运动,对A 分析,B 对A 有水平向左的静摩擦力F f A 静作用,由F f A 静=

mg

3

知,F f A 静保持不变,但A 受到向上的洛伦兹力,

支持力F N A =mg -qvB 0逐渐减小,最大静摩擦力μF N A 减小,当F f A 静=μF N A 时,

A 、

B 开始相对滑动,此时有mg 3=μ(mg -qv 1B 0),v 1=mg 3qB 0,由v 1=at 得t =m

qB 0

B 正确;A 、B 相对滑动后,A 仍受到滑动摩擦力作用,继续加速,有F f A 滑=μ(mg -qv A B 0),速度增大,滑动摩擦力减小,当滑动摩擦力减小到零时,A 做匀速运动,有mg =qv 2B 0,得最大速度v 2=

mg

qB 0

,C 选项正确;A 、B 相对滑动后,对B 有F -F f A 滑=2ma B ,F f A 滑减小,则a B 增大,当F f A 滑减小到零时,a B 最大,有a B =F 2m =g

2

,D 选项错误.]

11 如图所示,空间中有垂直纸面向里的匀强磁场,垂直磁场方向

的平面内有一长方形区域abcd ,其bc 边长为L ,ab 边长为3L .两同种带电粒子(重力不计)以相同的速度v 0分别从a 点和ab 边上的P

Word 文档

点垂直射入磁场,速度方向垂直于ab 边,两粒子都恰好经过c 点,则下列说法中正确的是( )

A.粒子在磁场中运动的轨道半径为23

3L

B.粒子从a 点到c 点的运动时间为3πL

2v 0

C.粒子的比荷为3v 0

2BL

D.P 点与a 点的距离为23L

3

[解析]ACD [如图,连接ac ,ac =2L ,即为轨迹圆弧对应的弦,作弦ac 的垂直平分线交ab 于点O 1,即为粒子从a 点到c 点运动轨迹的圆心,半径R =L cos 30°=233L ,A 正确;粒子从a 点到c 点的运动时间t =13×2πR v 0=43πL

9v 0

,B 错误;由qv 0B =m v 02R 得R =mv 0qB ,则比荷q m =v 0BR =3v 0

2BL

,C 正确;从P 点射

入的粒子的轨迹半径也等于R ,根据几何关系,可以求出轨迹圆心O 2点到b

点的距离为R 2-L 2

33L ,P 点与a 点的距离为3L +33L -233L =233

L ,P 点与O 1点重合,D 正确.]

12 如图所示,有一个正方形的匀强磁场区域abcd ,e 是ad 的中点,

f 是cd 的中点,如果在a 点沿对角线方向以速度v 射入一带负电的粒子(带电粒子重力不计),恰好从e 点射出,则( )

A.如果粒子的速度增大为原来的2倍,将从d 点射出

B.如果粒子的速度增大为原来的3倍,将从f 点射出

C.如果粒子的速度不变,磁场的磁感应强度变为原来的2倍,将从

d 点射出

D.只改变粒子的速度使其分别从e 、d 、f 点射出时,从e 点射出所

Word 文档

用时间最短

[解析]A [如果粒子的速度增大为原来的2倍,磁场的磁感应强度不变,由

qvB =m v 2R 得R =mv

qB

,可知半径将增大为原来的2倍,根据几何关系可知,粒

子正好从d 点射出,故A 项正确;设正方形边长为2a ,则粒子从e 点射出,轨迹半径为

2

2

a .磁感应强度不变,粒子的速度变为原来的3倍,则轨迹半径变为原来的3倍,即轨迹半径为32

2a ,则由几何关系可知,粒子从fd 之间

射出磁场,B 项错;如果粒子速度不变,磁感应强度变为原来的2倍,粒子轨迹半径减小为原来的一半,因此不可能从d 点射出,C 项错;只改变粒子速度使其分别从e 、d 、f 三点射出时,从f 点射出时轨迹的圆心角最小,运动时间最短,D 项错.]

二 非选择题(本题共5小题,共49分)

13.(9分)霍尔元件可以用来检测磁场及其变化.图12甲为使用霍尔元件测量通电直导线产生磁场的装置示意图.由于磁芯的作用,霍尔元件所处区域磁场可看做匀强磁场.测量原理如图乙所示,直导线通有垂直纸面向里的电流,霍尔元件前、后、左、右表面有四个接线柱,通过四个接线柱可以把霍尔元件接入电路.所用器材已在图中给出,部分电路已经连接好.为测量霍尔元件所处区域的磁感应强度

B :

(1)制造霍尔元件的半导体参与导电的自由

电荷带负电,电流从乙图中霍尔元件左侧流入,右侧流出,霍尔元件________(填“前”或“后”)表面电势高. (2)在图中画线连接成实验电路图.

(3)已知霍尔元件单位体积内自由电荷数为n ,每个自由电荷的电荷量为e ,霍尔元件的厚度为h ,为测量霍尔元件所处区域的磁感应强度B ,还必须测量的物理量有________、________(写出具体的物理量名称及其符号),计算式B =______.

[答案] (1)前 (2)见解析图 (3)电压表示数U 电流表示数I

nehU

I

解析 (1)磁场是直线电流产生的,根据安培定则,磁场方向向下;霍尔元件中电流向右,根据左手定则,自由电荷所受安培力向内,故后表面带负电,前表面带正电,故前表面电势较高.

(2)滑动变阻器控制电流,用电压表测量电压,电路图如图所示.

Word 文档

(3)设前后表面的长度为d ,最终自由电荷在电场力和洛伦兹力的作用下处于平衡,有 e U d

=evB

根据电流微观表达式,有 I =neSv =nedhv 联立解得 B =

nehU

I

.

