搜档网
当前位置:搜档网 › 苯基三甲基氯化铵_TMPAC_三氯化铝_AlCl_3_离子液体_苯的电镀铝研究

苯基三甲基氯化铵_TMPAC_三氯化铝_AlCl_3_离子液体_苯的电镀铝研究

苯基三甲基氯化铵_TMPAC_三氯化铝_AlCl_3_离子液体_苯的电镀铝研究
苯基三甲基氯化铵_TMPAC_三氯化铝_AlCl_3_离子液体_苯的电镀铝研究

我国纳滤膜研制及应用技术进展

我国纳滤膜研制及应用技术进展 发表时间:2009-05-25T12:59:11.140Z 来源:《中小企业管理与科技》2009年4月上旬刊供稿作者:刘映 [导读] 近年来,纳滤技术已经成为膜分离领域的研究热点,并在制药、生物化工、食品、水处理等诸多领域广泛应用。 摘要:纳滤膜出现在上世纪八十年代,1993年,高从堦院士在国内首次提出纳滤膜概念[1],近年来,纳滤技术已经成为膜分离领域的研究热点,并在制药、生物化工、食品、水处理等诸多领域广泛应用。 关键词:纳滤膜膜技术水处理 0 引言 纳滤技术介于超滤和反渗透之间的一种膜分离技术, 其截留分子量在200~1000范围,孔径为几纳米,其分离对象的粒径为约1nm。纳滤膜有着很多显著的优点,例如操作压力低,通量高,对离子形式的盐和一些有机分子的高效去除能力,而设备投资和运行保养的费用却很低。正是因为这些优点,纳滤技术在世界范围内的各个领域被越来越多的应用。纳滤膜出现在上世纪八十年代,1993年,高从堦院士在国内首次提出纳滤膜概念[1],近年来,纳滤技术已经成为膜分离领域的研究热点,并在制药、生物化工、食品、水处理等诸多领域广泛应用。 1 纳滤膜的研制 1.1 醋酸纤维素类纳滤膜周金盛等人[2]应用相转化法制备了醋酸纤维素(CA)-三醋酸纤维素(CTA)不对称纳滤膜。针对CA/CTA比,混合溶剂比例,添加剂和制膜条件等因素对膜性能的影响进行了研究。所制得的膜在操作压力1MPa和进水温度5~25℃条件下,对1000mg/L的NaCl水溶液脱盐率达到了15~60%,而对1000mg/Na2SO4水溶液脱盐率为85~98%。刘玉荣等人[3]对醋酸纤维纳滤膜连续成膜工艺进行了研究,确定了连续制备醋酸纤维纳滤膜的工艺条件。在机制膜制备中,材料的毛疵点可能导致膜面的疵点和缺陷。而材料表面的微细的软毛,则有利于铸膜液与增强材料的结合,使膜不宜从增强材料上剥离。醋酸纤维类纳滤膜是早期在膜市场投入生产的产品,但使纳滤膜大量应用于生产实践当中并迅速发展的,是复合型纳滤膜的出现。 1.2 复合纳滤膜 1993年,高从堦在国内首先采用界面缩聚法制备芳香族聚酰胺复合纳滤膜(PA类纳滤膜)的是,并指出该膜对MgSO4的脱盐率优于NaCl,可用于水质的软化。岑美柱和章勤等人[4]采用高取代度氰乙基纤维素与二醋酸纤维素共混为膜材料,丙酮、二氧六环混合溶剂,以有机醇为主、加入适量其他添加剂为致孔剂,通过冰水凝胶浴干湿法纺丝,制得性能良好的中空纤维纳滤膜,该膜在给水质量浓度1800mg/L、操作压力为0.6MPa、水温25℃条件下,对二价盐CaCl2、一价盐NaCl的水溶液的脱盐率分别大于90%和小于60%,水通量均大于3.5mL/(cm2·h)。于品早[5]以聚偏氟乙酸(PVDF)为第二组分聚合物与三醋酸纤维素(CTA)共混,通过冻胶法纺丝工艺制备成中空纤维纳滤膜。研究了固含量,纺丝工艺和后处理条件对膜性能的影响,并测试了不同操作条件下的模性能,取得了满意的结果。 1.3 荷电纳滤膜 1.3.1 荷负电纳滤膜鲁学仁[6]以丙烯酸-丙烯腈共聚物为荷电材料,以聚砜酰胺(PSA)为基膜研制了荷负电的纳滤膜。对共聚物的合成,荷电剂浓度,反应温度和反应时间等制膜条件进行了系统试验。同时还研究了荷电膜离子交换容量与膜性能的关系。制得的膜在0.6MPa下,对自来水脱盐率为40~50%,水通量为5~10mL/(cm 2·h),IEC为6.0×10-4~8.0×10-4meq/cm2。 苗晶等人[7]采用均相合成的方法制备了一种典型的两性聚电解质-壳聚糖硫酸酯(SCS)。以SCS的水溶液为复合纳滤膜活性层铸膜液,戊二醛为交联剂,聚砜超滤膜为基膜,采用涂敷与交联的方法制备了壳聚糖硫酸酯/聚砜(SCS/PSF)复合纳滤膜,采用环境扫描电镜(ESEM)对其表面和断面结构进行了表征,并研究了活性层铸膜液的组成及制备条件对复合膜截留性能的影响。所制得的复合NF膜在13~15℃、 0.30MPa下,对1000mg·L-1Na2SO4和NaCl溶液的截留率分别为91.2%、48.5%,通量分别为3.2、6.7kg·m-2·h-1。SCS/PSF系列复合膜对无机盐的截留顺序为:Na2SO4>NaCl> MgSO4>MgCl2。实验结果表明SCS/PSF复合膜表面活性层因吸附电解质溶液中的阴离子而荷负电,并由此决定其对无机盐的截留性能。 1.3.2 荷正电纳滤膜杨艳红和方文骥[8]以聚乙烯亚胺(PEI)和均苯三甲酰氯(TMC)为反应单体,采用界面聚合法制备了一种荷正电纳滤膜。通过均匀实验设计,得出的优化条件为:PEI浓度为1.75%,十二烷基硫酸钠(SDS)浓度为0.1%,酸接受剂(Na2CO3:NaOH=2∶1)浓度为0.3%(均为质量浓度),界面聚合反应时间(IPT)为2min,膜对一价盐的截留率均在30%左右,对二价盐的截留率接近70%,对低分子有机染料的截留率达90%以上。 2 水处理当中的应用 2.1 自来水深度处理崔崇威等人[9]依据大庆水源水质特点确定优质桶装水的生产工艺为:自来水—多介质过滤—臭氧化—生物活性碳过滤—精密过滤—纳滤—臭氧紫外双重消毒—自动化灌装。纳滤浓水水质分析表明优于原水,提出将其回用于工艺中,结果表明:纳滤浓水的回用可以使桶装饮用水保留一部分人体所需的矿物质,同时提高水的硬度,达到优质桶装水的要求。组合工艺对有机污染物去除效率较高,出水高锰酸盐指数小于110mg/L,效果稳定。纳滤膜操作压力低,可使原水部分脱盐,阴离子截留率按NO3-、Cl-、F-、SO42-顺序递增;尤其对该地区水中含量较高的F-有良好的去除效果;阳离子截留率按Na+、K+、Mg2+、Ca2+顺序递增,对高价离子的去除率大于其对一价离子的去除率,对水中无机和有机污染物都具有独特的分离特性。 朱安娜等人[10]针对磁场应用于自来水纳滤软化过程的初步研究表明:与同样条件下的对照实验相比,磁场的存在可以减缓纳滤膜通量衰减的速度。对膜面结垢的电镜分析发现,磁场引入纳滤膜过程可导致膜面结晶形态的改变。不加磁场的纳滤过程中,膜面上主要生成颗粒状的方解石;加磁场的纳滤过程中,膜面上针形文石的含量增高,且大多形成团簇结构。纳滤膜面上针形导磁极后在膜面上以S-N的结合次序形成链状结晶。 2.2 地表水处理地表水的成分与其中的化学物质往往随着季节的变化或是雨后地表冲积物而变化,虽然在处理地表水的过程中我们主要去除的是有机物而不是硬度,纳滤膜仍然是很可靠的选择之一。李灵芝和王占生[11]以分别以太湖水和淮河水为水源的两地水厂出厂水为研究对象,研究纳滤膜组合工艺对饮用水中可同化有机碳和致突变物的去除效果。研究表明,纳滤膜对可同化有机碳的去除率为80%,能确保饮用水的生物稳定性,对致突变物的去除率大于90%,使Ames实验结果由阳性转为阴性,对两地不同原水均能生产出安全优质的饮用水。 2.3 废水处理纳滤技术作为一种高效经济的处理手段,已经被应用于很多废水处理工艺当中。王昕彤和孙余凭[12]采用TFC-S型纳滤膜对含镍废水进行回收处理。在试验中研究了试验温度、操作压力、进料流率和溶液中Ni2+的质量浓度对Ni2+的质量截留率和透过流率的影响。

