搜档网
当前位置:搜档网 › 高中物理速度选择器和回旋加速器专题训练答案

高中物理速度选择器和回旋加速器专题训练答案

高中物理速度选择器和回旋加速器专题训练答案
高中物理速度选择器和回旋加速器专题训练答案

高中物理速度选择器和回旋加速器专题训练答案

一、速度选择器和回旋加速器

1.如图所示,两平行金属板AB 中间有互相垂直的匀强电场和匀强磁场。A 板带正电荷,B 板带等量负电荷,电场强度为E ;磁场方向垂直纸面向里,磁感应强度为B 1。平行金属板右侧有一挡板M ,中间有小孔O ′,OO ′是平行于两金属板的中心线。挡板右侧有垂直纸面向外的匀强磁场,磁感应强度为B 2,CD 为磁场B 2边界上的一绝缘板,它与M 板的夹角θ=45°,现有大量质量均为m ,电荷量为q 的带正电的粒子(不计重力),自O 点沿OO ′方向水平向右进入电磁场区域,其中有些粒子沿直线OO ′方向运动,通过小孔O ′进入匀强磁场B 2,如果这些粒子恰好以竖直向下的速度打在CD 板上的E 点(E 点未画出),求:

(1)能进入匀强磁场B 2的带电粒子的初速度v ; (2)CE 的长度L

(3)粒子在磁场B 2中的运动时间.

【答案】(1)1 E B (2) 12

2mE qB B (3) 2m qB π 【解析】 【详解】

(1)沿直线OO ′运动的带电粒子,设进入匀强磁场B 2的带电粒子的速度为v , 根据

B 1qv =qE

解得:

v =

1

E

B (2)粒子在磁感应强度为B 2磁场中做匀速圆周运动,故:

2

2v qvB m r

=

解得:

r =2mv qB =12

mE qB B 该粒子恰好以竖直向下的速度打在CD 板上的E 点,CE 的长度为:

L =

45r sin o

2r 12

2mE

(3) 粒子做匀速圆周运动的周期

2m T

qB

π

=

2

t m

qB

π

=

2.某粒子源向周围空间辐射带电粒子,工作人员欲通过质谱仪测量粒子的比荷,如图所示,其中S为粒子源,A为速度选择器,当磁感应强度为B1,两板间电压为U,板间距离为d时,仅有沿轴线方向射出的粒子通过挡板P上的狭缝进入偏转磁场,磁场的方向垂直于纸面向外,磁感应强度大小为B2,磁场右边界MN平行于挡板,挡板与竖直方向夹角为α,最终打在胶片上离狭缝距离为L的D点,不计粒子重力。求:

(1)射出粒子的速率;

(2)射出粒子的比荷;

(3)MN与挡板之间的最小距离。

【答案】(1)

1

U

B d(2)

2

2cos

v

B L

α

(3)

(1sin)

2cos

α

-

【解析】

【详解】

(1)粒子在速度选择器中做匀速直线运动,

由平衡条件得:

qυB1=q

U

d

解得υ=

1

U

B d;

(2)粒子在磁场中做匀速圆周运动,运动轨迹如图所示:

由几何知识得:

r =2cos L

α

=2cos

L

α

粒子在磁场中做圆周运动,由牛顿第二定律得qυB 2=m

2

r

υ,解得:

q m

=22cos v B L α

(3)MN 与挡板之间的最小距离:

d =r ﹣r sin α=

(1sin )

2cos L αα

-

答:(1)射出粒子的速率为

1U B d

;(2)射出粒子的比荷为22cos v B L α;

(3)MN 与挡板之间的最小距离为

(1sin )

2cos L αα

-。

3.如图为质谱仪的原理图。电容器两极板的距离为d ,两板间电压为U ,极板间的匀强磁场的磁感应强度为B 1,方向垂直纸面向里。一束带电量均为q 但质量不同的正粒子从图示方向射入,沿直线穿过电容器后进入另一磁感应强度为B 2的匀强磁场,磁场B 2方向与纸面垂直,结果分别打在a 、b 两点,若打在a 、b 两点的粒子质量分别为1m 和2m .求:

(1)磁场B 2的方向垂直纸面向里还是向外? (2)带电粒子的速度是多少?

(3)打在a 、b 两点的距离差△x 为多大? 【答案】(1)垂直纸面向外 (2)1U

v B d = (3)12122()U m m x qB B d

-?=

【解析】 【详解】

(1)带正电的粒子进入偏转磁场后,受洛伦兹力而做匀速圆周运动, 因洛伦兹力向左,由左手定则知,则磁场垂直纸面向外. (2)带正电的粒子直线穿过速度选择器,受力分析可知:

1U

qvB q

d

= 解得:1U v B d

=

(3)两粒子均由洛伦兹力提供向心力

2

2v qvB m R

=

可得:112m v R qB =

,222

m v

R qB = 两粒子打在底片上的长度为半圆的直径,则:

1222x R R ?=-

联立解得:12122()

U m m x qB B d

-?=

4.如图所示,水平放置的平行板电容器上极板带正电,下极板带负电,两板间存在场强为 E 的匀强电场和垂直纸面向里的磁感应强度为 B 匀强磁场.现有大量带电粒子沿中线 OO ′ 射入,所有粒子都恰好沿 OO ′ 做直线运动.若仅将与极板垂直的虚线 MN 右侧的磁场去掉,则其中比荷为

q

m

的粒子恰好自下极板的右边缘P 点离开电容器.已知电容器两板间的距离为2

3mE

qB ,带电粒子的重力不计。

(1)求下极板上 N 、P 两点间的距离;

(2)若仅将虚线 MN 右侧的电场去掉,保留磁场,另一种比荷的粒子也恰好自P 点离开,求这种粒子的比荷。 【答案】(1)3mE

x =2)'4'7q q m m = 【解析】 【分析】

(1)粒子自 O 点射入到虚线MN 的过程中做匀速直线运动,将MN 右侧磁场去掉,粒子在MN 右侧的匀强电场中做类平抛运动,根据类平抛运动的的规律求解下极板上 N 、P 两点间的距离;(2)仅将虚线 MN 右侧的电场去掉,粒子在 MN 右侧的匀强磁场中做匀速

圆周运动,根据几何关系求解圆周运动的半径,然后根据2

''m v q vB R

= 求解比荷。 【详解】

(1)粒子自 O 点射入到虚线MN 的过程中做匀速直线运动,

qE qvB =

粒子过 MN 时的速度大小 E v B

=

仅将MN 右侧磁场去掉,粒子在MN 右侧的匀强电场中做类平抛运动, 沿电场方向:

2

2322mE qE t qB m

= 垂直于电场方向:x vt =

由以上各式计算得出下极板上N 、 P 两点间的距离2

3mE

x qB

=

(2)仅将虚线 MN 右侧的电场去掉,粒子在 MN 右侧的匀强磁场中做匀速圆周运动,设经过 P 点的粒子的比荷为

'