三、计算题(本题共2小题,需写出完整的解题步骤)

14 (2018·山东省青岛市二模)如图,直角坐标系xOy 区域内存在垂直纸面向里的匀强磁场,磁感应强度B =3T 。现有一带负电的粒子,电荷量q =1×10-6C ,质量m =5×10-12 kg , 以v =1×106 m/s 的速度先后经过P(1,5)、Q(5,2) 两点,粒子重力不计,求:(1)粒子做圆周运动的半径R ; (2)粒子从P 运动到Q 所用的时间t 。

[解析] (1)由于粒子做匀速圆周运动, qv 0B =m r

v

2

0, 代入数据可得:

R =

3

3

5 (2)由题意,粒子的运动轨迹如图所示由

几何关系可知:x PQ =5m 2

3

22

sin =

=

R

x PQ θ

故粒子转过的圆心角为:θ=120° 则运动时间:t =

qB

m ππθ22? 代入数据可得:t ≈ 6.0×10-8

s

Word 文档

15 (2018·浙江省杭州市高三下学期预测卷)人类研究磁场的目的之一是为了通过磁场控制带电粒子的运动。如图所示,是通过磁场控制带电粒子运动的一种模型。在0≤x <d 和d <x ≤2d 的区域内,分别存在磁感应强度均为B 的匀强磁场,方向分别垂直纸面向里和垂直纸面向外。在坐标原点有一粒子源,连续不断地沿x 轴正方向

释放出质量为m ,带电量为q (q >0)的粒子,其速率有两种,分别为

v 1=

m Bqd 332,v 2=m

Bqd

2。(不考虑粒子的重力、粒 子之间的相互作用) 试计算下列问题:

(1)求两种速率的粒子在磁感应强度为B 的匀

强磁场中做圆周运动的半径大小R 1和R 2; (2)求两种速率的粒子从

x =2d 的边界射出时,两出射点的距离Δy 的大小; (3)在x >2d 的区域添加一匀强磁场B 1,使得从x =2d 边界射出的两束粒子最终汇

聚成一束,并平行y 轴正方向运动。在图中用实线画出粒子的大致运动轨迹(无需通过计算说明),用虚线画出所添加磁场的边界线。

[解析] (1)粒子在磁感应强度为B 的匀强磁场中做匀速圆周运动有:

qvB =m r v 2,解得:r =Bq

mv

因为粒子速率有两种,v 1=

m Bqd 332,v 2=m

Bqd

2 所以: R 1=

d 3

3

2 R 2=2d (2) 如图为某一速率的粒子运动的轨迹示意图:

辅助线如图所示。由几何关系知道,速率为v 1的粒子射出x =2d 边界时的坐标为, 速率为v 2的粒子射出x =2d 边界时的坐

标为

所以,

(3)两个粒子轨迹如图中实线所示,磁场边界如图中虚线所示,可以使得从x=2d 边界射出的两束粒子最终汇聚成一束,并平行y轴正方向运动。

16 (10分)如图13所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B.圆心O处有一放射源,放出粒子的质量为m ,带电荷量为q,假设粒子速度方向都和纸面平行.

(1)图中箭头表示某一粒子初速度的方向,OA与初速度方向夹角为60°,要想使粒子经过磁场第一次通过A点,则初速度的大小是多少?

(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?

解析(1)如图所示,设粒子在磁场中的轨道半径为R1,

则由几何关系得R1=

3r

3

又qv1B=m

v12

R1得

v1=

3Bqr

3m

.

(2)设粒子轨迹与磁场外边界相切时,粒子在磁场中的轨道半径为R2,则由几何关系有(2r-R2)2=R22+r2

可得R2=

3r

4

,又qv2B=m

v22

R2,可得

v2=

3Bqr

4m

故要使粒子不穿出环形区域,粒子的初速度不能超过

3Bqr

4m

.

17.(10分)一匀强磁场,磁场方向垂直于xOy平面,磁场分布在以O 为圆心的一个圆形区域内,一个质量为m、电荷量为q的带电粒子,由原点O开始运动,初速度为v,方向沿x正方向,后来粒子经过y轴上的P点,此时速度方向与y轴的夹角为30°,P到O的距离为l,如图所示.不计粒子重力的影响,求磁场的磁感应强度B的大小和

Word 文档

Word 文档

磁场区域的半径R .

解析 粒子在磁场中做匀速圆周运动,设半径为r ,则:qvB =m v

2

r

① 由题意知,粒子在磁场中的轨迹的圆心C 必在y 轴上,由题中给出的粒子过

P 点时的速度方向与y 轴成30°角,所以判断出P 点在磁场区之外.过P 沿速

度方向的反向作延长线,它与x 轴交于Q 点,作圆弧过O 点与x 轴相切,并且与PQ 相切,切点A 即粒子离开磁场区的点,如图所示:

由图中几何关系得:l =3r

由①②两式解得:B =3mv

ql

图中OA 的长度即为圆形磁场区域的半径R . 由图中几何关系得R =

33

l . 18.(10分)如图15所示,P 是一个放射源,从开口处在纸面内向各个方向放出某种粒子(不计重力),而这些粒子最终必须全部垂直射到底片MN 这一有效区域,并要求底片MN 上每个地方都有粒子到达.

假若放射源所放出的是质量为m 、电荷量为q 的带正电的粒子,且

所有的粒子速率都是v ,M 与放射源的出口在同一水平面,底片MN 竖直放置,底片MN 长为L .为了实现上述目的,我们必须在P 的出口处放置一有界匀强磁场.求:(1)匀强磁场的方向; (2)画出所需最小有界匀强磁场的区域,并用阴影表示; (3)磁感应强度B 的大小以及最小有界匀强磁场的面积S .

解析 (1)所有粒子经过磁场时受到洛伦兹力而向右偏转,根据左手定则判断

得知:匀强磁场的方向为垂直纸面向外. (2)最小有界磁场如图甲所示.

Word 文档

(3)如图乙所示,以P 的出口为原点在纸面内建立直角坐标系,y 轴与MN 平行,设粒子从磁场边界的A 点水平射出,坐标为(x ,y ),轨迹半径为R ,则有:

x 2+(R -y )2=R 2

由磁场的边界方程可知,这是一个圆形磁场,半径与粒子运动的轨迹半径相等为R .

R =L

2

由Bvq =mv 2R 得:R =mv

Bq

联立解得:B =2mv

qL

则有界匀强磁场区域的最小面积为:S =πR 2

=πL 2

4

.

