搜档网
当前位置:搜档网 › Darboux变换求一个新的孤子方程的精确解

Darboux变换求一个新的孤子方程的精确解

Darboux变换求一个新的孤子方程的精确解
Darboux变换求一个新的孤子方程的精确解

一维热传导方程的差分格式

《微分方程数值解》 课程论文 学生姓名1:许慧卿学号:20144329 学生姓名2:向裕学号:20144327学生姓名3:邱文林学号:20144349学生姓名4:高俊学号:20144305学生姓名5:赵禹恒学号:20144359学生姓名6:刘志刚学号: 20144346 学院:理学院 专业:14级信息与计算科学 指导教师:陈红斌 2017年6 月25日

《偏微分方程数值解》课程论文 《一维热传导方程的差分格式》论文 一、《微分方程数值解》课程论文的格式 1)引言:介绍研究问题的意义和现状 2)格式:给出数值格式 3)截断误差:给出数值格式的截断误差 4)数值例子:按所给数值格式给出数值例子 5)参考文献:论文所涉及的文献和教材 二、《微分方程数值解》课程论文的评分标准 1)文献综述:10分; 2)课题研究方案可行性:10分; 3)数值格式:20分; 4)数值格式的算法、流程图:10分; 5)数值格式的程序:10分; 6)论文撰写的条理性和完整性:10分; 7)论文工作量的大小及课题的难度:10分; 8)课程设计态度:10分; 9)独立性和创新性:10分。 评阅人: - 2 -

一维热传导方程的差分格式 1 引言 考虑如下一维非齐次热传导方程Dirichlet 初边值问题 22(,),u u a f x t t x ??=+?? ,c x d << 0,t T <≤ (1.1) (,0)(),u x x ?= ,c x d ≤≤ (1.2) (,)(),u c t t α= (,)(),u d t t β= 0t T <≤ (1.3) 的有限差分方法, 其中a 为正常数,(,),(),(), ()f x t x t t ?αβ为已知常数, ()(0),c ?α= ()(0).d ?β= 称(1.2)为初值条件, (1.3)为边值条件. 本文将给出(1.1) (1.3)的向前Euler 格式, 向后Euler 格式和Crank Nicolson -格式, 并给出其截断误差和数值例子. 经对比发现, Crank Nicolson -格式误差最小, 向前 Euler 格式次之, 向后Euler 格式误差最大. 2 差分格式的建立 2.1 向前Euler 格式 将区间[,]c d 作M 等分, 将[]0,T 作N 等分, 并记 ()/h d c M =-, /T N τ=, j x c jh =+,0j M ≤≤, k t k τ=,0k N ≤≤. 分别称h 和τ为空间步长和时间步长.用 两组平行直线 j x x =, 0j M ≤≤, k t t =, 0k N ≤≤ 将Ω分割成矩形网格.记{} |0h j x j M Ω=≤≤, {}|0k t k N τΩ=≤≤, h h ττΩ=Ω?Ω. 称() ,j k x t 为结点[1] . 定义h τΩ上的网格函数 {}|0,0k j U j M k N Ω=≤≤≤≤, 其中() ,k j j k U u x t =. 在结点() ,j k x t 处考虑方程(1.1),有

变换法解微分方程

题目: 变换法在求解常微分方程中的应用姓名: 学院: 数学与统计学院 专业: 数学与应用数学 年级班级: 2011级1班 指导教师: 刘伟 2015年 5 月 31 日

毕业论文(设计)作者声明 本人郑重声明:所呈交的毕业论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。 本人完全了解有关保障、使用毕业论文的规定,同意学校保留并向有关毕业论文管理机构送交论文的复印件和电子版。同意省级优秀毕业论文评选机构将本毕业论文通过影印、缩印、扫描等方式进行保存、摘编或汇编;同意本论文被编入有关数据库进行检索和查阅。 本毕业论文内容不涉及国家机密。 论文题目:变换法在求解常微分方程中的应用 作者单位:数学与统计学院 作者签名: 2015 年5 月31 日

目录 摘要 (1) 引言 (2) 1.在一阶方程中的应用 (3) 1.1变量分离方程 (3) 1.2齐次与可以经过变量代换化为齐次的常微分方程: (3) 1.3一阶线性方程 (7) 1.4几种特殊类型的一阶常微分方程 (8) 1.5伯努利方程 (9) 1.6黎卡提方程 (10) 2.在n阶微分方程中的应用 (10) 2.1 在n阶非齐次线性微分方程 (10) 2.2 非齐次线性微分方程 (12) 3.变系数齐次方程 (13) 3.1尤拉方程 (13) 3.2二阶变系数线性方程 (13) 3.3三阶变系数微分方程 (14) 结束语 (14) 参考文献 (16) 致谢 (17)

