搜档网
当前位置:搜档网 › EMI滤波器的设计原理及参数计算方法

EMI滤波器的设计原理及参数计算方法

EMI滤波器的设计原理及参数计算方法
EMI滤波器的设计原理及参数计算方法

EMI滤波器的设计原理

随着电子设备、计算机与家用电器的大量涌现和广泛普及,电网噪声干扰日益严重并形成一种公害。特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高(几百伏至几千伏)、随机性强,对微机和数字电路易产生严重干扰,常使人防不胜防,这已引起国内外电子界的高度重视。

电磁干扰滤波器(EMI Filter)是近年来被推广应用的一种新型组合器件。它能有效地抑制电网噪声,提高电子设备的抗干扰能力及系统的可靠性,可广泛用于电子测量仪器、计算机机房设备、开关电源、测控系统等领域。

1 电磁干扰滤波器的构造原理及应用

1.11 构造原理

电源噪声是电磁干扰的一种,其传导噪声的频谱大致为10kHz~30MHz,最高可达150MHz。根据传播方向的不同,电源噪声可分为两大类:一类是从电源进线引入的外界干扰,另一类是由电子设备产生并经电源线传导出去的噪声。这表明噪声属于双向干扰信号,电子设备既是噪声干扰的对象,又是一个噪声源。若从形成特点看,噪声干扰分串模干扰与共模干扰两种。串模干扰是两条电源线之间(简称线对线)的噪声,共模干扰则是两条电源线对大地(简称线对地)的噪声。因此,电磁干扰滤波器应符合电磁兼容性(EMC)的要求,也必须是双向射频滤波器,一方面要滤除从交流电源线上引入的外部电磁干扰,另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。此外,电磁干扰滤波器应对串模、共模干扰都起到抑制作用。

1.2 基本电路及典型应用

电磁干扰滤波器的基本电路如图1所示。

该五端器件有两个输入端、两个输出端和一个接地端,使用时外壳应接通大地。电路中包括共模扼流圈(亦称共模电感)L、滤波电容C1~C4。L对串模干扰不起作用,但当出现共模干扰时,由于两个线圈的磁通方向相同,经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流圈。它的两个线圈分别绕在低损耗、高导磁率的铁氧体磁环上,当有电流通过时,两个线圈上的磁场就会互相加强。L的电感量与EMI滤波器的额定电流 有关,参见表1。

需要指出,当额定电流较大时,共模扼流圈的线径也要相应增大,以便能承受较大的电流。此外,适当增加电感量,可改善低频衰减特性。C1和C2采用薄膜电容器,容量范围大致是0.01mF~0.47μF,主要用来滤除串模干扰。C3和C4跨接在输出端,并将电容器的中点接地,能有效地抑制共模干扰。C3和C4亦可并联在输入端,仍选用陶瓷电容,容量范围是2200pF~0.1μF。为减小漏电流,电容量不得超过0.1μF,并且电容器中点应与大地接通。C1~C4的耐压值均为

630VDC或250VAC。图2示出一种两级复合式EMI滤波器的内部电路,由于采用两级(亦称两节)滤波,因此滤除噪声的效果更佳。针对某些用户现场存在重复频率为几千赫兹的快速瞬态群脉冲干扰的问题,国内外还开发出群脉冲滤波器(亦称群脉冲对抗器),能对上述干扰起到抑制作用。

2 EMI滤波器在开关电源中的应用

为减小体积、降低成本,单片开关电源一般采用简易式单级EMI滤波器,典型电路如图3所示

图(a)与图(b)中的电容器C能滤除串模干扰,区别仅是图(a)将C接在输入端,

图(b)则接到输出端。图(c)、(d)所示电路较复杂,抑制干扰的效果更佳。图(c)中的L、C1和C2用来滤除共模干扰,C3和C4滤除串模干扰。R为泄放电阻,可将C3上积累的电荷泄放掉,避免因电荷积累而影响滤波特性;断电后还能使电源的进线端L、N不带电,保证使用的安全性。图(d)则是把共模干扰滤波电容C3和

C4接在输出端。

EMI滤波器能有效抑制单片开关电源的电磁干扰。图4中曲线a为不加EMI 滤波器时开关电源上0.15MHz~30MHz传导噪声的波形(即电磁干扰峰值包络线)。曲线b是插入如图3(d)所示EMI滤波器后的波形,能将电磁干扰衰减50dBμV ~ 70dBμV。显然,这种EMI滤波器的效果更佳。

计算EMI滤波器对地漏电流的公式为:

e 是噪声信号发生器,i Z 是信号源的内部阻抗,L Z 是负载阻抗,一般取50Ω。噪声频率范围可选10kHz~30MHz 。首先要在不同频率下分别测出插入前后负载上的噪声压降1V 、2V ,再代入(2)式中计算出每个频率点的AdB 值,最后绘出插入损耗曲线。需要指出,上述测试方法比较烦琐,每次都要拆装EMI 滤波器。为此可用电子开关对两种测试电路进行快速切换。