19.(10分)(2018·河南九校质量测评)如图16所示,区域Ⅰ内有与水平方向成45°角的匀强电场E 1,区域宽度为d 1,区域Ⅱ内有正交的有界匀强磁场B 和匀强电场E 2,区域宽度为d 2,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m 、带电荷量为q 的微粒在区域Ⅰ左边界的P 点,由静止释放后水平向右做直线运动,进入区域

Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q 点穿出,其速度方向改变了60°,重力加速度为g ,求:

图16

(1)区域Ⅰ和区域Ⅱ电场强度E 1、E 2的大小; (2)区域Ⅱ内磁感应强度B 的大小; (3)微粒从P 运动到Q 的时间.

解析 (1)微粒在区域Ⅰ内水平向右做直线运动, 则在竖直方向上有

qE 1sin 45°=mg

解得E 1=

2mg

q

微粒在区域Ⅱ内做匀速圆周运动,则在竖直方向上有mg =qE 2 解得E 2=

mg

q

(2)设微粒在区域Ⅰ内水平向右做直线运动的加速度为a ,离开区域Ⅰ时速度为v ,在区域Ⅱ内做匀速圆周运动的半径为R ,则

a =qE 1cos 45°m

=g

Word 文档

v 2=2ad 1(或qE 1cos 45°·d 1=12

mv 2) R sin 60°=d 2 qvB =m v 2R

解得B =

m qd 2 3gd 1

2

. (3)微粒在区域Ⅰ内做匀加速运动,

t 1=

2d 1

g

.

在区域Ⅱ内做匀速圆周运动的圆心角为60°,又T =2πm

Bq

则t 2=T 6=

πd 2

3

2

3gd 1

解得t =t 1+t 2=

2d 1

g +πd 23

2

3gd 1.

12 13 14

15 16 17 18 19

带电粒子在圆形磁场中运动的规律.

带电粒子在磁场中的运动 例 1. 如图所示,在宽度为 d 磁感应强度为 B 、水平向外的匀强磁场矩形区域内,一带电粒子以初速度 v 入射, 粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 A. 带电粒子的比荷 B. 带电粒子在磁场中运动的周期 C. 带电粒子的质量 D. 带电粒子在磁场中运动的半径变式 . 若带电粒子以初速度 v 从 A 点沿直径入射至磁感应强度为 B , 半径为 R 的圆形磁场, 粒子飞出时偏离原方向 60°,利用以上数据可求出下列物理量中的哪几个 应用 1、如图所示,长方形 abcd 长 ad = 0.6m ,宽 ab = 0.3m , O 、 e 分别是 ad 、bc 的中点,以 ad 为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场 ,磁感应强度 B =0.25T 。一群不计重力、质

量 m =3 ×10-7 kg 、电荷量 q =+2×10- 3C 的带电粒子以速度 v =5×l02m/s 沿垂直 ad 方向且垂直于磁场射入磁场区域( A . 从 Od 边射入的粒子, 出射点全部分布在 Oa 边 B . 从 aO 边射入的粒子, 出射点全部分布在 ab 边 C .从 Od 边射入的粒子,出射点分布在 Oa 边和 ab 边 D .从 aO 边射入的粒子,出射点分布在 ab 边和 bc 边 应用 2. 在以坐标原点 O 为圆心、半径为 r 的圆形区域内,存在磁感应强度大小为 B 、方向垂直于纸面向里的匀强磁场,如图 10所示。一个不计重力的带电粒子从磁场边界与 x 轴的交点 A 处以速度 v 沿 -x 方向射入磁场,恰好从磁场边界与 y 轴的交点 C 处沿 +y方向飞出。 (1请判断该粒子带何种电荷,并求出其比荷 q/m; (2若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了 60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间 t 是多少? 例 2. 如图所示, 一束电子流以不同速率, 由边界为圆形的匀强磁场的边界上一点 A , 沿直径方向射入磁场,已知磁感应强度方向垂直圆平面,则电子在磁场中运动时:( A 轨迹长的运动时间长 B 速率大的运动时间长 C 偏转角大的运动时间长 D 速率为某一值时不能穿出该磁场

带电体在磁场中的运动

带电在匀强磁场中的运动 (大庆实验中学2015-2016学年高二上学期期中)7.如图所示,一个带正电q 的小带电体处于一匀强磁场中,磁场垂直纸面向里,磁感应强度为B .带电体质量为m ,为了使它对水平绝缘面正好无压力,应( ) A .使 B 数值增大 B .使磁场以速率v=向上移动 C .使磁场以速率v=向右移动 D .使磁场以速率v= 向左移动 【考点】共点力平衡的条件及其应用;洛仑兹力. 【分析】小球能飘离平面的条件:竖直向上的洛伦兹力与重力平衡,由左手定则可知,当洛伦兹力竖直向上时,电荷向右运动,根据相对运动小球不动时,磁场相对小球向左运动. 【解答】解:小球能飘离平面的条件,竖直向上的洛伦兹力与重力平衡即:qvB=mg ,得: ,根据相对运动当小球不动 时,磁场相对小球向左运动.故选项D 正确,ABC 错误. 故选:D 【点评】考查了运动电荷在磁场中的运动,用左手定则判断洛伦兹力的方向,注意小球飘离地面的条件. (哈尔滨师大附属中2014-2015学年高二上学期期末)12.【多选】如图所示,两根长直导线竖直插入光滑绝缘水平桌面上的M 、N 两小孔中,O 为M 、N 连线中点,连线上a 、b 两点关于O 点对称。两导线通有大小相等、方向相反的电流。已知长直导线周围产生的磁场的磁感应强度B =k I r ,式中k 是常数,I 是导线中的电流、r 为点到导线的距离。一带负电的小球以初速度v 0从a 点出发沿连线运动到b 点。关于上述过程,下列说法正确的是 BC A .小球先做加速运动后做减速运动 B .小球一直做匀速直线运动 C .小球对桌面的压力先减小后增大 D .小球对桌面的压力先增大后减小 (大庆实验中学2015-2016学年高二上学期期末) 【多选】12. 如图所示,在垂直纸面向里的水平匀强磁场中,水平放置一根粗糙绝缘细直杆,有一个重力不能忽略、中间带有小孔的带正电小球套在细杆上。现在给小球一个水平向右的初速度v0,假设细杆足够长,小球在运动过程中电荷量保持不变,杆上各处的动摩擦因数相同,则小球运动的速度v 与时间t 的关系图像可能是 BD (牡丹江一中2013-2014学年高二上学期期末)8.如图所示,空间存在垂直于纸面向里的磁感应强度为B 的匀强磁场,场内有一绝缘的足够长的直杆,它与水平面的倾角为θ,一带电量为-q 、质量为m 的带负电的小球套在直杆上,从A 点由静止沿杆下滑,小球与杆之间的动摩擦因数为μ,在小球以后运动的过程中,下列说法正确的是( B ) A .小球下滑的最大速度为v =mgsin θ μBq B .小球下滑的最大加速度为am =gsin θ C .小球的加速度一直在减小 D .小球的速度先增大后减小 (黑龙江某重点中学2014-2015届高二上学期期末) 【多选】 7. 如图所示,一带正电的滑环套在水平放置且足够长的粗糙绝缘杆上,整个装置处于方向如图所示的匀强磁场中.现给环施以一个水平向右的速度,使其运动,则滑环在杆上的运动情况可能是( ABD ) A.先做减速运动,后做匀速运动 B.一直做减速运动,直到静止 C.先做加速运动,后做匀速运动 D.一直做匀速运动 (大庆实验中学2012-2013学年高二11月月考) (安达市高级中学2013-2014学年高二下学期开学检测) 【多选】4. 如图所示,一个质量为m 、电荷量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B 的匀强磁场中,不计空气阻力,现给圆环向右的初速度v 0,在以后的运动过程中,圆环运动的速度图象可能是下图中的( AD )