制备3-氯-2-氨甲基-5-三氟甲基吡啶的方法(09.02)

专利人:李波 专利申请号:201310467331.1 文献出处:盐城市志达化工有限公司 本发明提供了一种制备3-氯-2-氨甲基-5-三氟甲基吡啶的方法,包括以下步骤:(a)使式(I)化合物甘氨酸乙酯盐酸盐与二苯甲酮在有机溶剂中发生 反应,得到式(II)化合物二苯亚甲基甘氨酸乙酯;(b)使式(II)化合物与式(III)化合物2, 3-二氯-5-三氟甲基吡啶在有机溶剂中发生反应,得到式(IV)化合物;(c)使式(IV)化合物与盐酸在20~25℃下发生反应,得到式(V)化合物;(d)使式(V)化合物与盐酸在90~110℃下发生反应,得到式(VI)化合物3-氯-2-氨甲基-5-三氟甲基吡啶;本发明的方法原料廉价易得,反应过程绿色环保,溶剂和二苯甲酮均可回收,成本低而产率高,非常适合于工业化生产; 。

1. 一种制备3-氯-2-氨甲基-5-三氟甲基吡啶的方法,其特征在于,包括以下步骤: (a)使式(I)化合物甘氨酸乙酯盐酸盐与二苯甲酮在有机溶剂中,在碱存在和催化剂作用的条件下发生反应,得到式(II)化合物二苯亚甲基甘氨酸乙酯,所述反应的温度为90~110℃,所述碱选自三甲胺、三乙胺、异丙基胺、二异丙基乙基胺、丙二胺、丁胺、苯胺、苄胺、二甲基苯胺中的一种或几种,所述催化剂选自邻甲苯酚、对甲苯酚、苯磺酸、磺基水杨酸、对甲苯磺酸、邻甲基水杨酸、对氯邻甲苯酚中的一种或几种; (b)使步骤(a)中得到的式(II)化合物二苯亚甲基甘氨酸乙酯与式(III)化合物2, 3-二氯-5-三氟甲基吡啶在有机溶剂中,在碱存在和催化剂作用的条件下发生反应,得到式(IV)化合物,所述反应的温度为90~110℃,所述碱选自氢氧化钠、碳酸钠、碳酸氢钠、氢氧化钾、碳酸钾中的一种或几种,所述催化剂选自苄基三乙基氯化铵、四乙基溴化铵、四丁基溴化铵、四丁基氯化铵、四丁基硫酸氢铵、三辛基甲基氯化铵、十二烷基三甲基氯化铵、十四烷基三甲基氯化铵中的一种或几种; (c)使步骤(b)中得到的式(IV)化合物与盐酸在20~25℃下发生反应,得到式(V)化合物; (d)使步骤(c)中得到的式(V)化合物与盐酸在90~110℃下发生反应,所得产物经碱中和得到式(VI)化合物3-氯-2-氨甲基-5-三氟甲基吡啶;

十二烷基三甲基溴化铵

品名CAS号分子式 十二烷基三甲基溴化铵1119-94-4 C12H25(CH3)3 NBr 十二烷基三甲基氯化铵112-00-5C12H25(CH3)3 NCl 十四烷基三甲基溴化铵1119-97-7C14H29(CH3)3NBr 十四烷基三甲基氯化铵4574-04-3C14H29(CH3)3 NCl 十六烷基三甲基溴化铵57-09-0C16H33(CH3)3 NBr 十六烷基三甲基氯化铵112-02-7C16H33(CH3)3 NCl 十八烷基三甲基氯化铵112-03-8 C18H37(CH3)3NCl 十八烷基三甲基溴化铵1120-02-1 C18H37(CH3)3NBr 苯扎氯铵63449-41-2 C17H30NCl 苯扎溴铵7281-04-1 C21H38BrN 四甲基氯化铵75-57-0(CH3)4NCl 四甲基溴化铵64-20-0(CH3)4NBr 四甲基硫酸氢铵103812-00-6(CH3)4NHSO4 四甲基醋酸铵10581-12-1(CH3)4CH3COON 四甲基碘化铵75-58-1(CH3)4NI 四乙基溴化铵71-91-0(C2H5)4NBr 四丙基氯化铵5810-42-4(C3H7)4NCl 四丙基溴化铵1941-30-6(C3H7)4NBr 四丁基氯化铵37451-68-6(C4H9)4NCl 四丁基溴化铵1643-19-2(C4H9)4NBr 四丁基硫酸氢铵32503-27-8(C4H9)4NHSO4