参考文献

1 沙占友.新编实用数字化测量技术.北京国防工业出版社,1998,1

2 沙占友.电源噪声滤波器应用.自动化仪表,1991,9

3 林先放.开关电源的抗干扰问题.电源技术应用,2000,8

用微波仿真软件设计一个集总(或分布)参数 滤波器

绪论 微波(Microwave)是电磁波谱中介于超短波与红外线之间的波段,它属于无线电波中波长最短(即频率最高)的波段,其频率范围从300MHz(波长1m)至3000GHz(波长0.1mm)。通常又将微波段划分为分米波、厘米波、毫米波和亚毫米波四个分波阶段,在通信和雷达工程上还使用拉丁字母来表示微波更细的分波段。表1给出了常用微波分波段的划分。 表1 常用微波分波段的划分 波段符号频率/GHz 波段符号频率/GHz UHF 0.3--1.12 Ka 26.5--40.0 L 1.12--1.7 Q 33.0--50.0 LS 1.7--2.6 U 40.0--60.0 S 2.6--3.95 M 50.0--75.0 C 3.95--5.85 E 60.0--90.0 XC 5.85--8.2 F 90.0--140.0 X 8.2--12.4 G 140.0--220.0 Ku 12.4--18.0 R 220.0--325.0 K 18.0--26.5 对于低于微波频率的无线电波,其波长远大于电系统的实际尺寸,可用集总参数电路的理论进行分析,即为电路分析法;频率高于微波波段的光波、X射线、γ射线等,其波长远小于电系统的实际尺寸,甚至与分子、原子的尺寸相比拟,因此可用光学理论进行分析,即为光学分析法;而微波则由于其波长与电系统的实际尺寸相当,不能用普通电子学中电路的方法研究或用光学的方法直接去研究,而必须用场的观点去研究,即由麦克斯韦尔方程组出发,结合边界条件来研究系统内部的结构,这就是场分析法。 正因为微波波长的特殊性,所以它具有以下特点。 (1)似光性 微波具有类似光一样的特性,主要表现在反射性、直接传播性及集束性等几方面,即:由于微波的波长与地球上的一般物体(如飞机、轮船、汽车等)的尺寸相比要小得多,或在同一量级,因此当微波照射到这些物体上时会产生强烈的反射,基于此特性人们发明了雷达系统;微波如同光一样在空间直线传播,如同光可聚焦成光束一样,微波也可通过天线装置形成定向辐射,从而可以定向传输或接收由空间传来的微弱信号以实现微波通信或探测。 (2)穿透性 微波照射到介质时具有穿透性,主要表现在云、雾、雪等对微波传播的影响较小,这为全天候微波通信和遥感打下了基础,同时微波能穿透生物体的特点也为微波生物医学打下了基础;另一方面,微波具有穿越电离层的透射性,实验证明:微波波段的几个分波段,如1--10GHz、20--30GHz及91GHz附近受电离层的影响较小,可以较为容易的由地面向外层空间传播,从而成为人类探索外层空间的“无线电窗口”,它为空间通信、卫星通信、卫星遥感和射电天文学的研究提供了难得的无线电通道。 (3)宽频带特性 我们知道,任何通信系统为了传递一定的信息必须占有一定的频带,为传输某信息所需的频

阶有源带通滤波器设计及参数计算

滤波器是一种只传输指定频段信号,抑制其它频段信号的电路。 滤波器分为无源滤波器与有源滤波器两种: ①无源滤波器: 由电感L、电容C及电阻R等无源元件组成 ②有源滤波器: 一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。 利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。 从功能来上有源滤波器分为: 低通滤波器(LPF)、高通滤波器(HPF)、 带通滤波器(BPF)、带阻滤波器(BEF)、 全通滤波器(APF)。 其中前四种滤波器间互有联系,LPF与HPF间互为对偶关系。当LPF的通带截止频率高于HPF的通带截止频率时,将LPF与HPF相串联,就构成了BPF,而LPF与HPF并联,就构成BEF。在实用电子电路中,还可能同时采用几种不同型式的滤波电路。滤波电路的主要性能指标有通带电压放大倍数AVP、通带截止频率fP及阻尼系数Q等。 带通滤波器(BPF) (a)电路图(b)幅频特性 图1 压控电压源二阶带通滤波器 工作原理:这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减或抑制。典型的带通滤波器可以从二阶低通滤波器中将其中一级改成高通而成。如图1(a)所示。 电路性能参数 通带增益 中心频率 通带宽度 选择性 此电路的优点是改变Rf和R4的比例就可改变频宽而不影响中心频率。 例.要求设计一个有源二阶带通滤波器,指标要求为: 通带中心频率 通带中心频率处的电压放大倍数: 带宽: 设计步骤: 1)选用图2电路。 2)该电路的传输函数: 品质因数: 通带的中心角频率: 通带中心角频率处的电压放大倍数: 取,则:

各种滤波器

设计一个九级集总参数低通滤波器,电路结构如图所示,要求截止频率为450MHz,通带内增益大于-1dB,阻带内650M以上增益小于-50dB。通带内反射系数要求小于-15dB。要求优化参数Cost<0.5(最佳为 5(波长线长为相对值)。计算线长Z为2.5和3.5两处的输入阻抗、反射系数。并画出Z为2.5时的阻抗与导纳圆图。 低通滤波器===== 设计具体要求 ====== 通带频率范围:0MHz-300MHz 增益参数S21:通带内0MHz-300MHz S21>-0.5dB ;阻带内420MHZ以上 S21<-50dB 反射系数S11:通带内0MHz-300MHz S11<-10dB ; 2、为了节省成本,计划将该滤波器设计为7级结构。你能把它设计出来吗?根据你的优化仿真结果,探讨滤波器级数与其性能的关系。 低通滤波器===== 设计具体要求 ====== 通带频率范围:0MHz-350MHz 增益参数S21:通带内 S21>-1dB 阻带内550MHZ以上 S21<-45dB 反射系数S11:通带内 S11<-15dB 2、简述功分器的基本技术要求及其主要特性参数。

通带频率范围:0MHz-400MHz 增益参数S21:通带内0MHz-400MHz S21>-0.2dB 阻带内600MHZ以上 S21<-50dB 反射系数S11:通带内0MHz-400MHz S11<-10dB 要求优化参数 2、简述HFSS的特点及其主要应用的范围。 IVCURVEI来测量非线性器件——三极管GBJT3的特性曲线并加入调谐,分析其变化。 高通滤波器===== 设计具体要求 ====== 通带频率范围:550MHz以上 增益参数S21:通带内S21>-2dB ;阻带内0-400MHz,S21<-50dB 反射系数S11:通带内S11<-20dB; 2、你会添加Marker吗?试在S21曲线上,添加一横坐标为600MHz的Marker。添加后需请老师签字。 3、使用TXLine工具计算微带线εr=12.9,t/h=0.1,分别计算W/h=2.5,3.0以及3.5时的特性阻高通滤波器 ===== 设计具体要求 ====== 设计一个九级集总参数高通滤波器,电路结构如图所示,要求截止频率为550MHz,通带内增益大于-1dB,阻带内0-350MHz增益小于-45dB。通带内反射系数要求小于-15dB。 2、如果要设计低通滤波器,与前面相比,有哪些步骤需要变化?并画出结构简图。 MicrowaveOffice的Optimize功能选择框中的优化算法,并画出优化算法框图。

EMI滤波器结构与分类

EMI滤波器结构与分类 一、LC滤波器(也称无源滤波器) LC滤波器是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波。 按滤波器的电抗元件结构区分,有T、L、π型滤波器。 选取的基本出发点是:用滤波器的电感与低的源阻抗或者负载阻抗串联,用滤波器的电容器与一个高的负载阻抗或源阻抗并联。以此保证阻抗最大失配的条件下,使滤波网络实际工作时,即有较大的插入损耗,又有最大的反射损耗,从而实现对EMI 信号的有效抑制。这样,EMI滤波器中的LC电路仍可以维持其谐振滤波特性,同时也能够部分补偿或削弱源阻抗和负载阻抗变

