搜档网
当前位置:搜档网 › Novel Flowerlike Metastable Vanadium Dioxide (B) Micronanostructures_ Facile Synthesis

Novel Flowerlike Metastable Vanadium Dioxide (B) Micronanostructures_ Facile Synthesis

Novel Flowerlike Metastable Vanadium Dioxide (B) Micronanostructures_ Facile Synthesis
Novel Flowerlike Metastable Vanadium Dioxide (B) Micronanostructures_ Facile Synthesis

Novel Flowerlike Metastable Vanadium Dioxide (B)Micronanostructures:Facile Synthesis and Application in Aqueous Lithium Ion Batteries

Shudong Zhang,Yingmei Li,Changzheng Wu,Fei Zheng,and Yi Xie*

Department of Nanomaterials and Nanochemistry,Hefei National Laboratory for Physical Sciences at Microscale,Uni V ersity of Science and Technology of China,Hefei,Anhui 230026,P.R.China Recei V ed:April 9,2009;Re V ised Manuscript Recei V ed:July 6,2009

Novel ?owerlike VO 2(B)micro-nanostructures assembled by single-crystalline nanosheets have been successfully synthesized via a hydrothermal route using polymer polyvinyl pyrrolidone (PVP,K30)as capping reagent.Detailed proofs indicated that the process of crystal growth was dominated by a nucleation and growth,self-assembly,and then Ostwald ripening growth mechanism.For the ?rst time,the ?owerlike micro-nanostructures VO 2(B)was applied as the active material into aqueous lithium ion battery applications,which showed improved electrochemical properties with the ?rst discharge capacity reaching 74.9mAhg -1,a quite outstanding value for aqueous lithium ion battery systems in light of previous reports (usually <65mAhg -1).In addition,corresponding VO 2(B)nanostructures with better crystallinity were obtained by calcining the precursor of ?owerlike VO 2(B)structures.The post-treated ?owerlike VO 2(B)electrode shows fascinating advantages in electrochemical properties with the ?rst discharge capacity reaching 81.3mAhg -1,which is higher than that of the ?owerlike VO 2(B)sample before annealing.Furthermore,we have investigated the electrochemical intercalation and deintercalation properties with Li +the synthesized VO 2(B)nanobelts and carambola-like VO 2(B)structure.The unique ?owerlike structure plays a basic role in the morphology requirement to serve as transport paths for lithium ion in aqueous lithium ion batteries.It was observed that the morphologies and crystallinity of the synthesized products had an evident in?uence on the electrochemical intercalation and deintercalation properties with lithium ions.

1.Introduction

In light of the rapid development of the world economy,people now face the problems of the shortage of resources,environmental pollution,and other issues.The nonaqueous/organic lithium ion batteries,which offer outstanding technical performances concerning the available gravimetric energy density,1,2are handicapped by severe safety https://www.sodocs.net/doc/6215215963.html,ually,they contain ?ammable organic electrolytes,which might cause the production of intense smoke or even ?re in the case of improper use such as overcharging or short-circuiting.3Fur-thermore,organic lithium ion batteries are comparatively expensive due to special cell design,necessity of a perfectly dry environment during manufacturing processes,and costly organic electrolytes.Consequently,the development of new types of green battery materials and safer,lower-cost recharge-able systems are therefore necessary in modern society.As a safe and highly ef?cient technology,rechargeable lithium-ion batteries with aqueous electrolytes have stimulated great interest since 1994,4compared with the nonaqueous/organic lithium-ion batteries.This new type of battery uses lithium-intercalation compounds such as LiMn 2O 4,LiNi 0.81Co 0.19O 2,and VO 2as the electrode material in an alkaline or neutral aqueous electrolyte,4-6which may overcome the disadvantages of nonaqueous/organic lithium-ion batteries,such as high cost and safety problems.Subsequently,LiV 3O 8/LiNi 0.81Co 0.19O 2,LiV 3O 8/LiCoO 2,TiP 2O 7/LiMn 2O 4,and LiTi 2(PO 4)3/LiMn 2O 4aqueous lithium ion bat-teries have recently been reported.6-9Most recently,we have reported that the paramontroseite VO 2/LiMn 2O 4cell exhibits high energy density and better cycling behavior in mild aqueous

electrolyte.10However,simple vanadium oxides,VO 2(B),with metastable monoclinic structure,should be a more promising candidate anode material to be applied in aqueous lithium ion battery,on the basis of not only its proper electrode potential 6but also its tunnel structure,11through which lithium ions can make intercalation and deintercalation in reversible lithium ion battery.In addition,VO 2(B)having shear structure is regarded to possess structural stability arising from an increasing edge-shearing and the consequent resistance to lattice shearing during cycling in the lithium ion battery,which has been demonstrated in organic lithium ion batteries.12Recently,material scientists have paid more attention to 2D or 3D micro-nanostructures,which not only inherit the self-properties of nanounits but also have collective properties (coupling effect,synergistic effect,etc.)coming from self-assembly of nanounits.Besides,2D or 3D nanostructures,which have the high speci?c area of nanounits,may provide more possibility to give an ideal host material for small molecules or ions,to realize region-dependent surface reactivity.13-16Their overall micrometer-sized structure not only possesses a robust and strong mechanical structure that can sustain water soakage for extended periods of time in the cycling process but also provides the necessary mechanical robustness against wear and tear in the fabrication process of the electrode.Therefore,hierarchical VO 2(B)nanostructures may be the prospective candidate of electrode materials in aqueous lithium ion batteries.It is thus of great signi?cance to develop different vanadium dioxide phases and nanostructures with high energy density and cycling life of aqueous lithium-ion batteries.

Meanwhile,in the vanadium oxides families,VO 2,a low-valent vanadium oxide,is very unique and exhibits excellent

*To whom correspondence should be addressed.Phone:86-551-3603987.Fax:86-551-3606266.E-mail:yxie@https://www.sodocs.net/doc/6215215963.html,.

J.Phys.Chem.C 2009,113,15058–15067

1505810.1021/jp903312h CCC:$40.75 2009American Chemical Society

Published on Web 07/24/2009

optical,electrical photocatalysts for hydrogen production and electrochemical properties.4,10,17-20,24In recent years,consider-able efforts have been devoted to fabricate vanadium dioxide nanostructures by a variety of methods.Traditional methods for synthesizing VO2usually involve thermal evaporation at high temperatures under vacuum conditions.21-24It would be of interest if the preparation method that controls the crystal forms under mild conditions could be developed.Recent advances have shown that VO2can be readily synthesized through a hydro-thermal process and/or surfactant-assisted solution route.25-27 The bene?ts of this method are the relatively lower required temperature,environmentally friendly reaction conditions,and controllable morphology and size distribution.However,in the solution-phase synthesis,the formation of low-valent vanadium oxides is usually dependent on different reductants and almost only one-dimensional nanostructures are formed.25-27As such, the synthetic process is complicated and might bring about an increase of impurity concentration in the?nal product.Thus,it is necessary to develop more facile,mild,easily controlled

methods to synthesize the oxides with low-valent metal ele-

ments,such as VO2micro-nanostructures.

To avoid the use of reductants,a prefabricated right-valent

precursor route was thereby put forward to simplify the

following synthesis https://www.sodocs.net/doc/6215215963.html,bined the tailoring effect of the

polymer polyvinyl pyrrolidone(PVP),frequently used as

capping reagent and surfactant,28we?rst report the fabrication

of novel three-dimensional?owerlike VO2micro-nanostructures

assembled by single-crystal nanosheets using V(IV)O(acac)2,a

prefabrication of IV valence of complex compound.This

approach for synthesis of?owerlike VO2(B)micro-nanostruc-

tures is proved to be ef?cient,economical,and easy to scale up

in industrial production in the absence of the reductants and

vacuum condition.Besides,we introduce the?owerlike micro-

nanostructure VO2(B)as the active material into the aqueous

lithium ion battery applications for the?rst time.As expected,

the?owerlike VO2(B)electrode shows fascinating advantages

in discharge capacity,the output voltage,and cycling perfor-

mance in aqueous lithium ion batteries,revealing the high energy

density of a?owerlike VO2(B)/LiMn2O4cell.The?rst discharge

capacity of VO2(B)electrode in the VO2(B)/LiMn2O4aqueous

cell is74.9mAhg-1,which is a desirable value for the aqueous

lithium ion battery systems in light of previous reports.5,6,29In

addition,corresponding VO2(B)nanostructures with better

crystallinity were obtained by calcining the precursor of

?owerlike VO2(B)structures.The post-treated?owerlike VO2

(B)electrode shows fascinating advantages in electrochemical

properties with the?rst discharge capacity reaching81.3

mAhg-1,which is higher than that of the?owerlike VO2(B)

sample previously annealed.

2.Experimental Section

2.1.Sample Synthesis.V(IV)O(acac)2was prepared accord-

ing to the literature(see the Supporting Information,S1),and

the FTIR reveals its pure composition(see the Supporting

Information,Figure S2).PVP was analytical grade and used as

received without further puri?cation.In a typical procedure,

V(IV)O(acac)2(0.053g,0.2mmol)was added into the PVP(3×10-3g L-1,35mL)solution to form homogeneous solution after ultrasonic irradiation for30min.The total volume of the

precursor solution was transferred into the pretreated Te?on-

lined stainless-steel autoclave.The autoclave was heated to200°C at the heating rate of5°C min-1and maintained at200°C for24h.After cooling,the resulting blue-black product was collected by centrifugation at10000rpm for2min,then washed with distilled water and ethanol for several times,and?nally dried under vacuum at60°C for6h.

2.2.Sample Characterization.The sample was character-ized using X-ray powder diffraction(XRD)with Philips X’Pert Pro Super diffractometer with Cu K R radiation(λ)1.54178?).X-ray photoelectron spectroscopy(XPS)measurements were performed on a VGESCALAB MKII X-ray photoelectron spectrometer with an excitation source of Mg K R)125

3.6 eV.The?eld emission scanning electron microscopy(FESEM) images were taken on a JEOL JSM-6700F scanning electron microscope.The transmission electron microscopy(TEM) images were obtained on Hitachi H-800transmission electron microscope at an acceleration voltage of200kV.High-resolution transmission electron microscopy(HRTEM)images and selected-area electron diffraction(SAED)patterns were performed on JEOL-2010transmission electron microscope at an acceleration voltage of200kV.The Fourier transform infrared(FTIR) spectroscopic experiments were carried out on a Bruker Vector-22FTIR spectrometer(Bruker Instruments,Billerica,MA)in a KBr pellet,scanning from4000to400cm-1at room temperature.