变换法在求解常微分方程中的应用 摘要:变换法是常微分方程中的一种计算方法. 它可以起到简化问题的作用,变量变换思想也是一种常微分方程中的重要思想. 应用原始变量的变换与新的变量代换, 使原始方程的类型相对简单的解决方案,从而达到解决的目的. 在常微分方程中, 变换法在许多类型的常微分方程的求解中起到及其重要的作用. 本文就应用变换法在求解几类微分方程进行探究, 通过陈述理论与联系实例结合阐述变量变换法以及变量变换思想在求解常微分方程的应用. 关键词:常微分方程;变量分离;变换法; Application of transform method in solving the differential equation Abstract: Transform method is a calculation method of ordinary differential equation. It can play a role to simplify the problem, the idea of variable transformation is an important thought in ordinary differential equation. The application of the original variable transform and the new type of variable substitution, the original equation solution is relatively simple, so as to achieve the purpose of solving. In the differential equation, variable substitution plays its important role in the ordinary solution differential equations in many types of. This paper explores the solutions for several classes of differential equations on the application of variable substitution, through the statement of theory and examples combined with variable transformation method and the application of variable transformation thought in the solution of ordinary differential equations. Key Words: Ordinary differential equation;Separable variable;Transform method

热传导方程的初值问题

§2热传导方程的初值问题 一维热传导方程的初值问题(或Cauchy 问题) ?? ???+∞<<∞-=>+∞<<∞-=??-??x x x u t x t x f x u a t u ),()0,(0 ,),,(2 2 2? () 偏导数的多种记号xx x t u x u u x u u t u =??=??=??22,,. 问题也可记为 ?? ?+∞ <<∞-=>+∞<<∞-=-x x x u t x t x f u a u xx t ),()0,(0 ,,),(2?. Fourier 变换 我们将用Fourier 变换法求解热传导方程的柯西问题.为此我们将着重介绍Fourier 变换的基本知识.Fourier 变换在许多学科中是重要使用工具. 可积函数,设)(x f f =是定义在),(+∞-∞上的函数, 且对任意A B <,()f x 在[,]A B 上 可积,若积分 ? +∞ ∞ -dx x f )(收敛,则称)(x f 在),(+∞-∞上绝对可积。 将),(+∞-∞上绝对可积函数形成的集合记为),(1 +∞-∞L 或),(+∞-∞L , 即{ } ∞<=+∞-∞=+∞-∞? +∞ ∞ -dx x f f L L )(| ),(),(1 ,称为可积函数空间. 连续函数空间: ),(+∞-∞上全体连续函数构成的集合,记为),(+∞-∞C , {}上连续在),(|),(+∞-∞=+∞-∞f f C , {}上连续在),(,|),(1+∞-∞'=+∞-∞f f f C 。 定义 若),(+∞-∞∈L f ,那么积分 ),(?)(21 λπ λf dx e x f x i =? +∞ ∞ -- 有意义,称为Fourier 变换, )(? λf 称为)(x f 的Fourier 变式(或Fourier 变换的象). ? +∞ ∞ --= =dx e x f f Ff x i λπ λλ)(21)(?)( 定理 (Fourier 积分定理)若),(),(1 +∞-∞?+∞-∞∈C L f ,那么我们有

用拉普拉斯变换方法解微分方程

2–5 用拉普拉斯变换方法解微分方程 拉普拉斯变换方法是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查得相应的微分方程解。这样就使方程求解问题大为简化。 拉普拉斯变换法的另一个优点是在求解微分方程时,可同时获得的瞬态分量和稳态分量两部分。 有关拉普拉斯变换(简称拉氏变换)的公式见附录一。 应用拉氏变换法得到的解是线性微分方程的全解。用古典方法求解微分方程全解时需要利用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初始条件已自动地包含在微分方程的拉氏变换式之中了。而且,如果所有初始条件都为零,那么求取微分方程的拉氏变换式就更为方便,只要简单地用复变量s 来代替微分方程中的 dt d ,2 s 代替 2 2dt d ,…就可得到。 应用拉氏变换法解微分方程的步骤如下: (1)对线性微分方程中每一项进行拉氏变换,使微分方程变为复变量s 的代数方程(称为变换方程) (2)求解变换方程,得出系统输出变量的象函数表达式。 (3)将输出的象函数表达式展开成部分分式(部分分式展开法参见附录二)。 (4)对部分分式进行拉氏反变换(可查拉氏变换表),即得微分方程的全解。 举例说明 【例2-7】 设RC 网络如图2-24所示,在开关K 闭合之前,电容C 上有初始电压 )0(c u 。试求将开关瞬时闭合后,电容的端电压c u (网络输出)。 解 开关K 瞬时闭合,相当于网络有阶跃电压0)(u t u c =·)(1t 输入。故网络微分方程为 ?? ? ??=+=?idt C u u Ri u c c r 1 消去中间变量i ,得网络微分方程为 )(t u u dt du RC r c c =+ (2-44) 对上式进行拉氏变换,得变换方程 )()()0()(s U s U RCu s RCsU r c c c =+- 将输入阶跃电压的拉氏变换式s u s U r 0)(= 代入上式,并整理得电容端电压的拉氏变换式

