搜档网
当前位置:搜档网 › 风力发电机齿轮箱结构及其主要故障类型的处理方法

风力发电机齿轮箱结构及其主要故障类型的处理方法

风力发电机齿轮箱结构及其主要故障类型的处理方法
风力发电机齿轮箱结构及其主要故障类型的处理方法

风力发电机齿轮箱结构及其主要故障类型的处理方法摘要

第一章绪论

1.1论文的目的和意义

1.2风力发电的现状

1.3风力发电齿轮箱的研究现状

第二章齿轮箱结构

2.1风力发电机的整体结构

2.2齿轮箱的结构及其传动方案

第三章风力发电机组齿轮箱故障类型

3.1齿轮箱的主要故障类型

3.2风力发电机组齿轮箱振动故障分析

3.3风力发电机组传动齿轮油温故障分析

第四章风力发电的发展存在问题和主要趋势

4.1我国风电齿轮箱设计生产存在问题

4.2风电发展的主要趋势

致谢

参考文献

中文摘要

摘要:风电产业的飞速发展促成了风电装备制造业的繁荣,风电齿轮箱作为风电机组的核心部件,倍受国内外风电相关行业和研究机构的关注。但由于国内风电齿轮箱的研究起步较晚,技术薄弱,特别是兆瓦级风电齿轮箱,主要依靠引进国外技术。因此,急需对兆瓦级风电齿轮箱进行自主开发研究,真正掌握风电齿轮箱设计制造技术,以实现风机国产化目标。

本文以兆瓦级风力发电机齿轮箱为对象,通过方案选取,齿轮参数确定等对其配套的齿轮箱进行阐述。

首先,介绍全球风力发电产业高速发展和国内外风电设备制造业概况,阐述我国风力发电齿轮箱的现状及齿轮箱的研究。

其次,确定齿轮箱的机械结构。选取两级行星派生型传动方案,通过计算,确定各级传动的齿轮参数。对行星齿轮传动进行受力分析,得出各级齿轮受力结果。依据标准进行静强度校核,结果符合安全要求。

然后,论述了风力发电机组齿轮箱故障诊断的主要类型,深入探究风电机组齿轮箱振动故障机理,研究了油温高的故障机理,分析了传动齿轮温度场和热变形的情况。

最后,阐述我国风力发电存在的主要问题和发展前景。

关键词:风电齿轮箱;结构;故障类型;存在问题

ABSTRACT

第一章绪论

1.1 论文的目的、意义

面对当前不可再生能源短缺的境况,许多国家都发展清洁能源,主要有风能、太阳能等,但规模最大的是风力发电。现在风力发电技术已日趋成熟,市场正逐步扩大,风力发电已成为增长最快的可再生能源之一,并具备了与常规能源竞争的能力。

本论文就是建立在对引进的兆瓦级风力发电增速齿轮箱结构技术消化吸收的基础上,对增速齿轮箱在转矩、齿数和分度圆等量的论述,计算轮齿进行接触应力分析和齿根的弯曲强度校核。我国风力发电机组故障中齿轮箱的损坏率在机组部件中最高,达到40%~50%,风力发电机组建在风电场,而风力机传动件的核心部件就是齿轮箱,由于安装环境条件很差,随着载荷的增加,齿轮箱的拆装越发不容易,若出现故障,对发电机组带来的影响很大,维修也非常困难。随着设备的不断升级,例如风力发电机容量的增大,齿轮箱故障所带来的损失越来越大,齿轮箱故障诊断的研究是非常必要的。转动中的齿轮受弯曲载荷、振动等载荷作用,所以发生故障是不可避免的。目前,主要有三种风力发电机,一种依靠齿轮箱增速,一种是直驱风力发电机组,第三种是半直驱风力发电机,第一种的生产技术较为成熟,而且在风电场中,该种风力发电机是主流机型,使用的较多。双馈感应发电机所加装的电力电子变流器的功率占风力机组的30%,虽然没有了齿轮箱,风力机的故障发生率以及维护成本都大幅下降,但为了将直驱风力发电机组联接电网,要给它加装一个全功率的电力电子变流

器,而变流器的价格非常高,增加了发电成本。由于以上两个原因,就目前来说,风电机组齿轮箱故障研究有重要现实意义。

由于我国风电场的齿轮箱受变载荷、强阵风的冲击,环境温度变化较大,齿轮箱故障占到风力发电机组故障总数的12%,所占比重较大,应高度重视,尽可能降低故障发生率。由于风力发电机组齿轮箱故障发生频繁,齿轮箱的维修费用也相当高,通过故障机理分析,我们在一定程度上了解齿轮箱的故障特性、故障原因,加强齿轮箱的故障诊断研究对提高风力机工作效率、保证齿轮箱的正常运行,具有十分重要的实践意义。齿轮箱的故障分析,有助于在日常监测中及时发现、正确判断故障,当出现故障后,在故障早期及时采取有效措施避免故障继续发展。

综上所述,只有高度重视并不断提高风力发电机组齿轮箱的结构设计和运行维护能力,才能保证风力发电机组齿轮箱及机组的良好运行。

1.2 风力发电国内外发展现状

风能是一种清洁的永续能源,与传统能源相比,风力发电不依赖外部能源,没有燃料价格风险,发电成本稳定,也没有碳排放等环境成本;此外,可利用的风能在全球范围内分布都很广泛。正是因为有这些独特的优势,风力发电逐渐成为许多国家可持续发展战略的重要组成部分,发展迅速。根据全球风能理事会的统计,全球的风力发电产业正以惊人的速度增长,在过去10年平均年增长率达到28%,2007年年底,全球装机总量达到了9400万千瓦,每年新增2000万

千瓦,意味着每年在该领域的投资额达到了200亿欧元。

许多国家采取了诸如价格、市场配额、税收等各种激励政策,从不同的方面引导和支持风电的发展。在政策的鼓励下,2007年全球风电新装机容量约为2000万千瓦,累计装机9400万千瓦。2008年是风电发展具有标志性的一年:这一年风电成为非水电可再生能源中第一个全球装机超过l亿千瓦的电力资源。风电作为能源领域增长最快的行业,共为全球提供了近20万个就业机会,仅2006年风电场建设投资就接近170亿欧元。欧洲和美国在风电市场中占统治地位,其中德国是目前风电装机最大的国家,装机容量超过2000万千瓦;美国和西班牙也都超过了1000万千瓦:印度是除美国和欧洲之外新装机容量最大的国家,装机总容量也超过600万千瓦。世界风电前十名国家近05至07年发展情况如图1-1所示。

图1-1 世界风电前十名国家近05至07年发展情况就近几年来世界风电发展格局和趋势分析来看,主要有以下几个特征:

(1)风电发展向欧盟、北美和亚洲三驾马车井驾齐驱的格局转变;

(2)风电技术发展迅速,成本持续下降;

(3)政府支持仍然是欧洲风电发展的主要动力;

(4)中国是未来世界风电发展最重要的潜在市场。

全球风能理事会是世界上公认的风电预测的权威机构,掘全球风能理书会的预测,未来五年,全球风电还将保持20%以上的增长速度,到2012年,全球风电装机容量将达到2.4亿千瓦,年发电5000亿干瓦时。风电电力约占全球电力供应的3%。欧洲将继续保持总装机容景第一的位置,亚洲将会超过北美市场排在第二位。

我国幅员辽阔,海岸线长,风能资源丰富。2010年,国家气候中心也采用数值模拟方法对我国风能资源进行评价,得到的结果是:在不考虑青减高原的情况下,全国陆地上离地面lO米高度层风能资源技术可开发量为25.48亿千瓦。近年来,特别是《可再生能源法》实施以来,巾囤的风电产业和风电市场发展十分迅速,主要表现在以下几个方面:

(1)市场规模迅速扩大,如图l-2所示

图1-2我国风电发展现状

(2)风电制造业发展迅猛;