2.3.Electrochemical Measurements.All electrochemical measurements were performed at ambient temperature.The electrochemical properties of the VO2(B)hierarchical?owerlike structures for aqueous lithium-ion batteries were investigated using the as-prepared model test cells.The preparation of the negative and positive electrodes was conducted in a similar way. Test electrodes were prepared by mixing as-prepared VO2(B) samples(80wt%),acetylene black(10wt%),and polyvi-nylidene?uoride(PVDF)(10wt%).A total of10-20mg of the mixture was pressed onto a nickel grid.The electrolyte was the aqueous solution including5M LiNO3and0.001M LiOH.The discharge and charge tests for aqueous lithium ion battery were carried out using the Land battery system(CT2001A) at a constant current density with a cutoff voltage of1.65-0.5V.

3.Results and Discussion

3.1.Morphology of the Products and the Mechanism of VO2(B)Micro-nanostructures.The crystal structure and phase composition of the obtained products were?rst characterized by using XRD.Figure1shows a representative XRD pattern of the as-prepared VO2(B)samples.All the sharp and strong diffraction peaks can be readily indexed to the monoclinic phase of VO2(B),suggesting a high crystallinity of the products.

All Figure1.XRD pattern for the?owerlike VO2(B)micro-nanostructure.

Flowerlike Metastable VO2(B)Micronanostructures J.Phys.Chem.C,Vol.113,No.33,200915059

the peaks can be perfectly indexed to the monoclinic VO 2(B)phase (space group:C 2/m )with lattice constants of a )12.09?,b )3.702?,c )6.433?,and )106.6°(JCPDS 81-2392).Obviously,no peaks of any other phases or impurities were detected.

To investigate the sample compositions and chemical state of the as-prepared ?owerlike VO 2(B)micro-nanostructures,XPS was carried out,and the results are shown in Figure 2.The binding energies obtained in the XPS analysis were corrected for specimen charging by referencing C 1s to 284.50eV.The V 2p peaks (Figure 2b)of the sample appeared at ca.516.3and ca.523.6eV,which corresponded to V(IV)according to the previous results.26,30The peaks for O can be attributed to the O 2,CO 2,H 2O,or PVP absorbed on the surfaces of the samples,or VO 2(B).The very weak N 1s signal arises from the absorbed PVP polymer on the surface,which is hard to remove by washing.Consequently,the as-synthesized products could be determined as pure monoclinic VO 2(B)on the basis of the results of XRD and XPS measurements.

The morphology of the products was studied by the FESEM as shown in Figure 3.Figure 3a shows the SEM image of typical sample composed of a very uniform,?owerlike architecture ~1-1.5μm in diameter.The detailed morphology of the ?owerlike micro-nanostructure is shown in the inset of Fig-ure 3a,which reveals the entire smooth surface.Interestingly,these nanopetals were ca.20-30nm thick,and connected to each other through the center to form 3D ?owerlike structures,which can be vividly demonstrated by the SEM images of a sphere fringe (the insert of Figure 3a).More importantly,many pores with different diameter sizes,which may improve the chemical properties or serve as transport paths for small molecules or ions,are found among the nanosheets in the spherical micro-nanostructure,as shown in Figure 3b.Further information about the VO 2(B)products was obtained from the TEM images.As shown in Figure 4,VO 2(B)curved architec-tures have diameters of 1-1.5μm (Figure 4a,b),which agree well with the SEM images (Figure 3).The panoramic morphol-ogy shown in Figure 4c indicates a bright contrast (dark/bright)between the boundary and the center of the spheres,con?rming their loose structure of the ?owerlike spheres.The representative HRTEM image and corresponding fast Fourier transform (FFT)pattern in Figure 4e clearly show the crystalline structure of a nanopetal of the ?owerlike VO 2(B)micro-nanostructures with d -spacing of 0.296nm,corresponding to the (110)planes of monoclinic VO 2(B).

In order to understand the formation process of the ?owerlike VO 2(B)micro-nanostructures,products formed at different growth stages were collected for TEM measurements as shown in Figure 5.As shown in Figure 5a,at the initial stage,the products are two-dimensional nanoplates with a width of about 150nm and an average length of about 300nm.After 12h of hydrothermal treatment,micro-nanoplate-built spherelike su-perstructures with a diameter of about 500-600nm appear (Figure 5b).As the reaction proceeded (Figure 5c),the amount of sphere-like superstructures increased,but the superstructures are at their intermediate stage.At the same time,the 3D micro-nanostructure grew gradually and evolved to a ?owerlike assembly in the process of Ostwald ripening growth,and no other morphology remained and the sample was composed entirely of the delicate ?owerlike micro-nanostructure,as shown in Figure 5d.Finally,the ?owerlike VO 2(B)micro-nanostruc-tures gradually ripen and are obtained at 24h (Figure 3a,b).On the basis of the above results,the whole evolution process of ?owerlike VO 2(B)micro-nanostructures is proposed via a three-step process,as illustrated in Scheme 1.

In this formation process,both the reaction time and polymer PVP were important controlling factors.The reason for the morphological evolution can be elucidated as follows.At the early stage,the growth axis of the rectangular nanosheet is related to its crystallographic characteristics.It is well known that the VO 2(B)structure is described schematically as two different layers of VO 6octahedra.In our case,the

hydrolyzation

Figure 2.XPS spectra of the ?owerlike VO 2(B)micro-nanostructures:(a)survey spectrum and (b)core-level spectra of V 2p and O

1s.

Figure 3.(a)Low-and (b)high-magni?cation FESEM images of the as-prepared ?owerlike VO 2(B)samples obtained in the presence of 0.2mmol of V(IV)O(acac)2and 3×10-3g L -1PVP at 200°C,indicating that ?owerlike VO 2(B)micro-nanostructures can be easily synthesized by this solution-phase approach.The inset reveals an individual ?owerlike sphere of VO 2(B)products.

15060J.Phys.Chem.C,Vol.113,No.33,2009Zhang et al.

of V(IV)O(acac)2results in the formation of coordinated cation [VO(H 2O)5]2+,31and the following condensation of [VO-(H 2O)5]2+complex is responsible for the formation of the VO 6octahedra with either vertex sharing or edge sharing in the ?nal VO 2(B)structure (Figure 6a),which is similar to the hydro-lyzation and the following condensation of ferric ions.32Figure 6b shows a schematic crystal structure of the VO 2(B)supercell projected along the c axis,in which it exhibits two edge-sharing octahedra to produce a layer of octahedra.These layers are linked to each other at the protruding corners of each pair of octahedra to produce a three-dimensional framework.25,33The growth direction of the VO 2(B)crystal may be determined by the relative stacking rate of the octahedra at various crystal faces.As for the interface of VO 2(B),the longest bond (V -O)is 0.2377nm (Figure 6c),which makes [001]the slowest growth direction,and the average shortest bond along the [010]direction indicates that the (010)plane has a relatively high stacking rate,which favors growth along the [010]axis.25Accordingly,rectangular nanoplates were formed in the early stage,which is similar to the previously reported result that [010]direction is the faster growth direction for VO 2(B)obtained by the hydrothermal methods.25A HRTEM image provides an insight into the prepared rectangular nanoplates.The HRTEM image (Figure 7b)of the edge of an individual VO 2(B)nanosheet shows that it is a single crystal.The (010)and (110)lattice planes are consistent with the crystal structure and long axis shows the growth direction to be [010]

direction.

Figure 4.TEM images of the as-prepared VO 2(B)sample.(a)Overall product morphology;(b)low-magni?cation TEM image of the as-prepared VO 2(B)samples;(c)detailed view of an individual loose ?owerlike sphere.(d)TEM images of VO 2(B)fragment;and (e)HRTEM images recorded at on the rectangular area in (d)(inset,an FFT pattern corresponding to the HRTEM

image).

Figure 5.TEM images of samples treated at 200°C for different hydrothermal periods.(a)6,(b)12,(c)18,and (d)24h.

SCHEME 1:Formation Mechanism of Flowerlike VO 2(B)

Micro-nanostructures

Flowerlike Metastable VO 2(B)Micronanostructures J.Phys.Chem.C,Vol.113,No.33,200915061

It has been reported that PVP polymer is regarded as the simplest crystal growth modi?er in the formation of inorganic ordered superstructures among polymers.28a In this work,the polymer molecule PVP could selectively anchored on ?at surfaces of a nanoplate and its edges of the VO 2(B)crystals.In the initial stage,the adsorption of PVP acts as a selective crystal face inhibitor to inhibit the faster growth along the [010]direction;therefore,rectangular nanoplates rather than long nanobelts were formed (Figures 5a and 7a).21Meanwhile,driven by the minimization of the total energy of the system and van der Waals interactions between polymer molecules,34in the current process of self-assembly of VO 2(B)nanoplates in the presence of surfactant,edge-to-edge attachments and edge-to-surface conjunctions can be generated through the van der Waals interactions between polymer molecules (Figure 5b,c).After-ward,these spherical aggregates of the VO 2(B)nanoplates became ?owerlike structures in the process of Ostwald ripening growth.When only water (no PVP)was used,self-assembly cannot take place,and only beltlike products are obtained,as shown in Figure 9a,b.The similar assembly process in the presence of PVP has ever been observed in the synthesis of the Bi 2WO 6nanoplate-built hierarchical nestlike structures.28b Such an interaction between PVP and VO 2(B)crystals can also be con?rmed by the FTIR spectroscopic analysis.Figure 8

shows

Figure 6.(a)Schematic illustration showing the formation of the monoclinic VO 2(B)phase.For clarity,the charges for the complexes are omitted.(b)Projection of the VO 2(B)structure along [010].(c)Crystal structure of VO 2(B)nanosheets.The longest bond (V -O)is 0.2677nm,which makes [001]the smallest growth direction,and the average shortest bond along the [010]direction makes the (010)plane have the highest stacking rate.The structure of the monoclinic VO 2(B)phase was simulated according to the crystallographic data in ref 33.