四丁基氟化铵87749-50-6(C4H9)4NF 四丁基醋酸铵10534-59-5(C4H9)4CH3COON 四丁基碘化铵311-28-4(C4H9)4NI 甲基三乙基氯化铵10052-47-8CH3(C2H5)3NCl 甲基三丁基氯化铵56375-79-2CH3(C4H9)3NCl 甲基三辛基氯化铵5137-55-3CH3(C8H17)3NCl 甲基三辛、癸基氯化铵63393-96-4CH3[(CH2)7CH3]3NCl 甲基三辛基氯化铵水溶液5137-55-3CH3(C8H17)3NCl 双十烷基二甲基氯化铵7173-51-5 (C10H21)2(CH3)2NCl 双十二烷基二甲基氯化铵3401-74-9 (C12H25)2(CH3)2NCl 双十八烷基二甲基氯化铵107-64-2 (C18H37)2(CH3)2NCl 双十烷基二甲基溴化铵2390-68-3 (C10H21)2(CH3)2NBr 双十二烷基二甲基溴化铵3282-73-3 (C12H25)2(CH3)2NBr 双十八烷基二甲基溴化铵3700-67-2 (C18H37)2(CH3)2NBr

间苯二甲酰氯的生产现状与生产分析预测

间苯二甲酰氯的生产现状与生产分析预测 3.1 间苯二甲酰氯生产现状分析 3.1.1 我国间苯二甲酰氯生产发展 我国间苯二甲酸生产与应用起步较晚,20世纪90年代,国内仅有一些企业和研究单位在研究生产,其中,江西南昌农药厂就被选定为国家863火炬计划项目的实施单位,对间苯二甲酰氯产品进行了研发和生产,并取得较好的成果。其氯化亚砜法合成间苯二甲酰氯被…… 近几年,我国一些企业相继投产或扩产了间苯二甲酰氯生产装置。 …… 目前(2011年11月17日),我国间苯二甲酰氯生产企业有--余家,总产能超过---吨/年,2010年产量估计在---吨,开工率约---%。主要生产企业有:…… 2006~2010年我国间苯二甲酰氯生产能力、产量、开工率情况见下表和图:表3.1 2006~2010年我国间苯二甲酰氯生产能力、产量、开工率统计表图3.1 2006~2010年我国间苯二甲酰氯产能、产量走势图 3.1.2 我国间苯二甲酰氯生产现状 目前(2011年11月17日),我国间苯二甲酰氯生产能力超过---吨/年,生产企业有---余家。生产企业主要集中在山东、…… 表3.2 我国间苯二甲酰氯主要生产企业及产能统计表 鉴于目前国内间苯二甲酰氯的技术标准,…… 3.2 我国间苯二甲酰氯生产预测 间苯二甲酰氯是合成聚酰胺、聚酯、聚芳酯等特种高分子的重要单体,是有机合成原料,用途十分广泛。作为特种合成纤维——芳纶纤维必需的两大主要原

料之一,间苯二甲酰氯的需求量正随着芳纶纤维的快速增长而增加。 目前(2011年11月17日),我国间苯二甲酰氯产能达到--吨/年以上,未来几年我国建设或拟建间苯二甲酰氯项目…… 2010~2015年我国间苯二甲酰氯预计生产能力和产量预测见下表和图: 表3.3 2010~2015年我国间苯二甲酰氯预计产能、产量情况表 图3.2 2010~2015年我国间苯二甲酰氯预计产能、产量、需求量走势图3.3 我国间苯二甲酰氯生产企业概况 烟台裕祥精细化工有限公司 烟台裕祥精细化工有限公司成立于2005年10月,是由烟台创业高科技有限公司、烟台弘方纺织有限公司及香港李皓榛先生共同投资成立的合资企业,主要为烟台氨纶公司的芳纶纤维生产配套原料。该公司占地面积74.8亩,建筑面积23725平方米,主要生产酰氯、二胺等芳纶生产用原料。 目前该公司月产间苯二甲酰氯已超过200吨,成为亚洲地区最大的酰氯主要生产及供应地之一。 淄博达隆制药科技有限公司 淄博达隆制药科技有限公司位于淄博市淄川区,公司成立于2003年,是致力于精细化工产品研究开发和生产的科技型企业,主要从事酰氯系列产品和药物中间体的创新研制、生产和销售。该公司在充分利用现有酰氯系列产品开发和生产中所掌握的关键核心技术的基础上,为使产品的生产达到国际最先进水平,目前公司的产品有:间苯二甲酰氯、对苯二甲酰氯、均苯三甲酰氯、对甲基苯甲酰氯、间甲基苯甲酰氯、避蚊胺等。 详细内容参见六鉴网(https://www.sodocs.net/doc/6f15089973.html,)发布《间苯二甲酰氯技术与市场调研报告》。

急性三甲基氯化锡中毒-案例

塑料(PVC)生产行业的劳动者慎防急性三甲基氯化锡中毒 来源:中国职业健康发布时间:2017-02-13 关键词: 案例 聂某等3人为某PVC水管生产企业的工人,由于天气炎热,车间内的温度高,通风设施差,部分男工为方便操作,经常脱掉上衣裸露上身工作,某天中午磨粉车间的周某在操作的时候晕倒在磨粉机旁,被紧急送到医院救治,次日谭某、曾某亦出现头晕、胸闷、四肢无力等症状先后被车间主管送到医院就诊,而后三人均被诊断为急性三甲基氯化锡中毒。 专家解析 有机锡类化合物中以三烃基锡毒性(TMT)最大,国内常报道TMT 中毒死亡的事件,TMT中毒多与有机锡用做塑料稳定剂有关,从事有机锡塑料稳定剂研究、生产、使用(特别是塑料或回收塑料的加热成型)等工作可产生TMT中毒;国内还曾发生多起误食被有机锡塑料稳定剂污染的食品(如猪油)的群体中毒事件,也有因饮用TMT污染的地下水、皮肤接触含TMT的蒸汽或液体而发生中毒的报道。 TMT可通过呼吸道、消化道、皮肤粘膜进入机体,工人在高温环境下裸露上身操作,增加空气中TMT通过皮肤吸收的机会。多数中毒