动对滤波器特性的影响。 按滤波器的作用区分,有调谐滤波器和高通滤波器。 ①调谐滤波器 调谐滤波器包括单调谐滤波器和双调谐滤波器,可以滤除某一次(单调谐)或两次(双调谐)谐波,该谐波的频率称为调谐滤波器的谐振频率。 ②高通滤波器 高通滤波器也称为减幅滤波器,主要包括一阶高通滤波器、二阶高通滤波器、三阶高通滤波器和c型滤波器,用来大幅衰减

低于某一频率的谐波,该频率称为高通滤波器的截止频率。 二、 T 型滤波器(即LCL 滤波器) 采用L 滤波器时,为了减小电流纹波,不得不增加L ,导致滤波器体积增大;采用LC 滤波器,虽然结构和参数选取简单,但无法抑制输出电流中的高频纹波,容易因电网阻抗的不确定性影响滤波效果。三相LCL 滤波器因其高效的滤波效果受到广泛重 视。 ①整流器侧电感L 设计 ,...3,2) ()(max 0==h h i hw h u L , ②滤波电容C 设计 b sa oe f E P C ω?22*3) (cos 1*-= ③网侧电感Lg 的设计

EMI滤波电感设计

EMI滤波电感设计 EMI滤波器 正常工作的开关类电源(SMPS)会产生有害的高频噪声,它能影响连接到相同电源线上的电子设备像计算机、仪器和马达控制。用一个EMI滤波器插入电源线和SMPS之间能消除这类干扰(图1)。一个差模噪声滤波器和一个共模噪声滤波器能够串联或在许多情况下单独使用共模噪声滤波器。 图1 EMI滤波器的插入 一、共模电感设计 在一个共模滤波器内,电感的每一个绕阻和电源输入线中的任一根导线相串联。(对于电源的输入线来讲)电感绕组的接法和相位是这样的,第一个绕组产生的磁通会与第二个绕组产生的磁通相削. 于是,除了泄漏阻抗的小损耗和绕组的直流电阻以外,电感至电源输入线的插入阻抗为另。由于磁通的阻碍,SMPS 的输入电流需要功率,因此将通过滤波器,滤波器应没有任何明显的损耗。 共模噪声的定义是出现在电源输入线的一根或二根导线上的有害电流通过电感的地返回噪声源的噪声。 此电流要视共模电感的任何一个或二个绕组的全部阻抗,因为它不能被返回的电流所抵消。共模噪声电压是电感绕组上的衰减,应从有害噪声中保持电源输入线的畅通。 1.1、选择电感材料 开关电源正常工作频率20KHz以上,而电源产生的有害噪声比20KHz高,往往在100KHz~50MHz之间。 对于电感来讲,大多数选择适当和高效费比的铁氧体,因为在有害频带内能提供最高的阻抗。当看到公共参数如磁导率和损耗系数就去识别材料是困难的。图2给出铁氧体磁环J-42206-TC绕10匝后的阻抗ZS和频率的关系曲线。 图2铁氧体磁环的阻抗和频率的关系 在1~10MHz之间绕组到达最大阻抗,串联感抗XS和串联电阻RS(材料磁导率和损耗系数的函数)共同产生总阻抗Zt。

EMI 原理分析

开关电源EMI滤波器原理与设计研究 魏应冬,吴燮华 (浙江大学电气工程学院,浙江 杭州 310027) 摘要:在开关电源中,EMI滤波器对共模和差模传导噪声的抑制起着显著的作用。在研究滤波器原理的基础上,探讨了一种对共模、差模信号进行独立分析,分别建模的方法,最后基于此提出了一种EMI滤波器的设计程序。 关键词:开关电源;EMI滤波器;共模;差模 0 引言 高频开关电源由于其在体积、重量、功率密度、效率等方面的诸多优点,已经被广泛地应用于工业、国防、家电产品等各个领域。在开关电源应用于交流电网的场合,整流电路往往导致输入电流的断续,这除了大大降低输入功率因数外,还增加了大量高次谐波。同时,开关电源中功率开关管的高速开关动作(从几十kHz到数MHz),形成了EMI(electromagnetic interference)骚扰源。从已发表的开关电源论文可知,在开关电源中主要存在的干扰形式是传导干扰和近场辐射干扰,传导干扰还会注入电网,干扰接入电网的其他设备。 减少传导干扰的方法有很多,诸如合理铺设地线,采取星型铺地,避免环形地线,尽可能减少公共阻抗;设计合理的缓冲电路;减少电路杂散电容等。除此之外,可以利用EMI滤波器衰减电网与开关电源对彼此的噪声干扰。 EMI骚扰通常难以精确描述,滤波器的设计通常是通过反复迭代,计算制作以求逐步逼近设计要求。本文从EMI滤波原理入手,分别通过对其共模和差模噪声模型的分析,给出实际工作中设计滤波器的方法,并分步骤给出设计实例。 1 EMI滤波器设计原理 在开关电源中,主要的EMI骚扰源是功率半导体器件开关动作产生的d v/d t 和d i/d t,因而电磁发射EME(Electromagnetic Emission)通常是宽带的噪声信号,其频率范围从开关工作频率到几MHz。所以,传导型电磁环境(EME)的测量,正如很多国际和国家标准所规定,频率范围在0.15~30MHz。设计EMI滤波器,就是要对开关频率及其高次谐波的噪声给予足够的衰减。基于上述标准,通常情况下只要考虑将频率高于150kHz的EME衰减至合理范围内即可。 在数字信号处理领域普遍认同的低通滤波器概念同样适用于电力电子装置中。简言之,EMI滤波器设计可以理解为要满足以下要求: 1)规定要求的阻带频率和阻带衰减;(满足某一特定频率f stop有需要H stop的衰减);