(3)技术转让步伐加快;

(4)风电政策趋揽熟;

(5)外资企业开发中国风电市场的障碍减少。

2010年,全球风电资金15%投向了中国,总额达34亿欧元,中国真正成为全球最大的风电市场。从我国的发展情况来看,我国风电产业将会长期保持快速发展,主要由以下因素的支撑:

(1)国家能源政策升华;

(2)气候变化的推动;

(3)风电技术成熟。

依据目前的趋势,保守估计,到2020年,我国风电累计装机可以达到7000万千瓦。届时风电在全国电力装机中的比例接近6%,风电电量约占总发电量的2.8%。从2020年开始,风电和常规电力相比,成本优势已比较明显。至2030年,风电在全国电力容量中的比重将超过11%,可以满足全国5.7%的电力需求。

1.3风电齿轮箱的发展现状

风电产业的飞速发展促成了风电装备制造业的繁荣,风电齿轮箱作为风电机组中最重要的部件,倍受国内外风电相关行业和研究机构的关注。

风机增速齿轮箱是风力发电整机的配套产品,是风力发电机组中一个重要的机械传动部件,它的重要功能是将风轮在风力作用下所产生的动力传递给发电机,使其得到相应的转速进行发电,它的研究和开发是风电技术的核心,并正向高效、高可靠性及大功率方向发展。

风力发电机组通常安装在高山、荒野、海滩、海岛等野外风口处,经常承受无规律的变相变负荷的风力作用以及强阵风的冲击,并且常年经受酷暑严寒和极端温差的作用,故对其可靠性和使用寿命都提出了比一般机械产品高得多的要求。

风电行业中发展最快,最有影响的国家主要有美国、德国等欧美发达国家,在风电行业中处于统治地位。欧美发达国家早已开发出单机容量达兆瓦级的风力发电机,并且技术相对成熟,具有比较完善的设计理论和丰富的设计经验,而且商业化程度比较高,因此在国际风力发电领域中处于明显的优势和主导地位。

国外兆瓦级风电齿轮箱是随发电机组的开发而发展起来的,Renk、Flender等风电齿轮箱制造公司在产品开发过程中采用三维造型设计、有限元分析、动态设计等先进技术,并通过模拟和试验测试对设计方案进行验证。此外,国外通过理论分析及试验测试对风电齿轮箱的运行性能进行了系统的研究,为风电齿轮箱的设计提供了可靠的依据。

国家标准GB/Tl9703-2003和国际标准IS081400-4:2005都对风电齿轮箱设计提出了具体的设计规范和要求。尽管国际上齿轮箱设计技术已经比较成熟,但统计数据表明,齿轮箱出现故障仍然是风机故障的最主要原因,如图1-3所示,约占风机故障总数的20%左右。

图1-3风机故障类型

由于我同商业化大型风力旋电产业起步较晚,技术上较欧美等风能技术发达国家存在报大差距。我同在九五期间丌始走引进生产技术的路子,通过引进和吸收国外成熟的技术,成功研发出了兆瓦级以下风力发电机。十五期间在国家863计划中重点提出容量更大的兆瓦绒风力发电机组的研究和开发课题。但是最为世界上的风能人国,目前我团大型风力发电机组的开发主要是引进国外成熟的技术,关键就是因为我国的设计水平不高。

目前我国主要有3家公司制造风电齿轮箱:南京高精齿轮有限公司,重庆齿轮箱有限责任公司,杭州前进齿轮箱集团。其中,前两家公司占据了将近70%市场份额。对于现行主流的兆瓦级以风力发电机组,国内的几十家生产厂商绝大多数采用的部是引进国外的成熟技术。由于传递的功率大,对兆瓦绒增速齿轮传动的可靠性和寿命要求非常高。田而增速齿轮的设计成为风力发电机组的瓶颈,是整个风力发电机组稳定运行的关键。

从目前的情况束看,风电齿轮箱市场可发展空叫广阔,齿轮箱驱

动式风电机组仍是市场主流。

第二章齿轮箱结构

2.1风力发电机的整体结构

图2-1风力发电机整体结构图

风力发电机组可分为无齿轮箱驱动的直联式和齿轮箱驱动式两种。目前,齿轮箱驱动型有一定的成本优势,仍是固际上采用的主流结构型式。齿轮箱驱动式风力发电机组的具体结构如图2-1所示.齿轮箱布置在叶轮和发电机之间,它将叶轮受风力作用旋转而产生的动力传递给发电机发电,同时将叶轮输入的根低的转速转变为满足发电机所需的转速。

2.2齿轮箱的结构方案

风机的结构形式主要有两种:水平轴风机;垂直轴风机。目前市场上普遍应用的均为水平轴风力机。本文也主要参考水平轴的结构形式。在风力发电机组中,齿轮箱是一个重要的机械部件,其主要功能是将风轮在风力作用下所产生的动力传递到发电机并使其得到相应的转速。通常风轮的转速较低,远达不到发电机发电要求的转速,必须通过齿轮箱齿轮副的增速作用来实现,故也将齿轮箱称之为增速箱。

根据机组的总体布置要求,有时将与风轮轮毂直接相连的传动轴(俗称大轴)与齿轮箱合为一体,也有将大轴与齿轮箱分别布置,其间利用涨紧套装置或联轴节联接的结构,本文选用后一种方案。为了增加机组的制动能力,在齿轮箱的输出端设置刹车装置,配合变桨距制动装置共同对机组传动系统进行联合制动。

增速箱的设计应在已有工程实际的基础上,对其薄弱环节进行改进。通过工程实际分析总结,风电齿轮箱主要故障表现有:齿轮箱油温过高;齿面点蚀破坏。齿轮箱油液温度过高一般是因为风电机组长时间处于满发状态,润滑油因齿轮箱发热而温度上升超过设定值。解决这一问题需要考虑机舱以及齿轮箱的结构以及相关的风冷与油冷装置。涉及的问题比较复杂,因素比较多,本文暂不做这方面的研究。齿面点蚀是齿轮的操作条件超过金属材料所能承受的极限,带来金属表面疲劳而产生的。点蚀的损耗取决于表面接触应力以及应力循环次数。因此,需要对齿轮啮合过程中的齿面接触应力强度做出分析。

具体到齿轮箱其它部位诸如轴承、轴等,因为很难用试验台来验

证齿轮箱各部分的可靠性,综合考虑,本章主要计算出各级传动的齿轮参数以进行齿面的接触研究,不展开对齿轮箱各个方面进行详细的设计。

中国南车株洲电力机车研究所有限公司通过技术引进,生产1.65MW风力发电机,为了设计与此型风机相配套的增速齿轮箱,提供以下技术指标:

发电机额定功率:1650KW

齿轮箱额定功率:1775KW

使用系数K A:1.3

齿轮箱传动比:98.74+0%/-2%

额定功率时输入转速:18.23转/分

额定功率时输出转速:1800转/分

并明确规定依据IS06336进行齿轮计算,按3倍额定功率计算静强度>1.O,外齿轮制造精度不低于6级,齿面硬度HRC58-62,外齿轮采用17CrNi2MoA。

对于兆瓦级风电齿轮箱,传动比多在100左右,一般有两种传动形式:一级行星+两级平行轴圆柱齿轮传动,两级行星+一级平行轴圆柱齿轮传动。相对于平行轴圆柱齿轮传动,行星传动的以下优点:传动效率高,体积小,重量轻,结构简单,制造方便,传递功率范围大,使功率分流;合理使用了内啮合;共轴线式的传动装置,使轴向尺寸大大缩小而;运动平稳、抗冲击和振动能力较强。在具有上述特点和优越性的同时,行星齿轮传动也存在一些缺点:结构形式比定轴