15062J.Phys.Chem.C,Vol.113,No.33,2009Zhang et al.

the FTIR spectra of pure PVP,the PVP-coated VO 2(B)samples without washing,and VO 2(B)samples after washing with distilled water and ethanol several times,respectively.As shown in Figure 8b,the C d O stretching band of PVP appears in the products without washing with distilled water and ethanol,indicating that PVP adsorb on the surfaces of the VO 2(B)crystals.The interaction between PVP and VO 2(B)crystals has also been veri?ed by the shift of C d O stretching band of PVP originally at ~1671cm -1(Figure 8a)to a lower frequency of ~1648cm -1(Figure 8b)in the FTIR spectra.Also,the very weak C d O signal (Figure 8c)arises from the absorbed PVP polymers on the surface of the ?nal product,which is hard to remove ever by washing with distilled water and ethanol several times.The experimental results are identical with the very weak N 1s signal arising in the XPS data (Figure 2a).Meanwhile,no characteristic peaks of V(IV)O(acac)2are observed,indicating the complete hydrolyzation of the precursor.In fact,the mechanism for the formation of the ?owerlike 3D structures is very complicated because various effect factors on the self-assembly,such as crystal-face attraction,electrostatic,and dipolar ?elds associated with the aggregate,van der Waals forces,hydrophobic interactions,hydrogen bonds,or the impacts of their joint role.35,36

To ascertain the effect of the PVP on the morphology,a series of contrastive experiments were performed.In the absence of PVP,while other conditions remain unchanged,it was found that VO 2(B)nano?owerlike structures cannot be obtained,and the as-prepared products are beltlike products ca.1μm in length (Figure 9a,b),suggesting that PVP is crucial for the formation of VO 2(B)nano?owerlike structures.Figure 9presents typical SEM and TEM images of VO 2(B)nanobelts synthesized in the absence of PVP.As shown in the low magni?cation SEM

image (Figure 9a),the as-prepared products are consisted of a large quantity of one-dimensional VO 2(B)nanobelts with typical lengths of up to about 1μm.A high-magni?cation SEM image shown in the inset of Figure 9a,it is clear that the geometrical shape of the VO 2(B)nanostructures is belt.The thicknesses and widths of VO 2(B)nanobelts are about 20-40and 100-200nm,respectively.The TEM image in Figure 9b con?rms the belt-shaped morphology of VO 2(B).The sizes of the nanobelts are consistent with that in Figure 9a.When the concentration of PVP was increased to 5.4×10-2g L -1,the obtained samples are carambola-like VO 2(B)superstructures.The typical SEM and TEM images of carambola-like VO 2(B)structures are shown in Figure 9c,d.As shown in the low-magni?cation SEM image (Figure 9c),the as-prepared products are composed of a large quantity of carambola-like VO 2(B)nanostructures ca.1.5μm in length and 600nm in width.A high-magni?cation SEM image shown in the inset of Figure 9a,it is clear that the geometrical morphology of the VO 2(B)nanostructures is carambola-like superstructures.The TEM image in Figure 9b con?rms the carambola-like

morphology

Figure 7.(a)Typical low-resolution TEM images of individual VO 2(B)nanosheet.(b)HRTEM image of the edge of VO 2(B)nanosheets (recorded at on the rectangular area in (a))showing that the nanoplate is single

crystalline.

Figure 8.(a)FTIR spectra of pure PVP,(b)the PVP-coated VO 2(B)samples without washing,and (c)VO 2(B)samples after washing with distilled water and ethanol for several

times.

Figure 9.(a,c,e)FESEM and (b,d,f,g)TEM images of the as-prepared VO 2(B)samples on gradually increasing the concentration of PVP with 0.2mmol V(IV)O(acac)2at 200°C.(a,b)The beltlike VO 2(B)obtained without PVP.(c,d)The carambola-like VO 2(B)structures obtained in the presence of 5.4×10-2g L -1PVP.The inset reveals VO 2(B)nanobelts and individual carambola-like VO 2(B)products.(e -g)The multiple crosslike VO 2(B)samples obtained in the presence of 1.5×10-1g L -1PVP.The TEM image (f)reveals an individual multiple crosslike VO 2(B)sample.

Flowerlike Metastable VO 2(B)Micronanostructures J.Phys.Chem.C,Vol.113,No.33,200915063

of VO 2(B).The sizes of the carambola-like VO 2(B)are consistent with that in Figure 9c.On gradually increasing the concentration of PVP to 1.5×10-1g L -1while maintaining the same other conditions,a complicated multiple crosslike VO 2(B)hierarchical superstructure is observed,as shown in Figure 9e -g.As shown in the low-magni?cation SEM image (Figure 9e),large-scale complicated multiple crosslike VO 2(B)hier-archical superstructure is obtained.The branch sizes of the complicated multiple crosslike VO 2(B)hierarchical superstruc-ture are about 500nm in length and 100nm in width.The TEM images in Figure 9f,g show the complicated multiple crosslike VO 2(B)hierarchical superstructure,the sizes of which are consistent with that in Figure 9a.Therefore,the mass of PVP plays pivotal roles in the synthesis and control of the morphol-ogy of the VO 2(B)nanostructures.As mentioned earlier,in the absence of PVP,the nanobelt structure and observed crystallographic orientations exhibit the crystal structure of VO 2(B)(Figure 6b,c).In this case,the average longest and relatively shorter V -O bonds were along the [001]and [010]directions,respectively,reveals that the [010]direction has a relatively high stacking rate.The similar process has ever been observed in the synthesis of the VO 2(B)nanobelts.25When PVP molecules are added into the reaction system,the adsorption at active sites such as angle and edge positions of the VO 2(B)nanoparticals and the subsequent formation of soft template are very important for the synthesis of the different VO 2(B)morphologies.PVP molecules can cap and desorb from the surfaces of VO 2(B)because of the heat effect and fast diffusion in solvent.If the VO 2(B)nanoparticles meet together and easily stick and connect with each other,different shapes of VO 2(B)are much more easily formed among them in the different concentrations of PVP.In fact,the growth process of the different structures of VO 2(B)becomes considerably complicated in multicomposite solution because of various thermodynamic and kinetic factors such as temperature,diffusion rate of the particle,and adsorption and desorption kinetics of the PVP.Note that more systematic work needs to be done gain further knowledge of the formation mechanism of VO 2(B)via the solution-phase deposition approach.

Meanwhile,the reaction temperature is another vital factor in the formation of the morphology of the VO 2(B)structures.As the hydrothermal temperature was decreased to 140°C,no products were obtained.In other words,the precursor can not be hydrolyzed in the temperature lower than 140°C.When the hydrothermal temperature was increased to 160or 180°C,VO 2(B)rectangular nanoplate-built hierarchical spherelike structures were obtained,as shown in Figure 10a -c,con?rming the temperature is a critical factor for the formation of VO 2(B)superstructures.Figure 10a shows the low-magni?cation SEM image of typical composition of a very uniform,spherelike architecture ~1μm in diameter.The detailed morphology of the spherelike micro-nanostructure is shown in Figure 10b,which are composed of a large quantity of two-dimensional nanoplates with a width of about 100nm and an average length of about 300nm.The TEM images in Figure 10c,VO 2(B)curved architectures have diameters of 1μm,which agree well with the SEM images (Figure 10b).The spherelike micro-nanostructures made up of two-dimensional nanoplates are similar to the intermediate (Figure 5c)of ?owerlike VO 2(B)structures.Therefore,it is reasonable to conclude that,in the current process,driven by the minimization of the total energy of the system and van der Waals interactions between polymer PVP molecules,the small primary nanoplates aggregated together to form sub-microscaled loose spheres.However,these spherical aggregates of the VO 2(B)nanoplates did not become ?owerlike structures at lower temperature.In other words,the Ostwald ripening growth process did not in this case actually happen at lower temperature.Therefore,the reaction temperature also plays pivotal roles in the synthesis and control of the morphology of the VO 2(B)nanostructures.More in-depth studies are necessary to further understand their growth process.3.2.Application in Aqueous Lithium Ion Batteries.The as-obtained different VO 2(B)micro-nanostructure is a candidate anode material for the aqueous lithium ion cell due to the proper electrode potential and the stability in aqueous solutions containing dissolved Lithium ions.The tunnel size (4.984?×3.281?)in the supercell crystal structure of VO 2(B)is considerably larger than the diameter of lithium ion (1.36?).Obviously,the presence of the tunnels in VO 2(B)could be effective in facilitating Li +diffusion through the crystal structure,so facilitating the electrochemical reaction,which should contribute the Li +insertion performance in the lithium ion battery.Here,we introduce the different micro-nanostructure VO 2(B)as the active material into the aqueous lithium-ion battery applications,on the consideration that the development of an aqueous solution as electrolytes in the rechargeable lithium ion battery was an effective way to realize a safer,less-expensive rechargeable battery.37

The discharge curves and corresponding cycle behavior of the different micro-nanostructure VO 2/LiMn 2O 4aqueous lithium ion batteries are shown in Figure 11,respectively,which displays the ?rst,second,twentieth,and ?ftieth cycle of the cell with the cutoff voltage of 1.65and 0.5V at a current density of 60mA g -1.

It can be clearly found that the ?owerlike micro-nanostructure VO 2(B)electrode promotes the electrochemical performance in the aqueous lithium ion battery compared with VO 2(B)nanobelts and carambola-like VO 2(B)(Figure 11).The ?owerlike VO 2(B)electrode shows both discharge capacity and the output voltage advantages in our aqueous lithium ion batteries,revealing

the

Figure 10.(a)Low-magni?cation FESEM image,(b)high-magni?cation FESEM image,and (c)TEM images of the as-prepared VO 2(B)samples obtained in the presence of 0.2mmol of V(IV)O(acac)2and 3×10-3g L -1PVP at 160°C.

15064J.Phys.Chem.C,Vol.113,No.33,2009Zhang et al.

high energy density of the VO 2/LiMn 2O 4cell.For practical battery application,a more ?at charge/discharge curve is necessary,especially for the anode material VO 2(B),to achieve a larger extent of Li intercalation/deintercalation.The discharge curve of the ?owerlike micro-nanostructure VO 2(B)electrode has a longer plateau than other VO 2(B)morphologies in our aqueous lithium ion battery,which is noteworthy in the ?eld of rechargeable aqueous lithium-ion batteries.The highest dis-charge capacity of the ?rst cycle in the ?owerlike micro-nanostructure VO 2/LiMn 2O 4aqueous cell is 74.9mAhg -1,which is a quite outstanding value for the aqueous lithium ion battery systems in the light of previous reports (usually <65mAhg -1).5-7,10The highest discharger capacity,as shown in the Figure 11b,c,is 62.1and 58.3mAhg -1for nanobelts and carambola-like VO 2(B),respectively.In the case of aqueous electrolytes for ?owerlike VO 2/LiMn 2O 4cell,the reversible discharge capacity after 50cycles is 31.1mAhg -1,which is ~41.5%of the ?rst discharge capacity,exhibiting better cycling behavior than those in the previously reported aqueous lithium ion battery.5,6Meanwhile,the reversible discharge capacity for nanobelts and carambola-like VO 2(B)after 50cycles is 28.6mAhg -1(Figure 11b)and 22.4mAhg -1(Figure 11c),respectively.These behaviors leads to the conclusion that the ?owerlike VO 2(B)electrode possesses not only higher discharge capacity but also better capacity retention,compared with the other structure VO 2(B)electrode.The unique ?owerlike structure plays a basic role in the morphology requirement to serve as transport paths for lithium ion in the aqueous lithium ion battery.It is believed that the unique structure provides an important morphological foundation for the extraordinarily high capacity.