'

q m ,其做匀速圆周运动的半径为 R , 由几何关系得:22

2

2

3()2mE R x R qB

=+-

解得 2

74mE

R qB =

又 2

''m v q vB R

=

得比荷

'4'7q q m m

=

5.如图所示,两平行金属板水平放置,板间存在垂直纸面的匀强磁场和电场强度为E 的匀强电场。金属板右下方以MN 为上边界,PQ 为下边界,MP 为左边界的区域内,存在垂直纸面向外的匀强磁场,磁场宽度为d ,MN 与下极板等高,MP 与金属板右端在同一竖直线。一个电荷量为q 、质量为m 的正离子以初速度在两板间沿平行于金属板的虚线射入金属板间。不计粒子重力。

(1)已知离子恰好做匀速直线运动,求金属板间的磁感应强度B 0;

(2)若撤去板间磁场B 0,离子恰好从下极板的右侧边缘射出电场,方向与水平方向成30°角,离子进入磁场运动后从磁场边界点射出,求该磁场的磁感应强度B 的大小。

【答案】(1)0E v (2)0

2mv qd

【解析】 【详解】

(1)设板间的电场强度为E ,离子做匀速直线运动,受到的电场力和洛伦兹力平衡,有:qE=qv 0B 0, 解得:00

E B v =

; (2)离子在电场中做类平抛运动,水平方向做匀速运动,则出离电场进入磁场的速度

:030v v cos =

=?,

设离子进入磁场后做匀速圆周运动的半径为r ,根据牛顿第二定律,得:qvB=2

v m r

, 由几何关系得:1

2

d =rcos30°, 解得:0

2=mv B qd

; 【点睛】

离子在速度选择器中做匀速直线运动,在电场中做类平抛运动,在磁场中做匀速圆周运动,洛伦兹力提供向心力,根据题意分析清楚离子运动过程是解题的前提与关键,应用牛顿第二定律与类平抛运动规律可以解题。

6.我们熟知经典回旋加速器如图(甲)所示,带电粒子从M 处经狭缝中的高频交流电压加速,进入与盒面垂直的匀强磁场的两个D 形盒中做圆周运动,循环往复不断被加速,最终离开加速器。另一种同步加速器,基本原理可以简化为如图(乙)所示模型,带电粒子从M 板进入高压缝隙被加速,离开N 板时,两板的电荷量均立即变为零,离开N 板后,在匀强磁场的导引控制下回旋反复通过加速电场区不断加速,但带电粒子的旋转半径始终保持不变。已知带电粒子A 的电荷量为+q ,质量为m ,带电粒子第一次进入磁场区时,两种加速器的磁场均为B 0,加速时狭缝间电压大小都恒为U ,设带电粒子最初进入狭缝时的初速度为零,不计粒子受到的重力,不计粒子加速时间及其做圆周运动产生的电磁辐射,不考虑磁场变化对粒子速度的影响及相对论效应。

(1)求带电粒子A 每次经过两种加速器加速场时,动能的增量;

(2)经典回旋加速器与同步加速器在装置上的类似性,源于它们在原理上的类似性。 a.经典回旋加速器,带电粒子在不断被加速后,其在磁场中的旋转半径也会不断增加,求加速n 次后r n 的大小;

b.同步加速器因其旋转半径R 始终保持不变,因此磁场必须周期性递增,请推导B n 的表达式;

(3)请你猜想一下,若带电粒子A 与另一种带电粒子B (质量也为m ,电荷量为+kq ,k 为大于1的整数)一起进入两种加速器,请分别说明两种粒子能否同时被加速,如果不能

请说明原因,如果能,请推导说明理由。

【答案】(1)k E qU =△;(2)a.0

12n nUq

R B m

=0n B nB =;(3)见解析 【解析】 【分析】 【详解】

(1)粒子仅在狭缝间由电场加速,绕行过程中仅受洛伦兹力作用,洛伦兹力不会对粒子做功,根据动能定理: 每次动能的增量为:

K E qU =V

(2)a .在D 形盒中洛伦兹力作向心力,磁感应强度不需要改变,当第n 次穿过MN 两板间开始作第n 圈绕行时

20n

n n

v qv B m R =

第n 圈的半径

12n nUq

R B m

=

b.同步加速器因其旋转半径始终保持不变,因此磁场必须周期性递增,洛伦兹力作向心力

212nqU mv = , 2000v qv B m R = , 2

n

n n v qv B m R

=

所以第n 圈绕行的磁感应强度为:

0n B nB =

(3)经典回旋加速器不能做到回旋加速,同步加速器仍然能做到回旋加速。经典回旋加速器,交变电压的周期与带电粒子回旋周期相同,加速A 粒子的交变电压的周期为

02m

T B q

π=

而若要加速回旋加速粒子B ,交变电压周期应为

02m

T kB q

π=

' 因此当B 粒子到达加速电场缝隙时,电压方向并没有反向,因此无法同时加速。同步加速器A 粒子的磁场变化周期

2 n

n

m

T

qB

π

=

B粒子的旋转周期

2

n

n

T

m

T

kqB k

π

==

n

T是T'的k倍,所以A每绕行1周,B就绕行k周。由于电场只在A通过时存在,故B仅在与A同时进入电场时才被加速。

7.劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图所示。置于真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可忽略。磁感应强度为B的匀强磁场与盒面垂直,高频交流电频率为f,加速电压为U。若A处粒子源产生的质子的质量为m、电荷量为+q,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响。则下列说法正确的是( )

A.质子被加速后的最大速度不可能超过2πRf

B.质子离开回旋加速器时的最大动能与加速电压U成正比

C.质子第2次和第1次经过两D2∶1

D.不改变磁感应强度B和交流电频率f,该回旋加速器也能用于a粒子加速

【答案】AC

【解析】

【详解】

A.质子出回旋加速器的速度最大,此时的半径为R,则:

2

2

R

v R Rf

T

π

ωπ

===

所以最大速度不超过2πfR。故A正确。

B.根据洛伦兹力提供向心力:

2

v

qvB m

R

=,解得:

mv

R

qB

=

最大动能:

222

2

1

22

Km

q B R

E mv

m

==,与加速的电压无关。故B错误。

C.粒子在加速电场中做匀加速运动,在磁场中做匀速圆周运动,根据2

v ax

=,可得质

子第2次和第1次经过D 形盒狭缝的速度比为2:1

,根据mv

R qB

=

,可得半径比为2:1。故C 正确。

D .回旋加速器交流电的频率与粒子转动频率相等,即为2qB

f m

π=,可知比荷不同的粒子频率不同,不改变磁感应强度B 和交流电频率f ,有可能起不到加速作用。故D 错误。

故选AC 。

8.同步回旋加速器结构如图所示,轨道磁铁产生的环形磁场在同一时刻处处大小相等,带电粒子在环形磁场的控制下沿着固定半径的轨道做匀速圆周运动,穿越沿途设置的高频加速腔从中获取能量.如题图所示.同步加速器中磁感应强度随被加速粒子速度的增加而增加,高频加速电场的频率与粒子回旋频率保持同步.已知圆形轨道半径为R ,被加速粒子的质量为m 、电荷量为+q ,加速腔的长度为L ,且L <