齿轮传动复杂;对制造质量要求高:由于体积小、散热面积小导致油温升高,故要求严格的润滑与冷却装置。这两种行星传动与平行轴传动相混合的传动形式,综合了两者的优点。

依据提供的技术数据,经过方案比较,总传动比i=98.74,采用两级行星派生型传动,即两级行星传动+高速轴定轴传动。为补偿不可避免的制造误差,行星传动一般采用均载机构,均衡各行星轮传递的载荷,提高齿轮的承载能力、啮合平稳性和可靠性,同时可降低对齿轮的精度要求,从而降低制造成本。

对于具有三个行星轮的行星传动,常用的均载机构为基本构件浮动。由于太阳轮重量轻,惯性小,作为均载浮动件时浮动灵敏,结构简单,被广泛应用于中低速工况下的浮动均载,尤其是具有三个行星轮时,效果最为显著。因此在本文的风电增速箱中,两级行星传动中,均采用中心均载的机构。

图2-2齿轮箱结构简图

第三章风力发电机组齿轮箱故障类型

3.1齿轮箱的主要故障类型

从实际情况来看,齿轮箱的故障主要可以分为以下几类:

1、齿轮故障:点蚀、疲劳剥落、断齿、磨损、锈蚀、齿轮不对中、齿轮偏心等;

2、轴承故障:点蚀、疲劳剥落、断裂、磨损、锈蚀、塑性变形、胶合、保持架损坏:

3.2风力发电机组齿轮箱振动故障分析

风力发电机组齿轮箱的自身振动特性,齿轮箱的振动与其发生故障密不可分,振动对运行状态有很大影响,研究齿轮箱的振动特性,主要是了解其固有振动频率、振型、形变等,要避不同部件固有频率相同发生共振,另外,避免齿轮工作在故障频率。

在国家大力倡导下,风电事业蓬勃发展,风电场装机容量日益增多,风力发电规模也在扩大,风力发电将成为可再生能源发电不可缺少的部分。风力发电机组齿轮箱的振动不可避免,剧烈的振动将引发齿轮偏心、断裂等故障,则应采取必要的减振降噪措施,使噪声声压级符合要求,最常用的解决方法鱿是安装减振支撑。

目前大部分采用三点支撑系统(单轴承结构,见图3-1所示)的风力发电机组,其齿轮箱减振系统主要采用的是轴瓦式弹性支撑,见图3-2所示。轴瓦式齿轮箱减振支撑由上、下两瓣弹性体组成,根据橡

胶层数的不同,结构有所差异。弹性体采用偏心式结构设计,在一定的温度和压力下硫化成型。安装时利用产品的偏心量,通过预压缩的方式将其固定于齿轮箱支撑座中。这种结构的齿轮箱减振支撑的承载能力强,能够承受来自径向和轴向的冲击载荷,有着良好的阻尼及减振性能。一般要求弹性支撑的减振效率大于80%,阻尼不小于0.05。

图3-1三点支撑系统

图3-2瓦式齿轮箱减振支撑

MW级以下的风力发电机中,减振支撑的弹性体一般通过芯轴压装于齿轮箱扭力臂中,见图3-3所示。这种结构的减振支撑,其上、下弹性体安装困难,且在端部无挡板,在轴向(删)无约束,呈自由状态,在长期的交变载荷作用下可能出现轴向窜出,从而影响了产品的减振性能。在MW级以上的风机中,其减振支撑采用另外一种结构

形式,如图3-4所示。减振支撑的弹性体安装在齿轮箱两侧的支撑座内,每台4对,在弹性体的两端设置有挡块,可以防止弹性体发生轴向窜出,并且弹性体安装简单,拆卸方便,所以在MW级以上的风机中普遍采用这种结构。

图3-3弹性体安装图图3-4振支撑系统结构图3.3风力发电机组传动齿轮油温故障分析

油温高故障的主要原因:风力发电机组中,齿面的小裂纹逐步扩展,最后发生断齿,这是一种很严重的故障。油温高会造成传动齿轮发生如下故障:油温变化引起润滑油性能下降,使得摩擦增大、磨损严重以及发生齿面胶合故障;过度磨损所引起的点蚀,导致齿轮齿面剥落甚至断裂。油温升高,油性能发生如下变化:首先粘度下降、加速其老化变质,也缩短了换油周期。

风力发电机组中齿轮箱油温变化热传递的热源:

(1)啮合齿轮之间热量传递;

(2)风载荷变化、齿轮转速、气温变化等;

(3)齿轮箱输入功率的一部分在齿轮箱传动中会损失,主要转变为齿轮转动摩擦生成的热量,引起油温升高。风力发电机组长时间

处于满发状态,齿轮箱发热量增大,油温也会上升。

风电场风速的变化进而导致齿轮箱的转速摆动不定,这是形成齿面微磨损的主要原因,微磨损严重影响了齿轮使用寿命,摩擦生成的热量会随转速增大而增多,齿轮箱温度场将随之改变,油温升高。周围气温对油温也有影响,齿轮箱常年经受高温、严寒的影响,齿轮箱安装环境空间小,散热较差,这都是导致油温升高的重要因素。

处理风力发电机齿轮箱升温过高主要重在预防,通过建立风力发电机组齿轮箱中的传动齿轮模型,进行油温高故障机理分析,利用ANSYS的油膜模型的建立方法,对于三维模型,采用ANSYS进行热分析,从而获得温度场、热变形,分析计算结果准确。根据对传动齿轮进行的分析,得到了温度场与热应力分布、齿轮温度分布规律,找出了易出故障的位置。在实际维护工作中,应避免风力发电机齿轮箱升温过高,注意气温变化,检查易处故障部位,做好故障预防,及时采取措施,避免故障发生。

第四章风力发电的发展存在问题和主要趋势

4.1我国风电齿轮箱设计生产存在问题

尽管我国风电齿轮箱国产化工作近年来取得了长足的进步,基本掌握了兆瓦级以下机组的设计制造技术,并形成了750kW至1.5MKW风电增速箱的批量生产能力,但目前仍存在以下问题:

1.国内缺乏基础性的研究工作和基础性的数据,对国外技术尚未完全消化,自主创新能力不足。

2.严重缺乏既掌握低速重载齿轮箱设计制造技术又了解风电技术的人才,缺乏高水平的系统设计人员。

3.未完全掌握大型风电增速箱的设计制造技术,产品以仿制为主,可靠性不高,质量稳定性较差。掌握设计制造技术的企业数量较少,无论是产品数量还是产品质量都难以满足市场需要。