带电粒子在磁场中运动之多解周期运动问题

考点4.7 周期性与多解问题 1.带电粒子电性不确定形成多解:受洛伦兹力作用的带电粒子,由于电性不同,当速度相同时,正、负粒子在磁场中运动轨迹不同,形成多解. 如图6甲所示,带电粒子以速度v垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为b. 2.磁场方向不确定形成多解:有些题目只已知磁感应强度的大小,而不知其方向,此时必须要考虑磁感应强度方向不确定而形成的多解. 如图乙所示,带正电粒子以速度v垂直进入匀强磁场,如B垂直纸面向里,其轨迹为a,如B 垂直纸面向外,其轨迹为b. 3.临界状态不唯一形成多解:带电粒子在洛伦兹力作 用下飞越有界磁场时,由于粒子运动轨迹是圆弧状, 因此,它可能穿过去,也可能转过180°从入射界面这 边反向飞出,从而形成多解,如图丙所示. 4.运动的周期性形成多解:带电粒子在部分是电场、部分是磁场的空间运动时,运动往往具有往复性,从而形成多解,如图丁所示. 一圆筒的横截面如图所示,其圆心为O.筒有垂直于纸面向里的匀 强磁场,磁感应强度为B.圆筒下面有相距为d的平行金属板M、N,其中 M板带正电荷,N板带等量负电荷.质量为m、电荷量为q的带正电粒子 自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方 向射入磁场中.粒子与圆筒发生两次碰撞后仍从S孔射出.设粒子与圆筒碰 撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求: (1)M、N间电场强度E的大小; (2)圆筒的半径R.

(3)保持M、N间电场强度E不变,仅将M板向上平移,粒子仍从M板边缘的P处 由静止释放粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n。 1.如图所示,在纸面有磁感应强度大小均为B,方向相反的匀强磁场,虚线等边三角形ABC 为两磁场的理想边界。已知三角形ABC边长为L,虚线三角形为方向垂直纸面向外的匀强磁场,三角形外部的足够大空间为方向垂直纸面向里的匀强磁 场。一电量为+q、质量为m的带正电粒子从AB边中点P垂直AB 边射入三角形外部磁场,不计粒子的重力和一切阻力,试求: (1)要使粒子从P点射出后在最快时间通过B点,则从P点射出 时的速度v0为多大? (2)满足(1)问的粒子通过B后第三次通过磁场边界时到B的 距离是多少? (3)满足(1)问的粒子从P点射入外部磁场到再次返回到P点的最短时间为多少?画出 粒子的轨迹并计算。

带电粒子在圆形磁场中运动的规律

带电粒子在磁场中的运动 例1.如图所示,在宽度为d 磁感应强度为B 、水平向外的匀强磁场矩形区域内,一带电粒子以初速度v 入射,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 A.带电粒子的比荷 B.带电粒子在磁场中运动的周期 C.带电粒子的质量 D.带电粒子在磁场中运动的半径 变式.若带电粒子以初速度v 从A 点沿直径入射至磁感应强度为B ,半径为R 的圆形磁场,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 应用1、如图所示,长方形 abcd 长 ad = 0.6m ,宽 ab = 0.3m , O 、e 分别是 ad 、bc 的中点,以 ad 为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度 B =0.25T 。一群不计重力、质 量 m =3 ×10-7 kg 、电荷量 q =+2×10- 3C 的带电粒子以速度v =5×l02m/s 沿垂直 ad 方向且垂直于磁场射入磁场区域 ( ) A .从 Od 边射入的粒子,出射点全部分布在 Oa 边 B .从 aO 边射入的粒子,出射点全部分布在 ab 边 C .从Od 边射入的粒子,出射点分布在Oa 边和 ab 边 D .从aO 边射入的粒子,出射点分布在ab 边和bc 边 应用2.在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图10所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。 (1)请判断该粒子带何种电荷,并求出其比荷q/m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少? 例2.如图所示,一束电子流以不同速率,由边界为圆形的匀强磁场的边界上一点A ,沿直径方向射入磁场,已知磁感应强度方向垂直圆平面,则电子在磁场中运动时:( ) A 轨迹长的运动时间长 B 速率大的运动时间长 C 偏转角大的运动时间长 D 速率为某一值时不能穿出该磁场 变式.如右图所示,直角三角形ABC 中存在一匀强磁场,比荷相同的两个粒子沿AB 方向射入磁场,分别从AC 边上的P 、Q 两点射出,则 A.从P 射出的粒子速度大 B.从Q 射出的粒子速度大 C.从P 射出的粒子,在磁场中运动的时间长 D.两粒子在磁场中运动的时间一样长 例3.如右图所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板.从圆形磁场最高点P 垂直磁场射入大量的带正电、电荷量为q 、质量为m 、速度为v 的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是 A.只要对着圆心入射,出射后均可垂直打在MN 上 B.对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心 C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长 D.只要速度满足m qBR v / ,沿不同方向入射的粒子出射后均可垂直打在MN 上(出射速度有什么关系?)若相同速率平行经过p 点的直径进入磁场,出射点又有什么规律?