(1)带电粒子第k 次从b 孔射出时的速度的大小v k ;

(2)带电粒子第k 次从b 孔射出到第(k +1)次到达b 孔所经历的时间; (3)带电粒子第k 次从b 孔射出时圆形轨道处的磁感应强度B k 的大小;

(4)若在a 处先后连续释放多个上述粒子,这些粒子经过第1次加速后形成一束长度为l 1的粒子束(l 1

m

2m kqU 12mkU R q (4) 12max L qU v l m =

【解析】 【详解】

(1)粒子在电场中被加速,由动能定理得:kqU =1

2

mv k 2﹣0 解得:

2k kqU

v m

=

(2)

粒子做圆周运动的周期:22k k m T qB ππ=

=由题意可知,加速空腔的长度:L <<R ,

粒子在空腔的运动时间可以忽略不计,下一次经过b 孔的时间间隔等于粒子在磁场中做圆

周运动的周期:k T π=(3)粒子第k 次从b 孔射出,粒子被电场加速k '次,由动能定理得:kqU =1

2

mv k 2﹣0 解得:

k v =

粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:qv k B k =

2k

v m R

,解得:

k B =

(4)

粒子第一次加速后的速度:1v =

从第一个粒子进入加速空腔到最后一个粒子进入加速空腔的时间:111l t l v ==

由k v =

2v =粒子被二次加速后这一束粒子的长度:l 2=v 2t 1

l 1

粒子被第三次加速后的速度:3v =

从第一个粒子进入加速空腔到最后一个粒子进入加速空腔的时间:222l t l v == 粒子被三次加速后这一束粒子的长度:l 3=v 3t 2

l 1

粒子被第四次加速后的速度:4v =

从第一个粒子进入加速空腔到最后一个粒子进入加速空腔的时间:333l t l v == 粒子被三次加速后这一束粒子的长度:l 4=v 4t 3

l 1 …

粒子被第k次加速后的速度:

2

k

kqU v

m =

从第一个粒子进入加速空腔到最后一个粒子进入加速空腔的时间:1

11

1

2

k

k

k

l m

t l

v qU

-

-

-

==

粒子被k次加速后这一束粒子的长度:l k=v k t k﹣1=k l1

当粒子束的长度:l k=k l1=L,即:k=

2

2

1

L

l

时粒子束的速度最大,

由动能定理得:

2

2

1

L

l

?qU=

1

2

mv max2﹣0,解得:

1

2

max

L qU

v

l m

=

9.如图所示为回旋加速器的结构示意图,匀强磁场的方向垂直于半圆型且中空的金属盒D1和D2,磁感应强度为R,金属盒的半径为R,两盒之间有一狭缝,其间距为d,且

R d

?,两盒间电压为U.A处的粒子源可释放初速度不计的带电粒子,粒子在两盒之间被加速后进入D1盒中,经半个圆周之后再次到达两盒间的狭缝。通过电源正负极的交替变化,可使带电粒子经两盒间电场多次加速后获得足够高的能量.已知带电粒子的质量为m、电荷量为+q.

(1)不考虑加速过程中的相对论效应和重力的影响.

①求粒子可获得的最大速度v m;

②若粒子第1次进入D1盒在其中的轨道半径为r1,粒子第1次进入D2盒在其中的轨道半径为r2,求r1与r2之比.

(2)根据回旋加速器的工作原理,请通过计算对以下两个问题进行分析:

①在上述不考虑相对论效应和重力影响的情况下,计算粒子在回旋加速器中运动的时间时,为何常常忽略粒子通过两盒间狭缝的时间,而只考虑粒子在磁场中做圆周运动的时间;

②实验发现:通过该回旋加速器,加速的带电粒子能量达到25~30MeV后,就很难再加速了。这是由于速度足够大时,相对论效应开始显现,粒子的质量随着速度的增加而增大。结合这一现象,分析在粒子获得较高能量后,为何加速器不能继续使粒子加速了。

【答案】(1)①m qBR v m =

②12r r =(2)①22BR t U

π= ②2m T qB π=

【解析】 【详解】

(1)①由牛顿第二定律有:2

m v qvB m R

=

可知最大速度m qBR

v m

=

②设带电粒子在两盒间加速的次数为N ,由2

v qvB m r

=和2102NqU mv =-

可得r =

所以12r r =(2)①带电粒子在两盒间电场中加速过程中的加速度qU

a md

= 在电场中加速的总时间为1m v BdR t a U

=

= 带电粒子运动一圈加速2次,设粒子在磁场中的运动圈数为n

依据动能定理有:222

m

mv nqU =

带电粒子运动一圈的时间2m

T qB

π=

则带电粒子在磁场中运动的总时间为2

22BR t U

π=

由于R d ?,可知12t t =,所以1t 可忽略。

②由2

v qvB m r

=和2r T v π=、

可得:2m T qB

π=

从该周期公式发现,速度增加,粒子的质量会增加,其运动周期会变化,但加速电场周期不变,从而使得加速电场的变化周求与粒子的运动周期不匹配,导致无法加速。

10.(12分) 回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底面的匀强磁场,D 形盒中央为质子流,D 形盒的交流电压为U ,静止质子经电场加速后,进入D 形盒,其最大轨道半径为R ,磁场的磁感应

强度为B ,质子质量为m.电荷量为q ,求:

(1)交流电源的频率是多少.

(2)质子经回旋加速器最后得到的最大动能多大;

(3)质子在D 型盒内运动的总时间t (狭缝宽度远小于R,质子在狭缝中运动时间不计)

【答案】(1)m

qB f π2= (2)m R B q E km 2222= (3)U BR t 22

π=

【解析】

试题分析:(1)根据回旋加速器的原理,每转一周粒子被加速两次,交流电完成一次周期性变化,

粒子作圆周运动的周期qB

m

T π2= (2分) 所以,交流电源的频率T f 1=

得:m

qB f π2= (2分) (2)质子加速后的最大轨道半径等于D 型盒的半径,由洛伦兹力提供向心力R

v m qvB 2

=

得粒子的最大运行速度;m

qBR

v m = (2分)

质子获得的最大动能:2

2

1m km mv E =,得m R B q E km 2222=

(2分)

(3)质子每个周期获得的动能为:qU E k 2= (1分)

经过的周期个数为:mU

R qB E E n k km 42

2=

= (1分)

质子在D 型盒内运动的总时间:nT t = (1分) 即U

BR t 22

π=

(1分)