4.缺乏大型试验装置及测试手段。

5.缺乏行业资源共享、信息互通、共同发展的平台和机制。

6.与进口齿轮箱相比价格差距过大,市场价位偏低,齿轮箱制造商承担的风险较大,不利于产品可靠性的提高、行业的快速发展及企业研发资金的投入。

7.不顾设备投资大、市场风险大,有一哄而上的趋势。

我国目前对大型风电齿轮箱的设计制造技术尚缺乏系统深入的

水轮机运行常见故障及处理

水轮机运行常见故障及处理 发布日期:2010-6-12 16:49:37 (阅478次) 所属频道: 水力发电关键词: 水轮机 (一)、机组过速 机组带负荷运行中突然甩负荷时,由于导叶不能瞬时关闭,在导叶关闭的过程中水轮机的转速就可能增高20%~40%,甚至更高。当机组转速升高至某一定值(其整定值由机组的转动惯量而定,一般整定为140%额定转速)以上,则机组出现过速事故。由于转速的升高,机组转动部分离心力急剧增大,引起机组摆度与振动显著增大,甚至造成转动部分与固定部分的碰撞。所以应防止机组过速。 为了防止机组发生过速事故,目前多数电站是设置过速限制器、事故电磁阀或事故油泵,并装设水轮机主阀或快速闸门。这些装置都通过机组事故保护回路自动控制。 1.机组发生过速时的现象有 1)机组噪音明显增大。 2)发电机的负荷表指示为零,电压表指示升高(过电压保护可能动作)。 3)“水力机械事故”光字牌亮,过速保护动作,出现事故停机现象。 4)过速限制器动作,水轮机主阀(或快速闸门)全开位置红灯熄灭(即正在关闭过程)。若过速保护采用事故油泵,则事故油泵起动泵油,关闭导水叶。2.机组过速时的处理 1)通过现象判明机组已过速时,应监视过速保护装置能否正常动作,若过速保护拒动或动作不正常,应手动紧急停机,同时关闭水轮机主阀(或快速闸门)。 2)若在紧急停机过程中,因剪断销剪断或主配压阀卡住等引起机组过速,此时即使转速尚未达到过速保护动作的整定值,都应手动操作过速保护装置,使导水叶及主阀迅速关闭。对于没有设置水轮机主阀的机组,则应尽快关闭机组前的进水口闸门。 (二)、机组的轴承事故 1.巴氏合金轴承的温度升高 一般机组的推力、上导、下导等轴承和水轮机导轴承都采用巴氏合金轴承,故利用稀油进行润滑和冷却。当它们中的任一轴承温度升高至事故温度时,则轴承温度过高事故保护动作,进行紧急停机,以免烧坏轴瓦。 当轴承温度高于整定值时,机旁盘“水力机械事故”光字牌亮,轴承温度过高信号继电器掉牌,事故轴承的膨胀型温度计的黑针与红针重合或超过红针。在此以前,可能已出现过轴承温度升高的故障信号;或者可能出现过冷却水中断及冷却水压力降低、轴承油位降低等信号。 当发生以上现象时,首先应对测量仪表的指示进行校核与分析。例如将膨胀型温度计与电阻型温度计两者的读数进行核对,将轴承温度与轴承油温进行比较鉴别。并察看轴承油面和冷却水。若证明轴承温度并未升高,确属保护误动作,则可复归事故停机回路,启动机组空转,待进一步检查落实无问题后,便可并网发电。当确认轴承温度过高时,就必须查明实际原因,进行正确处理。 有许多因素可以导致巴氏合金轴承温度升高,一般常见的原因及处理办法如下:

6发电机常见故障及处理方法

6.发电机常见故障及处理方法 6.1 发电机不发电或电压<100V 故障原因诊断分析: 1. 发电机运转至正常转速后电压为0,一般发生于长时间停用的发电机组,大多是发电机缺少剩磁造成的。在静止状态下用6V~12V蓄电池接在励磁绕组接线端子F1、F2上,F1接电源的正极,F2接电源的负极,短时间接通一下电源即可。 2. 若充磁后电压不能恢复,说明电机绕组存在短路故障,具体测量可用直流电阻电桥测量电机绕组的直流电阻。 3. 充磁后,如果试验空载电压恢复正常,但是,带载后电压下降厉害,应重点检查静止整流模块、旋转整流模块、电流互感器、整流变压器。 4. 如果U≠0 ,在30V~50V左右,进行它励试验,若电压不能恢复正常,应检查旋转整流模块是否损坏,励磁机绕组、主机绕组是否存在短路、断路。 5. 若进行它励试验时正常,一般故障出现在励磁系统,重点检查静止整流模块 V4、电流互感器T1、T2、T3,电抗器L1、整流变压器T6,检查绕组有无断路,插套有无松动,静止整流模块是否损坏。

6.2 发电机有电压,但电压在300多伏 故障原因诊断分析: 1. 发电机的电压调整范围一般为360V~440V,电压整定电位器调整至最大时,发电机电压应440V左右。若调整无效,电压保持在360V左右,可能是电压整定电位器阻值为零或电压整定电位器至AVR板上X2插头的1、3端子的两根线出现短路。应检查电压整定电位器是否完好,可用万用表测量电位器的直流电阻,阻值应在0~4.7kΩ内均匀变化。或者检查电位器是否接入AVR板。 2. 如检查电压整定电位器完好,检测弯板上的可控硅是否损坏,可控硅损坏严重(完全导通)可能导致分流电阻完全分流且分出电流大小不可调,从而使励磁电流较小,发电机电压始终处于低压状态。 3. 如果发电机电压在350以下,最大可能性是三块旋转整流模块中有一块出现故障,导致励磁机转子三相电流只有两相通过整流供给主机转子。 4.电抗器气隙太小,可适当加大电抗器气隙。

康明斯系列柴油发电机的常见故障俭修原因分析

一、 康明斯柴油机的常见故障原因 (一)柴油机冒黑烟 1)涡轮增压器工作失郊; 2)气门组件密封不良; 3)喷油器或高压油泵精密偶件工作失郊; 4)凸轮轴组件磨损过度; 5)中冷器过脏、入气量不足; 6)喷油器胶圈密封不良; 7)气缸组件拉缸; 8)柴油质量不良。 (二)柴油机冒白烟 1)喷油器或高压油泵精密偶件失郊; 2)柴油机烧机油(即增压器烧机油); 3)气门导管及气门磨损过度,机油漏入气缸; 4)柴油中有水; 5)喷油气缸套漏水入气缸; 6)活塞环磨损过度或油环装反,气缸烧机油。 (三)在高负载时,排烟管及增压器发红 1)喷油器或高压油泵精密偶件工作失郊; 2)凸轮轴、随动臂组件、摇臂组件磨损过度; 3)中冷器过脏、入气量不足; 4)增压器工作失郊; 5)气门组件密封不良。 (四)柴油机工作时功率亏损较大 1)气缸组件磨损过大; 2)喷油器或高压油泵精密偶件工作失郊; 3)PT油泵工作失郊; 4)正时机构工作不良; 5)增压器工作失郊; 6)中冷器过脏; 7)气门组件密封不良; 8)柴油格、空气格过脏。 (五)柴油机机油压力过低 1)轴瓦和曲轴的配合间隙过大,即轴瓦和曲轴磨损过大; 2)各种衬套和轴系磨损过大; 3)冷却喷咀或机油管漏油; 4)机油泵工作失郊; 5)油压传感器失郊; 6)机油冷却器过脏导致油温过高; 7)机油品质不良。 (六)柴油机水温过高 1)水泵损坏; 2)节温器损坏;

3)风扇皮带,水泵皮带过松; 4)水箱过脏。(内部或外部) (七)柴油机出现烧瓦现象 1)机油泵工作失郊; 2)轴瓦间隙过大,引起油压过低; 3)柴油机缺水而出现高温; 4)机油格堵塞; 5)机油品质不良。 (八)柴油机下浊气大现象或有白烟从下浊气管排出 1)气缸组件磨损过大; 2)油底壳有水;(缸盖破裂,喷油器铜套水,缸套烂穿,缸套胶圈漏水,缸体漏水) 3)有拉缸现象。 (九)柴油机转速不稳 1)柴油机有功率亏损过大的故障; 2)PT泵的电子执行器磨损过度以及PT泵内部机件故障; 3)EFC电子调速板工作失郊; 4)测速磁头损坏; 5)柴油格过脏; 6)柴油管道漏气。 (十)油底壳有水 1)缸套破裂或缸套胶圈破损; 2)缸体破裂; 3)缸盖破裂; 4)喷油器铜套漏水。 (十一)油底壳有柴油 1)喷油器O形形圈损坏; 2)喷油器雾化不良,滴油; 3)喷油器安装不当; 4)喷油器得新安装时没有换新的O形圈。 (十二)柴油机异响 1)气门和活塞碰撞; 2)连杆螺钉松动,活塞和缸盖碰撞; 3)EFC板故障; 4)PT油泵故障而引起供油不稳; 5)喷油器滴油爆缸; 6)柴油机轴瓦间隙过大; 7)柴油管道漏气。 (十三)柴油机震动过大 1)柴油机轴瓦间隙过大或轴向间隙超标; 2)喷油器雾化不良而敲缸; 3)柴油机和电球的连接变形; 4)飞轮组件安装不当; 5)曲轴,连杆各种紧固螺钉松动; 6)增压器工作失郊。