用拉普拉斯变换方法解微分方程

拉普拉斯变换是解常系数线性微分方程中经常采用的一种较简便的方法.其基本思想是,先通过拉普拉斯变换将已知方程化成代数方程,求出代数方程的解,再通过逆拉普拉斯变换,得到所求数值问题的解. 一拉普拉斯变换的概念 定义设函数f(t)的定义域为[0,+∞),若广义积分∫0+∞f(t)e-pt dt对于p在某一范围内的值收敛,则此积分就确定了一个参数为p的函数,记作F(p),即F(p)=∫0+∞f(t)e-pt dt函数F(p)称为f(t)的拉普拉斯变换(或称为f(t)的象函数),表示为F(p)=L[f(t)]. 若F(p)是f(t)的拉氏变换,则称f(t)为F(p)的拉氏逆变换(或F(p)的象原函数),记作L-1[F(p)]. 例1 求指数函数f(t)=e at(t≥0,a是常数)的拉氏变换. 解根据定义,有L[e at]=∫0+∞e at e-pt dt=∫0+∞e-(p-a)t dt 这个积分在p>a时收敛,所以有 L[e at]=∫0+∞e-(p-a)t dt=1/(p-a) (p>a) (1) 例2 求一次函数f(t)=at(t≥0,a是常数)的拉氏变换. 解L[at]=∫0+∞ate-pt dt=-a/p∫0+∞td(e-pt) =-[at/p e-pt]0+∞+a/p∫0+∞e-pt dt 根据罗必达法则,有 lim t0+∞(-at/p e-pt)=-lim t0+∞at/pe pt=-lim t0+∞a/p2 e pt 上述极限当p>0时收敛于0,所以有lim t0+∞(-at/pe-pt)=0 因此L[at]=a/p∫0+∞e-pt dt

=-[a/p2e-pt]0+∞=a/p2(p>0) (2) 例3 求正弦函数f(t)=sinωt(t≥0)的拉氏变换. 解L[sinωt]=∫0+∞sinωte-pt dt =[-1/(p2+ω2) e-pt(psinωt+ωcosωt]0+∞ =ω/(p2+ω2) (p>0) (3) 用同样的方法可求得 L[cosωt]=p/(p2+ω2) (p>0) (4) 二拉普拉斯变换的基本性质 三拉普拉斯变换的逆变换 四拉普拉斯变换的应用 2–5 用拉普拉斯变换方法解微分方程 拉普拉斯变换方法是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查得相应的微分方程解。这样就使方程求解问题大为简化。 拉普拉斯变换法的另一个优点是在求解微分方程时,可同时获得的瞬态分量和稳态分量两部分。 有关拉普拉斯变换(简称拉氏变换)的公式见附录一。 应用拉氏变换法得到的解是线性微分方程的全解。用古典方法求解微分方程全解时需要利用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初始条件已自动地包含在微分方程的拉氏变换式之中了。而且,如果所有初始条件都为零,那么求

热传导方程及其定解问题的导出

第一章 热传导方程 本章介绍最典型的抛物型方程—热传导方程,在研究热传导,扩散等物理现象时都会遇 到这类方程. §1 热传导方程及其定解问题的导出 1.1热传导方程的导出 物理模型 在三维空间中,考虑一均匀,各向同性的物体Ω,假定它内部有热源,并且与周围介质有热交换,需要来研究物体内部温度的分布和变化. 以函数),,,(t z y x u 表示物体Ω在位置),,(z y x 及时刻t 的温度.物体内部由于各部分温度不同,产生热量的传递,它们遵循能量守恒定律. 能量守恒定律 物体内部的热量的增加等于通过物体的边界流入的热量与由物体内部的热源所生成的热量的总和 . 在物体Ω内任意截取一块D .现在时段],[21t t 上对D 使用能量守恒定律. 设),,,(t z y x u u =是温度(度),c 是比热(焦耳∕度·千克),ρ是密度(千克/米3), q 是热流密度(焦耳/秒·米2),0f 是热源强度(焦耳/千克·秒). 注意到在dt 时段内通过D 的边界D ?上小块dS 进入区域D 的热量为dSdt n q ?-(n 是 D ?的外法向),从而由能量守恒律,我们有 ,)||(21 21 120??????????+?-=-?==t t D t t D D t t t t dxdydz f dt ds n q dt dxdydz u u c ρρ (1.1) 大家知道,热量流动的原因是因为在物体内部存在温差.依据传热学中的傅立叶实验定律,在一定条件下,热流向量与温度梯度成正比 ,u k q ?-= (梯度? ?? ? ????????==?z u y u x u gradu u ,,) (1.2) 这里负号表明热量是由高温向低温流动,k 是物体的导热系数.