Meanwhile,the ?owerlike VO 2(B)charge capacity of the ?rst 12cycles in our aqueous lithium-ion battery systems (Figure 11d),which is the ratio of the discharge capacity and the charge capacity for a given cycle,is nearly 100%compared with VO 2(B)nanobelts and carambola-like VO 2(B).This value indicates that almost the complete intercalated amount of Li cations can be deintercalated in the succeeding discharge process and that almost no side reactions,such as electrolysis of water,occurs.6The unique ?owerlike structure plays a basic role in the morphology requirement for electrochemical accessibility of electrolyte Li +to the VO 2(B)active material and a fast diffusion rate within the redox phase compared with the other VO 2(B)structure.It is believed that the unique ?owerlike structure provides an important morphological foundation for the ex-traordinary high speci?c capacitances.Furthermore,the output voltage of those aqueous lithium ion battery is in the range of 1.3-1.6V.Here,the output voltage for VO 2/LiMn 2O 4aqueous lithium ion battery is not only outstanding when compared with the previous aqueous lithium ion battery 5-7but also higher than the output voltage of the primary Zn -MnO 2,Ni -MH,and Ni -Cd cell systems (ca.1.2V).A more ?at charge/discharge curve is necessary for practical battery application,especially for the anode material VO 2.The relatively high discharge capacity value and high output voltage infer that our aqueous lithium ion battery was the promising substitute candidate for those cells with higher energy density.Further research has to be conducted in order to elucidate those phenomena in more detail in our aqueous lithium ion battery.

The crystallinity,the microstructure,and the micromorphology of materials strongly in?uence the quality of sites capable of lithium accommodation.Consequently,the electrochemical investigation was performed on the sample obtained by post-treatment of the ?owerlike VO 2(B)precursor at the high temperature of 350°for 2h in N 2atmosphere.The increased and sharp peaks of XRD patterns (Figure 12b)demonstrate that the sample is a well-crystalline material after annealed.Figure 12a shows the SEM images of VO 2(B)?owerlike micro-nanostructures annealed at 350°.As seen from Figure 12a,the overall ?owerlike

morphology

Figure 11.Voltage versus discharge capacity curves for the (a)?owerlike VO 2/LiMn 2O 4cell,(b)beltlike VO 2/LiMn 2O 4cell,and (c)carambola-like VO 2/LiMn 2O 4cell between 1.65and 0.5V at the ?rst,second,tentieth,and ?ftieth cycles in aqueous electrolyte.(d)The corresponding cycling performance of the different structural VO 2/LiMn 2O 4aqueous cell.

Flowerlike Metastable VO 2(B)Micronanostructures J.Phys.Chem.C,Vol.113,No.33,200915065

was maintained,implying the obtained VO 2(B)material had a highly stable structure.However,a close observation revealed that the shrinking in the nanopetal size can be largely attributed to deintercalation of H 2O and trace PVP molecules,in which was con?rmed by infrared measurements (Figure 8)and XPS measure-ments of VO 2(B)(Figure 2).Figure 12c,d shows the voltage versus discharge capacity curves and cycling performance of VO 2(B)/LiMn 2O 4cell treated at 350°with a current density of 60mA g -1in aqueous electrolyte.Furthermore,the ?rst discharge capacity is enhanced to 81.3mAhg -1,which is higher than that of ?owerlike VO 2(B)sample before annealing (Figures 11a and 12e).Moreover,it is found that the discharge capacity after 50cycles is 54.8mAhg -1,which is ~67%of the ?rst discharge capacity,while it exhibits perfect capacity retention over the 50cycles.The post-treated samples not only the ?owerlike morphology was maintained but also the crystallinity was a higher degree;thus,it shows good resistance with respect to the untreated sample.From Figure 12e,

it is clearly shown that the post-treatment of the ?owerlike VO 2(B)/LiMn 2O 4cell exhibits better electrochemical properties than the other cell.All the results above obtained from the electrochemi-cal investigation indicate that the electrochemical properties are related to the crystal structure and morphology of the electrode-material.The obtained ?owerlike VO 2(B)and post-treated well-crystallized VO 2(B)nanostructures in this work with high aspect ratios and surface areas are favorable for reducing the diffusion distance of the solid-state lithium ion (Figure 12e).Thus,the intercalation and extraction processes are of much higher ef?ciency,the kinetic performance of the lithium-ion battery is better,and therefore,a higher capacity can be achieved.4.Conclusions

In conclusion,a novel ?owerlike VO 2(B)hierarchical micro-nanostructure has been successfully synthesized through a

simple

Figure 12.Characterizations of the ?owerlike VO 2(B)structures post-treated at 350°C in N 2gas ?ow.(a)SEM image.(b)XRD patterns.(c)Voltage versus discharge capacity curves for the ?rst,second,twentieth,and ?ftieth cycles of the VO 2/LiMn 2O 4cell between 1.65and 0.5V in aqueous electrolyte.(d)The corresponding cycling performance of VO 2/LiMn 2O 4aqueous cell.(e)The histogram of discharge capacity for the ?rst and ?ftieth cycles of the different structure VO 2/LiMn 2O 4cell.

15066J.Phys.Chem.C,Vol.113,No.33,2009Zhang et al.

chemical route in high yield.The difference in the concentration of PVP can be easily used to control the crystal morphology, such as a rectangular beltlike VO2(B),a carambola-like VO2 (B)superstructure,and a complicated multiple crosslike VO2 (B)hierarchitecture.The as-formed architectures of VO2(B) are exciting new members in the family of vanadium oxide nanostructures.The V(IV)O(acac)2precursor is applied to get the VO2nanostructures with same valence.This method not only avoids the dif?culty of choosing the suitable reducing agents in traditional methods but also greatly simpli?es the synthesis steps.The facile preparation method provides a successful example for an alternative preparation of the inorganic nanomaterials with same valence,which may be of much signi?cance in the synthesis of other structure materials.The electrochemical behavior of?owerlike VO2(B)and the corre-sponding postannealing products in aqueous lithium-ion batteries was also investigated.Furthermore,we have investigated the electrochemical intercalation properties with Li+the synthesized VO2(B)nanobelts and carambola-like VO2(B)structure.It is believed that the unique?owerlike structure provides an important morphological foundation for the extraordinarily high capacity.The favorable discharge capacity and capacity reten-tion,suggest that VO2(B)has promising potential for application in following industry?elds.The unique?owerlike structure and crystallinity play basic roles in electrochemical intercalation and deintercalation properties with Lithium ion. Acknowledgment.This work was?nancially supported by theNationalBasicResearchProgramofChina(No.2009CB939901), the National Natural Science Foundation of China(20621061), and China Postdoctoral Science Foundation funded project(No. 200801235).The authors acknowledge Mr.Linfeng Fei for his technical assistance.

Supporting Information Available:Synthesis procedure and the FTIR spectrum of VO(acac)2.This material is available free of charge via the Internet at https://www.sodocs.net/doc/6215215963.html,. References and Notes

(1)Abraham,K.M.J.Power Sources1985,14,179.

(2)Li,G.H.;Ikuta,H.;Uchida,T.;Wakihara,M.J.Electrochem.Soc. 1996,143,178.

(3)Wainwright,D.Mat.Tech.1996,11,9.

(4)Li,W.;Dahn,J.R.;Wainwright,D.Science1994,264,1115.

(5)James,G.Science1994,264,1084.

(6)Kohler,J.;Makihara,H.;Uegaito,H.;Inoue,H.;Toki,M. Electrochim.Acta2000,46,59.

(7)Wang,G.J.;Fu,L.J.;Zhao,N.H.;Yang,L.C.;Wu,Y.P.;Wu,

H.Q.Angew.Chem.,Int.Ed.2007,46,295.

(8)Wang,H.B.;Huang,K.L.;Zeng,Y.Q.;Yang,S.;Chen,L.Q. Electrochin.Acta2007,52,3280.

(9)Luo,J.Y.;Xia,Y.Y.Ad V.Funct.Mater.2007,17,3877.

(10)Wu,C.Z.;Hu,Z.P.;Wang,W.;Zhang,M.;Yang,J.L.;Xie,Y. https://www.sodocs.net/doc/6215215963.html,mun.2008,3891.

(11)Murphy,D.W.;Christian,P.A.;DiSalvo,F.J.;Carides,J.N.; Waszczak,J.V.J.EIectrochem.Soc.1981,128,2053.

(12)Tsang,C.;Manthiram,A.J.Electrochem.Soc.1997,144,520.

(13)Nam,K.T.;Kim,D.W.;Yoo,P.J.;Chiang,C.Y.;Meethong,N.; Hammond,P.T.;Chiang,Y.M.;Belcher,A.M.Science2006,312,885.

(14)Taberna,P.L.;Mitra,S.;Poizot,P.;Simon,P.;Tarascon,J.M. Nat.Mater.2006,567.

(15)Slides,C.R.;Martin,C.R.Ad V.Mater.2005,17,125.

(16)Wu,C.Z.;Xie,Y.;Lei,L.Y.;Hu,S.Q.;OuYang,C.Z.Ad V. Mater.2006,18,1727.

(17)Morin,F.J.Phys.Re V.Lett.1959,3,34.

(18)Manning,T.D.;Parkin,I.P.;Pemble,M.E.;Sheel,D.;Vernardou,

D.Chem.Mater.2004,16,744.

(19)Goodenough,J.B.J.Solid State Chem.1971,3,490.

(20)Murphy,D.W.;Christian,P.A.;Carides,J.N.J.Electrochem. Soc.1979,126,497.

(21)Guiton,B.S.;Gu,Q.;Prieto,A.L.;Gudiksen,M.S.;Park,H. J.Am.Chem.Soc.2005,127,498.

(22)Wu,J.;Gu,Q.;Guiton,B.S.;Leon,N.P.;Ouyang,L.;Park,H. Nano Lett.2006,6,2313.

(23)Baudrin,E.;Sudant,G.;Larcher,D.;Dunn,B.;Tarascon,J.M. Chem.Mater.2006,18,4369.

(24)Wang,Y.Q.;Zhang,Z.J.;Zhu,Y.;Li,Z.Vajtai;C,R.;Ci,L.J.; Ajayan,P.M.ACS Nano2008,2,1492.

(25)Liu,J.;Li,Q.;Wang,T.;Yu,D.;Li,Y.Angew.Chem.,Int.Ed. 2004,43,5048.

(26)Chen,X.;Wang,X.;Wang,Z.;Wan,J.;Liu,J.;Qian,Y.T. Nanotechnology2004,15,1685.

(27)Li,G.C.;Chao,K.;Wang,Z.;Peng,H.R.;Chen,K.Z.;Zhang, Z.K.Inorg.Chem.2007,46,5787.

(28)(a)Huang,J.H.;Gao,L.A.Cryst.Growth Des.2006,6,1528.(b) Wu,J.;Duan,F.;Zheng,Y.;Xie,Y.J.Phys.Chem.C2007,111,12866.