EMI滤波元件和滤波器介绍

1)EMI滤波元件与滤波器的种类 滤波器的种类繁多,除了一些传统的电感、电容及其组合外,还有多种新技术产品,其用法各不相同。根据应用场合不同,可把它们分为三大类: ①在交、直流电源部分使用的滤波器:电源滤波器、磁环和磁珠等; ②在信号线上使用的滤波器:信号滤波器、磁环和磁珠、穿心电容、滤波连接器 (即滤波器阵列)等; ③在印刷电路板上使用的滤波器:去耦电容、片状(表面安装式)滤波器、磁珠 等。 3)电感器与电感型滤波器 线圈与其回流部分就可构成一个传统的电感器,通常有单线圈或多线圈式的。电感器可按 其环绕的磁芯来分类,最常见的两种类型是空气磁芯和磁性磁芯。磁性磁芯电感器(简称 磁芯电感)又可按其磁芯是开路或闭路作进一步分类。另外,目前广泛应用的铁氧体磁环(或磁珠),虽然在物理概念上讲起变压器的作用,它也更象一个随频率变化的可变电阻,但是人们通常还是把它当作电感器来考虑。 实际应用中的电感器,其绕制导线中必然含有寄生的串联电阻及绕线间的分布电容,因此 应用中会在某些频率上产生谐振现象。衡量电感器性能的主要参数有:分布电容、有效电感、品质因数Q、自谐振频率和饱和电流等。这些都是应用中应该考虑的。 ①普通线圈式电感器 具有同样体积和匝数的开路磁芯电感比空气芯电感有大得多的电感量和Q值,闭路磁芯情况会更好。电感器的一个重要特性是产生杂散磁场和对杂 散磁场敏感。空气芯或开路磁芯电感器最容易引起干扰。,因为其磁通从电感器扩展到相 当大的距离。就对磁场的敏感度而言,磁芯电感器比空气芯电感器敏感得多,而开路磁芯 是最敏感的,因为磁芯(低磁阻通路)集中了外部磁场并引起更多的磁通流过线圈。 普通电感型滤波器一般只用于低频滤波。在高频条件下,其插入损耗开始降低。这是因为 随着频率的增加,当频率超过电感器的自谐振频率后,寄生电容的阻抗开始降低从而引起 电感器的阻抗降低。这样一来,高频噪声便得不到良好的抑制而通过电感器引起噪声泄漏。 ②铁氧体磁环电感器 空心铁氧体磁环可以套在导线上,而带引线的铁氧体磁珠则串联在导线中。带引线的铁氧 体磁环具有简单的结构,如图6所示,因为通过磁芯可提供一个良好的回流端,从而其寄 生电容较小。不带引线的铁氧体磁环情况一样。所以,铁氧体磁环电感器具有良好的高频 特性,其工作频率可达1GHz或更高。它可以应用在低阻抗电路中的高频滤波和去耦。 4)脉冲电压吸收器 对瞬态脉冲电压(如静电放电、浪涌、脉冲群等)的干扰,可采取滤波或吸收的措施。但 滤波器对幅值较大的瞬态电压抑制能力有限,有效的办法就是采用脉冲电压吸收器。脉冲 电压吸收器有避雷管、压敏电阻和瞬变电压吸收二极管(TVS)。目前市场上已有片状式 的压敏电阻及TVS阵列供应。(因为严格地讲,脉冲电压吸收技术并不属于滤波的范畴,所以这里不再对其做详细介绍。如有需要,请参考相关资料及产品手册。)

射频分布参数滤波器的仿真

实验4 分布参数滤波器的仿真 实验目的: 通过仿真理解和掌握微带滤波器的实现方法。 实验原理: 1.理查德(Richards)变换 通过理查德(Richards)变换,可以将集总元器件的电感和电容用一段终端短路或终端开路的传输线等效。终端短路和终端开路传输线的输入阻抗具有纯电抗性,利用传输线的这一特性,可以实现集总元器件到分布参数元器件的变换。2.科洛达(Kuroda)规则 科洛达(Kuroda)规则是利用附加的传输线段,得到在实际上更容易实现的滤波器。例如,利用科洛达规则即可以将串联短截线变换为并联短截线,又可以将短截线在物理上分开。在科洛达规则中附加的传输线段称为单位元器件,单位 。 元器件是一段传输线,当f = f0时这段传输线长为8 3.设计步骤: 1.根据设计要求选择归一化滤波器参数 2.用λ/8传输线替换电感和电容 3.根据Kuroda规则将串联短线变换为并联短线 4.反归一化并选择等效微带线 实验内容: 1.设计一个微带短截线低通滤波器,该滤波器的截止频率为4GHz,通带内波纹为3dB,滤波器采用3阶,系统阻抗为50Ω。 实验步骤: 微带短截线低通滤波器设计举例 下面设计一个微带短截线低通滤波器,该滤波器的截止频率为4GHz,通带内波纹为3dB,滤波器采用3阶,系统阻抗为50Ω。设计微带短截线低通滤波器的步骤如下。 (1)滤波器为3阶、带内波纹为3dB的切比雪夫低通滤波器原型的元器件值为 集总参数低通原型电路如图11.29所示。 (2)利用理查德变换,将集总元器件变换成短截线,如图11.30(a)所示,图中短截线的特性阻抗为归一化值。 (3)增添单位元器件,然后利用科洛达规则将串联短截线变换为并联短截线,如图11.30(b)所示,图中短截线的特性阻抗为归一化值。

EMI电源滤波器基本知识介绍

EMI电源滤波器基本知识介绍 电磁干扰(EMI)电源滤波器(以下简称滤波器)是由电感、电容组成的无源器件。实际上它起两个低通滤波器的作用,一个衰减共模干扰另一个衰减差模干扰。它能在阻带(通常大于10KHz)范围内衰减射频能量而让工频无衰减或很少衰减地通过。EMI电源滤波器是电子设备设计工程师控制传导干扰和辐射电磁干扰 的首选工具 (一)EMI电源滤波器部分技术参数简介 插入损耗 滤波器的插入损耗是不加滤波器时从噪声源传递到负载的噪声电压与接入滤波器时负载上的噪声电压之比。插入损耗衡量EMI电源滤波器电性能的重要参数,用下式表示:Eo IL=20log--- E 式中:Eo------不加滤波器时,负载上的干扰噪声电平。 E------接入滤波器后,同一负载上的干扰噪声电平。 干扰方式有共模干扰和差模干扰两种,其定义为:共模干扰:叠加于火线(P)、零线(N)和地线(E)之间的干扰电压。 差模干扰:叠加于火线(P)和零线(N)之间的干扰电压。 因此插入损耗又分为共模插入损耗和差模插入损耗,插入损耗的测试原理图 如下:

泄漏电流:滤波器的泄漏电流是指在250VAC的电压下,火线和零线与外壳间流过的电流。它主要取决于滤波器中的共模电容。从插入损 耗考虑,共模电容越大,电性能越好,此时,漏电流也越大。但从安全方面考虑,泄漏电流又不能过大,否则不符合安全标准要求。尤其是一些 医疗保健设备,要求泄漏电流尽可能小。因此,要根据具体设备要求来确定共模 电容的容量。泄漏电流测试电路如下所示 耐压测试 为确保(交流)电源滤波器的质量,出厂前全部进行耐压测试。测试标准为: 火线与地线(或零线与地线)之间施加频率为50Hz的1500VAC高压,时 间一分钟,不发生放电现象和咝咝声。 火线与零线之间施加1450V直流高压,时间一分钟,不发生放电现象和咝 咝声 (二)EMI电源滤波器的选用 根据设备的额定工作电压、额定工作电流和工作频率来确定滤波器的类型。滤波器的额定工作电流不要取的过小,否则会损坏滤波器或降低滤波器的寿命。但额定工作电流也不要取的过大,这是因为电流大会增大滤波器的体积或降低滤波器的电性能,为了既不降低滤波器的电性能,又能保证滤波器安全工作,一般按设备额定电流的1.2倍来确定滤波器的额定工作电流。 根据设备现场干扰源情况,来确定干扰噪声类型,是共模干扰还是差模干扰,这样才能有针对性的选用滤波器。如不能确定干扰类型,可通过实际试探来确定

集总参数带通滤波器

课程设计Ⅳ报告 题目集总参数带通滤波器的设计 所在院(系) 学生姓名学号 指导教师 完成地点 年月日

基于ADS的集总参数带通滤波器的设计 摘要:滤波器在通信系统中应用较为广泛,利用滤波器的选频作用,可以滤除通信中的干扰噪声或测试中进行频谱分析。本文利用ADS软件设计一款带通滤波器,并对其进行优化和瞬态仿真分析。经过分析得出,在满足其他各项设计指标要求的前提下,优化后的滤波器选频特性得到明显提高。 关键词:带通滤波器;ADS;优化仿真;瞬时仿真

利用ADS软件设计一个集总参数带通滤波器,集总参数带通滤波器设计指标如下。 带通滤波器的中心频率为150MHz。 通带频率范围为140MHz到160MHz。 通带内最大衰减为3dB。 在100MHz和200MHz时衰减大于30dB。 特性阻抗选为50Ω。

引言.............................................................................................................................. - 1 - 一.创建原理图......................................................................................................... - 2 - 二.利用设计向导生成集总参数带通滤波器原理图........................................... - 2 - 三.观察原理图的仿真结果 .................................................................................... - 4 - 四.实现集总参数带通滤波器的原理图 ............................................................... - 7 - 1.创建新设计.................................................................................................... - 7 - 2.设计原理图.................................................................................................... - 7 - 3.原理图仿真与优化..................................................................................... - 11 - 参考文献.................................................................................................................... - 17 -

电源滤波器设计与使用原则分析

电源滤波器设计与使用原则分析 中心议题: ?城市轨道交通控制系统和电源系统需要加装滤波器 ?介绍电源滤波器的基本概念、参数选取以及安装原则等几个方面 ?分析电源滤波器得出相关结论 解决方案: ?安装无源EMI滤波器,减少干扰和衰减 ?采用横截面积较大的磁芯绕制成多匝线圈,得到共模电感,减小差模电感 ?串联电感和并联的滤波电容不能选择太大 ?正确安装滤波器,获得预期的衰减特性 引言 为了符合国际电磁兼容标准的要求,使用高频开关器件的电源电子电路必须安装合适的电磁干扰滤波器(以下简称EMI滤波器),以阻止频率范围为150kHz~30MHz的传导干扰侵入电源网络。由于城市轨道交通的特殊性,其共模和差模干扰很容易引起车载设备传导和辐射干扰升高,使其无法达到电磁兼容标准的要求。为此,必须在导线和电子设备之间的供电部分安装一个合适的无源EMI滤波器,将干扰衰减到所要求的程度。 常用设计滤波器的公式和图表是在其源阻抗和负载阻抗匹配情况下得出的。而EMI滤波器存在阻抗失配问题,因此在这种滤波器的实际设计中通常采用试探法。但采用试探法时,由于高频时寄生参数起主导作用以及对噪声源的内阻抗不了解,使得选择正确的设计参数值变得非常困难。对于共模干扰尤其如此,因为其大小在很大程度上就取决于电路的布置和电路的寄生参数。 本文结合研究和设计电源滤波器的实践,在简化电源滤波器设计过程的同时,仍能满足实际应用场合的需要。 电源滤波器中共模扼流圈内磁通的分析 电源滤波器中共模扼流圈的作用,一般采用以下论述:“共模扼流圈管芯两侧的磁场相互抵消,因此不存在磁通使管芯饱和”。尽管这种论述对共模扼流圈作用的直觉叙述具体化了,但实质并非如此。因为根据电磁场理论中的麦克斯韦方程,可以得到以下结果: 假设电流密度J产生磁场H,则附近的另一个电流不会抵消或阻止磁场或由此而产生的电场; 同样一个相邻的电流可以导致磁场路径的改变; 在环形共模电感的特殊场合中,每条引线中的差模电流密度可假定是相等的,且方向相反。由此而产生的磁场必定在环形磁芯周边上的总和为零,而在其外部的总和则不为零。

非常好的滤波器基础知识

非常好的滤波器基础知识 滤波器是射频系统中必不可少的关键部件之一,主要是用来作频率选择----让需要的频率信号通过而反射不需要的干扰频率信号。经典的滤波器应用实例是接收机或发射机前端,如图1、图2所示: 从图1中可以看到,滤波器广泛应用在接收机中的射频、中频以及基带部分。虽然对这数字技术的发展,采用数字滤波器有取代基带部分甚至中频部分的模拟滤波器,但射频部分的滤波器任然不可替代。因此,滤波器是射频系统中必不可少的关键性部件之一。滤波器的分类有很多种方法。例如:按频率选择的特性可以分为:低通、高通、带通、带阻滤波器等; 按实现方式可以分为:LC滤波器、声表面波/体声波滤波器、螺旋滤波器、介质滤波器、腔体滤波器、高温超导滤波器、平面结构滤波器。 按不同的频率响应函数可以分为:切比雪夫、广义切比雪夫、巴特沃斯、高斯、贝塞尔函数、椭圆函数等。 对于不同的滤波器分类,主要是从不同的滤波器特性需求来描述滤波器的不同特征。 滤波器的这种众多分类方法所描述的滤波器不同的众多特征,集中体现出了实际工程应用中对滤波器的需求是需要综