一维热传导方程

一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1) ,0),(22 T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方 程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方 程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑 的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: ),,1,0(N j jh x x j === ),,1,0(M k k t t k ===τ 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合; h Γ=h G --h G 是网格界点集合。 三. 离散格式 第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为

热传导方程的求解

应用物理软件训练 前言 MATLAB 是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 MATLAB是矩阵实验室(Matrix Laboratory)的简称,和Mathematica、Maple 并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其

他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。 本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。

题目:热传导方程的求解 目录 一、参数说明 (1) 二、基本原理 (1) 三、MATLAB程序流程图 (3) 四、源程序 (3) 五、程序调试情况 (6) 六、仿真中遇到的问题 (9) 七、结束语 (9) 八、参考文献 (10)

一、参数说明 U=zeros(21,101) 返回一个21*101的零矩阵 x=linspace(0,1,100);将变量设成列向量 meshz(u)绘制矩阵打的三维图 axis([0 21 0 1]);横坐标从0到21,纵坐标从0到1 eps是MATLAB默认的最小浮点数精度 [X,Y]=pol2cart(R,TH);效果和上一句相同 waterfall(RR,TT,wn)瀑布图 二、基本原理 1、一维热传导问题 (1)无限长细杆的热传导定解问题 利用傅里叶变换求得问题的解是: 取得初始温度分布如下 这是在区间0到1之间的高度为1的一个矩形脉冲,于是得 (2)有限长细杆的热传导定解问题

4-3拉普拉斯变换解微分方程

變換解微分方程 題過程: 分方程 題 02///=--y y y …..(*) 0)0(,1)0(/==y y 式等號兩邊做拉普拉斯變換 L {=--}2///y y y L }0{ 性性質,得 L {}//y - L {}/y -2 L {0}=y 2L {)}(t y -s y sy --)0()0(/L 2)0()}({-+f t y L 0)}({=t y 始條件,得L )}({t y 之代數方程 2s L )}({t y s -L 2)}({-t y L 1)}({-=s t y --------- (a) 數方程(a),得 簡 單 L 1-L ODE L {})()(s t y 之代數方程或低階ODE )(t y L {})()(s t y

L )}({t y 21 2---=s s s 上式兩邊做反拉普拉斯變換,得 =) L -1 {L {)(t y }}= L -1 ??????---212s s s ??? ??++??? ??-11322131s s 及L {} at e = a s -1 , 解為 =)t 31 L -1 ??????-21s + 32 L -1 ??????+11s 31= +t e 2 32 t e - 題t y y 2sin //=+ , …..(**) 1)0(,2)0(/==y y *)式等號兩邊做拉普拉斯變換 L {} =+y y // L {}t 2sin 換的微分性質以及L 22}{sin a s a at += ,得 L {}y +--)0()0(/y sy L 42 }{2+=s y 入初始條件,得L )}({t y 之代數方程 )1+L {}y 42122+=--s s --------- (b) 代數方程(b),得 {}y ??? ??+-??? ??+++=+++++=4132113512)4)(1(6822222223s s s s s s s s s 在上式兩邊做反拉普拉斯變換,得初始值問題的解為 t t t 2sin 31sin 35cos 2-+ (由 L 22}{sin a s a at += ,L 22}{cos a s s at += )

偏微分一维热传导问题

偏微分大作业 一维热传导方程问题——运用隐式格式求解数值解

目录 问题描述 (3) 1 解析解——分离变量法 (3) 2 数值解——隐式格式 (5) 3 证明隐式格式的相容性与稳定性 (5) 4 数值解——分析与Matlab实现 (6) 5 数值解与解析解的比较 (9) 6 随时间变化的细杆上的温度分布情况 (11) 7稳定后细杆上的温度分布情况 (12) 参考文献 (13) 附录 (14)

有限长杆的一维热传导问题 问题描述 一根单位长度的细杆放入100℃的沸水中,当细杆的温度达到100℃时取出。假设细杆四周绝热;在时间t=0时,细杆两端浸入0℃的冰水中。一维热传导方 程:20t xx u a u -=,现在令21a =,从而可知本题:0t xx u u -=。现在要求细杆温度分布:(,)u x t 。 1 解析解——分离变量法 热传导偏微分方程: 0t x x u u -= (1) (0,t )(1,t )u u == (0)()u x x ?=, 其中, 001 x x ==,或 ()x ?= 100(0,1) x ∈ , 首先令: (,)()()u x t X x T t = (2) 将(2)式带入(1)式得: ()T()()()0X x t T t X x -= 于是可得: T()()()() t X x T t X x λ==- 可以得到两个微分方程: T()()0t T t λ+= ()()0X x X x λ+= 先求解空间项: 当0λ <时, ()x x X x Ae Be λλ- --=+ 由于(0,t)(1,t)0,.u u t ==?