(c)Zhang,G.Q.;Lu,X.L.;Wang,W.;Li,X.G.Chem.Mater.2007,19, 5207.(d)Wang,G.Z.;S?aeterli,R.;R?rvik,P.M.;van Helvoort,A.T.; Holmestad,R.;Grande,T.;Einarsrud,M.A.Chem.Mater.2007,19,2213.

(29)Wang,G.;Fu,J.L.;Zhao,N.H.;Yang,L.C.;Wu,Y.P.;Wu,

H.Q.Angew.Chem.,Int.Ed.2007,46,295.Angew.Chem.2007,119, 299.

(30)Liu,X.H.;Xie,G.Y.;Huang,C.;Xu,Q.;Zhang,Y.F.;Luo, Y.B.Mater.Lett.2008,62,1878.

(31)Tapramaz,R.;Karabulut,B.;Kok¨sal,F.J.Phys.Chem.Solidi2000, 61,1367.

(32)Wu,Z.C.;Zhang,M.;Yu,K.;Zhang,S.D.;Xie,Y.Chem.s Eur. J.2008,14,5346.

(33)Leroux,C.;Nihoul,G.;Van Tendeloo,G.Phys.Re V.B1998,57, 5111.

(34)Gao,Y.X.;Yu,S.H.;Guo,https://www.sodocs.net/doc/6215215963.html,ngmuir2006,22,6125.

(35)(a)Zhong,L.S.;Hu,J.S.;Liang,H.P.;Cao,A.M.;Song,W.G.; Wan,L.J.Ad V.Mater.2006,18,2426.(b)Zhang,N.;Bu,W.B.;Xu, Y.P.;Jiang,D.Y.;Shi,J.L.J.Phys.Chem.C2007,111,5014.(c)Yang, J.;Li,C.X.;Quan,Z.W.;Zhang,C.M.;Yang,P.P.;Li,Y.Y.;Yu,C.C.; Lin,J.J.Phys.Chem.C2008,112,12777.

(36)(a)Politi,Y.;Arad,T.;Klein,E.;Weiner,S.;Addadi,L.Science 2004,306,1161.(b)Colfen,H.;Antonietti,M.Angew.Chem.,Int.Ed. 2005,44,5576.(c)Colfen,H.;Mann,S.Angew.Chem.,Int.Ed.2003,42, 2350.

(37)Jansen,A.N.;Kahaian,A.J.;Kepler,K.D.;Nelson,P.A.;Amine, K.;Dees,D.W.;Vissers,D.R.;Thackeray,M.M.J.Power Sources1999, 81-82,902.

JP903312H

Flowerlike Metastable VO2(B)Micronanostructures J.Phys.Chem.C,Vol.113,No.33,200915067

802.1x认证系统

802.1x认证系统基础 IEEE 802.1X是由IEEE制定的关于用户接入网络的认证标准,全称是“基于端口的网络接入控制”。它于2001年正式颁布,最初是为有线网络设计,之后为了配合无线网络的接入进行修订改版,并于2004年完成。 802.1x协议是一种基于端口的网络接入控制协议,所以具体的802.1x认证功能必须在设备端口上进行配置,对端口上接入的用户设备通过认证来控制对网络资源的访问。802.1x认证系统采用网络应用系统典型的Client/Server(C/S)结构,包括三个部分:客户端(Client)、设备端(Device)和认证服务器(Server),如图18-2所示。它与图18-1中的NAC模型结构一一对应。 l 客户端:局域网用户终端设备,但必须是支持EAPOL(Extensible Authentication Protocol over LAN,局域网可扩展认证协议) 的设备(如PC机),可通过启动客户端设备上安装的802.1x客 户端软件发起802.1x认证。 图18-2 802.1x认证系统结构 l 设备端:支持802.1x协议的网络设备(如交换机),对所连接的客户端进行认证。它为客户端提供接入局域网的端口,可以是 物理端口,也可以是逻辑端口(如Eth-Trunk口)。

l 认证服务器:为设备端802.1x协议提供认证服务的设备,是真正进行认证的设备,实现对用户进行认证、授权和计费,通常为 RADIUS服务器。 1. 80 2.1x认证受控/非受控端口 在设备端为客户端提供的接入端口被划分为两个逻辑端口:受控端口和非受控端口。“非受控端口”可看成为EAP(可扩展认证协议)端口,不进行认证控制,始终处于双向连通状态,主要用来传递在通过认证前必需的EAPOL协议帧,保证客户端始终能够发出或接收认证报文。 “受控端口”可以看作为普通业务端口,是需要进行认证控制的。它有“授权”和“非授权”两种状态(相当于在该端口上有一个控制开关):在授权状态下处于双向连通状态(控制开关闭合),可进行正常的业务报文传递;在非授权状态下处于打开状态(控制开关打开),禁止任何业务报文的传递。设备端利用认证服务器对客户端进行认证的结果(Accept或Reject)来实现对受控端口的授权/非授权状态进行控制。 2. 802.1x认证的触发方式 在华为S系列交换机中,802.1x的认证过程可以由客户端主动发起,也可以由设备端主动发起。在“客户端主动触发方式”中,由客户端主动向设备端发送EAPOL-Start(EAPOL开始)报文来触发认证;而“设备端主动触发方式”中用于支持不能主动发送EAPOL-Start报文的客户端,例如Windows XP自带的802.1x客户端。 在“设备端主动触发方式”中又有两种以下具体的触发方式:

身份认证和访问控制实现原理

身份认证和访问控制实现原理 身份认证和访问控制的实现原理将根据系统的架构而有所不同。对于B/S架构,将采用利用Web服务器对SSL(Secure Socket Layer,安全套接字协议)技术的支持,可以实现系统的身份认证和访问控制安全需求。而对于C/S架构,将采用签名及签名验证的方式,来实现系统的身份认证和访问控制需求。以下将分别进行介绍: 基于SSL的身份认证和访问控制 目前,SSL技术已被大部份的Web Server及Browser广泛支持和使用。采用SSL技术,在用户使用浏览器访问Web服务器时,会在客户端和服务器之间建立安全的SSL通道。在SSL会话产生时:首先,服务器会传送它的服务器证书,客户端会自动的分析服务器证书,来验证服务器的身份。其次,服务器会要求用户出示客户端证书(即用户证书),服务器完成客户端证书的验证,来对用户进行身份认证。对客户端证书的验证包括验证客户端证书是否由服务器信任的证书颁发机构颁发、客户端证书是否在有效期内、客户端证书是否有效(即是否被窜改等)和客户端证书是否被吊销等。验证通过后,服务器会解析客户端证书,获取用户信息,并根据用户信息查询访问控制列表来决定是否授权访问。所有的过程都会在几秒钟内自动完成,对用户是透明的。 如下图所示,除了系统中已有的客户端浏览器、Web服务器外,要实现基于SSL的身份认证和访问控制安全原理,还需要增加下列模块: 基于SSL的身份认证和访问控制原理图 1.Web服务器证书 要利用SSL技术,在Web服务器上必需安装一个Web服务器证书,用来表明服务器的身份,并对Web服务器的安全性进行设置,使能SSL功能。服务器证书由CA 认证中心颁发,在服务器证书内表示了服务器的域名等证明服务器身份的信息、Web 服务器端的公钥以及CA对证书相关域内容的数字签名。服务器证书都有一个有效 期,Web服务器需要使能SSL功能的前提是必须拥有服务器证书,利用服务器证书 来协商、建立安全SSL安全通道。 这样,在用户使用浏览器访问Web服务器,发出SSL握手时,Web服务器将配置的服务器证书返回给客户端,通过验证服务器证书来验证他所访问的网站是否真

医院证照管理制度

企业管理,人事管理,岗位职责。 医院证照管理制度 一、目的 为加强医院证照原件及申办资料的管理,保护医院合法权益并按时年检,特制订本制度。 二、医院证照资料的范围 营业执照、组织机构代码证、法人证书、税务登记证等医院院级的证照及其申办原始资料的原件及复印件。 三、证照借阅 医院证照的借阅原则是:一事一借、用毕归还、再用再借、谁用谁借。 四、证照的保管归档 医院证照原件及复印件由办公室保管,设专人负责。 五、证照的使用管理 1、各科室因工作需耍,借阅、借用、复印医院证照资料,须填写《高密市妇幼保健院医院证照使用申请单》,经科室负责人及分管院长同意并签字确认后,可到办公室办理相应手续。 2、办公室根据签批的《高密市妇幼保健院医院证照使用申诮单》办理借阅、借用、复印等业务,其他任何人提出的任何要求,均不予受理。 3、凡借阅、借用证照资料,必须在申请当日归还。 4、医院证照不得丢失、损坏。如出现损坏或丢失,除立即向主管领导报告外,要立即与发证机关联系,及时办理证照的挂失和补办手续。 5、不许擅自使用医院证照进行各种担保。 6、医院证照的电子版不得对外公布,复印件使用必须在复印件关键部位手写“本复印件仅限于办理XXX业务”。 六、证照的年审、到期、变更 医院证照的年审、到期、变更等相关业务由办公室专人负责,并定期按照上级部门要求进行。 七、相关责任 1、专人负责的证照都应有清单和目录,确保证照数据的准确性,对于借阅和归档都应有相应人员的签字确认,证照的管理专人负有登记的及时性和完整性贲任。 2、证照借阅人负责借阅期间的保管,确保医院证照的完整性和整洁性,使用完毕后应及时归档。借阅期间不允许转借他人使用。 鞠躬尽瘁,死而后已。——诸葛亮 a

安腾宽带认证计费管理系统(GBMS)白皮书

宽带连接世界, 宽带连接世界,信息改变未来
安腾宽带网络认证计费管理 系统技术白皮书(v3.0) 系统技术白皮书(v3.0) 技术白皮书
北京安腾联创科技有限责任公司 北京安腾联创科技有限责任公司 联创科技有限责任
Bei Jing Amtium Centry Tech. Co.,Ltd.
二〇〇八年三月 〇〇八年三月 八年三
1