患者有低钾血症,出现头痛、头晕、四肢乏力、幻视、幻听、胸闷、心悸、腹痛、腹泻等表现。 中毒救治 目前尚无特效解毒剂,主要采取一般急救措施及对症支持治疗。 1.立即脱离事故现场,卧床休息。凡有确切TMT接触史者,应进行医学监护5-7天,必要时给予对症处理,皮肤或眼睛受污染者,应立即用水彻底冲洗。 2.积极纠正低钾血症,维持体内电解质及酸碱平衡。 3.积极防治脑水肿,控制液体摄入量,注意控制精神症状及抽搐。 4.加强心、肝、肾等重要器官的保护治疗。 5.观察对象经医学监护痊愈后,可恢复原工作,轻症中毒治愈后可从事正常工作,但应调离有机锡作业,中、重毒中毒根据病情,可延长休息时间,酌情安排工作,但不应再从事有毒作业。 防控措施 1.加强上岗前培训和职业卫生知识教育。 2.尽量使用不含TMT的稳定剂替代有机锡塑料稳定剂。 3.有机锡塑料稳定剂生产、使用的作业场所,尤其是回收塑料的破碎、成型、加热工艺应加强通风、排毒,做好工人卫生防护,防止毒物经呼吸道和皮肤吸收。

表面活性剂常用英文缩写

A a-SAA 阴离子表面活性剂 AACG 烷基两性羧基甘氨酸盐 AACP 烷基两性丙氨酸盐 AAG 烷基两性甘氨酸盐 AAOA 烷基酰胺丙基氧化胺 AAP 烷基丙氨酸盐 AAPB 烷基酰胺丙基甜菜碱 AASB 烷基酰胺丙磺基甜菜碱 ARS 支链烷基苯磺酸盐 AEO(n) 脂肪醇聚氧乙烯醚(n) AEC 醇醚羧酸盐 AS 烷基硫酸盐 AESS 脂肪醇聚氧乙烯醚琥珀酸酯磺酸钠AE 脂肪醇聚氧乙烯醚 AES 脂肪醇聚氧乙烯醚硫酸盐 ABS 硬性苯磺酸盐 AOS 烯基磺酸盐 AG 烷基甘氨酸盐 AGS 烷基甘油醚磺酸盐 APG 非离子烷基糖苷 AIDA 烷基亚氨基二乙酸盐 AIDP 烷基亚氨基二丙酸盐 Ale(2)S 月桂醇醚(2)硫酸铵盐 ALs 月桂醇硫酸酯铵盐 Am/DIFAG乙酸甘油单、二酸酯 AMT 长链酰基-N-甲基牛磺酸钠(1gepon T) AOS a -烯烃磺酸盐 APAC 长链烷基低聚氨基酸,烷基聚胺羧酸盐APG 烷基低聚糖苷 APES 烷基酚聚氧乙烯醚硫酸盐 C CAPG 阳离子烷基糖苷 CHSB 十六烷基羟基磺丙基甜菜碱 CAPB 椰油酰胺丙基甜菜碱 CAB 椰油酰胺甜菜碱 CAMA 椰油基咪唑啉甜菜碱 CAPO 椰油酰胺丙基氧化胺 CoACG 椰油基两性羧基甘氨酸盐 c-SAA 阳离子表面活性剂 CCACP 椰油基两性羧基丙氨酸盐 CoAG 椰油基两性甘氨酸盐 CoAHSB 椰油酰胺丙基羟基磺基甜菜碱CoAP N-椰油基-b-丙氨酸盐

CoAPB 椰油酰胺丙基甜菜碱CoASB 椰油酰胺磺丙基甜菜碱CoB 椰油基甜菜碱 CoDEA 椰油基二乙醇酰胺 CoIDP 椰油亚氨基二丙酸盐CCMEA 椰油单乙醇酰胺 CoMT 椰油酰基-N-甲基牛磺酸钠CoNnAa 椰油基低聚丙基甘氨酸CoSB 椰油基磺丙基甜菜碱 CM/DFAG 柠檬酸甘油单、二酸酯CPC 十六烷基氯化吡啶 CSB 十六烷基磺基甜菜碱 CAPG 阳离子烷基糖苷 CMEA 椰油酸单乙醇酰胺 CAPB 椰油酰胺丙基甜菜碱 CAB 椰油酰胺甜菜碱 CAMA 椰油基咪唑啉甜菜碱 CTAB 十六烷基三甲基溴化铵CTAC 十六烷基三甲基氯化铵 D DAC5 十二烷基两性羧基甘氨酸盐DAES 十二胺乙基磺酸钠 DAP N-十二烷基-b-丙氨酸盐DAPB 十二酰胺丙基甜菜碱DAPSB 十二酰胺丙基磺基甜菜碱DB 十二烷基甜菜碱 DDBAC 十二烷基二甲基苄基氯化铵DDEAC 双十烷基双甲基氯化铵DDG 十二烷基二(氨乙基)甘氨酸DEACG 癸基两性羧基甘氨酸盐DEAP N-十烷基-b-丙氨酸盐 DEB 十烷基甜菜碱 DEEO(n) 十烷基聚氧乙烯醚(n) DEO(n) 十二醇聚氧乙烯醚(n) DETAC 十烷基三甲基氯化铵 DG 十二烷基甘氨酸 DHSB 十二烷基羟基磺丙基甜菜碱DIC 十二烷基咪唑啉阳离子 DIDP 十二烷基亚氨基二丙酸盐DMBB 十二烷基甲基苄基甜菜碱DMG 十二烷基氨乙基甘氨酸 DMT 十二酰基-N-甲基牛磺酸钠DOA 十二烷基二甲基氧化胺 DPB 十二烷基二甲基丙基甜菜碱