一维热传导方程

一维热传导方程Last revision on 21 December 2020

一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1) ,0),(22T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合;Γ=G --G 是网格界点集合。

三. 离散格式 第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为显格式。 第k+1层值不能通过第k 层值明显表示出来,而由线性代数方程组确定,这样的格式称为隐格式。 1. 向前差分格式 (5) ,22111j k j k j k j k j k j f h u u u a u u ++-=--++τ )(j j x f f =, )(0 j j j x u ??==, 00==k N k u u , 其中j = 1,2,…,N-1,k = 1,2,…,M-1。以2/h a r τ=表示网比。则方程(5)可以改写为: 易知向前差分格式是显格式。 2. 向后差分格式 (6) ,11111)21(j k j k j k j k j f u ru u u ru τ+=-++-+-+++ )(0 j j j x u ??==, 00==k N k u u , 其中j = 1,2,…,N-1,k = 1,2,…,M-1,易知向前差分格式是显格式。 3. 六点对称格式(Grank-Nicolson 格式) 将向前差分格式和向后差分格式作算术平均,即得到六点对称格式: (7) 111112)1(2+-+++-++-k j k j k j u r u r u r =j k j k j k j f u r u r u r τ++-+-+112 )1(2 利用0j u 和边值便可逐层求到k j u 。六点对称格式是隐格式,由第k 层计算第k+1层时需解线性代数方程组(因系数矩阵严格对角占优,方程组可唯一求解)。

热传导方程

前言 本文只是针对小白而写,可以使新手对热传导理论由很浅到不浅的认识,如想更深学习热传导知识,请转其它文档。 一、概念与常量 1、温度场: 指某一时刻下,物体内各点的温度分布状态。 在直角坐标系中:; 在柱坐标系中:; 在球坐标系中:。 补充:根据温度场表达式,可分析出导热过程是几维、稳态或非稳态的现象,温度场是几维的、稳态的或非稳态的。 2、等温面与等温线: 三维物体内同一时刻所有温度相同的点的集合称为等温面; 一个平面与三维物体等温面相交所得的的曲线线条即为平面温度场中的等温线。 3、温度梯度: 在具有连续温度场的物体内,过任意一点P温度变化率最大的方向位于等温线的法线方向上。称过点P的最大温度变化率为温度梯度(temperature gradient)。用grad t表示。 定义为: 补充:温度梯度表明了温度在空间上的最大变化率及其方向,是向量,其正向与热流方向恰好相反。对于连续可导的温度场同样存在连续的温度梯度场。 在直角坐标系中: 3、导热系数 定义式:单位 导热系数在数值上等于单位温度降度(即1)下,在垂直于热流密度的单 位面积上所传导的热流量。导热系数是表征物质导热能力强弱的一个物性参数。 补充:由物质的种类、性质、温度、压力、密度以及湿度影响。 二、热量传递的三种基本方式 热量传递共有三种基本方式:热传导;热对流;热辐射 三、导热微分方程式(统一形式:) 直角坐标系:

圆柱坐标系:球坐标系:

其中,称为热扩散系数,单位,为物质密度,为物体比热容,为物体导热系数,为热源的发热率密度,为物体与外界的对流交换系数。 补充: 1处研究的对象为各向同性的、连续的、有内热源、物性参数已知的导热物体。 2稳态温度场,即则有:,此式称为泊松方程。 3无内热源的稳态温度场,则有:,此式称为拉普拉斯方程。 四、单值条件 导热问题的单值条件通常包括以下四项: 1几何条件:表示导热物体的几何形状与大小(一维、二维或三维) 2物理条件:说明导热系统的物理特性(有无内热源) 3初始条件:给出时温度场内各点温度。 数学表达式为 4边界条件:表示导热系统在边界的特征 第一类边界条件(狄利克雷边界条件):说明物体边界的温度分布: 第二类边界条件(纽曼边界条件):说明物体边界的热流量: 绝热边界条件 第三类边界条件(纽曼边界条件):说明物体边界到热量与对流换热的能量平衡关系: 其中为边界处的温度,为边界的热流量,为环境温度。 五、解题步骤: 1根据具体实际问题列出导热微分方程式 2确定初始条件以及边界条件。每一维导热至少有两个边界条件,从而得到导热现象的完整数学描述。 3分析求解,得出导热物体的温度场