考点:回旋加速器。

【名师点睛】回旋加速器是通过多次加速来获得高能粒子的装置,在D 型盒的狭缝中加交

变电压,给粒子加速,通过在D型盒处的磁场回旋,从而达到多次加速的效果,获得的最大动能是由D型盒的半径决定的,运动时间则由在磁场中做圆周运动的时间决定,为使每次粒子到达狭缝处都被加速,交变电压的周期与粒子在磁场中的运动周期相同。

11.回旋加速器是用来加速带电粒子的装置,图20为回旋加速器的示意图。D1、D2是两个中空的铝制半圆形金属扁盒,在两个D形盒正中间开有一条狭缝,两个D形盒接在高频交流电源上。在D1盒中心A处有粒子源,产生的带正电粒子在两盒之间被电场加速后进入D2盒中。两个D形盒处于与盒面垂直的匀强磁场中,带电粒子在磁场力的作用下做匀速圆周运动,经过半个圆周后,再次到达两盒间的狭缝,控制交流电源电压的周期,保证带电粒子经过狭缝时再次被加速。如此,粒子在做圆周运动的过程中一次一次地经过狭缝,一次一次地被加速,速度越来越大,运动半径也越来越大,最后到达D形盒的边缘,沿切线方向以最大速度被导出。已知带电粒子的电荷量为q,质量为m,加速时狭缝间电压大小恒为U,磁场的磁感应强度为B,D形盒的半径为R狭缝之间的距离为d。设从粒子源产生的带电粒子的初速度为零,不计粒子受到的重力,求:

(1)带电粒子能被加速的最大动能E k;

(2)尽管粒子在狭缝中每次加速的时间很短但也不可忽略。试计算上述正离子在某次加速过程当中从离开离子源到被第n次加速结束时所经历的时间;

(3)设该正离子在电场中的加速次数与回旋半周的次数相同,试推证当R>>d时,正离子在电场中加速的总时间相对于在D形盒中回旋的时间可忽略不计(正离子在电场中运动时,不考虑磁场的影响)

(4)带电粒子在D2盒中第n个半圆的半径;

(5)若带电粒子束从回旋加速器输出时形成的等效电流为I,求从回旋加速器输出的带电粒子的平均功率P。

(6)实际使用中,磁感应强度和加速电场频率都有最大值的限制。若某一加速器磁感应强度和加速电场频率的最大值分别为B m、f m,试讨论粒子能获得的最大动能E km。

(7)a粒子在第n次由D1盒进入D2盒与紧接着第n+1次由队盒进入队盒位置之间的距离

△x;

(8)试推理说明:质子在回旋加速器中运动时,随轨道半径r的增大,同一盒中相邻轨道的半径之差△r是增大、减小还是不变?

【答案】(1)

222

2

q B R

m

;(2)2(1)

nm n m

t

qU qB

π

-

=;(3)当R>>d时,t1可忽略不

计;(4)n r =

(5)222qIB R P m =;(6)222

2k m E f R m π=;(7)

x ?=

(8) r △r k+1<△r k 【解析】 【分析】

(1)回旋加速器是利用电场加速和磁场偏转来加速粒子;经回旋加速器的最大速度由洛伦兹力提供向心力可求得由D 形盒的半径决定.

(2)回旋加速器是利用电场加速和磁场偏转来加速粒子,根据动能定理求出n 次加速后的速度,根据匀变速直线运动的速度时间公式求出加速的时间,再求出粒子偏转的次数,从而得出在磁场中偏转的时间,两个时间之和即为离开离子源到被第n 次加速结束时所经历的时间.

(3)在电场中的总的运动可以看做连续的匀加速直线运动,故根据平均速度公式可得在电场中运动时间;而每加速一次,做半个圆周运动,则磁场中的运动时间等于圈数乘以磁场中运动的周期.

(4)粒子被加速一次所获得的能量为qU ,求出第n 次加速后的动能, 进而可求出第n 个半圆的半径.

(5)根据电流的定义式和功率表示式求解.

(6)根据洛仑兹提供向心力,求出最大动能与磁感应强度的关系以及与加速电压频率的关系,然后分情况讨论出最大动能的关系.

(7)回旋加速器是利用电场加速和磁场偏转来加速粒子,根据动能定理求出n 次加速后的速度,求出轨道半径,抓住规律,求出△x .

(8)求出r k 所对应的加速次数和r k+1所对应的加速次数即可求出它们所对应的轨道半径,然后作差即可求出r k 和r k+1,从而求出△r k ,运用同样的方法求出△r k+1,比较△r k 和△r k+1即可得出答案. 【详解】

(1)带电粒子在D 形盒内做圆周运动,轨道半径达到最大时被引出,此时带电粒子具有最大

动能E k ,设离子从D 盒边缘离开时的速度为v m .依据牛顿第二定律:Bqv m = m 2

m

v R

所以带电粒子能被加速的最大动能:E k =212m mv =222

2q B R m

(2)设正离子经过窄缝被第n 次加速加速后的速度为v n ,由动能定理得:nqU=2

12

n mv 粒子在狭缝中经n 次加速的总时间:1n

v t a

= 由牛顿第二定律:U

q

ma d

=

由以上三式解得电场对粒子加速的时间:1t =正离子在磁场中做匀速圆周运动,由牛顿第二定律Bqv=m 2

v r

又T=2r v π

粒子在磁场中做圆周运动的时间t 2=(n-1)2

T

由以上三式解得:t 2=

1n m

qB

π-()

所以, 离子从离开离子源到被第n 次加速结束时所经历的时间 t=t 1+t 2

(1)n m

qB

π- (3)设粒子飞出的末速度为v ,将多次电场加速等效为一次从0到v 的匀加速直线运动.

在电场中t 1=2

nd

v , 在d 形盒中回旋周期与速度v 无关,在D 形盒中回旋最后半周的时间

R

v

π, 在D 形盒中回旋的总时间为t 1=n

R

v

π 故122t d

t R

π=

<<1 即当R >>d 时,t 1可忽略不计.