双馈式风力发电机剖析

双馈式风力发电机 【摘要】随着地球能源的日益紧缺,环境污染的日益加重,风能作为可再生绿色能源越来越被人们重视,风力发电技术成为世界各国研究的重点。变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。通过调节发电机转子电流的大小、频率和相位,从而实现转速的调节。而其中双馈发电机构成的风力发电系统已经成为目前国际上风力发电的必然趋势。 关键词:风能风力发电变速恒频双馈式发电机 一、风力发电 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。 风力发电:把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。 风力发电在芬兰、丹麦等国家很流行;中国也在西部地区大力提倡。我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。在这些地区,发展风力发电是很有前途的。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。 风力发电的原理:是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。 风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)

风力发电机结构图分析风力发电机原理

风力发电机结构图分析风力发电机原理 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。风力研究报告显示:依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。下面先看风力发电机结构图。 风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。

风力发电机结构图指出:风力发电机因风量不稳定,故其输出的是13~25v变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220v市电,才能保证稳定使用。 通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。风力发电机结构图显示:目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。在内地,小的风力发电机会比大的更合适。因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。当无风时人们还可以正常使用风力带来的电能,也就是说一台200w风力发电机也可以通过大电瓶与逆变器的配合使用,获得500w甚至1000w乃至更大的功率出。 现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。 最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。 齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出。偏航系统可以使风轮扫掠面积总是垂直于主风向。要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度。 风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在停机时,叶片要顺桨,以便形成阻尼刹车。 早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距。 就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。 现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏。理论上的12级飓风,其风速范围也仅为32.7-36.9米/秒。 风力发电机结构图显示:风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时监视齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元

论大型发电机定子铁心常见故障及处理措施

论大型发电机定子铁心常见故障及处理措施 发表时间:2016-05-23T11:59:01.650Z 来源:《电力设备》2016年第2期作者:巩宇 [导读] (哈尔滨电机厂有限责任公司黑龙江哈尔滨 150040)定子铁心是组成发电机基本和主要的部件之一,起着构成电机工作磁路和固定定子绕组的重要作用。 (哈尔滨电机厂有限责任公司黑龙江哈尔滨 150040) 摘要:定子铁心是组成发电机基本和主要的部件之一,起着构成电机工作磁路和固定定子绕组的重要作用。发动机在运行多年后,由于种种原因,定子铁心的压紧力会逐渐减小,甚至发生松动。它的产生给发电机的安全运行带来隐患,有的甚至造成了机组被迫停运。而这种情况一旦出现,不但会造成严重的经济损失,还会影响发动机的寿命。因此,有必要对此问题进行探讨和重视。现代大型汽轮发电机更注重选用有方向或无方向性的优质冷轧硅钢片,以降低铁心损耗,提高发电机效率。本文主要探讨大型发电机定子铁心常见故障及处理措施。 关键词:发电机;定子铁心;故障 发电机在人们生活中占到很大的比重,维护发电机的正常运转,对于维护正常的经济生活非常重要。而定子铁心的相关问题在发动机故障中经常出现,影响到发电机定子铁心的因素很复杂,定子铁心常见故障一般分为定子铁心与机座的振动异常、定子铁心压装变松等多种。对于这些故障,在机组进行修整期间,应该使用探测仪对定子铁心进行以下检查,密切关注相关部位振动值和噪声、齿部和轭部、铁损试验。为了获得要求的磁、电特性和机械强度,减少磁滞和涡流损耗,定子铁心选择了磁导率高、损耗小,能达到一定工艺要求。 1 大型发电机定子铁心常见的故障 1.1 定子铁心与机座的振动异常 发电机运行后,轴系、定子铁心及机座的振动是不可避免的。采用端盖式轴承的发电机,定子铁心及机座的振源来自两方面:一是来自转子传来的机械振动;二是电机电磁场产生的电磁振动。由于转子的平衡精度不可能达到理想程度,转子旋转后,由于质量不平衡引起的振动通过轴承和端盖传到定子机座,产生工频(50Hz)振动;而由于转子磁极(大齿)与小齿呈现的相互垂直的刚度的差异,则对定子产生二倍工频(100Hz)的振动[1]。由电机电磁场产生的电磁振动力为:(1)因定子铁心有交变磁通通过所产生的交变电动力导致的工频振动。在铁心未压紧或铁心局部过热时即产生强烈的振动和噪声。(2)旋转的转子加励磁后,相当于旋转的电磁铁,对定子铁心产生使其变形的磁拉力,由此产生二倍频振动力,即椭圆振动--这也是定子铁心振动的主要振源。发电机带负载后将使铁心的倍频振动力加强,且由于定子端部漏磁场的轴向分量影响产生轴向的倍频振动力。当发电机发生三相短路时,将使定子铁心的椭圆振动与形加剧。两相短路时,定子铁心还会发生扭转振动。为将这些危害发电机安全运行的振动减至最小,除在设计和制造工艺方面提高定子铁心的刚度和弹性模量,使其固有频率避开工频和二倍频外,对大型汽轮发电机的定子铁心还采用弹性固定的办法即弹性定位筋或弹簧板隔振结构固定在定子机座上,以减小铁心振动直接传至机座上。 1.2 定子铁心压装变松 国产及进口200MW及以上容量的大型汽轮发电机曾多次发生过定子铁心硅钢片压装变松故障,轻微者仅对松弛部位加塞涂绝缘漆的硅钢片等塞紧,或扭紧定位筋及穿心螺母进行局部处理;严重者则需将定子绕组全部抬出,相关的紧固件全部拆除,以更换已损坏的整段铁心,对铁心进行整体压装,造成极大损失。从历次对铁心松弛故障原因分析的结果来看,老旧机组大多因为运行年久,在交变电磁振动力及铁心自身重力的影响下,破坏了铁心叠片间绝缘漆膜形成的阻滞力,导致铁心叠片变松,片间绝缘被破坏,形成片间短路和局部过热。新投入的发电机定子铁心叠片变松的原因则是多方面的。 2 大型发电机定子铁心常见故障及处理措施 排除接地故障时,应认真观察绕组的损坏情况,除了由于绝缘老化、机械强度降低造成绕组接地故障,需要更换绕组外,若绕组绝缘尚好,仅个别绕组接地,只需局部修复。(1)槽口部位接地。如果查明接地点在槽口或槽底线圈出口处,且只有一根导线绝缘损坏,可把绕组加热至130℃左右使绝缘软化后,用划线板或竹板撬开接地点处的槽绝缘。把接地处烧焦的绝缘清理干净,插入适当大小的新绝缘纸板,再用绝缘电阻表测量绝缘电阻。绕组绝缘恢复后,趁热在修补处涂上白干绝缘清漆即可。若接地点有两根以上导线绝缘损伤,应将槽绝缘和导线绝缘同时修补好,避免引起匝间短路。(2)双层绕组上层边槽内部接地。先把绕组加热到130℃左右使绝缘软化,取出接地线圈上的槽楔,再把接地线圈的上层边起出槽口清理损伤的槽绝缘,并用新绝缘纸板把损坏的槽绝缘处垫好。同时检查接地点有无匝间绝缘损伤,然后把上层边再嵌入槽内,折合槽绝缘,打入槽楔并做好绝缘处理。在打入槽楔前,应用绝缘电阻表测量故障绕组的绝缘电阻,使绝缘电阻恢复正常。对于双层绕组下层边槽内部对地击穿,可采用局部换线法和穿线修复法进行修复。(3)若接地点在端部槽口附近,损伤不严重,在导线与铁心之间垫好绝缘后,涂刷绝缘清漆即可。(4)若接地点在槽的里边,可轻轻抽出槽楔,用划线板和线匝一根一根地取出,直到取出故障导线为止,用绝缘带将绝缘损坏处包好,再把导线仔细嵌回线槽。(5)绕组受潮引起接地的应先进行烘干,当冷却到60~70℃左右时,浇上绝缘漆后再烘干。(6)若由于铁心凸出,划破绝缘,应将凸出的硅钢片敲下,在绝缘破损处重新包好绝缘。 定子铁心故障探测仪的应用。发电机定子铁心故障检查试验的目的是查找运行时的过热点隐患,防止扩大为发电机事故。上节提到的铁心试验方法是传统的试验方法,是通过临时安装的励磁绕组,在定子铁心上产生周向环绕磁通,试验时要抽出转子,大型发电机通常要用承载约300A电流的电缆,穿过定子内膛至定子机壳外部绕若干匝。对于500MW的发电机,要在铁心中产生的磁通密度达到发电机额定工作磁密的80%,大约需要3MVA的试验电源。试验时用红外热像仪测量定子内膛铁心表面的温度分布查找铁心故障点,以确定铁心表面的局部缺陷。这一电压是由穿过ABCD回路的磁通感应产生的,随着该回路尺寸的不同,电压数值可能达到几十甚至几百伏,后者是指轴向通风的发电机,在这些发电机中温度计导线沿着槽由定子端部引出。显然,这个电阻温度计对汽轮发电机机壳的任意第二点短路,都会形成电流回路。假如,定子机壳的E点是第二个短路点,在ABC-DE回路中就有电流,电流数值与回路电阻及短路点之间的感应电压数值有关。通常,电阻温度计的引线沿槽布设,从临近的铁心段间的径向通风沟引出。如运行经验指出,由于AB-CDE的面积小,故回路的感应电势和感应电流也小,未曾发现铁心损坏。具有轴向通风系统的汽轮发电机,当电阻温度计本身或它的引线绝缘损坏时,可能损坏有效铁