用拉普拉斯变换方法解微分方程

例1求指数函数f(t)=e at(t > 0,a是常数)的拉氏变换. 解根据定义,有L[e at]= j o+ e at e-pt dt= e-(p-a)t dt 这个积分在p> a时收敛,所以有 L[e at]= / T e(p-a)t dt=1/(p-a) (p > a) (1) 例2求一次函数f(t)=at(t > 0,a是常数)的拉氏变换. 解L[at]= / o+ra ate-pt dt=- a/p / o+"td(e -pt) =-[at/p e -pt ] o+ra+a/p / T e-pt dt 根据罗必达法则, 有 lim to+ °°(-at/p e )=-lim to+ °° at/pe =-lim to+ a/p e 上述极限当p> 0时收敛于0,所以有lim to+ - (-at/pe -pt )=0 因此L[at]=a/p / o+ra e-pt dt 2 -pt +m 2 =-[a/p e p ]o =a/p (p > (2) 0) 例3求正弦函数f(t)=sin 3 t(t > 0)的拉氏变换解L[sin 31]= / 0+ra sin 3 te -pt dt 2 2 -pt +m =[-1/(p +3 ) e (psin 3 t+ 3 cos3 t] 0

2 2 2 =3 /(P +3 ) (p > 0) ⑶ 用同样的方法可求得 2 2 L[cos 3t]=p/(p +3 ) (p > 0) 二拉普拉斯变换的基本性质 三拉普拉斯变换的逆变换 四 拉普拉斯变换的应用 2-5 用拉普拉斯变换方法解微分方程 拉普拉斯变换方法是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方 程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查 得相应的微分方程解。这样就使方程求解问题大为简化。 拉普拉斯变换法的另一个优点是在求解微分方程时,可同时获得的瞬态分量和稳态分量两 部分。 有关拉普拉斯变换(简称拉氏变换)的公式见附录一。 应用拉氏变换法得到的解是线性微分方程的全解。用古典方法求解微分方程全解时需要利 用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初 始条件已自动地包含在微分方程的拉氏变换式之中了。 而且,如果所有初始条件都为零,那么求 取微分方程的拉氏变换式就更为方便, 只要简单地用复变量s 来代替微分方程中的 —,s 2 代替 dt dt 应用拉氏变换法解微分方程的步骤如下: d 2 …就可得到。

一维非稳态导热问题的数值解

计算传热学程序报告 题目:一维非稳态导热问题的数值解 : 学号: 学院:能源与动力工程学院 专业:工程热物理 日期:2014年5月25日

一维非稳态导热问题数值解 求解下列热传导问题: ? ?? ????=====≤≤=??- ??1,10),(,1),0(0)0,()0(01T 22ααL t L T t T x T L x t T x 1.方程离散化 对方程进行控制体积分得到: dxdt t T dxdt x T t t t e w t t t e w ? ?? ??+?+??=??α 1 2 2 ? ? -=??-???+?+e w t t t w e t t t dx T T dt x T x T )(1])()( [α 非稳态项:选取T 随x 阶梯式变化,有 x T T dx T T t p t t p e w t t t ?-=-?+?+? )()( 扩散项:选取一阶导数随时间做显示变化,有 t x T x T dt x T x T t w t e w e t t t ???-??=??-??? ?+])()[(])()[( 进一步取T 随x 呈分段线性变化,有 e P E e x T T x T )()( δ-=?? , w W P w x T T x T )()(δ-=?? 整理可以得到总的离散方程为: 2 21x T T T t T T t W t P t E t P t t E ?+-=?-?+α 2.计算空间和时间步长 取空间步长为: h=L/N 网格Fourier 数为: 2 2 0x t x t F ??= ??= α(小于0.5时稳定)

拉普拉斯变换在求解微分方程中的应用

目录 拉普拉斯变换在求解微分方程中的应用 物理系0801班学生岳艳林 指导老师韩新华 摘要:拉普拉斯变换在求解微分方程中有非常重要的作用,本文首先介绍拉普拉斯变换的定义及性质; 其次给出拉普拉斯变换求解微分方程的一般步骤;然后重点举例拉普拉斯变换在求解常微分方程(初值问题与边 函数的常微分方程、常微分方程组、拉普拉斯变换在求解微分方程值问题、常系数与变系数常微分方程、含 特解中的应用、拉普拉斯变换在求解高阶微分方程的推广)与典型偏微分方程(齐次与非齐次偏微分方程、有界 与无界问题)中的应用举例;最后综合比较、归纳总结拉普拉斯变换在求解微分方程中的优势以及局限性。 关键词:拉普拉斯变换;拉普拉斯逆变换;常微分方程;偏微分方程;特解