(4)带电粒子在D 2盒中第n 个半圆是带电粒子经过窄缝被加速2n -1次后的运动轨道,设其被加速2n -1次后的速度为v n 由动能定理得:(2n-1)qU =

212

n mv 此后带电粒子在磁场中做匀速圆周运动,半径为r n ,由牛顿第二定律得Bqv n =m 2n

n

v r

:n n mv r Bq =

=(5)设在时间t 内离开加速器的带电粒子数N ,则正离子束从回旋加速器输出时形成的的等效电流I=Nq t

, 解得:N=

It q

带电粒子从回旋加速器输出时的平均功率P =22

2k N E qIB R t m

?=

(6)加速电场的频率应等于粒子在磁场中做圆周运动的频率,即2qB

f m

π=

当磁场感应强度为B m 时,加速电场的频率应为2m

Bm qB f m

π= 粒子的动能212

k E mv =

当Bm f ≤m f 时,粒子的最大动能由B m 决定 qv m B m =m 2m

v R

解得E km =2222m q B R

m

当Bm f ≥m f 时,粒子的最大动能由f m 决定,v m =2πf m R

解得E km =222

2m mf R π

(7)离子经电场第1次加速后,以速度v 1进入D 2盒,设轨道半径为r 1,

r 1=

2mv qB =离子经第2次电场加速后,以速度v 2进入D 1盒,设轨道半径为r 2,

轨道半径:r 2=

2mv qB =

…… 离子第n 次由D 1盒进入D 2盒,离子已经过(2n -1)次电场加速,以速度v 2-1进入D 2盒,由动能定理:(2n-1)Uq=

2

21102

n mv --

轨道半径:r n =

21n mv qB -=离子经第n+1次由D 1盒进入D 2盒,离子已经过2n 次电场加速,以速度v 2n 进入D 1盒,由动能定理:2nUq=

2

2102

n mv -

轨道半径:r n+1=

2n mv qB = 则:12()n n x r r +?=- 如图所示:

221222(

)(221)n n mv mv Um

x n n Bq Bq B q

-?=-=- (8)设k 为同一盒子中质子运动轨道半径的序数,相邻的轨道半径分别为r k ,r k+1(r k <r k+1), △rk= r k+1 -r k ,在相应轨道上质子对应的速度大小分别为v k ,v k+1,D 1、D 2之间的电压为U , 由动能定理知2qU=

22

11122

k k mv mv +- ⑦ 由洛伦兹力充当质子做圆周运动的向心力,知r k =

k

mv qB

, 则2qU=222

21()2k k q B r r m +- ⑧

整理得:△r k

214()

k k mU

qB r r ++ ⑨ 相邻轨道半径r k+1,r k+2之差△r k+1=r k+2- r k+2

同理△r k+1=2214()

k k mU

qB r r +++

因U 、q 、m 、B 均为定值,且因为r k+2>r k ,比较△r k 与△r k+1 得:△r k+1<△r k 【点睛】

借助回旋加强器的工作原理,利用磁场偏转,电场加速.以及知道回旋加强器加速粒子的最大动能与什么因素有关.粒子离开加速器时圆周运动的轨道半径等于D 形盒的半径,在电场中的总的运动可以看做连续的匀加速直线运动.

12.回旋加速器是用来加速带电粒子的装置,如图所示.它的核心部分是两个D 形金属盒,两盒相距很近(缝隙的宽度远小于盒半径),分别和高频交流电源相连接,使带电粒子每通过缝隙时恰好在最大电压下被加速.两盒放在匀强磁场中,磁场方向垂直于盒面,带电粒子在磁场中做圆周运动,粒子通过两盒的缝隙时反复被加速,直到最大圆周半径时通过特殊装置被引出.若D 形盒半径为R ,所加磁场的磁感应强度为.B 设两D 形盒之间所加

的交流电压的最大值为U ,被加速的粒子为α粒子,其质量为m 、电量为.q α粒子从D 形盒中央开始被加速(初动能可以忽略),经若干次加速后,α粒子从D 形盒边缘被引出.求:

()1α粒子被加速后获得的最大动能k E ;

()2α粒子在第n 次加速后进入一个D 形盒中的回旋半径与紧接着第1n +次加速后进入另

一个D 形盒后的回旋半径之比;

()3α粒子在回旋加速器中运动的时间;

()4若使用此回旋加速器加速氘核,要想使氘核获得与α粒子相同的动能,请你通过分

析,提出一个简单可行的办法.

【答案】(1)2222q B R m (21n n +(3)22BR U π (4)2

2

【解析】 【详解】

(1)α粒子在D 形盒内做圆周运动,轨道半径达到最大时被引出,具有最大动能.设此时的

速度为v ,有 2

v qvB m R

= 可得qBR

v m

=

α粒子的最大动能222

2122k q B R E mv m

== (2)α粒子被加速一次所获得的能量为qU α,粒子被第n 次和1n +次加速后的动能分别为

222

2122n Kn

n q B R E mv nqU m

=== ()222

21

111122n Kn n q B R E mv n qU m

+++===+

可得

11

n n R n R n +=+ (3)设α粒子被电场加速的总次数为a ,则

222

2k q B R E aqU m

==

可得 22

2qB R a mU

=

α粒子在加速器中运动的时间是α粒子在D 形盒中旋转

a 个半圆周的总时间t .

2T

t a

= 2m T qB

π=

解得 2

2BR t U

π=

(4)加速器加速带电粒子的能量为222

2122k q B R E mv m

==,由α粒子换成氘核,有

222

2

2

2

1()2222q

B R q B R

m m =??

???

,则12B B =,即磁感应强度需增大为原来的2倍; 高频交流电源的周期2m T qB π=,由α粒子换为氘核时,交流电源的周期应为原来的2

2

倍. 【点睛】

解决本题的关键知道回旋加速器利用磁场偏转和电场加速实现加速粒子,粒子在磁场中运动的周期和交流电的周期相等.

13.一个质量为m 、电荷量为q 的粒子,从容器A 下方的小孔S 1飘入电势差为U 的加速电场,其初速度几乎为0,然后经过S 3沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场中,最后打到照相底片D 上

(1)求粒子进入磁场时的速率. (2)求粒子照相底片D 点到S 3的距离 【答案】(1);(2)

【解析】

(1)粒子飘入电势差为U 的加速电场,有

得粒子进入磁场时的速率

高中物理速度选择器和回旋加速器专题训练答案及解析

高中物理速度选择器和回旋加速器专题训练答案及解析 一、速度选择器和回旋加速器 1.如图所示,有一对水平放置的平行金属板,两板之间有相互垂直的匀强电场和匀强磁场,电场强度为E =200V/m ,方向竖直向下;磁感应强度大小为B 0=0.1T ,方向垂直于纸面向里。图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B = 3 3 T ,方向垂直于纸面向里。一正离子沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出已知速度的偏向角θ=π 3 ,不计离子重力。求: (1)离子速度v 的大小; (2)离子的比荷 q m ; (3)离子在圆形磁场区域中运动时间t 。(结果可含有根号和分式) 【答案】(1)2000m/s ;(2)2×104C/kg ;(3)4310s 6 π -? 【解析】 【详解】 (1)离子在平行金属板之间做匀速直线运动,洛仑兹力与电场力相等,即: B 0qv =qE 解得: 2000m/s E v B = = (2)在圆形磁场区域,离子做匀速圆周运动,轨迹如图所示

由洛仑兹力公式和牛顿第二定律有: 2 v Bqv m r = 由几何关系有: 2 R tan r θ = 离子的比荷为: 4 210C/kg q m =? (3)弧CF 对应圆心角为θ,离子在圆形磁场区域中运动时间t , 2t T θπ= 2m T qB π= 解得: 43106 t s π -= 2.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。一个带电粒子(不计重力)从AD 中点以速度v 水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v 从AD 中点飞入场区,最后恰能从C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD 中点以相同的速度v 进入场区,求: (1)该粒子最后飞出场区的位置; (2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?