风力发电机常见故障及其分析概要

茂名职业技术学院 毕业设计 题目:风力发电组轴承的常见失效形式及故障分析系别:机电信息系专业:机械制造与自动化班别:13机械一班姓名:何进生指导老师:张浩川日期:2015年7月1日至2016年5月1日

内容摘要 随着全球经济的发展和人口的增长,人类正面临着能源利用和环境保护两方面的压力,能源问题和环境污染日益突出。风能作为一种蕴藏量丰富的自然资源,因其使用便捷、可再生、成本低、无污染等特点,在世界范围内得到了较为广泛的使用和迅速发展。风力发电己成为世界各国更加重视和重点开发的能源之一。随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故,造成巨大的经济损失。 本论文先探讨了课题的实际意义以及风力发电机常见的故障模式,在这个基础上对齿轮箱故障这种常见故障做了详尽的阐述,包括引起故障的原因、如何识别和如何改进设计。通过对常见故障的分析,给风力发电厂技术维护提供故障诊断帮助,同时也给风电设备制造和安装部门提供理论研究依据。 关键词 风力发电机;故障模式;齿轮箱;故障诊断

Common Faults And Their Analysis Of The Wind Turbine Abstract With the global economic development and population growth, humanity is facing with the pressure from two sides of the energy use and environmental protection, the energy problem and environmental pollution has become an increasingly prominent issue. Wind power as a abundant reserves of natural resources, because of its convenient use, renewable, low cost, no pollution, has been more widely used and rapid development in the world. Wind power has been taken as one of the priority development energy sources in the world.The increase of wind power capacity and complicated system structure will not only cause power outage,but also raise serious accidents when the set is at fault. In the beginning, the dissertation introduces the practical significance of project and the common failure mode of wind turbines, then researches and describes the failure of gearbox in detail, including the cause of failure, how to identify and how to improve the design. Based on the analysis of common failures, not only provide assistance for fault diagnosis to the technical

风力发电机原理及结构

风力发电机原理及结构 风力发电机是一种将风能转换为电能的能量转换装置,它包括风力机和发电机两大部分。空气流动的动能作用在风力机风轮上,从而推动风轮旋转起来,将空气动力能转变成风轮旋转机械能,风轮的轮毂固定在风力发电机的机轴上,通过传动系统驱动发电机轴及转子旋转,发电机将机械能变成电能输送给负荷或电力系统,这就是风力发电的工作过程。 1、风机基本结构特征 风力机主要有风轮、传动系统、对风装置(偏航系统)、液压系统、制动系统、控制与安全系统、机舱、塔架和基础等组成。 (1)风轮 风力机区别于其他机械的主要特征就是风轮。风轮一班有2~3个叶片和轮毂所组成,其功能是将风能转换为机械能。 风力发电厂的风力机通常有2片或3片叶片,叶尖速度50~70m/s,3也片叶轮通常能够提供最佳效率,然而2叶片叶轮及降低2%~3%效率。更多的人认为3叶片从审美的角度更令人满意。3叶片叶轮上的手里更平衡,轮毂可以简单些。 1)叶片叶片是用加强玻璃塑料(GRP)、木头和木板、碳纤维强化塑料(CFRP)、钢和铝职称的。对于小型的风力发电机,如叶轮直径小于5m,选择材料通常关心的是效率而

不是重量、硬度和叶片的其他特性,通常用整块优质木材加工制成,表面涂上保护漆,其根部与轮毂相接处使用良好的金属接头并用螺栓拧紧。对于大型风机,叶片特性通常较难满足,所以对材料的选择更为重要。 目前,叶片多为玻璃纤维增强负荷材料,基体材料为聚酯树脂或环氧树脂。环氧树脂比聚酯树脂强度高,材料疲劳特性好,且收缩变形小,聚酯材料较便宜它在固化时收缩大,在叶片的连接处可能存在潜在的危险,即由于收缩变形,在金属材料与玻璃钢之间坑能产生裂纹。 2)轮毂轮毂是风轮的枢纽,也是叶片根部与主轴的连接件。所有从叶片传来的力,都通过轮毂传到传动系统,在传到风力机驱动的对象。同时轮毂也是控制叶片桨距(使叶片作俯仰转动)的所在。 轮毂承受了风力作用在叶片上的推理、扭矩、弯矩及陀螺力矩。通常安装3片叶片的水平式风力机轮毂的形式为三角形和三通形。 轮毂可以是铸造结构,也可以采用焊接结构,其材料可以是铸钢,也可以采用高强度球墨铸铁。由于高强度球墨铸铁具有不可替代性,如铸造性能好、容易铸成、减振性能好、应力集中敏感性低、成本低等,风力发电机组中大量采用高强度球墨铸铁作为轮毂的材料。 轮毂的常用形式主要有刚性轮毂和铰链式轮毂(柔性轮毂

水轮发电机的常见事故处理(标准版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 水轮发电机的常见事故处理(标 准版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

水轮发电机的常见事故处理(标准版) (1)发电机断路器自动跳闸,运行人员应立即检查 1)灭磁开关是否跳闸,如未跳闸应立即远方跳闸; 2)检查是由于何种保护动作使断路器跳闸,查明光字牌后分析动作的正确性。如系外部故障引起过电流保护动作,同时内部故障保护未动作,发电机外部检查无明显的不正常现象,应与调度联系发电机可并入电网。 3)如系运行人员误动,判明后立即将发电机并入电网; 4)如系发电机内部故障保护动作而引起跳闸,应测量定子绕组的绝缘电阻,并对保护范围内的一切电气回路作详细的外部检查,查明有无冒烟、冒火、响声、焦味、放电、灼伤痕迹等外部现象,同时对动作的保护进行检查,联系调度查问电网上的情况。如未发现发电机及保护范围内的故障,发电机可从零升压,升压正常可将

发电机并入电网;升压不正常,应立即停机,详细检查故障部位并设法消除。 (2)发电机发生剧烈的振荡。有时有下列现象: 1)电力表指针在全盘上大幅度摆动; 2)定子电流表针来回剧烈的摆动,可能超过正常值 3)定子电压表和母线电压表指针剧烈的摆动,经常低于正常值4)转子电压表和母线电压表指针剧烈的摆动,经常低于正常值5)发电机发出鸣音,其节奏与表计指示摆动合拍。 这时运行人员应立即采取一下措施: 1)降低发电机的有功负荷,增加励磁电流,以恢复稳定; 2)采取上述措施无效后,应将机组解列或解列发电厂的一部分机组。 云博创意设计 MzYunBo Creative Design Co., Ltd.