带电粒子在均匀电磁场中的运动

目 录 一、引言 ........................................................................................ 1 二、认识等离子体 ........................................................................ 1 三、单粒子轨道运动 .................................................................... 5 3.1带电粒子在均匀电场中的运动学特性 .. (5) 3.1.10v 与E 垂直或平行时带电粒子的运动轨迹 (5) 3.1.20v 与E 成任一夹角时带电粒子的运动轨迹 (5) 3.2带电粒子在均匀磁场中的运动学特性 .......................... 6 3.2.1洛伦兹力 .. (6) 3.2.2粒子的初速度0v 垂直于B ...................................... 7 3.2.3粒子的初速度0v 与B 成任一夹角时 (8) 3.3带电粒子在均匀电磁场中的运动学特性 (10) 3.3.10v 、E 和B 两两相互垂直 (10) 3.3.20v 与E 成任一夹角,B 垂直它们构成的平面 (12) 四、小结 ...................................................................................... 16 参考文献 .. (16)

带电粒子在磁场中运动的多解问题

带电粒子在磁场中运动的多解问题 1.带电粒子电性不确定形成多解:受洛伦兹力作用的带电粒子,由于电性不同,当速度相同时,正、负粒子在磁场中运动轨迹不同,形成多解. 如图1甲所示,带电粒子以速度v垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为b. 图1 2.磁场方向不确定形成多解:有些题目只已知磁感应强度的大小,而不知其方向,此时必须要考虑磁感应强度方向不确定而形成的多解. 如图乙所示,带正电粒子以速度v垂直进入匀强磁场,如B垂直纸面向里,其轨迹为a,如B垂直纸面向外,其轨迹为b. 3.临界状态不唯一形成多解:带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能穿过磁场飞出,也可能转过180°从入射界面这边反向飞出,从而形成多解,如图2甲所示. 图2 4.运动的周期性形成多解:带电粒子在部分是电场、部分是磁场的空间运动时,运动往往具有往复性,从而形成多解,如图乙所示. 典例1(多选)如图17所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd边的中点.一个带正电的粒子仅在磁场力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0后刚好从c点射出磁场.现设法使该带电粒子从O点沿纸面以与Od成30°角的方向,以大小不同的速率射入正方形内,那么下列说法中正确的是()

图17 A .若该带电粒子在磁场中经历的时间是53t 0,则它一定从cd 边射出磁场 B .若该带电粒子在磁场中经历的时间是23 t 0,则它一定从ad 边射出磁场 C .若该带电粒子在磁场中经历的时间是54 t 0,则它一定从bc 边射出磁场 D .若该带电粒子在磁场中经历的时间是t 0,则它一定从ab 边射出磁场 答案 AC 解析 如图所示,作出刚好从ab 边射出的轨迹①、刚好从bc 边射出的轨 迹②、从cd 边射出的轨迹③和刚好从ad 边射出的轨迹④.由从O 点沿纸面 以垂直于cd 边的速度射入正方形内,经过时间t 0后刚好从c 点射出磁场可 知,带电粒子在磁场中做圆周运动的周期是2t 0.可知,从ad 边射出磁场经历的时间一定小于13t 0;从ab 边射出磁场经历的时间一定大于等于13t 0,小于56 t 0;从bc 边射出磁场经历的时间一定大于等于56t 0,小于43t 0;从cd 边射出磁场经历的时间一定是53 t 0. 典例2 如图18所示,在坐标系xOy 中,第一象限内充满着两个匀强磁场a 和b ,OP 为分界线,在磁场a 中,磁感应强度为2B ,方向垂直于纸面向里,在磁场b 中,磁感应强度为B ,方向垂直于纸面向外,P 点坐标为(4l,3l ).一质量为m 、电荷量为q 的带正电粒子从P 点沿y 轴负方向射入磁场b ,经过一段时间后,粒子恰能经过原点O ,不计粒子重力.求: 图18 (1)粒子从P 点运动到O 点的最短时间是多少? (2)粒子运动的速度可能是多少? 答案 (1)53πm 60qB (2)25qBl 12nm (n =1,2,3,…)

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中, 如“圆周运动中小球能过最高点的速度条 件” “动量中的避免碰撞问题”等等, 这类题目中往往含有“最大”、 “最高”、“至少”、 “恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁 场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 、解题方法 画图T 动态分析T 找临界轨迹。 (这类题目关键是作图,图画准了,问题就解决了一大 半,余下的就只有计算了——这一般都不难。 ) 、常见题型 (B 为磁场的磁感应强度,V 。为粒子进入磁场的初速度) r ①旳方向一定,大小不确定一第一类 I 』确宦 < ②V 。犬小 一亦方向不确定——第二类 ■③旳大小、方向都不确定一第三类 分述如下: 第一类问题: 例1如图1所示,匀强磁场的磁感应强度为 B,宽度为d ,边界为CD 和EF 。一电子从 CD 边界 外侧以速率 V 。垂直匀强磁场射入,入射方向与CD 边界夹角为0。已知电子的质量为 m 电荷量为e ,为使电子能从磁场的另一侧 EF 射出,求电子的速率 v o 至少多大? 2.行不确宦 -①巾确定 ——第四类 {——五类