(习题)3.9粒子速度选择器_质谱仪_回旋加速器

一 粒子速度选择器练习 如图,粒子以速度v 0,进入正交的电场和磁场,受到的电场力与洛伦兹力方向相反,若使粒子沿直线从右边孔中出去,根据qv 0B =qE , 得v 0=E/B ,故 若v= v 0=E/B ,粒子做直线运动,与粒子电量、电性、质量无关 若v <E/B ,电场力大,粒子向电场力方向偏,电场力做正功,动能增加. 若v >E/B ,洛伦兹力大,粒子向磁场力方向偏,电场力做负功,动能减少. 速度选择器的特点是:(1)只选速度,不选电性.即不管是带正电还是带负电,只要初速度满足一定的关系,粒子均能直线飞出. (2)单向性:粒子只能从一个方向打入,另外一个方向飞出. 1. (单) 如图,水平放置的平行金属板a 、b 带有等量异种电荷,a 板带正电,两板间有垂直于纸面向里的匀强磁场,若一个带正电的液滴在两板间做直线运动,其运动方向是:( D ) A .沿竖直方向向下 B .沿竖直方向向上 C .沿水平方向向左 D .沿水平方向向右 2(双)在图中实线框所围的区域内同时存在匀强磁场和匀强电场.一负离子(不计重力)恰好能沿直线MN 通过这一区域.则匀强磁场和匀强电场的方向不可能为下列哪种情况( AD ) A 、匀强磁场和匀强电场的方向都水平向右 B 、匀强磁场方向竖直向上,匀强电场方向垂直于纸面向里 C 、匀强磁场方向垂直于纸面向里,匀强电场方向竖直向下 D 、匀强磁场方向垂直于纸面向外,匀强电场方向竖直向下 3(双)、一质子以速度V 穿过互相垂直的电场和 磁场区域而没有发生偏转,则 ( BD ) A 、若电子以相同速度V 射入该区域,将会发生偏转 B 、无论何种带电粒子,只要以相同速度射入都不会发生偏转 C 、若质子的速度V'V ,它将向上偏转,其运动轨迹既不是圆弧也不是抛物线 4(双)如图,氕、氘、氚核以相同的动能射入速度选择器,结果氘核沿直线运动,则 ( AD ) A .偏向正极板的是氕核 B .偏向正极板的是氚核 C .射出时动能最大的是氕核 D .射出时动能最大的是氚核 图 11-3-1 a b B M N V + --

高中物理回旋加速器

高中物理回旋加速器 一.选择题(共4小题) 1.在回旋加速器中() A.D形盒内有匀强磁场,两D形盒之间的窄缝有高频电源产生的电场 B.两D形盒之间的窄缝处有场强大小、方向不变的匀强电场 C.高频电源产生的电场用来加速带电粒子 D.带电粒子在D形盒中运动时,磁场力使带电粒子速度增大 2.在回旋加速器中() A.D形盒内有匀强磁场,两D形盒之间的窄缝有高频电源产生的电场 B.两D形盒之间的窄缝处有场强大小、方向不变的匀强电场 C.高频电源产生的电场用来使带电粒子做圆周运动 D.带电粒子在D形盒中运动时,磁场力使带电粒子加速 3.关于回旋加速器的说法正确的是() A.回旋加速器是利用磁场对运动电荷的作用使带电粒子的速度增大的 B.回旋加速器是通过多次电场加速使带电粒子获得高能量的 C.粒子在回旋加速器中不断被加速,故在磁场中做圆周运动一周所用时间越来越小D.若加速电压提高到4倍,其它条件不变,则粒子获得的最大速度就提高到2倍4.回旋加速器由下列哪一位物理学家发明() A.洛伦兹B.奥斯特C.劳伦斯D.安培 二.填空题(共1小题) 5.回旋加速器的D型金属盒半径为R,两D型盒间电压为U,电场视为匀强电场,用来加速质量为m,电荷量为q的质子,使质子由静止加速到能量为E后,由小孔射出.(设质子每次经过电场加速后增加相同的能量)求: (1)加速器中匀强磁场B的大小. (2)加速到上述能量所需的回旋次数. (3)加速到上述能量所需时间.(不计经过电场的时间)

三.解答题(共1小题) 6.如图回旋加速器D形盒的半径为r,匀强磁场的磁感应强度为B.一个质量了m、电荷量为q的粒子在加速器的中央从速度为零开始加速. (1)求该回旋加速器所加交变电场的频率; (2)求粒子离开回旋加速器时获得的动能; (3)有同学想自利用该回旋加速器直接对质量为m、电量为2q的粒子加速.能行吗?行,说明理由;不行,提出改进方案.

高一物理加速度知识点归纳

高一物理加速度知识点归纳 很多人觉得学习物理加速度是非常烦恼,记住了公式也不知道怎么去应用。针对大家的烦恼我整理了加速度以下的方程式,希望可以让大家可以懂得运用加速度公式。 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh

注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g(从抛出落回原位置的时间) 注: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2Vo

高中物理速度选择器和回旋加速器专项练习及解析

高中物理速度选择器和回旋加速器专项练习及解析 一、速度选择器和回旋加速器 1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。 (1)求该离子沿虚线运动的速度大小v ; (2) 求该离子的比荷 q m ; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。 【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E ?= 【解析】 【分析】 【详解】 (1)离子沿虚线做匀速直线运动,合力为0 Eq =B 1qv 解得 1 E v B = (2)在偏转磁场中做半径为R 的匀速圆周运动,所以 2 2mv B qv R = 解得 12 q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意 R 2=R 1+ 2 d 它们带电量相同,进入底片时速度都为v ,得

2 121 m v B qv R = 2 222 m v B qv R = 联立得 22121()B q m m m R R v ?=-= - 化简得 122B B qd m E ?= 2.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+

高中物理速度选择器和回旋加速器解题技巧(超强)及练习题

高中物理速度选择器和回旋加速器解题技巧(超强)及练习题 一、速度选择器和回旋加速器 1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+ 2.如图所示,一束质量为m 、电荷量为q 的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v 0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B ,方向均垂直纸面向内,两平行板间距为d ,不计空气阻力及粒子重力的影响,求: (1)两平行板间的电势差U ;