绿色化学工艺

绿色化学工艺的开发和应用 脱永笑(10093041) 华东理工大学化工系,上海200030 摘要开发和应用绿色化学工艺,是现代化学工业的发展趋势和前沿技术。生产化学品的原料、催化剂、溶剂的绿色化和“原子经济”反应以及生物技术等清洁生产方法的开发和应用,对维护人类健康,保护生态环境,实现化学工业的可持续发展具有重要意义。 关键词化学工艺绿色化开发应用 1 引言 化学与化工对人类做出了巨大贡献。人类生活的各个方面,从衣、食、住、行的生活必需品到汽车、电视、洗衣机等高档耐用消费品,无不同化学和化工有关。高科技的发展更是离不开化学和化工的有力支持。可以说化学和化工改变了人类的生活方式,提高了人类的生活水平。但化学和化工的这些巨大贡献伴随着一定的代价,那就是制造、使用与处理这些合成化学物质对人类健康及生活环境造成的负面影响。[1]美国TRI(Toxics Release Inventory) 1994 年的统计结果表明,化学工业为最大的有害物质释放工业,超过排在前10 名的其他9 个行业的总和。可见化学工业在环境污染中的特殊地位,这就对化学与化工研究者提出了挑战,同时也带来了巨大的研究与发展机遇。化学物质对环境的影响只有在近期才得到广泛的重视。在二次世界大战以前及其随后的一段时期里,很少有人谈到化学物质的制造、使用及处理方式对环境的影响。只有到了20 世纪50 年代末60 年代初期,人们才开始关心化学物质如何对人类健康与环境造成危害这一问题,认识到化学物质的使用可能导致意想不到的负作用。因此,有害化学物质的处理及环境保护受到了重视,并成为重要的研究方向之一。 随着对环境污染认识的深入及知识水平的提高,人们提出了绿色化学(Green Chemistry) 的概念,并将其作为防止环境污染的根本途径。绿色化学的研究内容为:寻找一个基本的方法来改变某一产品或过程的内在本质,以降低或消除其对人类健康及环境的影响。绿色化学工艺即是以绿色化学为基础的化学工艺,体

有毒有机锡的危害与预防(正式)

编订:__________________ 单位:__________________ 时间:__________________ 有毒有机锡的危害与预防 (正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-3798-24 有毒有机锡的危害与预防(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 有机锡化合物有4种类型:四烃基锡化合物(R4Sn)、三烃基锡化合物(R3SnX)、二烃基锡化合物(R2SnX2)和一烃基锡化合物(RSnX3),以上通式中R为烃基,可为烷基或芳基等;X为无机或有机酸根、氧或卤族元素等。根据国内外病便报道,引起急性中毒性脑病的主要有机锡化合物有三甲基锡(trimethyltin),三甲基氯化锡(trimethyltin chloride)、三乙基锡(triethyltin)、三乙基氯化锡(triethyltin chloride)、三乙基溴化锡(triethyltin bromide)、三乙基碘化锡(triethyltin iodide)、三乙基氢氧化锡(triethyltin hydroxide)、三乙基硫酸锡(triethyltin sulfate)、双三乙基硫酸锡(bis(triethyltin) sulfate)、三丁基氯化锡

季铵盐

1.1 季铵盐化合物 1.1.1 结构与性质 季铵盐(又称四级铵盐)是中的4个都被取代后形成的的[3]。季铵盐有4个碳原子通过共价键直接与氮原子相连,阴离子在烃基化试剂作用下通过离子键与氮原子相连,其分子通式为: 结构中4个烃基R可以相同,也可以不相同。取代的或非取代的,饱和的或不饱和的,可以有分支或没有分支,可以为环状结构或直链结构,可以包含醚、酯、酰胺,也可以是芳香族或芳香族取代物。通过离子键与氮原子相连的多为阴 -、RCOO-等),以氯和溴最为常见[4]。离子(F-、Cl-、Br-、I-)或酸根(HSO 4 1.1.2 合成与分析方法 1.1.3 应用研究概况 季铵盐化合物特有的分子结构赋予其乳化、分散、增溶、洗涤、润湿、润滑、发泡、消泡、杀菌、柔软、凝聚、减摩、匀染、防腐和抗静电等一系列物理化学作用及相应的实际应用[8],这些独特性能使其在造纸、纺织、涂料、染色、医药、农药、道路建设、洗化与个人护理用品和高新技术等领域均显示出了良好的应用前景。 1.2 季铵盐杀生剂研究进展 在季铵盐化合物的诸多独特性能及相应的实际应用中,优异的杀生性能是其中发现最早、应用最广的性能。目前,具有广谱高效、低毒安全、长效稳定等优点的季铵盐杀生剂已在工业、农业、建筑、医疗、食品、日常生活等众多领域得到广泛应用。例如,水处理[43]、造纸[44]、皮革[45]、纺织[46]、印染[47]、采油[48]、涂料[49]等行业的杀菌灭藻、防腐防霉、清洗消毒;农产品和农作物的防霉防病[50];养殖和畜牧的防病杀菌[51];木材和建材的防虫防腐[52];外科手术和医疗器械的杀菌消毒[53];禽蛋肉类和食品加工的清洗个人家庭和公共卫生的洗涤消毒[55]等均要用到季铵盐杀生剂。 1.2.1 发展历程 人们对季铵盐化合物的认识是从其所具有的杀菌作用上开始的,该类化合物在发展初期主要就是用作杀菌剂[13]。Jacobs W A等于1915年首次合成了季铵盐化合物,并指出这类化合物具有一定的杀菌能力,翻开了季铵盐杀生剂的历史篇章。然而,该研究成果一直未被人们所重视。此后直到1935年,Domagk G[56]发现了烷

偏苯三酸酐的生产技术及国内外市场分析

偏苯三酸酐的生产技术及国内外市场分析

偏苯三酸酐的生产技术及国内外市场分析 聂颖燕丰 (中国石化集团北京燕山石油化工有限公司研究 院,102550) 摘要:偏苯三酸酐的生产方法有偏三甲苯液相硝酸氧化法、偏三甲苯气相空气氧化法、偏三甲苯液相空气氧化法和间二甲基苯甲醛液相空气氧化法4种。目前世界偏苯三酸酐的总 生产能力约为230 kt/a,产量约为165 kt。2003年我国偏苯三酸酐的生产能力约为41 kt/a, 产量约为16 kt。预计到2005年我国偏苯三酸酐的消费量将达到17.5 kt,生产能力已经严重 过剩,切不可盲目扩建生产装置。 关键词:偏苯三酸酐生产需求市场 偏苯三酸酐(TMA)简称偏酐,是一种重要的有机化工产品,外观为白色或微黄色针状结晶,熔点161~163 ℃,沸点240~245 ℃(0.18 MPa),闪点220 ℃。溶于水、乙醇、丙酮、二甲基甲酰胺、醋酸乙酯,微溶于甲苯、四氯化碳和石油醚。由于偏苯三酸酐分子结构中含有羧酸及酸酐结构,兼具苯甲酸及苯酐的化学性质,可与醇反应生成酯或聚酯,与碱反应生成盐,与氨(胺)反应生成酰胺/酰亚胺,在催化剂作用下与烃发生缩合反应等,使得其在生产聚氯乙烯(PVC)树脂增塑剂、聚酰亚胺树脂漆、水溶性醇酸树脂、环氧树脂固化剂、低压及脉冲电力容器的浸渍剂、电影胶片、水处理剂以及表面活性剂等方面具有广泛的用途。 2