例2如图3所示,水平线 MN 下方存在垂直纸面向里的磁感应强度为 B 的匀强磁场,在 MN 线上某点O 正下方与之相距 L 的质子源S,可在纸面内360°范围内发射质量为 m 电量 为e 、速度为 V o =BeL / m 的质子,不计质子重力,打在 MN 上的质子在 O 点右侧最远距离 OP ,打在O 点左侧最 远距离 OO 。 分析:首先求出半径得r =L ,然后作出临界轨迹如图 4所示(所有从 S 发射出去的质子 做圆周运动的轨道圆心是在以 S 为圆心、以r =L 为半径的圆上,这类问题可以先作出这一圆 ——就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆) ,O 諒L , OQL 。 【练习】如图5所示,在屏MN 勺上方有磁感应强度为 B 的匀强磁场,磁场方向垂直纸面 向里。P 为屏上的一小孔,PC 与MN 垂直。一群质量为 m 带电荷量为一q 的粒子(不计重力), 分析:如图2,通过作图可以看到:随着 界EF 相切,然后就不难解答了。 第二类问题: V o 的增大,圆半径增大,临界状态就是圆与边

带电粒子在磁场中的运动解题技巧

带电粒子在磁场中的运动 带电粒子在匀强磁场中作圆周运动的问题是近几年高考的热点,这些考题不但涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。只要确定了带电粒子的运动轨迹,问题便迎刃而解。下面举几种确定带电粒子运动轨迹的方法。 一、对称法 带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。 例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少? 解析:正、负电子的半径和周期是相同的。只是偏转方向相反。先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。所以两个射出点 相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。

例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。 解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。 由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°= 又带电粒子的轨道半径可表示为:故带电粒子运动周期: 带电粒子在磁场区域中运动的时间 二、旋转圆法 在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。

带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图→动态分析→找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。) 二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度) 分述如下: 第一类问题: 例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。 分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆 ──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。P为屏上的一小孔,PC与MN垂直。一群质量为m、带电荷量为-q的粒子(不计重力),

带电粒子在磁场中的运动习题含答案

带电粒子在磁场中的运动 练习题 1. 如图所示,一个带正电荷的物块m 由静止开始从斜面上A 点下滑,滑到水平面BC 上的D 点停下来.已知物块与斜面及水平面间的动摩擦因数相同,且不计物块经过B 处时的机械能损失.先在ABC 所在空间加竖直向下的匀强电场,第二次让物块m 从A 点由静止开始下滑,结果物块在水平面上的D′点停下来.后又撤去电场,在ABC 所在空间加水平向里的匀强磁场,再次让物块m 从A 点由静止开始下滑,结果物块沿斜面滑下并在水平面上的D″点停下来.则以下说法中正确的是( ) A .D′点一定在D 点左侧 B .D′点一定与D 点重合 C .D″点一定在 D 点右侧 D .D″点一定与D 点重合 2. 一个质量为m 、带电荷量为+q 的圆环,可在水平放置的足够长的粗 糙细杆上滑动,细杆处于磁感应强度为B 的匀强磁场中.现给圆环向右初速度v 0,A . B . C . D . 子从ad 的中点垂直于电场和磁场方向射入,恰沿直线从bc 边的中点P 射出,若撤去磁场,则粒子从c 点射出;若撤去电场,则粒子将(重力不计)( ) A .从b 点射出 B .从b 、P 间某点射出 C .从a 点射出 D .从a 、b 间某点射出 4. 如图所示,在真空中匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三个油滴a 、b 、c 带有等量同种电荷,其中a 静止,b 向右做匀速运动,c 向左匀速运动,比较它们的重力Ga 、Gb 、Gc 的大小关系,正确的是( ) A .Ga 最大 B .Gb 最大 C .Gc 最大 D .Gb 最小 5. 如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。现将带电粒子的速度变为v /3,仍从A 点射入磁场,不计重力,则粒子在磁场中的运动时间变为 ( ) A.t ?2 1 B. t ?2 C. t ?3 1 D. t ?3 6. 如图所示,在xOy 平面内存在着磁感应强度大小为B 的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象 限内的磁场方向垂直纸面向外.P (-L 2,0)、Q (0,-L 2)为坐标轴上的两个

解决带电粒子在有界磁场中运动的临界问题的两种方法

解决带电粒子在有界磁场中运动的临界问题的两种方法 此类问题的解题关键是寻找临界点,寻找临界点的有效方法是: ①轨迹圆的缩放: 当入射粒子的入射方向不变而速度大小可变时,粒子做圆周运动的圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径R)不确定,用圆规作出一系列大小不同的轨迹图,从圆的动态变化中即可发现“临界点”. 例1一个质量为m,带电量为+q的粒子(不计重力), 从O点处沿+y方向以初速度射入一个边界为矩形的匀强 磁场中,磁场方向垂直于xy平面向里,它的边界分别是 y=0,y=a,x=-1.5a,如图所示,那么当B满足条件_________ 时,粒子将从上边界射出:当B满足条件_________时, 粒子将从左边界射出:当B满足条件_________时,粒子 将从下边界射出: 例2 如图9-8所示真空中宽为d的区域内有强度为B的匀强磁场方向如图,质量m带电-q的粒子以与CD成θ角的速度V0垂直射入磁场中。要使粒子必能从EF射出,则初速度V0应满足什么条件?EF上有粒子射出的区域? 【审题】如图9-9所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,依此画出临界轨迹,借助几何知识即可求解速度的临界值;对于射出区域,只要找出上下边界即可。 【解析】粒子从A点进入磁场后受洛伦兹力作匀速圆周运动,要使粒子必能从EF射出,则 相应的临界轨迹必为过点A并与EF相切的轨迹如图9-10所示,作出A、P点速度的垂线相交于O/即为该临界轨迹的圆心。 临界半径R0由 d Cosθ R R0 = + 有: θ + = Cos 1 d R0 ; 故粒子必能穿出EF的实际运动轨迹半径R≥R0 即: θ + ≥ = Cos 1 d qB mv R0 有: ) Cos 1( m qBd v0 θ + ≥ 。 图9-8 图9-9 图 9-10