目 录 1、前言.......................................................................................................................... 4 2、运营网络的特点和面临的问题.............................................................................. 5 3、安腾宽带认证计费管理系统产品介绍.................................................................. 6
3.1 Amtium eFlow BAS 认证计费管理网关介绍 ................................................................... 6 3.2 Amtium eFlow GBMS 认证计费管理平台介绍 ............................................................... 9 3.2.1 Radius Server 系统 .................................................................................................. 9 3.2.2 计费管理监控系统 ............................................................................................... 11 3.2.3 用户自服务系统 ................................................................................................... 12 3.3 Amtium eFlow Client 客户端软件 ................................................................................... 12 3.4 Amtium eFlow LRMS 日志记录管理系统 ...................................................................... 13
4、安腾 GBMS 系统应用方案...................................................................................... 14
4.1 方案一:光纤和同轴电缆混合网络 .............................................................................. 14 4.1.1 方案的典型拓扑及说明 ........................................................................................ 14 4.1.2 特别推荐案例:济南广电 ................................................................................... 15 4.2 方案二:光纤和 DSL 混合网络 ..................................................................................... 17 4.2.1 方案的典型拓扑及说明 ....................................................................................... 17 4.2.2 特别推荐案例(中南空管局) ................................................................................ 17 4.3 方案三:光纤网络 .......................................................................................................... 18 4.3.1 方案的典型拓扑及说明 ........................................................................................ 18 4.3.2 特别推荐案例一(上海电信宽频) ................................................................... 19 4.3.3 特别推荐案例二(中海电信) ........................................................................... 20
5、安腾产品优势........................................................................................................ 21
5.1 安腾产品优势(硬件) ..................................................................................................... 21 5.2 安腾产品优势(GBMS 认证计费管理平台).............................................................. 22 5.3 安腾产品价值................................................................................................................... 22
6、安腾公司建议........................................................................................................ 23 7、部分成功的客户名单............................................................................................ 23 8、总结........................................................................................................................ 24
2

统一身份认证平台讲解

统一身份认证平台设计方案 1)系统总体设计 为了加强对业务系统和办公室系统的安全控管,提高信息化安全管理水平,我们设计了基于PKI/CA技术为基础架构的统一身份认证服务平台。 1.1.设计思想 为实现构建针对人员帐户管理层面和应用层面的、全面完善的安全管控需要,我们将按照如下设计思想为设计并实施统一身份认证服务平台解决方案: 内部建设基于PKI/CA技术为基础架构的统一身份认证服务平台,通过集中证书管理、集中账户管理、集中授权管理、集中认证管理和集中审计管理等应用模块实现所提出的员工帐户统一、系统资源整合、应用数据共享和全面集中管控的核心目标。 提供现有统一门户系统,通过集成单点登录模块和调用统一身份认证平台服务,实现针对不同的用户登录,可以展示不同的内容。可以根据用户的关注点不同来为用户提供定制桌面的功能。 建立统一身份认证服务平台,通过使用唯一身份标识的数字证书即可登录所有应用系统,具有良好的扩展性和可集成性。 提供基于LDAP目录服务的统一账户管理平台,通过LDAP中主、从账户的映射关系,进行应用系统级的访问控制和用户生命周期维护

管理功能。 用户证书保存在USB KEY中,保证证书和私钥的安全,并满足移动办公的安全需求。 1.2.平台介绍 以PKI/CA技术为核心,结合国内外先进的产品架构设计,实现集中的用户管理、证书管理、认证管理、授权管理和审计等功能,为多业务系统提供用户身份、系统资源、权限策略、审计日志等统一、安全、有效的配置和服务。 如图所示,统一信任管理平台各组件之间是松耦合关系,相互支撑又相互独立,具体功能如下: a)集中用户管理系统:完成各系统的用户信息整合,实现用户生 命周期的集中统一管理,并建立与各应用系统的同步机制,简 化用户及其账号的管理复杂度,降低系统管理的安全风险。

公司证照管理制度

公司证照管理制度 一、总则为了加强对公司相关证照的管理,保证其合理和高效使用,防止不必要的经济纠纷和损失。经公司研究,特制定本规定: 二、证件的使用 1、证件的范围公司各项资信证书: 《营业执照》、《建筑业企业资质证》、《安全生产许可证》、《组织机构代码证》、《法人代码证》、《税务登记证》、《质量管理体系认证》、《社会保障登记证》、《压力容器、锅炉、压力管道、电梯安装证》、《安防证》等。 公司各项个人证书:《职称证》、《建造师证》、《消防施工员证》、《特种设备作业人员证书》、《九大员证》等。 2. 证件的保管公司各项资信证书及荣誉证书原件和个人证书均由项 目管理中心档案室统一管理,并建立相应的管理台帐和《证件借用登记表》。 确需长期借用公司资信证书的单位或个人必须填写《证件借用审批表》,经公司经营副总批准,并承担管理、使用、归还的责任和义务。 3.证件借用程序各单位或个人借用公司资信证书和个人证书须填写《证 件外借登记簿》经经营副总批准后,由专人到项目管理中心档案室办理借用手续。特种设备安装许可证和作业人员操作证书,还需经公司总工程师批准。经办人应为公司正式员工, 并按规定使用、保管好证件及资料。 各类证书的借用期限原则为:长沙市内2天:长、望、 济、宁四县3天;省内地区和省外交通便利的地区5天;其

它地区8天。按期归还,押金如数退还,逾期末归还的交滞纳金每本每天20元(从押金中扣除)。证照损坏严重的将押金全部扣除,如有遗失,所造成的法律责任由借证人全部承担。 中标项目如需压证,须由公司项目管理中心主任批准;所压证件在项目竣工验收后一个月内由项目管理中心工程科技部协助办理解锁手续。 4.证件使用的安全性和时效性 为了规范各项证件和资料的管理、使用,经常性借证单 位需一次性交纳固定押金3000元至项目管理中心档案室。 个人借证需交纳200 —1000兀至相关部室。 所有证件的借用必须按时归还,如需延期必须经相关部 室批准。如未经批准拖延归还的,每延迟一天罚款20元/本,直接从押金中扣除。如固定押金累计扣除超过3000元后, 责任单位需在10内到项目管理中心档案室办理续交手续。 逾期10天未归还或不按时归还造成严重不良影响的,暂停 其1个月借用资格。 5、证件的转借 证件原则上不得相互转借,如有特殊情况确需转借的,转借双方应报项目管理中心档案室备案后方可实行。擅自转借证件造成损失 的,由原登记单位或个人承担一切责任。各单位或个人在证件的使用过程中出现任何变更均需及时报相关部室备案,否则由使用单位承担一切责任。 三、其他要求 以上证件只限本企业使用,不得遗失、伪造、涂改、出租、转让、买卖、和损坏,若借证单位或个人保管不妥造成遗失损坏的,对责任单位

统一身份认证平台讲解-共38页知识分享

统一身份认证平台讲解-共38页

统一身份认证平台设计方案 1)系统总体设计 为了加强对业务系统和办公室系统的安全控管,提高信息化安全管理水平,我们设计了基于PKI/CA技术为基础架构的统一身份认证服务平台。 1.1.设计思想 为实现构建针对人员帐户管理层面和应用层面的、全面完善的安全管控需要,我们将按照如下设计思想为设计并实施统一身份认证服务平台解决方案: 内部建设基于PKI/CA技术为基础架构的统一身份认证服务平台,通过集中证书管理、集中账户管理、集中授权管理、集中认证管理和集中审计管理等应用模块实现所提出的员工帐户统一、系统资源整合、应用数据共享和全面集中管控的核心目标。 提供现有统一门户系统,通过集成单点登录模块和调用统一身份认证平台服务,实现针对不同的用户登录,可以展示不同的内容。可以根据用户的关注点不同来为用户提供定制桌面的功能。 建立统一身份认证服务平台,通过使用唯一身份标识的数字证书即可登录所有应用系统,具有良好的扩展性和可集成性。

提供基于LDAP目录服务的统一账户管理平台,通过LDAP中主、从账户的映射关系,进行应用系统级的访问控制和用户生命周期维护管理功能。 用户证书保存在USB KEY中,保证证书和私钥的安全,并满足移动办公的安全需求。 1.2.平台介绍 以PKI/CA技术为核心,结合国内外先进的产品架构设计,实现集中的用户管理、证书管理、认证管理、授权管理和审计等功能,为多业务系统提供用户身份、系统资源、权限策略、审计日志等统一、安全、有效的配置和服务。 如图所示,统一信任管理平台各组件之间是松耦合关系,相互支撑又相互独立,具体功能如下:

公司资质证照管理制度

四川0000科技有限公司 资质证照证件管理制度 1.0目的 1.1各类证照是公司进行规范经营的重要依据,为加强公司的证照管理,确保证照在公司经营管理活动中安全、有效、合法的使用,服务好公司的经营管理工作,特制订本制度。 1.2公司的证照管理本着“及时办理、及时年检、统一保管”原则,保证证照管理的效率和安全性。 2.0定义 政府机关及其他部门颁发给公司的各类营业执照、登记证、许可证、资质证、荣誉证、产权证等证书。以下简称“资质证照”。 3.0分类 证照种类包括基础证照、专业证照及获奖证照三类: 3.1基础证照是指公司的营业执照正副本、税务登记证正副本、银行开户许可证等公司开业运营必须具备的证照。 3.2专业证照是指公司经营中取得的专业类证照:如建筑智能化工程设计与施工一级资质证书、机电设备安装工程专业承包一级资质、交安事业一级二级资质、安全工程师执业资格证书、市政公用工程总承包三级资质、公路公用工程总承包三级资质、钢结构工程专业承包三级资质、城市及道路照明工程承包二级资质、二级建造师(市政或公路)技术人员学历证、职称证、专业资格证书、特种作业Q1Q2等。 3.3获奖证照是指公司经营中获得的各项荣誉证书、发明专利、软件著作权等。 4.0管理原则 公司证照原则上要求由人力资源部行政集中统一保管,结合公司当前实际情况,为了便于各项业务的顺利开展,各项目相关的资质证照可由其项目部指定人员保管,其他的资质证照全部由公司人力资源部行政集中保管。 5.0职责划分 5.1由人力资源部是公司所有资质证照的归口管理部门。具体职责如下: 5.1.1负责对公司的资质证照管理工作进行指导、检查、监督和培训; 5.1.2负责监管公司各类证照的申报、年审、变更、注销工作; 5.1.3负责建立公司资质证照管理制度的建立和完善,负责建立公司所有资质证照台账明细; 5.1.4负责公司部分资质证照申办、年审、变更、注销工作。 5.2各项目部负责其相关业务职责内的资质证照的申办、年审、变更、注销工作。 5.3其他相关部门负责其业务相关的资质证照的申办、年审、变更、注销工作。 5.4各类资质证照的责任部门为资质证照的第一责任人,要及时办理有关证照申办、年审、变更和注销工作;资质证照的保管部门为证照管理一般责任人,要及时提醒相关责任部门进行资质证照的年审、变更等工作。 5.5各类证照的具体职责划分参照《资质证照分类明细台账》 5.5.1公司人力资源部负责企业法人营业执照、组织机构代码证、进出口货物收发人报关注册登记证书、对外贸易经营者备案登记表、自理报检登记证书、货运代理备案登记证书、投资证书、商标证书、专利证书、安许证、荣誉证、国家级、保险、资质等的申办、年审、变更工作。 5.5.2财务部负责税务登记证、开户许可证、机构信用代码证的申办、年审、变更工作。 5.5.3质检部负责安全生产许可证、HSE管理体系审核证书、体系内审员证书的申办、年审、变更工作。