1 生产方法[1,2] 偏苯三酸酐最早是由四烷基苯经气相氧化制均苯四甲酸二酐时,作为副产物被发现的。目前,偏苯三酸酐的生产方法主要有偏三甲苯液相硝酸氧化法、偏三甲苯气相空气氧化法、偏三甲苯液相空气氧化法和间二甲苯甲醛液相空气氧化法(MGC法)4种。 1.1 偏三甲苯液相硝酸氧化法 偏三甲苯液相硝酸氧化法由德国Saarbergwerk公司于20世纪70年代开发成功并实现工业化生产。它是将偏三甲苯加入到稀硝酸溶液中,在1.5~3.0 MPa、175~200 ℃条件下进行氧化反应,氧化后的物料经冷却结晶,离心分离和干燥得到粗偏苯三甲酸,粗偏苯三甲酸经加热脱水,再进行真空蒸馏制得偏苯三酸酐产品。该方法生产工艺简单,容易操作,产率较高,收率达90%,产品纯度可以达到98.5%。不足之处是对设备材质要求高,生产成本较高,产品中残存的氮氧化物副产品不易除尽,副产物较多,三废污染严重,操作危险。目前该法已经被淘汰。 1.2 偏三甲苯气相空气氧化法 偏三甲苯气相空气氧化法是由日本触媒化学工业株式会社于20世纪70年代研究开发成功的一种方法。采用以含钒、钛、磷的化合物为催化剂,偏 3

表面活性剂专业缩写词及国内代号

表面活性剂专业缩写词及国内代号 平平加A-20 脂肪醇聚氧乙烯醚,HLB值为16 添加剂AC 脂肪胺聚氧乙烯醚 ADI 每人每天允许摄人量 ADMA 烷基二甲胺 AEO 脂肪醇聚氧乙烯醚 AEEA 羟乙基乙二胺 AES 脂肪醇聚氧乙烯醚硫酸盐 AGO 氨基酸锗氧化物 AGS N—酰基谷氨酸盐 Alfol 脂肪醇名,美国大陆油品公司商标 AMP 氨基甲基丙醇(喷发胶) 净洗剂AN 脂肪醇聚氧乙烯醚 匀染剂AN 脂肪胺聚氧乙烯醚(尼凡丁) AOS α-烯基磺酸盐 AP 烷基磷酸酯 APE 千基酚聚氧乙烯醚 APG 烷基多糖苷 AR617精炼剂油酸钠、碳酸钠和三聚磷酸钠为主的混合物 AS 脂肪醇硫酸钠 AS-33 含33%脂肪醇硫酸钠的水溶液 ASEA 烷基硫酸酯单乙醇胺盐 ASTM 美国标准试验方法 AV 酸值 BHT 3,5-叔丁基对甲酚;2,6-二叔丁基对甲基苯酚(抗氧剂) 匀染剂BOF 烷基苯酚聚氧乙烯醚 BS—12 甜菜碱;十二烷基二甲基氨基己酸钠 BSL 4,4-二氨基蓖-2,2-二磺酸的三氮杂苯基衍生物(荧光增白剂) BX 拉开粉;丁基萘磺酸钠 Nekal BX 烷基萘磺酸钠 CDE 椰子油脂肪酸二乙醇酰胺 Cmc 临界胶束浓度 CMC 羧甲基纤维素 HEC 羟乙基纤维素 CME 椰子油脂肪酸单乙醇酰胺 Tmc 临界胶束温度 匀染剂CN 阳离子表面活性剂复合物 扩散剂CNF 亚甲基苄基萘磺酸钠 分散剂CS 纤维素硫酸酯钠盐 CTAB 溴化十二烷基三甲基铵

CTAC 氯化十二烷基三甲基铵 5881D 十二烷基磺酸钠、拉开粉、磷酸氢钠和松节油为主的混合物(渗透剂) DAH 磺化油 DAN 硫酸化蓖麻子油 分散剂DAS 烷基联苯醚磺酸盐 DBS 十二烷基磺酸钠 匀染剂DC 氯化十八烷基二甲基苯乙基铵 D&C 美国药用化妆晶用标准 DCCA 氯异氰尿酸 DDB 十二烷基苯 DDBS 十二烷基苯磺酸盐 DEG 二羟乙基甘氨酸 DETA N,N-二乙基间甲苯甲酰胺(驱虫剂) DHA 脱氢乙酸(防腐剂) DMF N,N-二甲基甲酰胺 DMP 邻苯二甲酸二甲酯(驱虫剂) DSDMAC 氯化双十八烷基二甲基铵 DTPA 二亚乙基三胺五乙酸五钠(整合剂) 渗透剂EA 脂肪醇聚氧乙烷醚(1:1.6) EDTA 乙二胺四乙酸(二钠、四钠) EGF 表皮细胞生长因子(化妆晶添加剂) EL 蓖麻油聚氧乙烯醚 EMPA 标准棉布的预污布(测去污力的布样) EO(n) 环氧乙烷(加合数) 柔软剂ES(EST)咪唑啉阳离子表面活性剂 净洗剂FAE 第二不皂化物醇制成的AE08 FAS 脂肪醇硫酸钠 FD&C 美国食用、药用、化妆品用标准 FFA 游离脂肪酸 乳化剂FO 脂肪醇聚氧乙烯醚(1:0.8) FWA 荧光增白剂 柔软剂GC 脂肪酸聚氧乙烯酯 GLC 气液相色谱 CMS 甘油单硬脂酸酯 匀染剂GS 芳基醚硫酸酯和烷基醚基酯的混合物 H501 羟基亚乙基二膦酸 HA 透明质酸(化妆品添加剂) 促进剂HDF 脂肪酸衍生物 HEDP 1-羟基乙烷-1,1-二膦酸四钠(螯合剂) HEDTA 羟乙二胺四乙酸(螯合剂) HOEDTA 羟乙二胺三乙酸三钠(螯合剂) HRBO 氢化米糠油 Hyaminel622 氯化二异丁基苯氧基乙氧基乙基二甲基苄基铵 IgeponT 牛脂酸—N-甲基牛磺酸酰胺