电厂发电机常见故障原因分析及预防分析 郝天通

电厂发电机常见故障原因分析及预防分析郝天通 发表时间:2018-05-30T09:00:26.640Z 来源:《电力设备》2018年第2期作者:郝天通[导读] 摘要:国家电力工程事业的不断进步与发展,极大地促进了电厂发电机应用技术的飞跃。 (身份证号码:13020319850621xxxx 河北省唐山市开平区大唐国际发电股份有限公司陡河发电厂河北唐山 063000)摘要:国家电力工程事业的不断进步与发展,极大地促进了电厂发电机应用技术的飞跃。研究电厂发电机常见故障原因及预防问题,对于提升故障应对效率,优化发电机应用效果有着重要意义。文章介绍了电厂发电机的常见故障,分析了其故障产生的多方面原因,并立足实际提出了发电机故障的预防措施,望对相关工作的开展有所裨益。 关键词:电厂;发电机;故障;预防 1前言 随着电厂发电机应用条件的不断变化,对其故障原因的分析及预防提出了新的要求,因此有必要对其相关课题展开深入研究与探讨,以期用以指导相关工作的开展与实践,并取得理想效果。基于此,本文从概述相关内容着手本课题的研究。 2电厂发电机的常见故障通常情况下,火电厂的发电机故障可以分为线圈故障、电气故障、液压系统故障等三大部分。 2.1线圈故障 线圈是发电机内部的重要部件,同时也是使用最频繁的部件,因此线圈故障是电厂发电机最常见的故障之一。常见的线圈故障主要包括线圈的老化、转子线圈的磨损、定子线圈的高温等。 2.2电气故障 随着时代科技的进步,电气设备结构越来越复杂,并且越来越现代化、智能化,这给电气设备的故障检测与维修带来了很大困难。一般情况下,发电机经常出现的电气故障主要有线套管温度过高、发电机大轴磁化、转子连接故障以及励磁回路故障等。 2.3液压系统故障 随着火力发电的快速发展,大型汽轮机组得到了广泛的应用,而液压系统作为大型汽轮机组的主要组成系统之一,一旦其发生故障就会严重的影响到机组的正常工作。目前常见的液压系统故障主要有汽轮机控制零件故障、液压控制系统故障、汽轮机高压控制油泄露故障等。 总之,电厂发电机组的故障多种多样,并且造成故障的原因也各不相同,因此在分析发电机故障原因时,要针对不同故障分别展开分析。 3电厂发电机故障产生的原因 3.1线圈故障原因分析 线圈故障有多种,因此本文针对不同种类的线圈故障,分析了故障产生的原因。 3.1.1线圈绝缘老化。这类故障是指线圈的绝缘层出现老化,使得绝缘层的耐压能力低于最低标准,从而很容易出现电压击穿故障。造成线圈绝缘老化的原因主要有以下几个:其一,线圈长时间的使用,导致线圈绝缘层出现自然老化。由于长时间使用而造成的绝缘层老化占到线圈绝缘层老化故障的大多数,是一种比较常见的线圈事故;其二,线圈质量不合格,浸胶不良,使用过程中出现绝缘侧脱落现象。质量差的线圈导线在使用过程中,经常会出现绝缘层松动,绝缘效果变差的问题。 3.1.2转子线圈磨损。在正常的发电生产中,发电机一般保持高速运转,甚至在某些时候要高负荷运转,因此发电机转子的转动速度很快,从而使得转子线圈的磨损十分严重,进而加速了绝缘层的老化,出现短路故障,造成发电机的严重损毁,甚至产生很大的生产事故。 3.1.3定子线圈磨损。定子与转子之间会产生摩擦,因此转子速度越快,定子受到的摩擦越严重,定子线圈的磨损就越严重,从而加速了定子线圈绝缘层的破坏,产生电压击穿事故。另外,外界灰尘、水、油等物质会浸入绝缘层中,影响绝缘效果,造成电压击穿事故。 3.2发电机的电气故障原因分析 由于发电机电气设备结构十分复杂,元部件众多,因此造成电气故障的原因有很多,从而给电气故障的诊断和预防带来很大困难。本文针对几种典型的电气故障,分析了造成电气故障的具体原因。 3.2.1线套管温度过高的原因。当发电机的无功负荷过高时,发电机底部的漏磁就会增多,从而产生电流,造成线套管温度升高。另外,发电机组中存在磁场,其产生的涡流会产生过多的热量,从而造成线套管温度升高。 3.2.2大轴磁化与退磁原因。发电机的大轴一般由含有铬镍等金属的钢材制成,因此大轴在长期工作中会被磁化,当发电机停机后,大轴内的磁场会因摩擦或者接触而产生电流,从而烧毁轴瓦,影响发电机的正常工作。 3.2.3转子连接部位故障原因。发电机在长时间使用后,发电机与转子连接部位的接触片会发生松动,从而增大了连接部位的摩擦,造成接触片的变形,严重的会导致发电机的停机。 3.2.4由于变阻器、晶闸管、云母片等部件引起的电刷抖动,会导致接触不良,从而造成励磁回路短路。 3.3发电机的液压系统故障原因分析 3.3.1发电机零部件故障原因。造成发电机零部件故障的原因主要有施工安装质量不合格以及零部件本身质量不合格。这些会造成控制电缆的老化以及接头松动等问题,从而影响机组的正常运行。 3.3.2控制系统故障原因。当系统的油压存在较大波动时,就会影响液压控制系统,而造成油压波动的原因主要是稳定控制油压的蓄能器出现损坏,无法起到蓄能作用,从而造成油压波动,影响控制系统,进而产生故障。 3.3.3高压控制油泄露原因。造成高压控制油泄露的原因主要是因为系统的密闭功能失效。一般液压系统的密闭件都要求耐腐蚀、耐高温,然而因橡胶密闭件质量不合格而造成的密闭功能失效的现象还时有发生,这就成为高压控制油泄露的主要原因。 4电厂发电机故障的预防措施发电机故障的诊断与预防是发电机维护工作的重要内容,因此采取合适的发电机故障预防措施至关重要。本文对预防线圈故障、电气故障、液压故障应该采取的措施分别进行了分析。 4.1线圈故障预防措施