引言 傅里叶变换和拉普拉斯变换是常用的积分变换,但对函数进行傅里叶变换时必须满足狄里希利和在+∞<<∞-t 内绝对可积,但是在物理、无线电技术等实际应用中,许多以时间t 为自变量的函数通常在0t <时不需要考虑或者没有意义,像这样的函数不能取傅里叶变换。为避免上述两个缺点,将函数进行适当改造,便产生了拉普拉斯变换[1]。 1 拉普拉斯变换以及性质 拉普拉斯变换的定义 设函数()f t 当0t ≥时有定义,而且积分 ()st f t e dt +∞ -? (s 是一个复参量)在s 的某一区域内收 敛,则此积分所确定的函数可写为0 ()()st F s f t e dt +∞ -= ? .我们称上式为函数()f t 的Laplace 变换 式.记为()[()]F s L f t =,()F s 称为()f t 的Laplace 变换(或称为象函数). 若()F s 是()f t 的Laplace 变换,则称()f t 为()F s 的Laplace 逆变换(或称为象原函数),记为1()[()]f t L F s -=[2]. Laplace 变换的存在定理 若函数()f t 满足下列条件: 1?在0t ≥的任一有限区间上分段连续; 2?当t →+∞时,()f t 的增长速度不超过某一指数函数,亦即存在常数0M >及0c ≥,使得c ()0f t Me t ≤≤<+∞t,成立(满足此条件的函数,称它的增大是不超过指数级的,c 为它的增长指数). 则()f t 的Laplace 变换0 ()st F f t e dt +∞ -?(s )=在半平面Re()s c >上一定存在,右端的积分在1Re()s c c ≥>的半平面内,()F s 为解析函数[2]. 拉普拉斯变换的性质 ⑴线性性质 若αβ,是常数,11[()]()L f t F s =, 22[()]()L f t F s =, 则有1212[()()][(t)]+[()]L f t f t L f L f t αβαβ+=, 1111212[()()][(s)]+[()]L F s F s L F L F s αβαβ---+=. ⑵微分性质 若[()]()L f t F s =,则有'[()]()(0)L f t sF s f =-. 高阶推广 若[()]()L f t F s =,则有2'[()]()(0)(0)L f t s F s sf f ''=--.

热传导方程傅里解

热传导方程傅里解

————————————————————————————————作者:————————————————————————————————日期:

热传导在三维的等方向均匀介质里的传播可用以下方程表达: 其中: ?u =u(t, x, y, z) 表温度,它是时间变量t 与空间变量(x,y,z) 的函数。 ?/是空间中一点的温度对时间的变化率。 ?, 与温度对三个空间座标轴的二次导数。 ?k决定于材料的热传导率、密度与热容。 热方程是傅里叶冷却律的一个推论(详见条目热传导)。 如果考虑的介质不是整个空间,则为了得到方程的唯一解,必须指定u 的边界条件。如果介质是整个空间,为了得到唯一性,必须假定解的增长速度有个指数型的上界,此假定吻合实验结果。 热方程的解具有将初始温度平滑化的特质,这代表热从高温处向低温处传播。一般而言,许多不同的初始状态会趋向同一个稳态(热平衡)。因此我们很难从现存的热分布反解初始状态,即使对极短的时间间隔也一样。 热方程也是抛物线偏微分方程最简单的例子。 利用拉普拉斯算子,热方程可推广为下述形式

其中的是对空间变量的拉普拉斯算子。 热方程支配热传导及其它扩散过程,诸如粒子扩散或神经细胞的动作电位。热方程也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与 Ornstein-Uhlenbeck 过程。热方程及其非线性的推广型式也被应用于影像分析。量子力学中的薛定谔方程虽然有类似热方程的数学式(但时间参数为纯虚数),本质却不是扩散问题,解的定性行为也完全不同。 就技术上来说,热方程违背狭义相对论,因为它的解表达了一个扰动可以在瞬间传播至空间各处。扰动在前方光锥外的影响通常可忽略不计,但是若要为热传导推出一个合理的速度,则须转而考虑一个双曲线型偏微分方程。 以傅里叶级数解热方程[编辑] 以下解法首先由约瑟夫·傅里叶在他于1822年出版的著作Théorie analytique de la chaleur(中译:解析热学)给出。先考虑只有一个空间变量的热方程,这可以当作棍子的热传导之模型。方程如下: 其中u = u(t, x) 是t和x的双变量函数。 ?x是空间变量,所以x∈[0,L],其中L表示棍子长度。