偏苯三酸酐主要用途

偏苯三酸酐主要用途 偏苯三酸酐(TMA)又名1,2,4-苯三甲酸酐,简称偏酐,是一种重要的精细化工产品,随着乙烯装置的大型化,三甲苯馏分量的增大,偏苯三酸酐的开发前景也日益广阔。偏苯三酸酐具有广泛的用途: (1)制偏苯三酸三辛酯 由偏苯三酸酐和辛醇酯化生成的偏苯三酸三辛酯(简称TOTM)具有良好的耐热性、低挥发性、耐油性以及可加工性,广泛用作PVC耐热增塑剂、抗溶剂交联氯乙烯树脂的增塑剂,90℃和105℃级耐热电缆配方的主增塑剂以及用作6000V、10000V高压电缆所需的配套增塑剂。此外,还可用作浸渍剂和耐高温绝缘漆,广泛用于电器内部件、汽车内电线、半导体等的包覆材料;用作汽车电缆、防湿与耐热环氧树脂胶囊组分、防雾聚乙烯树脂组分以及纤维与热塑塑料的无水染料组分;用作汽车座垫、人造革、洗衣机排水软管、百叶窗帘、密封材料与填料等。 (2)制备聚酰胺-酰亚胺和聚酯酰亚胺 由偏苯三酸酐和芳香二胺反应可以制得聚酰胺-酰亚胺,由偏苯三酸酐、氢醌和4,4‘-二胺二酚醚反应可以制得聚酯酰亚胺。它们都具有良好的耐热性能、耐电绝缘性能和机械性能,在高温下也具有较好的耐磨性能,主要用于F、H级电机的绝缘材料,如漆包线漆、浸渍漆、硅钢片漆以及薄膜等,可在230-250℃下长期使用。此外还可用于制造电器元件、阀件、轴承、喷气发动机零件等模制塑料部件。 (3)制备醇酸树脂 偏苯三酸酐与多元醇及二羧酸反应,可以制得性能优良的醇酸树脂涂料。热塑性醇酸树脂主要用作汽车、电器用具、机械制品的底漆,也可用作厨房、家具等的表面漆,用于工业建材及常用油漆等。常温固化树脂则主要用于工业建材和常用油漆。 (4)其它 偏苯三酸酐能使环氧树脂在短时间固化并使固化后的环氧树脂具有优良的物化性质,是一种便宜且实用的固化剂。此外,偏苯三酸酐还可用于生产聚酯树脂和粉末涂料,大量用于家电、自行车、钢门、窗等装饰性、防腐性要求高的地方。用作耐热绝缘层压物、合成染料、耐热清漆、稳定剂、纤维柔软剂、颜料、水处理剂、电影胶片和表面活性剂等。

易制毒化

易制毒化学品目录

易制毒化学品的分类和品种目录 剧毒品名称 1 氰氰气 2 氰化钠山奈 3 氰化钾山奈钾 4 氰化钙 5 氰化银钾银氰化钾 6 氰化镉 7 氰化汞氰化高汞;二氰化汞 8 氰化金钾亚金氰化钾 9 氰化碘碘化氰 10 氰化氢氢氰酸 11 异氰酸甲酯甲基异氰酸酯

12 丙酮氰醇丙酮合氰化氢;2- 基异丁腈;氰丙醇 13 异氰酸苯酯苯基异氰酸酯 14 甲苯-2,4-二异氰酸酯2,4-二异酸甲苯酯 15 异硫氰酸烯丙酯人造芥子油;烯丙基异硫氰酸酯;烯丙基芥子油 16 四乙基铅发动机燃料抗爆混合物 17 硝酸汞硝酸高汞 18 氯化汞氯化高汞;二氯化汞;升汞 19 碘化汞碘化高汞;二碘化汞 20 溴化汞溴化高汞;二溴化汞 21 氧化汞一氧化汞;黄降汞;红降汞;三仙丹 22 硫氰酸汞硫氰化汞;硫氰酸高汞 23 乙酸汞醋酸汞 24 乙酸甲氧基乙基汞醋酸甲氧基乙基汞 25 氯化甲氧基乙基汞 26 二乙基汞 27 重铬酸钠红矾钠 28 羰基镍四羰基镍;四碳镍 29 五羰基铁羰基铁 30 铊金属铊 31 氧化亚铊一氧化(二)铊 32 氧化铊三氧化(二)铊 33 碳酸亚铊碳酸铊 34 硫酸亚铊硫酸铊 35 乙酸亚铊乙酸铊;醋酸铊 36 丙二酸铊丙二酸亚铊 37 硫酸三乙基锡 38 二丁基氧化锡氧化二丁基锡 39 乙酸三乙基锡三乙基乙酸锡 40 四乙基锡四乙锡 41 乙酸三甲基锡醋酸三甲基锡 42 磷化锌二磷化三锌 43 五氧化二钒钒(酸)酐 44 五氯化锑过氯化锑;氯化锑 45 四氧化锇锇酸酐 46 砷化氢砷化三氢;胂 47 三氧化(二)砷白砒;砒霜;亚砷(酸)酐 48 五氧化(二)砷砷(酸)酐 49 三氯化砷氯化亚砷 50 亚砷酸钠偏压砷酸钠 51 亚砷酸钾偏亚砷酸钾 52 乙酰亚砷酸铜祖母绿;翡翠绿;巴黎绿;帝绿;苔绿;维也纳绿;草地绿;翠绿 53 砷酸原砷酸

烷基三甲基氯化铵生产工艺

十二烷基三甲基氯化铵产品生产工艺 一、产品说明 1、中文名称: 十二烷基三甲基氯化胺 2、英文名称: Dodecayl trimethyl amine chloride 3、国外同类产品名称: IPC-DTMA-Cl 4、分子式: C15H34ClN 5、结构式: 6、规格:% 7、执行标准 : GB 26369-2010 8、物化性质: 无色或淡黄色透明胶体,可溶于水和乙醇,与阳离子、非离子 表面活性剂有良好的配伍性,忌与阴离子表面活性剂配用,100°C以下稳定,不宜在120°C以上长时间加热。化学稳定性好,耐热、耐光、乃压、耐强酸强碱。具有优良的渗透、乳化、杀菌性能。 9、包装: 净含量50公斤/塑桶。 10、贮存:应密封贮存在室内,在运输和贮藏过程中,应小心轻放、防撞、 防冻、以免损漏。

11、保质期:2年 12、用途: 1、乳化剂:建筑防水涂料乳化剂;护发素、化妆品乳化剂;油田 钻凿深井时,用作抗高温油包水乳化泥浆的乳化 2、杀菌剂:油田用作油气井的杀菌剂;工农业用杀菌 3、纺织助剂:织物柔软剂、合成纤维的抗静电剂 4、其他:乳胶工业的防粘剂和隔离剂。 二、执行标准 GB 26369-2010 季铵盐类消毒剂卫生标准 1 范围 本标准规定了季铵盐类消毒剂的原料要求、技术要求、应用范围、使用方法、检验方法、标志和包装、运输和贮存、签标和明说书及注意事项。 本标准适用于季铵盐类消毒剂。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单 (不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T5174 表面活性剂洗涤剂阳离子活性物含量的测定 GB/T6368 表面活性剂水溶液 pH值的测定电位法 GB 食品工具、设各用洗涤消毒剂卫生标准