(2)粒子在圆形磁场区域中运动的时间t; (3)圆形磁场区域的半径R. 【答案】(1)U=Bv0d;(2) m qB θ ;(3)R= tan 2 mv qB θ 【解析】 【分析】 (1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差. (2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R. 【详解】 (1)由粒子在平行板间做直线运动可知,Bv0q=qE,平行板间的电场强度E= U d ,解得两平行板间的电势差:U=Bv0d (2)在圆形磁场区域中,由洛伦兹力提供向心力可知: Bv0q=m 2 v r 同时有T= 2r v π 粒子在圆形磁场区域中运动的时间t= 2 θ π T 解得t= m Bq θ (3)由几何关系可知:r tan 2 θ =R 解得圆形磁场区域的半径R=0 tan 2 mv qB θ 3.如图为质谱仪的原理图。电容器两极板的距离为d,两板间电压为U,极板间的匀强磁场的磁感应强度为B1,方向垂直纸面向里。一束带电量均为q但质量不同的正粒子从图示方

人教版高中物理必修一加速度的方向与速度方向的关系

高中物理学习材料 (马鸣风萧萧**整理制作) 加速度的方向与速度方向的关系同步测试 一、以考查知识为主试题 【容易题】 1.若汽车的加速度方向与速度方向一致,当加速度减小时,则() A.汽车的速度也减小B.汽车的速度仍增大 C.当加速度减小零时,汽车静止D.当加速度减小零时,汽车的速度达到最大答案:AC 2. 物体做匀减速直线运动,则以下认识正确的是() A.瞬时速度的方向与运动方向相反 B.加速度大小不变,方向总与运动方向相反 C.加速度大小逐渐减小 D.物体位移逐渐减小 答案:B 3. 根据给出的速度、加速度的正负,对下列运动性质的判断正确的是() A.v为正、a为负,物体做加速运动

B .v 为负、a 为负,物体做减速运动 C .v 为负、a 为正,物体做减速运动 D .v 为负、a=0,物体做减速运动 答案:C 4. 关于速度和加速度的关系,下列说法中正确的是( ) A .速度变化的越多,加速度就越大 B .速度变化的越快,加速度就越大 C .加速度方向保持不变,速度方向就保持不变 D .加速度大小不断变小,速度大小也不断变小 答案:B 5. 物体沿一条直线做加速运动,加速度恒为2/m 2s ,那么( ) A.在任意时间内,物体的末速度一定等于初速度的2倍 B. 在任意时间内,物体的末速度一定比初速度大s m /2 C.在任意s 1内,物体的末速度一定比初速度大s m /2 D.第ns 的初速度一定比s n )1(-的末速度大s m /2 答案:C 6. 由t v ??=a 可知( ) A .a 与v ?成正比 B .物体加速度大小由v ?决定 C .a 的方向与v ?的方向相同

高中物理速度选择器和回旋加速器专项训练及答案及解析

高中物理速度选择器和回旋加速器专项训练及答案及解析 一、速度选择器和回旋加速器 1.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。不计粒子重力。 (1) 求第二象限中电场强度和磁感应强度的比值0 E B ; (2)求第一象限内磁场的磁感应强度大小B ; (3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。 【答案】(1)32.010m/s ?;(2)3210T -?;(3)不会通过,0.2m 【解析】 【详解】 (1)由题意可知,粒子在第二象限内做匀速直线运动,根据力的平衡有 00qvB qE = 解得 30 2.010m/s E B =? (2)粒子在第二象限的磁场中做匀速圆周运动,由题意可知圆周运动半径 1.0m R d == 根据洛伦兹力提供向心力有 2 v qvB m R = 解得磁感应强度大小 3210T B -=? (3)粒子离开磁场时速度方向与直线OA 垂直,粒子在匀强电场中做曲线运动,粒子沿y 轴负方向做匀减速直线运动,粒子在P 点沿y 轴负方向的速度大小 sin y v v θ=

高考物理最新模拟题精选训练(磁场)专题05 质谱仪与回旋加速器(含解析)

专题05 质谱仪与回旋加速器 1.(2017武汉武昌模拟)回旋加速器的核心部分是真空室中的两个相距很近的D形金属盒,把它们放在匀强磁场中,磁场方向垂直于盒面向下。连接好高频交流电源后,两盒间的窄缝中能形成匀强电场,带电粒子在磁场中做圆周运动,每次通过两盒间的窄缝时都能被加速,直到达到最大圆周半径时通过特殊装置引出。如果用同一回旋加速器分别加速氚核(13H)和α粒子(24He),比较它们所需要的高频交流电源的周期和引出时的最大动能,下列说法正确的是 A.加速氚核的交流电源的周期较大;氚核获得的动能较大 B.加速氚核的交流电源的周期较小;氚核获得的动能较大 C.加速氚核的交流电源的周期较大;氚核获得的动能较小 D.加速氚核的交流电源的周期较小;氚核获得的动能较小 【参考答案】C. 【命题意图】本题考查回旋加速器、带电粒子在匀强磁场中的匀速圆周运动、周期、动能及其相关的知识点。 【解题思路】由于氚核的比荷q/m小于α粒子的比荷,由带电粒子在匀强磁场中运动的周期公式T=2m qB 可 知加速氚核的交流电源的周期较大。粒子通过回旋加速器获得的最大速度v=qBR m ,动能 E k=1 2 mv2= 222 2 q B R m ,将氚核和α粒子的电荷量q和质量m代入比较可知,α粒子获得的动能较大,选项C 正确。

2.(2017云贵川百校大联考)图甲是回旋加速器的示意图,其核心部分是两个D形金属盒,在加速带电粒子时,两金属盒均置于匀强磁场中,并分别与高频交流电源两极相连.带电粒子在磁场中运动的动能E k随时间t的变化规律如图乙所示,若忽略带电粒子在电场中的加速时间,则下列说法正确的是() A.(t2﹣t1)=(t3﹣t2)=…(t n﹣t n﹣1) B.高频交流电源的变化周期随粒子速度的增大而减小 C.要使得粒子获得的最大动能增大,可以减小粒子的比荷 D.要使得粒子获得的最大动能增大,可以增大匀强磁场的磁感应强度 【参考答案】AD. 3.(2016济南模拟)质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图所示。粒子源S发出两种带正电的同位素粒子甲和乙,两种粒子从S出来时速度很小,可忽略不计,粒子经过加速电场加速后垂直进入有界匀强磁场(图中线框所示),最终打到照相底片上。测得甲、乙两种粒子打在照相底片上的点到入口的距离之比为5︰4,则它们在磁场中运动的时间之比是 A.5︰4 B.4︰5 C.25︰16 D.16︰25 【参考答案】. C 【命题意图】本题考查了质谱仪、洛伦兹力和带电粒子在匀强磁场中的运动、动能定理及其相关的知识点。