第四章导热题的数值解法

第四章导热问题的数值解法 1 、重点内容:①掌握导热问题数值解法的基本思路; ②利用热平衡法和泰勒级数展开法建立节点的离散方程。 2 、掌握内容:数值解法的实质。 3 、了解内容:了解非稳态导热问题的两种差分格式及其稳定性。 §4—1导热问题数值求解的基本思想及内节点方程的建立由前述 3 可知,求解导热问题实际上就是对导热微分方程在定解条件下的积分求解,从而获得分析解。但是,对于工程中几何形状及定解条件比较复杂的导热问题,从数学上目前无法得出其分析解。随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展得十分迅速,并得到广泛应用,并形成为传热学的一个分支——计算传热学(数值传热学),这些数值解法主要有以下几种: (1)有限差分法( 2 )有限元方法( 3 )边界元方法 数值解法能解决的问题原则上是一切导热问题,特别是分析解方法无法解决的问题。如:几何形状、边界条件复杂、物性不均、多维导热问题。 一.分析解法与数值解法的异同点: ?相同点:根本目的是相同的,即确定① t=f(x , y , z) ;② 。 ?不同点:数值解法求解的是区域或时间空间坐标系中离散点的温度分布代替连续的温度场;分析解法求解的是连续的温度场的分布特征,而不是分散点的数值。 数值求解的基本思路及稳态导热内节点离散方程的建立 二.解法的基本概念 ?实质 对物理问题进行数值解法的基本思路可以概括为:把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场等,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。该方法称为数值解法。 这些离散点上被求物理量值的集合称为该物理量的数值解。 2 、基本思路:数值解法的求解过程可用框图 4-1 表示。 由此可见: 1 )物理模型简化成数学模型是基础; 2 )建立节点离散方程是关键; 3 )一般情况微分方程中,某一变量在某一坐标方向所需边界条件的个数等于该变量在该坐标方向最高阶导数的阶数。 ?数值求解的步骤 如图 4-2 ( a ),二维矩形域内无内热源、稳态、常物性的导热问题采用数值解法的步骤如下:(1)建立控制方程及定解条件 控制方程:是指描写物理问题的微分方程 针对图示的导热问题,它的控制方程(即导热微分方程)为:( a ) 边界条件: x=0 时, x=H 时, 当 y=0 时,

用拉普拉斯变换方法解微分方程

拉普拉斯变换就是解常系数线性微分方程中经常采用的一种较简便的方法、其基本思想就是,先通过拉普拉斯变换将已知方程化成代数方程,求出代数方程的解,再通过逆拉普拉斯变换,得到所求数值问题的解、 一拉普拉斯变换的概念 定义设函数f(t)的定义域为[0,+∞),若广义积分∫0+∞f(t)e-pt dt对于p在某一范围内的值收敛,则此积分就确定了一个参数为p的函数,记作F(p),即F(p)=∫0+∞f(t)e-pt dt函数F(p)称为f(t)的拉普拉斯变换(或称为f(t)的象函数),表示为F(p)=L[f(t)]、 若F(p)就是f(t)的拉氏变换,则称f(t)为F(p)的拉氏逆变换(或F(p)的象原函数),记作L-1[F(p)]、 例1 求指数函数f(t)=e at(t≥0,a就是常数)的拉氏变换、 解根据定义,有L[e at]=∫0+∞e at e-pt dt=∫0+∞e-(p-a)t dt 这个积分在p>a时收敛,所以有 L[e at]=∫0+∞e-(p-a)t dt=1/(p-a) (p>a) (1) 例2 求一次函数f(t)=at(t≥0,a就是常数)的拉氏变换、 解L[at]=∫0+∞ate-pt dt=-a/p∫0+∞td(e-pt) =-[at/p e-pt]0+∞+a/p∫0+∞e-pt dt 根据罗必达法则,有 lim t0+∞(-at/p e-pt)=-lim t0+∞at/pe pt=-lim t0+∞a/p2 e pt 上述极限当p>0时收敛于0,所以有lim t0+∞(-at/pe-pt)=0 因此L[at]=a/p∫0+∞e-pt dt

=-[a/p 2e -pt ]0+∞=a/p 2(p >0) (2) 例3 求正弦函数f(t)=sinωt(t≥0)的拉氏变换、 解 L[sinωt]=∫0+∞sinωte -pt dt =[-1/(p 2+ω2) e -pt (psinωt+ωcosωt]0+∞ =ω/(p 2+ω2) (p >0) (3) 用同样的方法可求得 L[cosωt]=p/(p 2+ω2) (p >0) (4) 二 拉普拉斯变换的基本性质 三 拉普拉斯变换的逆变换 四 拉普拉斯变换的应用 2–5 用拉普拉斯变换方法解微分方程 拉普拉斯变换方法就是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查得相应的微分方程解。这样就使方程求解问题大为简化。 拉普拉斯变换法的另一个优点就是在求解微分方程时,可同时获得的瞬态分量与稳态分量两部分。 有关拉普拉斯变换(简称拉氏变换)的公式见附录一。 应用拉氏变换法得到的解就是线性微分方程的全解。用古典方法求解微分方程全解时需要利用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初始条件已自动地包含在微分方程的拉氏变换式之中了。而且,如果所有初始条件都为零,那么求取微分方程的拉氏变换式就更为方便,只要简单地用复变量s 来代替微分方程中的dt d ,2s 代替

相关主题