均苯四甲酸二酐生产技术研究进展

均苯四甲酸二酐生产技术研究进展 摘要:文章介绍了均苯四甲酸二酐的性质、用途、生产情况,重点介绍了目前国内外生产均苯四甲酸二酐的工艺技术,包括甲苯氯甲基化法、偏三甲苯烷基化法、偏三甲苯羰基化法、均四甲苯法等。均四甲苯气相氧化法,工艺简单,可连续生产,易于实现自动化操作,是目前国内外生产均苯四甲酸二酐的主要方法。 关键词:均苯四甲酸二酐均四甲苯气相氧化法 1 前言 1851 年,O L Erdman在苯六甲酸热分解时发现均酐。1947 年美国California Research Corp首次以均四甲苯为原料,用V2O5复合氧化物催化剂气相催化氧化制得了均苯四甲酸二酐。1960年美国杜邦公司以均四甲苯为原料,首次建立了液相硝酸氧化法制均苯四甲酸二酐的生产装置,1969年日本古河电气公司建立了用硝酸氧化和液相空气氧化法生产装置,1970年德维巴化学公司改用空气氧化法,建立了一套500 t/a 生产装置[1-3]。 我国从20世纪60年代开始进行均配的试验研究和试生产,最初采用的是1,2,4-三甲苯氯甲基化、硝酸氧化再用高锰酸钾氧化的工艺路线,并建成了15t/a生产装置。70年代主要开展了以偏三甲苯为原料,经催化制得均四甲苯,再用空气氧化制得均苯四甲酸二酐,以及以偏三甲苯为原料,用丙烯经催化合成5-异丙基偏三甲苯,再经空气氧化制得均苯四甲酸二酐两条工艺路线的研究工作[4-6]。90年代初期漂阳化肥厂建设由均四甲苯气相催化氧化制均酐的200t/a生产装置,它的建成将使我国均配的生产迈上一个新台阶。目前生产均酐的企业较多,但年产量不足万吨,每年都得大量进口,开发利用前景广阔。 均苯四甲酸二酐(1,2,4,5-苯四甲酸二酐)分子中具有四个羰酸基,并且都是列称的,可发生酯化、酰氯化、氢化、酰胺化、酰亚胺化、腈化等多种化学反应。均苯四甲酸二酐是一种重要的有机合成工业原料,也是发展新型化工材料和高附加值精细化工产品的基本原料。近几年来,均苯四甲酸二酐的用途不断扩大,如均酐与4,4-二氨基联苯醚反应可以合成聚酰亚胺。聚酰亚胺是一种耐高温、低温、耐辐射、抗冲击且具有优异电性能和机械性能的新型合成材料,在宇航工业、原子能工业和机电工业中具有其它工程塑料不可替代的重要用途。随着聚酰亚胺的市场用量不断扩大,均苯四甲酸二酐作为合成聚酰亚胺的主要原料,其需求量也与日俱增。 因此,改善均苯四甲酸二酐的质量、提高均苯四甲酸二酐的收率、开发高收率和高转化率的均苯四甲酸二酐合成工艺路线不仅具有潜在的、巨大的社会经济效益;而且能满足我国宇航工业对于新型工程材料的需求,对于我们的经济和国防建设具有极其重要的战略意义。 2 均苯四甲酸二酐的性质与主要用途 2.1 均苯四甲酸二酐的性质 均苯四甲酸二酐(1,2,4,5-苯四甲酸二酐),俗称均酐,英文名称是1,2,4,5 - benzene tetracarboxylic dianhydride或Pyromellitic dianhydride,简称PMDA,是一种重要的化工原料,其分了式为C10H2O6,分子量为218.12。其结构式为:

TMA(偏苯三酸酐)各项指标检测方法

1 检验方法 1.1 外观测定 于具塞比色管中,加入实验室样品,在日光灯或日光下目测。 1.2 酸值的测定 1.2.1 仪器与试剂 仪器:BS224 S 电子天平 精确万分之一 三角瓶 250 ml 2个 量筒 100 ml 1个 碱式滴定管 50 ml 1根 不锈钢料勺 1只 电炉 500W 1个 试剂:0.5mol/L 氢氧化钠标准溶液 1%酚酞指示剂 蒸馏水 1.2.2 检验步骤 精密称取干燥样品0.8g ,精确至0.0001g ,置于250ml 的三角瓶中,加入80ml 蒸馏水加热至完全溶解。冷却,加2滴酚酞指示液,用氢氧化钠标准氢氧化钠标准溶液滴定至刚出现浅红色并在15s 内不褪色为终点,记录下滴定消耗的氢氧化钠标准溶液的体积。并同时做空白试验。 1.2.3 结果计算 以滴定每克试料消耗氢氧化钾的质量(mg )表示的酸值A ,数值以mgKOH/g 表示,按下式计算: W CM A v v ) (21-= 式中: C—氢氧化钠标准溶液的浓度准确数值 mol/L M —氢氧化钾的摩尔质量的数值(M=56.12) g/mol V 1——滴定试料消耗的氢氧化钠标准溶液的体积 ml V 2——空白试验消耗的氢氧化钠标准溶液的体积 ml W —试料的质量数值 g 1.3 偏苯三酸酐含量的测定 1.3.1 方法提要 实验室样品中的偏苯三酸酐及均苯四甲酸二酐、偏苯三甲酸、对苯二甲酸和间苯二甲酸等杂质组分溶于水后,转化为相应的酸。用高效液相色谱法,在选定的工作条件下,通过色谱柱使试料中的各组分分离,用紫外/可见检测器检测,用校正面积归一化法定量,得到试料中偏苯三甲酸的含量,通过换算求得实验室样品中偏苯三酸酐的含量。 在偏苯三甲酸的质量分数大于等于95%的情况下,用试料中偏苯三甲酸的质量分数近似表示实验室样品中偏苯三酸酐的质量分数,其相对偏差不超过0.1%. 1.3.2 试剂 1.3. 2.1 甲醇:液相色谱级。 1.3. 2.2 水:符合GB/T6682-2008规定的一级水。 1.3.3 仪器 1.3.3.1 液相色谱仪:配有紫外/可见检测器的高效液相色谱仪。

相关主题