宽带接入认证方式的选择

宽带接入认证方式的选择

宽带接入认证方式的选择 马绍文邓琦 1、概述 随着城域网宽带业务的发展,可运营、可管理的网络建设理念已经深入人心。市场方面,随着用户数量的增多,每用户带宽增大,产生 ADSL/ADSL2+/FTTH/GPON等高带宽接入方式,极大提高了用户网络使用体验,电脑成为网络接入的主要设备。采用动态IP地址,每用户带宽控制的PPPoE设备逐渐演变为电信运营商主要的接入方式。随着IP网络的迅速发展,人们产生了把所有智能设备联网的需求。同时互联网的内容从简单的网页推送演进为以流媒体为主,支持VoIP, IPTV等综合业务。随着提供业务的多样化,用户认证方式作为可运营、可管理的核心,受到包括运营商、制造商的密切关注。目前讨论的核心认证技术主要包括IPoE和PPPoE PPPoE相关标准则是在1999年的RFC2516 - A Method for Transmitting PPP Over Ethernet (PPPoE)中明确定义的。2006年,DSL(2008年改名Broadband)工作组综合各个电信运营商在接入方式上的尝试,为使新型Voice/Video等实时性业务得到有效的控制与管理,定义了WT-146 用户会话控制机制(Subscriber Session),设计规划了以DHCP技术为核心,紧密结合当今PPPoE 通用的RADUIS协议,建立了一种基于"IP用户会话机制(IP Subscriber Sessions)"、"IP数据流的分级机制(IP Flow Classifiers)"、及"IP会话鉴权和管理机制(IP Session Authentication and Management Means)"的IPoE 认证机制。通过扩展信息的加入和识别在网络边缘设备上提供用户Session的接入认证授权计费。IPoE认证方式不需要在用户终端上安装任何客户端程序,不需要输入用户名和密码,非常适合新型网络设备,如智能手机,数字电视,PSP等很难支持内置的PPPoE拨号程序的终端应用互联网业务。 目前,IPoE和PPPoE应用都比较成熟,获得广大运营商和专家的一致认可,并在当前的网络建设中获得大规模商用。下面首先对这两种认证方式进行全面的分析,然后提出业务承载解决方案及对下一代宽带网络业务网关(Broadband network gateway)的需求。 2、 PPPOE认证 (1)PPPoE 认证简介 PPPoE是利用以太网发送PPP包的传输方法和支持在同一以太网上建立多个PPP连接的接入技术。其结合了以太网和PPP连接的综合属性。以太网是一种广播网络,其缺点是通讯双方无法相互验证对方身份,通讯是不安全的。PPP协议提供了通讯双方身份验证的功能,但是PPP协议是一种点对点的协议,协议中没有提供地址信息。如果PPP应用在以太网上,必须使用PPPoE再进行一次封装,PPPoE协议提供了在以太网广播链路上进行点对点通信的能力。

统一身份认证系统技术方案

智慧海事一期统一身份认证系统 技术方案

目录 目录...................................................................................................................................................... I 1.总体设计 (2) 1.1设计原则 (2) 1.2设计目标 (3) 1.3设计实现 (3) 1.4系统部署 (4) 2.方案产品介绍 (6) 2.1统一认证管理系统 (6) 2.1.1系统详细架构设计 (6) 2.1.2身份认证服务设计 (7) 2.1.3授权管理服务设计 (10) 2.1.4单点登录服务设计 (13) 2.1.5身份信息共享与同步设计 (15) 2.1.6后台管理设计 (19) 2.1.7安全审计设计 (21) 2.1.8业务系统接入设计 (23) 2.2数字证书认证系统 (23) 2.2.1产品介绍 (23) 2.2.2系统框架 (24) 2.2.3软件功能清单 (25) 2.2.4技术标准 (26) 3.数字证书运行服务方案 (28) 3.1运行服务体系 (28) 3.2证书服务方案 (29) 3.2.1证书服务方案概述 (29) 3.2.2服务交付方案 (30) 3.2.3服务支持方案 (36) 3.3CA基础设施运维方案 (38) 3.3.1运维方案概述 (38) 3.3.2CA系统运行管理 (38) 3.3.3CA系统访问管理 (39) 3.3.4业务可持续性管理 (39) 3.3.5CA审计 (39)

公司资质证照管理制度.doc

公司资质证照管理制度1 四川0000科技有限公司 资质证照证件管理制度 1.0目的 1.1各类证照是公司进行规范经营的重要依据,为加强公司的证照管理,确保证照在公司经营管理活动中安全、有效、合法的使用,服务好公司的经营管理工作,特制订本制度。 1.2公司的证照管理本着“及时办理、及时年检、统一保管”原则,保证证照管理的效率和安全性。 2.0定义 政府机关及其他部门颁发给公司的各类营业执照、登记证、许可证、资质证、荣誉证、产权证等证书。以下简称“资质证照”。 3.0分类 证照种类包括基础证照、专业证照及获奖证照三类: 3.1基础证照是指公司的营业执照正副本、税务登记证正副本、银行开户许可证等公司开业运营必须具备的证照。 3.2专业证照是指公司经营中取得的专业类证照:如建筑智能化工程设计与施工一级资质证书、机电设备安装工程专业承包一级资质、交安事业一级二级资质、安全工程师执业资格证书、市政公用工程总承包三级资质、公路公用工程总承包三级资质、

钢结构工程专业承包三级资质、城市及道路照明工程承包二级资质、二级建造师(市政或公路)技术人员学历证、职称证、专业资格证书、特种作业Q1Q2等。 3.3获奖证照是指公司经营中获得的各项荣誉证书、发明专利、软件著作权等。 4.0管理原则 公司证照原则上要求由人力资源部行政集中统一保管,结合公司当前实际情况,为了便于各项业务的顺利开展,各项目相关的资质证照可由其项目部指定人员保管,其他的资质证照全部由公司人力资源部行政集中保管。 5.0职责划分 5.1由人力资源部是公司所有资质证照的归口管理部门。具体职责如下: 5.1.1负责对公司的资质证照管理工作进行指导、检查、监督和培训; 5.1.2负责监管公司各类证照的申报、年审、变更、注销工作; 5.1.3负责建立公司资质证照管理制度的建立和完善,负责建立公司所有资质证照台账明细; 5.1.4负责公司部分资质证照申办、年审、变更、注销工作。 5.2各项目部负责其相关业务职责内的资质证照的申办、年

宽带认证计费系统方案.doc

北京易讯正通 宽 带 认 证 计 费 系 统 方 案

1 项目介绍 贵单位现已经安装宽带设备,但现在对安装用户采用简单的包月计费方式,关于宽带业务的管理系统还不够完善,因此需要引进设备加强管理。 1.1 需求分析 根据实际情况,首先要实现两个方面功能,一个是除了包月外,还需要实现包时长、按照时间、流量计费等更丰富的资费策略,另外一个是为了方便宽带业务管理。易讯正通公司提供了两套满足不同适用需求的产品:宽带认证计费系统和宽带业务管理。 产品名称适用范围 宽带认证计费系统由宽带认证(AAA认证)计费服务、宽带WEB管理软件和用户自助 WEB系统组成。 宽带业务管理在营业厅提供办理各种宽带业务,并支持宽带业务工单管理以及宽 带与程控计费的数据融合。

1.2 网络方案 宽带认证接入设备1 宽带认证计费服务器 WEB 服务器 DSLAM DSLAM 交换机 局域网用户 局域网用户 宽带认证计费管理系统网络拓扑图 北京易讯正通网络通信技术公司 宽带管理系统(WEB 方式) 路由器 ChinaNet 宽带认证接入设备2 DSLAM 防火墙 程控计费系统 网卡1 网卡2 Consel 口 汇聚交换机 1.3 组网方案说明 宽带认证接入设备都支持Radius 协议,所有经过认证接入设备上宽带的用户只要在BAS 设备上的进行相应的系统参数设置,就可以让宽带用户必须经过身份认证后才能上网。用户上网的计算机需要安装PPPoE 认证客户端软件,需要跟每个用户分配帐号和密码(帐号可以与电话号码一致,如果没有安装固定电话的用户,帐号单独生成),用户密码可以登录到自助的WEB 页面中修改。 一台宽带认证计费系统可以同时支持多台(不限制)宽带认证接入设备进行认证。对预付费用户而言,当结余金额不够时,用户不能上网;对后付费用户而言,当用户欠费日期超过设定期限时,用户不能上网。 另外,还有部分局域网用户,这部分不需要经过认证就可以上网。对该部分用而言,如果用户欠费,我们可以通过Consel 口用Telnet 向汇聚交换机发送指令,实现关闭上网端口和恢复端口的功能。 只要服务器硬盘空间够,可以保存至少2-3年的历史数据。

公司证照管理制度

公司证照管理规定 第一版 一、总则 为了规范公司各证照的管理,规避证照在保管、使用过程中的风险,特制订本制度。 二、证照的种类 1、公司注册类证照:营业执照、组织机构代码证、开户许可证、机构信用代码证等。 2、公司经营许可类证照:食品经营许可证等。 3、行业颁发的荣耀奖类:主要有(一)重庆是教育委员会颁发的重庆高校标准化食堂、重庆高校后勤系统合唱比赛等,(二)重庆教育后勤协会颁发的重庆高校伙食工作先进集体、重庆市高校伙食工作优秀餐饮服务企业等。 4、由公司保管员工职称类证照,政府认证机构颁发的职称证,如:培训合格证食品安全管理员等。 三、证照的办理 1、公司注册类证照,属于工商、民政等主管部门核发的由行政部门办理,属于银行机构核发的由财务办理,行政部门配合。 2、公司经营许可类证照,属于食药监局等主管部门核发的,由所在各

后勤公司行政部门办理,经营公司相关业务部门配合。 3、行业颁发的荣耀奖,由所在各后勤公司项目负责人参与申报办理。 4、员工类职称证由员工自行办理,入职时交公司档案室保存使用。 三、证照的保管 1、公司及所属单位的证照均由公司机要档案室统一保管。任何个人和公司不得擅自保管、截留公司证照,违者对当事人和相关责任人予以处罚,造成后果的将追究经济和法律责任。 2、公司证照原件应在办理后48小时内交至公司机要档案室归档,公司注册变更、资质办理的资料应在证照办理完毕后一周内移交公司档案室,对未按时移交归档公司证照和相关资料的,公司档案室可视情况予以处罚。 3、公司证照原件应存于锁闭的档案柜或保险柜内,实行证照档案专人专柜专锁保管。非机要档案人员不得保管和代管企业证照。 4、证照保管人员应定期(每季度)对保管的证照进行清理核对,并建立和完善证照台账登记查询目录。 四证照的使用 1、需要查阅、复印公司证照的,应填写《档案查阅、复印申请(审批)表》,完成审批手续后方可办理,复印证照时应用签字笔在证照复印件上标明用途,需加盖印章的,还应需要履行相关用印手续,多页资料的应加盖骑缝章。 2、需要借阅公司证照原件的:使用人须填写《档案原件资料借阅申请