合考量的,也就是说对于用户需求来做设计时,需要综合考虑用户需求。 滤波器选择时,首先需要确定的就是应该使用低通、高通、带通还是带阻的滤波器。 下面首先介绍一下按频率选择的特性分类的高通、低通、带通以及带阻的频率响应特性及其作用。 巴特沃斯切比雪夫带通滤波器 巴特沃斯切比雪夫高通滤波器 最常用的滤波器是低通跟带通。低通在混频器部分的镜像抑制、频率源部分的谐波抑制等有广泛应用。带通在接收机前端信号选择、发射机功放后杂散抑制、频率源杂散抑制等方面广泛使用。滤波器在微波射频系统中广泛应用,作为一功能性部件,必然有其对应的电性能指标用于描述系统对该部件的性能需求。对应不同的应用场合,对滤波器某些电器性能特性有不同的要求。描述滤波器电性能技术指标有: 阶数(级数) 绝对带宽/相对带宽 截止频率 驻波 带外抑制 纹波 损耗

:开关电源中常用EMI滤波器

摘要:开关电源中常用EMI滤波器抑制共模干扰和差模干扰。三端电容器在抑制开关电源高频干扰方面有良好性能。文中在开关电源一般性能EMI滤波器电路结构基础上,给出了使用三端电容器抑制高频噪声的滤波器结构。并使用PSpice软件对插入损耗进行仿真,给出了仿真结果。 1 开关电源特点及噪声产生原因 随着电子技术的高速发展,电子设备种类日益增多,而任何电子设备都离不开稳定可靠的电源,因此对电源的要求也越来越高。开关电源以其高效率、低发热量、稳定性好、体积小、重量轻、利于环境保护等优点,近年来取得快速发展,应用领域不断扩大。开关电源工作在高频开关状态,本身就会对供电设备产生干扰,危害其正常工作;而外部干扰同样会影响其正常工作。 开关电源干扰主要来源于工频电流的整流波形和开关操作波形。这些波形的电流泄漏到输入部位就成为传导噪声和辐射噪声,泄漏到输出部位就形成了波纹问题。考虑到电磁兼容性的有关要求,应采用EMI电源滤波器来抑制开关电源上的干扰。文中主要研究的是开关电源输入端的EMI滤波器。 2 EMI滤波器的结构 开关电源输入端采用的EMI滤波器是一种双向滤波器,是由电容和电感构成的低通滤波器,既能抑制从交流电源线上引入的外部电磁干扰,还可以避免本身设备向外部发出噪声干扰。开关电源的干扰分为差模干扰和共模干扰,在线路中的传导干扰信号,均可用差模和共模信号来表示。差模干扰是火线与零线之间产生的干扰,共模干扰是火线或零线与地线之间产生的干扰。抑制差模干扰信号和共模干扰信号普遍有效的方法就是在开关电源输入电路中加装电磁干扰滤波器。EMI滤波器的电路结构包括共模扼流圈(共模电感)L,差模电容Cx和共模电容Cy。共模扼流圈是在一个磁环(闭磁路)的上下两个半环上,分别绕制相同匝数但绕向相反的线圈。两个线圈的磁通方向一致,共模干扰出现时,总电感迅速增大产生很大的感抗,从而可以抑制共模干扰,而对差模干扰不起作用。为了更好地抑制共模噪声; 共模扼流圈应选用磁导率高,高频性能好的磁芯。共模扼流圈的电感值与额定电流有关。差模电容Cx通常选用金属膜电容,取值范围一般在0.1~1μF。Cy用于抑制较高频率的共模干扰信号,取值范围一般为2200~6800 pF。常选

f.i.r.滤波器设计报告

一、设计指标: ● 设计一个16阶低通线性相位FIR 滤波器; ● 要求采样频率Fs 为80KHz ; ● 截止频率Fc 为10KHz ; ● 采用函数窗法设计,且窗口类型为Kaiser ,Beta 为0.5; ● 输入序列位宽为10位的有符号数(最高位为符号位); ● 输出序列位宽为10位的有符号数(最高位为符号位)。 二、线性相位fir 滤波器理论: 有限长脉冲响应(FIR )滤波器的系统函数只有零点,除原点外,没有极点,因而FIR 滤波器总是稳定的。如果他的单位脉冲响应是非因果的,总能够方便的通过适当的移位得到因果的单位脉冲响应,所以FIR 滤波器不存在稳定性和是否可实现的问题。它的另一个突出的优点是在满足一定的对称条件时,可以实现严格的线性相位。由于线性相位滤波器不会改变输入信号的形状,而只是在时域上使信号延时,因此线性相位特性在工程实际中具有非常重要的意义,如在数据通信、图像处理等应用领域,往往要求信号在传输和处理过程中不能有明显的相位失真,因而线性相位FIR 滤波器得到了广泛的应用。 长度为M 的因果有限冲激响应滤波器由传输函数H (z )描述: 1 0()()M k k H z h k z --==∑ (1) 它是次数为M-1的z -1的一个多项式。在时域中,上述有限冲激响应滤波器的输入输出关系为: 1 0()()()M k y n h k x n k -==-∑ (2) 其中y (n )和x (n )分别是输出和输入序列。 有限冲激响应滤波器的一种直接型实现,可由式(2)生成,M=5的情况如图2-1(a )所示。其转置,如图2-1(b )所示,是第二个直接型结构。通常一个长度为M 的有限冲激响应滤波器由M 个系数描述,并且需要M 个乘法器和(M-1)个双输入加法器来实现。

电磁干扰(EMI)滤波器电路

电磁干扰(EMI)滤波器电路 1、功能定义 所谓电磁干扰(EMI),是因电磁波造成设备、传输通道或系统性能降低的一种电磁现象。 EMI以辐射和传导两种方式传播。 辐射方式:能量通过磁场或电场耦合,或以干扰源与受扰设备间的电磁波形式传播。 传导方式:能量通过电源线、数据线、公共地线等而产生或接收。 传导干扰有差模(DM对称模式)和共模(CM非对称模式)两种类型。 目前抑制EMI的技术措施有屏蔽、接地(浮地、单点接地和接地网)与滤波。 我这里所说的即为滤波电路,它主要用于高频开关电源和电子镇流器的输入回路及电源的输出回路中中。该电路用于滤除电源的输入和输出的噪声(150kHz~30MHz),消减对直流稳压电源的传导干扰。 2、适用范围 A、CISPR标准(电机、家用电器、照明设备等射频干扰设备) B、VDE0871标准(有目的的高频波发生器的电磁兼容标准)