风力发电机的增速齿轮箱的设计

摘要 风电产业的飞速发展促成了风电装备制造业的繁荣,风电齿轮箱作为风电机组的核心部件,倍受国内外风电相关行业和研究机构的关注。但由于国内风电齿轮箱的研究起步较晚,技术薄弱,特别是兆瓦级风电齿轮箱,主要依靠引进国外技术。因此,急需对兆瓦级风电齿轮箱进行自主开发研究,真正掌握风电齿轮箱设计制造技术,以实现风机国产化目标。 本文设计的是兆瓦级风力发电机组的齿轮箱,通过方案的选取,齿轮参数计算等对其配套的齿轮箱进行自主设计。 首先,确定齿轮箱的机械结构。选取一级行星派生型传动方案,通过计算,确定各级传动的齿轮参数。对行星齿轮传动进行受力分析,得出各级齿轮受力结果。依据标准进行静强度校核,结果符合安全要求。 其次,基于Pro/E参数化建模功能,运用渐开线方程及螺旋线生成理论,建立斜齿轮的三维参数化模型。 然后,对齿轮传动系统进行了齿面接触应力计算。先利用常规算法进行理论分析计算。关键词:风力发电,风机齿轮箱,结构设计,建模 Abstract The rapid development of wind power industry lead to the prosperity of wind power equipment manufacturing industry.As the core component of wind turbine,the gearbox is received much concern from related industries and research institution both at home and abroad.However, due to the domestic research of gearbox for wind turbine starts late,technology is weak,especially in the gearbox for MW wind turbine,which mainly relied on the introduction of foreign technology.Therefore,it is urgent need to carry out independent development and research on MW wind power gearbox,and truly master the design and manufacturing technology in order to achieve the goal of localization. This paper takes the wind power。The independent design of the gearbox matching for the wind turbine has been carried out by selecting the transmission scheme and calculating the gear parameters。 Firstly, the mechanical structure of gearbox is determined.The two-stage derivation planetary transmission scheme is selected.The gear parameters of every stage transmission is

风力发电机的组成部件及其功用

风力发电机的组成部件及其功用 风力发电机是将风能转换成机械能,再把机械能转换成电能的机电设备。风力发电机通常由风轮、对风装置、调速装置、传动装置、发电机、塔架、停车机构等组成。下面将以水平轴升力型风力发电机为主介绍它的各主要组成部件及其工作情况。图3-3-4和3-3-5是小型和中大型风力发电机的结构示意图。 图3-3-4 小型风力发电机示意图 1—风轮2—发电机3—回转体4—调速机构5—调向机构6—手刹车机构7—塔架8—蓄电池9—控制/逆变器 图3-3-5 中大型风力发电机示意图 1—风轮;2—变速箱;3—发电机;4—机舱;5—塔架。 1 风轮 风轮是风力机最重要的部件,它是风力机区别于其它动力机的主要标志。其作用是捕捉和吸收风能,并将风能转变成机械能,由风轮轴将能量送给传动装置。

风轮一般由叶片(也称桨叶)、叶柄、轮毂及风轮轴等组成(见图3-3-6)。叶片横截面形状基本类型有3种(见图第二节的图3-2-3):平板型、弧板型和流线型。风力发电机的叶片横截面的形状,接近于流线型;而风力提水机的叶片多采用弧板型,也有采用平板型的。图3-3-7所示为风力发电机叶片(横截面)的几种结构。 图3-3-6 风轮 1.叶片 2.叶柄 3.轮毂 4.风轮轴 图3-3-7 叶片结构 (a)、(b)—木制叶版剖面; (c)、(d)—钢纵梁玻璃纤维蒙片剖面; (e) —铝合金等弦长挤压成型叶片;(f)—玻璃钢叶片。 木制叶片(图中的a与b)常用于微、小型风力发电机上;而中、大型风力发电机的叶片常从图中的(c)→(f)选用。用铝合金挤压成型的叶片(图中之e),基于容易制造角度考虑,从叶根到叶尖一般是制成等弦长的。叶片的材质在不

水轮发电机常见故障及处理

水轮发电机常见故障及处理 由于水轮机发电机组的结构比较复杂,有机械部分、电气部分以及油、气、水系统,它受系统和用户运行方式的影响,还受天气等自然条件影响。容易发生故障或者不正常运行状态。某一次故障可能是一种偶然情况,但对整个机组运行来说又是一种必然事件。运行人员应从思想、技术、组织等各个方面做好充分准备。 (1)运行人员平时应加强理论学习,尽可能掌握管辖设备的工作原理和运行性能。 (2)运行人员应熟悉各设备安装为止,各切换开关、切换片位置。 (3)运行班组应针对各种主要故障制定事故处理预案并落实到人。 (4)运行现场应准备必要的安全防护用具及应急工具。 (5)运行人员应由临危不乱沉着应对的心理素质。 发电机的异常运行及处理 发电机在运行过程中,由于外界的影响和自身的原因,发电机的参数将发生变化,并可能超出正常运行允许的范围。短时间超过参数规定运行或超过规定运行参数不多虽然不会产生严重后果,但长期超过参数运行或者大范围超过运行参数就有可能引起严重的后果,危机及发电机的安全应该引起重视。 一、发电机过负荷 运行中的发电机,当定子电流超过额定值1.1倍时,发电机的过负荷保护将动作发出报警信号。运行人员应该进行处理,使用其恢复正常运行。若系统未发生故障,则应该首先减小励磁电流减小发电机发出的无功功率;如果系统电压较低又要保

证发电机功率因数的要求,当减小励磁电流仍然不能使用定子电流降回来额定值时,则只有减小发电机有功负荷;如果系统发生故障时,允许发电 1 机在短时间内过负荷运行,其允许值按制造厂家的规定运行。 (1)现象 1)发电机定子电流超过额定值; 2)当定子电流超过额定值1.1倍时,发电机的过负荷保护将动作发出报警信号,警铃响,机旁发“发电机过负荷”信号,计算机有报警信号; 3)发电机有功、无功负荷及转子电流超过额定值。 (2)处理 1)注意监视电压、频率及电流大小,是否超过允许值; 2)如电压或频率升高,应立即降低无功或有功负荷使定子电流降至额定值,如 调整无效时应迅速查明原因,采取有效措施消除过负荷; 3)如电压、频率正常或降低时应首先用减小励磁电流的方法,消除过负荷,但 不得使母线电压降至事故极限值以下,同时将情况报告值长; 4)当母线电压已降到事故极限值,而发电机仍过负荷时,应根据过负荷多少,采取限负荷运行并联系调度起动备用机组等方法处理。 注意:通过相量图可分析出:图(a)减少励磁电流,会降低定子电流I,功率因素cosψ增大;图(b)减少有功,会降低定子电流I,功率因素cosψ减小。

柴油发电机常见问题及解决措施

柴油发电机常见问题及解决措施 人类的生活越来越离不开电力支持,随着科技进步,出现了越来越多的供电方式。按其能量来源大致分为核能发电、水力势能发电、火力发电、风力发电和太阳能发电。在大型发电站的支持下,城市才能正常运作。但是城市对电的供应需求也越来越大,尤其是在夏季,用电高峰期经常会出现供电不足的现象。而医院、政府机关等单位一旦断电将产生极大的负面后果。除此之外,断电对大型企业会造成非常大的经济损失。所以现在越来越多的单位都拥有自己的备用电源。作为最常用的备用电力设备,柴油发电机组的维护和运行问题逐渐得到人们的重视。本文就多年使用柴油发电机设备的经验,对其进行维护、故障诊断及管理进行阐述。 柴油发电机组共有六大系统,分别是机油润滑系统、燃油系统、控制保护系统、冷却散热系统、排气系统和起动系统。其中问题主要集中在启动系统、冷却系统和燃油系统。 一、启动系统问题 由于柴油发电机是一般情况下是备用电源,因此柴油发电机常处于待机状态,运行状态较短暂。但正是由于是应急电源,其应急启动能力尤为关键,这就要求启动系统不能有问题。而启动的关键在于蓄电池,蓄电池是发动机启动时的唯一电源,对蓄电池要进行悉心的维护。要让蓄电池达到额定电压,就要求在平时对蓄电池的电压进行监控,对蓄电池进行充电时,到达额定电压后停止充电,若电压低于额定电压则自动进行充电。这需要带蓄电池电压监控功能的自动充电设备。 维护保养蓄电池要关注蓄电池内部成分比例,如果内部水、酸损失没有得到及时补充,或电解液量达不到规定液面高度,就会使蓄电池的性能大幅降低。若补充电解液时过量,则多于的电解液易腐蚀接线柱,处理的方法是打磨掉腐蚀,重新加固螺丝,以降低电阻。

相关主题