高中物理带电粒子在磁场中的运动知识点汇总

难点之九:带电粒子在磁场中的运动 一、难点突破策略 (一)明确带电粒子在磁场中的受力特点 1. 产生洛伦兹力的条件: ①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用. ②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小: 当电荷运动方向与磁场方向平行时,洛伦兹力f=0; 当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ; 当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ 3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功. (二)明确带电粒子在匀强磁场中的运动规律 带电粒子在只受洛伦兹力作用的条件下: 1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动. 2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动. ①向心力由洛伦兹力提供: R v m qvB 2 = ②轨道半径公式: qB mv R = ③周期: qB m 2v R 2T π=π= ,可见T 只与q m 有关,与v 、R 无关。 (三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的 物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。 1. “带电粒子在匀强磁场中的圆周运动”的基本型问题 (1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。确定半径和给定的几何量之间的关系是解题的基础, 有时需要建立运动时间t 和转过的圆心角α之间的关系( T 2t T 360t πα=α= 或)作为辅助。圆心的确定,通常有以下 两种方法。 ① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。 ② 已知入射方向和出射点的位置,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图9-2,P 为入射点,M 为出射点)。 (2)半径的确定和计算:利用平面几何关系,求出该圆的可能半径或圆心角。并注意以下两个重要的特点: 图9-1 图9-2 图9-3

知识讲解_带电粒子在磁场中的运动 提高

带电粒子在磁场中的运动 编稿:周军审稿:隋伟 【学习目标】 1.掌握带电粒子在匀强磁场中做匀速圆周运动的特点和解决此类运动的方法。 2.理解质谱仪和回旋加速器的工作原理和作用。 【要点梳理】 要点一:带电粒子在匀强磁场中的运动 要点诠释: 1.运动轨迹 带电粒子(不计重力)以一定的速度v进入磁感应强度为B的匀强磁场中: (1)当v∥B时,带电粒子将做匀速直线运动; (2)当v⊥B时,带电粒子将做匀速圆周运动; (3)当v与B的夹角为θ(θ≠0°,90°,180°)时,带电粒子将做等螺距的螺旋线运动. 说明:电场和磁场都能对带电粒子施加影响,带电粒子在匀强电场中只在电场力作用下,可能做匀变速直线运动,也可能做匀变速曲线运动,但不可能做匀速直线运动;在匀强磁场中,只在磁场力作用下可以做曲线运动.但不可能做变速直线运动. 2.带电粒子在匀强磁场中的圆周运动 如图所示,带电粒子以速度v垂直磁场方向入射,在磁场中做匀速圆周运动,设带电粒子的质量为m,所带的电荷量为q. (1)轨道半径:由于洛伦兹力提供向心力,则有 2 v qvB m r =,得到轨道半径 mv r qB =. (2)周期:由轨道半径与周期之间的关系 2r T v π =可得周期 2m T qB π =. 说明:(1)由公式 mv r qB =知,在匀强磁场中,做匀速圆周运动的带电粒子,其轨道半径跟运动速率 成正比. (2)由公式 2m T qB π =知,在匀强磁场中,做匀速圆周运动的带电粒子,周期跟轨道半径和运动速率 均无关,而与比荷q m 成反比. 注意: mv r qB =与 2m T qB π =是两个重要的表达式,每年的高考都会考查.但应用时应注意在计算说明 题中,两公式不能直接当原理式使用. 要点二:带电粒子在匀强磁场中做圆周运动的问题分析要点诠释:

《带电粒子在磁场中的运动》教案示例

《带电粒子在磁场中的运动》教案示例 设计思想 本节课是一节新常规课,组织方式为课堂教学。在设计本课时,遵循了新课程理念中“学生为主体、教师为主导”的原则,体现了传统媒体、现代媒体与课堂教学恰当整合的思想。 一.学生主体、教师主导的实现 主要通过恰当地创设教学情景来体现学生的主体地位。本节课共创设了以下几个情景: 1.在观察电子射线管中电子在磁场中的圆周运动的基础上,提出:从理论上如何分析、论证带电粒子垂直射入匀强磁场中时,为什么是匀速圆周运动?引导学生分析、推理、论证。 2.在得出带电粒子做匀速圆周的结论后,提出:粒子在多大的圆周上运动?运动一周的时间是多少?引导学生运用牛顿第二定律,结合圆周运动的知识,推导带电粒子运动的轨道半径和运动周期。 3.最后,提出:带电粒子在磁场中运动规律在实际中有什么应用?引导学生运用所学知识,分析质谱仪、回旋加速器的原理。 在整个课堂教学过程中,通过教师的引导,学生观察实验;思考回答问题;分析、推理、论证;完成实验原理设计,在这一系列的活动中,学生始终处于主体地位,是活动的主体。应用所学知识解决实际问题的过程,充分调动了学生的主体参与,而教师则始终主导着课堂的进行,体现教师的主导作用。 二.现代媒体与课堂教学的整合 在现代课堂教学中,现代媒体已经成为一个重要的支持教学的工具,媒体与课堂教学的整合一般有以下几种方式: 1.模拟演示/多媒体展示 2.情境化学习 3.微型世界 4.虚拟实验 具体采用哪种整合方式应视教学目标而定。在本课的教学中,目标是让学生建立带电粒子垂直进入匀强磁场时的运动图景,掌握带电粒子的运动规律及其应用。图景的建立是难点,为了突破这个难点,我设计了一个模拟带电粒子在磁场中运动的软件,在学生观察了电子射线管中电子的圆周运动后,再让学生观察模拟运动,帮助学生建立动态图景,突破了思维障碍。为了展示质谱仪和螺旋加速器的原理,我制作了相应的课件,动态演示它们的工作原理,帮助学生建立直观的图景,降低了教学难度。在整堂的教学过程中,传统媒体、现代媒体有机融合,相辅相成,使课堂教学行云流水,提高了课堂教学质量和教学效果。 教学设计

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图→动态分析→找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。) 二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)

分述如下: 第一类问题: 例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2 如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN 线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN 上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向