C、FCC标准(工业、科学、医疗设备的电磁兼容标准) D、VCCI标准(在工业和商业区使用的家用电器及其类似装置) 3、设计规范 3.1 电路原理图及其描述

该电路主要对输入进行滤波,削弱对稳压电源或电子镇流器的输入的传导干扰。其中,C1、C2和C4、C5及Lc用于滤除共模噪声,C3和C6用于滤除差模噪声。输出端一般接一电解电容,负载电流大时还需接高频电容,用于消除负载端对输入的噪声干扰。C1=C2、C4=C5、C3=C6,Lc=(7~30)mH、磁材使用铁氧体材料。 EMI滤波器有C型(纯电容)、L型(一个电感和一个电容)、T型(两只电感和一个电容)、π型(一个电感和两只电容)、双π型(对称绕在同一磁芯上的两个电感和两只电容)等。上图中电路为最常用的电路。 电源的滤波和保护电路 [作者:耗子转贴自:网上转载点击数:1477 更新时间:2004-4-28 文章录入:admin ] 一、滤波电路 1、电磁干扰 电脑电源是把工频交流整流为直流,再通过开关变为高频交流,其后再整流为稳定直流的一种电源,这样就有工频电源的整流波形畸变产生的噪声与开关波形会产生大量的噪声,噪声在输入端泄漏出去就表现为辐射噪声和传导噪声,在输出端泄漏出去就表现为纹波。辐射噪声频率高于30MHZ,会传播到空间中;传导噪声频率在30MHZ以下,主要干扰音频设备,通过电源线传播到电网中。 外部噪声会进入到电网中的其它电子设备中影响电子设备的运行,而供给负载的电源产生的噪声也会泄漏到电源外部,因此,电脑电源必须有阻止这些噪声进出的功能。 在电脑电源的输入端,需要有由电容和电感构成的滤波器,用于抑制交流电产生的EMI。在电源的输出端,工频电源的整流波形畸变引起的噪声,以及开关工作波形产生的噪声呈现为纹波,因此在输出端也需要接入滤波器,用于抑制直流电产生的EMI。 2、输入端第一道EMI滤波电路 第一道EMI滤波电容是由X电容(白盒子)、线圈型电感和两个Y电容构成的,用来抑制输入端的高频干扰,以及PWM自身产生的高频干扰对电网的污染。

滤波器设计流程

滤波器设计流程(TUMIC) 实验要求: 用 =9.6,h=0.5mm的基板设计一个微带耦合线型的带通滤 r 波器,指示如下:中心频率 f=5.5GHz; 实验步骤: 1.计算阶次: 按照教材P109的计算步骤,仍然选用0.1db波纹的切比雪夫低通原型。根据中心频率、相对带宽和要求的阻带衰减条件,我们可得出最后n=4。 2.用TUMIC画出拓扑图: 因为TUMIC里没有对称耦合微带线,所以我们采用不对称耦合微带线 将两个宽度设为相同,即实现对称耦合微带线的作用。如图所示:

在每个耦合微带线的2、4两个端口,我们端接微带开路分支,将微带部分的长度设置为很小,而宽度设置为与端接的耦合微带线相同即可,即此部分微带基本不产生作用。如图: 因为n=4,我们采用5个对称耦合微带线。可知它们是中心对称的,即1和5,2和4为相同的参数。在每两段耦合微带线连接处,因为它们的宽度都不相同,所以我们需要采用一个微带跳线来连接,如图:

注意:有小蓝点的一端为1端口,另一端为2端口。 参数设置如下图: 条件中,要我们设计两端均为50欧姆的微带线。我们用此软件本身带有的公式计算出它的设计值即可。不过要注意一点,我们需在设置好基片参数(见后面)的情况下再进行计算。如图:

最后在两端加上端口,并标注1,2端口。如图: 3.参数设置: ⑴基片设置:即按设计要求里的 和h进行设置。如图: r

⑵变量设置: 上面讲到我们实际上是使用三组耦合微带线,即有三组参数。考虑每个对称耦合微带线都有w(宽度),s(间距),l(长度)三个参数。我们进行设计的目的就是通过计算机优化得到我们需要的这些参数的值,所以在这里,我们要将这些参数设置为变量。如图:

直流EMI滤波器设计原则

直流电源EMI滤波器的设计原则、网络结构、参数选择 1设计原则——满足最大阻抗失配 插入损耗要尽可能增大,即尽可能增大信号的反射。设电源的输出阻抗和与之端接的滤波器的输人阻抗分别为ZO和ZI,根据信号传输理论,当ZO≠ZI时,在滤波器的输入端口会发生反射,反射系数 p=( ZO- ZI)/( ZO+ ZI) 显然,ZO与ZI相差越大,p便越大,端口产生的反射越大,EMI信号就越难通过。所以,滤波器输入端口应与电源的输出端口处于失配状态,使EMI信号产生反射。同理,滤波器输出端口应与负载处于失配状态,使EMI信号产生反射。即滤波器的设什应遵循下列原则:源内阻是高阻的,则滤波器输人阻抗就应该是低阻的,反之亦然。 负载是高阻的,则滤波器输出阻抗就应该是低阻的,反之亦然。 对于EMI信号,电感是高阻的,电容是低阻的,所以,电源EMI滤波器与源或负载的端接应遵循下列原则: 如果源内阻或负载是阻性或感性的,与之端接的滤波器接口就应该是容性的。 如果源内阻或负载是容性的,与之端接的滤波器接口就应该是感性的。 2 EMI滤波器的网络结构 EMI信号包括共模干扰信号CM和差模干扰信号DM,CM和DM的分布如图1所示。它可用来指导如何确定EMI滤波器的网络结构和参数。 EMI滤波器的基本网络结构如图2所示。 上述4种网络结构是电源EMI滤波器的基本结构,但是在选用时,要注意以下的间题: l)双向滤波功能——电网对电源、电源对电网都应该有滤波功能。 2)能有效地抑制差模干扰和共模干扰——工程设计中重点考虑共模干扰的抑制。 3)最大程度地满足阻抗失配原则。

几种实际使用的电源EMI滤波器的网络结构如图3所示。 3电源EMI滤波器的参数确定方法 a)放电电阻的取值 在允许的情况下,电阻取值要求越小越好,需要考虑以下情况: 第一,电阻要求采用二级降额使用,保证可靠性。降额系数为0.75 V,0. 6 W。根据欧姆定律可求出n>(0.75Ve)2/(0.6 Pe)。 第二,经过雷击浪涌后有残压,其瞬时值一般在1000 V取值;其瞬时功率值不能超过额定功率值的4倍,也可求出R>(Vcy)2/(4Pe)。 两者综合考虑取R值,一般情况下,电阻R的取值为75-200 K之间。功率为2-3 W。金属模电阻。 b)Cx电容的取值 在允许的情况下,容量要求越大越好,其值很难确切地估算出来,一般情况下,要求取值在l-5uf之间(对每个电容)。电容的耐压值必须经过雷击浪涌后取值,有残压,其瞬时值一般在1000V/s时不损坏,按二级降额的原则选取,取值在275 V,频率特性与电容的取值有关,取值越小,频率特性越好。