宽带认证计费管理系统解决方案

宽带认证计费管理系统 解决方案 广安职业技术学院

本文档为宽带认证计费管理系统解决方案所制作的技术方案,仅供进行参考和交流使用。

目录 一、前言 (2) 二、校园网的特点以及所面临的问题 (4) 三、解决方案 (6) 3.1、 PPPOE接入组网方案 (6) 3.2、 Web Client接入方案 (7) 3.3、 802.1x二次认证接入组网方案 (9) 四、需要增加的设备 (11) 4.1、宽带接入服务器BRAS (11) 4.2、宽带认证计费管理系统 (13) 4.3、客户端软件 (13) 4.3.1、PPPOE客户端 (13) 4.4.2、Web Client客户端 (14) 4.5 日志记录管理系统 (15) 4.6 硬件防火墙 (15) 五、额外的设备 (16)

一、前言 以Internet为代表的信息新技术迅速席卷全球,在计算、通讯、商务等领域都引发了引人注目的变革。特别是最近,中国教育科研网(CERNET)的建设力度明显加大,各高校和中学都将陆续通过CERNET接入Internet。 校园网在这几年发展迅速。校园网是学校和外界交流的重要平台,也是展现学校面貌的重要舞台。随着学校硬件设备的不断健全,用户的复杂性及多样性,对网络提出了安全认证的需求,网络需要运营,因此也有了计费收费的需要。各个学校根据自身特点,选择一套合理、有效的认证计费系统是十分有必要的。中国的高校信息化建设经过从无到有的多年发展,许多高校正在或已经完成了校园网的建设,并经过一段时间的运行,校园网已为教育的信息化做出了贡献。以太技术在校园网接入层的普遍采用,相对来讲,由于以太技术不是一个具有严格管理能力的组网技术,这决定了校园网的安全性较低。针对不同的校园规模,针对不同的用户群体,校园网的问题和需求在不断的变化,所以提出一套具备校园网运营特点,针对校园网的独特用户群体,特殊网络结构的方案是校园网认证计费解决方案的发展方向。技术日新月异,很多国内外领先的网络厂商大都提出了校园网可运营的理念,以适应现代校园网“以网养网”的需求。 由于众所周知的原因,网络的使用不能是免费的,服务提供者总是要采取相应的手段收取费用。近年来消耗带宽的新技术(如BT、迅雷等P2P软件)的使用和快速传播,使有限的出口带宽受到极大压力;同时,私接代理、计算机蠕虫、病毒泛滥(特别是ARP病毒)、网络攻击行为时有发生,已经为校园网络的运营带来了极大的威胁,使网络服务管理平台人员头痛不已;认证计费管理系统的计费策略、优惠方式单一,无法适应客户的多样化需求。另外,近年来经常有人从事网络赌博、散播不法言论,公安机关需要网络管理部门提供相关的日志信息进行调查,没有完善的日志系统也成为网络服务管理平台人员的一个心病。另外,对于绝大多数学校来说,除了CERNET分摊的流量费用之外,还需要支付DDN专线费用、网络系统运行维护费用等。因此,采用合理的认证计费管理系统是校园网络服务正常运行的保证。 为了能够在现有各种宽带接入网络上为用户提供统一、灵活、规范的宽带社区平台,社区网络中心需要对各种宽带接入技术进行严格的认证、选择,为建立“可管理”的网络打好

申请办理证照流程制度格式

申请办理证照流程 3.1 办理公司营业执照(设立独立核算,法定代表人) 注册资金在2000万元以下,到区工商局办理,2000万元以上,到市工商局办理。 所需材料: 3.1.1各投资方身份证复印件或营业执照复印件4份 3.1.2验资报告:办理验资报告时,由股东出资,汇到所在地工商局指定的银行, 凭到帐单到会计师事务所办理6份,取费标准为注册资金的0.4‰以下3.1.3法定代表人身份证原件及复印件4份、彩色一寸照片4张 3.1.4委托办理人身份证原件及复印件4份 3.1.5房屋租赁合同原件及复印件4份 3.1.6领取执照费用不同,需预先了解,申领费用。 例:北京市注册费5000万元以下按0.4‰收取 天津市注册费1000万元以下按0.8‰收取, 1000万元以上部分按0.4‰收取 3.1.7 领取营业执照后,到广告科办理公告。(由工商局指定媒体,根据版面不 同,收费为30000元-1200元,建议各地区以最低费用为准。) 3.1.8公司章程(见附件3-3) 3.1.9注意事项: (1)名称核准应申请“XX市大中电器有限公司”,如遇重名,可申请为“XX市XX大中电器有限公司”; (2)股东需两方以上,若股东之一为法人,则其法定代表人不可再以自然人的身份成为另一股东; (3)股东中有法人的一方,其投资额不可超过其净资产的50%,需做出承诺书,加盖公章并由法定代表人签字。 附件:3-2 承诺书格式 承诺书 ________ ___: 兹有北京市大中电器有限公司注册资金___________万元,现投资注册______________________(单位名称)_____________万元,未超过净资产的50%。

小区宽带认证计费系统

小区宽带认证计费系统 前言 互联网的兴起现在已经成为当今世界的主流媒体和信息传播媒介,做为互联网的应用各个终端用户是组成这一互联网世界的主体。如何行之有效的进行互联网的接入和应用成为了一个主要的问题。 一运营状况需求 小区宽带运营的出现,做为新兴的网络接入运营模式。小区宽带运营在近几年内出现了爆炸式的增长,小区带宽已经实现了光纤到楼宇,到户。结合到IPTV,数字电视等新兴网络服务的应用,大大方便了用户的应用增加了运营商的投入。同时如何行之有效的管理和运营小区宽带,成为了众多小区宽带运营商所面临的问题。网络稳定性,带宽资源的合理利用,用户有效的管理,严谨的营帐管理......等,如何有效的解决这一系列的问题,是影响小区宽带长期运营和支撑这一行业良性发展的主要问题。 二设计原则 根据用户需求及用户网络特点,星锋航越提供的方案设计遵循以下原则: 1、高可靠性,网络运行的稳定可靠是接入认证系统正常运行的关键保证,在网络设计中选用高可靠性网络产品,合理设计网络架构,适合7×24不间断运行; 2、技术先进性和实用性,在保证满足用户接入认证的同时,又要考虑用户计费系统的先进性,充分考虑到系统应用的现状和未来发展趋势,能够方便的对功能进行扩展; 3、标准开放性,支持国际上通用标准的网络协议、支持Portal协议规范以及标准的Radius协议,有利于保证与其它网络及设备之间的平滑连接互通,以及将来网络的扩展; 4、灵活性及可扩展性,根据未来业务的增长和变化,网络及设备可以平滑地扩容和升级,并在扩容和升级过程中最大程度的减少对网络架构和现有设备的更换调整; 5、可管理性,对网络状况实行集中监测、分析,具有对接入用户、设备、网络、流量等进行统计分析和管理的功能。 三认证计费系统 星锋航认证计费管理系统是一套以实现网络运营为基础,增强全局安全为中心,提高管理效率为目的的网络安全运营管理系统,提供“高安全、可运营、易管理”的运营管理体验,基于标准的RADIUS协议开发,支持PPPOE认证计费,还支持802.1X接入控制技术,与其他厂商支持相应标准的产品兼容,结合星锋航的PPPOE服务器网关,可提供更加丰富的功能。 2.1系统机构图

统一身份认证平台集成接口文档

三峡大学统一身份认证平台接口文档

目录 1.统一身份认证简介 (3) 1.1 背景知识 (3) 1.1.1 什么是单点登录(Single Sign On): (3) 1.1.2 中心认证服务的设计愿景: (3) 1.2 CAS的实现 (4) 系统中的用到的凭证(ticket): (5) 2.JAVA语言 (6) 2.1 CAS简单登陆的实现 (6) 2.2 CAS登出 (12) 3.PHP语言 (13) 3.1 CAS单点登录测试环境搭建步骤 (13) 3.1.1 获取必要的驱动程序: (13) 3.1.2 搭建php运行环境 (13) 3.1.3 配置PHP cas 客户端测试程序 (13) 3.2 PHP-CAS客户端 (14) 3.2.1 cas-client的初始化 (14) 3.2.2 设置不是SSL的CAS认证 (16) 3.2.3 进行CAS认证 (17) 3.2.4 登出 (20) https://www.sodocs.net/doc/6215215963.html,语言 (22) 4.1 搭建https://www.sodocs.net/doc/6215215963.html,环境 (22) 4.2 CAS简单登陆实现 (22) 4.3 CAS登出实现 (23) 5.ASP语言 (24) 5.1 CAS简单登录实现 (24) 5.2 CAS登出实现 (25) 6.附录 (26) 6.1 附录1 (26) 6.2 附录2 (28) 6.3 附录3 (30) 6.4 附录4 (31) 6.5 附录5 (32)

1.统一身份认证简介 1.1背景知识 1.1.1 什么是单点登录(Single Sign On): 所谓单点登录是指基于用户/会话认证的一个过程,用户只需一次性提供凭证(仅一次登录),就可以访问多个应用。 目前单点登录主要基于Web的多种应用程序,即通过浏览器实现对多个B/S架构应用的统一账户认证。 1.1.2 中心认证服务的设计愿景: 简单的说,中心认证服务(Central Authentication Service 缩写:CAS)的目的就是使分布在一个企业内部各个不同异构系统的认证工作集中在一起,通过一个公用的认证系统统一管理和验证用户的身份,一般我们称之为统一身份认证平台。 在CAS上认证的用户将获得CAS颁发的一个证书,使用这个证书,用户可以在承认CAS 证书的各个系统上自由穿梭访问,不需要再次的登录认证。 打个比方:对于加入欧盟的国家而言,在他们国家中的公民可以凭借着自己的身份证,在整个欧洲旅行,不用签证。 对于学校内部系统而言,CAS就好比这个颁发欧盟认证的系统,其它系统都是加入欧盟的国家,它们要共同遵守和承认CAS的认证规则。 因此CAS的设计愿望就是: 实现一个易用的、能跨不同Web应用的单点登录认证中心; 实现统一的用户身份和密钥管理,减少多套密码系统造成的管理成本和安全漏洞; 降低认证模块在IT系统设计中的耦合度,提供更好的SOA设计和更弹性的安全策略。

相关主题