带电粒子在磁场中的运动习题含标准答案

带电粒子在磁场中的运动练习题2016.11.23 1. 如图所示,一个带正电荷的物块m由静止开始从斜面上A点下滑,滑到水平面BC上的D点停下来.已知物块与斜面及水平面间的动摩擦因数相同,且不计物块经过B处时的机械能损失.先在ABC所在空间加竖直向下的匀强电场,第二次让物块m从A点由静止开始下滑,结果物块在水平面上的D′点停下来.后又撤去电场,在ABC所在空间加水平向里的匀强磁场,再次让物块m从A点由静止开始下滑,结果物块沿斜面滑下并在水平面上的D″点停下来.则以下说法中正确的是( ) A.D′点一定在D点左侧 B.D′点一定与D点重合 C.D″点一定在D点右侧 D.D″点一定与D点重合 2. 一个质量为m、带电荷量为+q的圆环,可在水平放置的足够长的粗糙细杆 上滑动,细杆处于磁感应强度为B的匀强磁场中.现给圆环向右初速度v0,在以 后的运动过程中,圆环运动的速度图象可能是() A.B.C.D. 3. 如图所示,在长方形abcd区域内有正交的电磁场,ab=bc/2=L,一带电粒子从ad的 中点垂直于电场和磁场方向射入,恰沿直线从bc边的中点P射出,若撤去磁场,则粒子从 c点射出;若撤去电场,则粒子将(重力不计)() A.从b点射出B.从b、P间某点射出 C.从a点射出D.从a、b间某点射出 4. 如图所示,在真空中匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三 个油滴a、b、c带有等量同种电荷,其中a静止,b向右做匀速运动,c向左匀速运动,比 较它们的重力Ga、Gb、Gc的大小关系,正确的是() A.Ga最大B.Gb最大 C.Gc最大D.Gb最小

5. 如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。现将带电粒子的速度变为v /3,仍从A 点射入磁场,不计重力,则粒子在磁场中的运动时间变为 ( ) A.t ?2 1 B.t ?2 C. t ?3 1 D. t ?3 6. 如图所示,在xOy 平面内存在着磁感应强度大小为B 的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象限内的磁场方向垂直纸面向外.P (-L 2,0)、Q (0,-L 2)为坐标轴上的两个点.现有一电子从P 点沿PQ 方向射出,不计电子的重力,则. ( ) A .若电子从P 点出发恰好经原点O 第一次射出磁场分界线,则电子运动的路程一定为 2 L π B .若电子从P 点出发经原点O 到达Q 点,则电子运动的路程一定为L π C .若电子从P 点出发经原点O 到达Q 点,则电子运动的路程可能为2L π D .若电子从P 点出发经原点O 到达Q 点,则n L π(n 为任意正整数)都有可能是电子运动的路程 7. 如图,一束电子(电量为e )以速度v 0垂直射入磁感应强度为B ,宽为d 的匀强磁场中,穿出磁场的速度方向与电子原来的入射方向的夹角为30°,求: (1)电子的质量是多少? (2)穿过磁场的时间是多少? (3)若改变初速度,使电子刚好不能从A 边射出,则此时速度v 是多少?

《带电粒子在磁场中的运动》教案示例

《带电粒子在磁场中的运动》教案示例 北京市第九中学物理教师肖伟华 设计思想 本节课是一节新常规课,组织方式为课堂教学。在设计本课时,遵循了新课程理念中“学生为主体、教师为主导”的原则,体现了传统媒体、现代媒体与课堂教学恰当整合的思想。 一.学生主体、教师主导的实现 主要通过恰当地创设教学情景来体现学生的主体地位。本节课共创设了以下几个情景: 1.在观察电子射线管中电子在磁场中的圆周运动的基础上,提出:从理论上如何分析、论证带电粒子垂直射入匀强磁场中时,为什么是匀速圆周运动?引导学生分析、推理、论证。 2.在得出带电粒子做匀速圆周的结论后,提出:粒子在多大的圆周上运动?运动一周的时间是多少?引导学生运用牛顿第二定律,结合圆周运动的知识,推导带电粒子运动的轨道半径和运动周期。 3.最后,提出:带电粒子在磁场中运动规律在实际中有什么应用?引导学生运用所学知识,分析质谱仪、回旋加速器的原理。 在整个课堂教学过程中,通过教师的引导,学生观察实验;思考回答问题;分析、推理、论证;完成实验原理设计,在这一系列的活动中,学生始终处于主体地位,是活动的主体。应用所学知识解决实际问题的过程,充分调动了学生的主体参与,而教师则始终主导着课堂的进行,体现教师的主导作用。 二.现代媒体与课堂教学的整合 在现代课堂教学中,现代媒体已经成为一个重要的支持教学的工具,媒体与课堂教学的整合一般有以下几种方式: 1.模拟演示/多媒体展示 2.情境化学习 3.微型世界 4.虚拟实验 具体采用哪种整合方式应视教学目标而定。在本课的教学中,目标是让学生建立带电粒子垂直进入匀强磁场时的运动图景,掌握带电粒子的运动规律及其应用。图景的建立是难点,为了突破这个难点,我设计了一个模拟带电粒子在磁场中运动的软件,在学生观察了电子射线管中电子的圆周运动后,再让学生观察模拟运动,帮助学生建立动态图景,突破了思维障碍。为了展示质谱仪和螺旋加速器的原理,我制作了相应的课件,动态演示它们的工作原理,帮助学生建立直观的图景,降低了教学难度。在整堂的教学过程中,传统媒体、现代媒体有机融合,相辅相成,使课堂教学行云流水,提高了课堂教学质量和教学效果。

高中物理带电粒子在磁场中的运动知识点汇总

1 文档来源为:从网络收集整理.word 版本可编辑. 难点之九:带电粒子在磁场中的运动 一、难点突破策略 (一)明确带电粒子在磁场中的受力特点 1. 产生洛伦兹力的条件: ①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用. ②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小: 当电荷运动方向与磁场方向平行时,洛伦兹力f=0; 当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ; 当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ 3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功. (二)明确带电粒子在匀强磁场中的运动规律 带电粒子在只受洛伦兹力作用的条件下: 1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动. 2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动. ①向心力由洛伦兹力提供: R v m qvB 2 = ②轨道半径公式:qB mv R = ③周期:qB m 2v R 2T π=π= ,可见T 只与q m 有关,与v 、R 无关。 (三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。 1. “带电粒子在匀强磁场中的圆周运动”的基本型问题 (1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。确定半径和给定的几何量之间的关系是解题的基础, 有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α= 或)作为辅助。圆心的确定,通常有以下两种方法。 ① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。 ② 已知入射方向和出射点的位置,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图9-2,P 为入射点,M 为出射点)。 图9-1 图9-2 图9-3

相关主题