开关电源EMI滤波器的正确选择与使用

开关电源EMI滤波器的正确选择与使用 1插入损耗和滤波电路的选择 在用户选择滤波器时,最关心插入损耗性能。但是,往往插入损耗相近的滤波器,在实际运用中效果相差甚远。究其主要原因是,相近插入损耗的滤波器可由不同的电路实现。这和理论分析是吻合的,因为插入损耗本身是个多解函数。 所以,选择滤波器时首先应选择适合你所用的滤波电路和插入损耗性能。要做到这一点,就要求了解所使用电源的等效噪声源阻抗和所需要对噪声的抑制能力。这符合“知己知彼,百战百殆”的客观规律。 那么滤波电路和电源等效噪声之间存在什么样的关系呢? 众所周知,EMI滤波器是由L、C构成的低通器件。为了在阻带内获得最大衰减,滤波器输入端和输出端的阻抗需与之连接的噪声源阻抗相反,即对低阻抗噪声源,滤波器需为高阻抗(大的串联电感);对高阻抗噪声源,滤波器就需为低阻抗(大的并联电容)。对于EMI滤波器,这些原则应用于共模和差模中。 如按此原则选用的滤波器,在实际运用中仍存在效果相差很多的现象,特别发生在重载和满载的情况下。造成这一问题的主要原因可能是滤波器中的电感器件在重载和满载时,产生饱和现象,致使电感量迅速下降,导致插入损耗性能大大变坏。其中尤以有差模电感的滤波器为多。因差模电感要流过电源火线或零线中的全部工作电流,如果差模电感设计不当,电流一大,就很容易饱和。当然也不排除共模扼流圈,因生产工艺水平较差,两个绕组不对称,造成在重载或满载时产生磁饱和的可能。 图1 共模滤波器模型 1.1.2差模滤波电路 由于开关电源的开关频率谐波噪声源阻抗为低阻抗,所以与之相对应的滤波器输出端应是高阻抗串联大电感LDM。 AC电网火线和零线之间是低阻抗,所以与之对应的滤波器输入端也应是高阻抗串联大电感LDM。如果想再进一步抑制差模噪声,可以在滤波器输入端并接线间电容CX1,条件是它的阻抗要比AC电网火线、零线之间的阻抗还要低得多。 开关电源工频谐波噪声源阻抗是高阻抗,所以与之相对应的滤波器输出端应是低阻抗并联大电容CX2。 合成的差模滤波电路参见图2。 最后,完整的共、差模滤波电路参见图3。

逆变器滤波器参数设置

逆变器滤波器参数设置 Revised by Chen Zhen in 2021

1滤波特性分析 输出滤波方式通常可分为:L 型、LC 型和 LCL 型, 滤波方式的特点比较如下: (1)中的单 L 型滤波器为一阶环节,其结构简单,可以比较灵活地选择控制器且设计相对容易,并网控制策略不是很复杂,并网容易实现,是并网逆变器常用的滤波方式。缺点在于其滤波能力有限,比较依赖于控制器的性能。 (2)中的 LC 型滤波器为二阶环节, C 的引入可以兼顾逆变器独立、并网双模式运行的要求,有利于光伏系统功能的多样化。然而,滤波电容电流会对并网电流造成一定影响。 (3)中的 LCL 型滤波器在高频谐波抑制方面更具优势,在相同高频电流滤波效果下,其所需总电感值较小。但因为其为三阶环节,在系统中引入了谐振峰,必须引入适当的阻尼来削减谐振峰,这就导致了其控制策略复杂,系统稳定性容易受到影响。当三相光伏逆变器独立运行时,一般均采用 LC 型滤波方式。 并网逆变器的滤波器要在输出的低频段(工频 50Hz)时要尽量少的衰减,而要尽量衰减输出的高频段(主要是各次谐波)。 采用伯德图来分析各种滤波器的频域响应。[1] 一般并网逆变器滤波部分的电感为毫亨级,电容为微法级,这里电感值取 1m H,电容取 100u F,电感中的电阻取Ω,在研究 LCL滤波器时,取电感值为 L1=L2= H,电阻 R1=R2=Ω。

对于单电感滤波器,以输入电压和输出电流为变量,并且实际的电感中含有一定电阻,其传递函数为: 对于采用 LC 滤波器的并网逆变器,在并网运行时,电网电压直接加在滤波器中的电容两端,因此此时电容不起滤波作用,可以看作是一个负载,从滤波效果上来说,它等同于单电感滤波器。并且对于被控量选取为电感电流IL 的采用 LC滤波的并网逆变器,由于有电容的作用,其控制电流IL与实际输出电流Io 之间有如下图所示:上式中可以看出,电感电流LI 将受到电网电压gU 的变化与并网电流0I 的影响。所以在控制过程中要参照电网电压的有效值不断调整基准给定的幅值与相位。 对于 LCL 滤波电路,逆变器输出电流与输入电压之间的传递函数可以表示为: 对比可知,可以很清楚的看到,在低频时,单 L 型滤波器与 LCL 型滤波器的频域响应相同,都是以 20d B/dec 的斜率进行衰减。但在高频部分,单 L型滤波器仍然以 20d B/dec 进行衰减,但 LCL 型滤波器以 60d B/dec 的斜率进行衰减,表明相对于单 L 型滤波器,LCL 型滤波器能够更好地对高频谐波进行衰减。将式中的 s 用 jω代入后可以看出,低频时两式分母中含有ω的项都很小,特别是ω的高次方项,可以忽略不计。因此在低频时,表达式中主要起作用的是电阻部分。而随着ω的不断上升,两式分母中含有ω的项不断增大,特别是含有ω的高次方项,因此在高频段,其主要作用的是分母中含有ω的 3 次方项。因此在高频段,LCL 滤波器是以 60d B/dec 的斜率进行衰减。对单 L 型、LC 型及 LCL 型滤波器进行比较。 在低频时,三者的滤波效果相同,并且在并网运行时 LC 型滤波器中的电容只相当于负载,不起滤波作用。而 LCL 型滤波器对高频谐波的滤波效果要优于单 L 型与 LC 型滤波器。

相关主题