高中物理知识点总结:加速度

一. 教学内容: 第一章第5节加速度 第二章第1节实验:探究小车的速度随时间变化的规律 第2节匀变速直线运动的速度与时间的关系 二. 知识要点: 1. 理解加速度的概念。知道加速度是表示速度变化快慢的物理量,知道它的定义、公式、符号和单位。 2. 知道加速度是矢量。知道加速度的方向始终跟速度的改变量的方向一致。 3. 知道什么是匀变速运动。 4. 掌握打点计时器的操作和使用。 5. 能画出小车运动的 三. 重点、难点分析: (一)加速度 1. 定义:加速度(acceleration)是速度的变化量与发生这一变化所用时间的 比值。用表示。 2. 公式:=< 1188425931"> 。 3. 单位:在国际单位制中为米每二次方秒(m/s2)。常用的单位还有厘米每二次方秒。 4. 方向:加速度是矢量,不但有大小,而且有方向。 5. 物理意义:表示速度改变快慢的物理量;加速度在数值上等于单位时间内速度的变化量。 (二)匀变速运动

1. 定义:在运动过程中,加速度保持不变的运动叫做匀变速运动。 2. 特点:速度均匀变化,加速度大小、方向均不变。 (三)速度变化情况的判断 1. 判断物体的速度是增加还是减小,不必去管物体的加速度的大小,也不必管物体的加速度是增大还是减少。只需看物体加速度的方向和速度是相同还是相反,只要物体的加速度跟速度方向相同,物体的速度一定增加;只要物体的加速度方向与速度方向相反,物体的速度一定减小。 2. 判断物体速度变化的快慢,只看加速度的大小。加速度是速度的变化率,只要物体的加速度大,其速度变化得一定快,只要物体的加速度小,其速度变化得一定慢。 [实验] 一、实验目的 探究小车速度随变化的规律。 二、实验原理 利用打出的纸带上记录的数据,以寻找小车速度随时间变化的规律。 三、实验器材 打点计时器,低压电源、纸带、带滑轮的长木板、小车、、细线、复写纸片、。 四、实验步骤 1. 如图所示,把附有滑轮的长木板平放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上,没有滑轮的一端连接好电路。 5=0.1s。在选好的计时起点下面标明A,在第6个点下面标明B,在第11个点下面标明C,在第16个点下面标明D……,点A、B、C、D……叫做计数点, 两个相邻计数点间的距离分别是、、…… 5. 利用第一章方法得出各计数点的瞬时速度填入下表:

高中物理速度选择器和回旋加速器试题类型及其解题技巧及解析

高中物理速度选择器和回旋加速器试题类型及其解题技巧及解析 一、速度选择器和回旋加速器 1.如图所示,在直角坐标系xOy 平面内有一个电场强度大小为E 、方向沿-y 方向的匀强电场,同时在以坐标原点O 为圆心、半径为R 的圆形区域内,有垂直于xOy 平面的匀强磁场,该圆周与x 轴的交点分别为P 点和Q 点,M 点和N 点也是圆周上的两点,OM 和ON 的连线与+x 方向的夹角均为θ=60°。现让一个α粒子从P 点沿+x 方向以初速度v 0射入,α粒子恰好做匀速直线运动,不计α粒子的重力。 (1)求匀强磁场的磁感应强度的大小和方向; (2)若只是把匀强电场撤去,α粒子仍从P 点以同样的速度射入,从M 点离开圆形区域,求α 粒子的比荷 q m ; (3) 若把匀强磁场撤去,α粒子的比荷 q m 不变,α粒子仍从P 点沿+x 方向射入,从N 点离开圆形区域,求α粒子在P 点的速度大小。 【答案】(1)0E v ,方向垂直纸面向里(2)03BR (3)3v 0 【解析】 【详解】 (1)由题可知电场力与洛伦兹力平衡,即 qE =Bqv 0 解得 B = E v 由左手定则可知磁感应强度的方向垂直纸面向里。 (2)粒子在磁场中的运动轨迹如图所示, 设带电粒子在磁场中的轨迹半径为r ,根据洛伦兹力充当向心力得 Bqv 0=m 20 v r

由几何关系可知 r=3R,联立得 q m =0 3BR (3)粒子从P到N做类平抛运动,根据几何关系可得 x=3 2 R=vt y= 3 2 R= 1 2 × qE m t2 又 qE=Bqv0联立解得 v=3 2 3 Bqv R m = 3 v0 2.如图所示,一束质量为m、电荷量为q的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B,方向均垂直纸面向内,两平行板间距为d,不计空气阻力及粒子重力的影响,求: (1)两平行板间的电势差U; (2)粒子在圆形磁场区域中运动的时间t; (3)圆形磁场区域的半径R. 【答案】(1)U=Bv0d;(2) m qB θ ;(3)R=0 tan 2 mv qB θ 【解析】 【分析】 (1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差. (2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R. 【详解】

高中物理速度选择器和回旋加速器技巧和方法完整版及练习题及解析

高中物理速度选择器和回旋加速器技巧和方法完整版及练习题及解析 一、速度选择器和回旋加速器 1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。 (1)求该离子沿虚线运动的速度大小v ; (2) 求该离子的比荷 q m ; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。 【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E ?= 【解析】 【分析】 【详解】 (1)离子沿虚线做匀速直线运动,合力为0 Eq =B 1qv 解得 1 E v B = (2)在偏转磁场中做半径为R 的匀速圆周运动,所以 2 2mv B qv R = 解得 12 q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意 R 2=R 1+ 2 d 它们带电量相同,进入底片时速度都为v ,得

2 121 m v B qv R = 2 222 m v B qv R = 联立得 22121()B q m m m R R v ?=-= - 化简得 122B B qd m E ?= 2.某粒子源向周围空间辐射带电粒子,工作人员欲通过质谱仪测量粒子的比荷,如图所示,其中S 为粒子源,A 为速度选择器,当磁感应强度为B 1,两板间电压为U ,板间距离为d 时,仅有沿轴线方向射出的粒子通过挡板P 上的狭缝进入偏转磁场,磁场的方向垂直于纸面向外,磁感应强度大小为B 2,磁场右边界MN 平行于挡板,挡板与竖直方向夹角为α,最终打在胶片上离狭缝距离为L 的D 点,不计粒子重力。求: (1)射出粒子的速率; (2)射出粒子的比荷; (3)MN 与挡板之间的最小距离。 【答案】(1)1U B d (2)22cos v B L α(3)(1sin )2cos L αα - 【解析】 【详解】 (1)粒子在速度选择器中做匀速直线运动, 由平衡条件得: qυB 1=q U d 解得υ=1U B d ; (2)粒子在磁场中做匀速圆周运动,运动轨迹如图所示:

高中物理加速度公式对加速度两个公式的理解

高中物理加速度公式对加速度两个公式的 理解 加速度是力学中的一个极为重要的物理概念, 是联系力学和运动学的桥梁更是高考的热点之一。教材中共出现了两个加速度的公式:一个是在运动学中的定义式: a=△V/△t,另一个是在牛顿运动定律一章出现的牛顿第二定律的公式的变形式:a=F/m。 要想正确理解加速度的概念,并最终能够熟练应用,要求学生必须对加速度的特点、物理意义及决定因素都要熟练掌握。为了降低难度,现行教材均把匀变速直线运动和加速度合为一节,并且只研究匀变速直线运动的加速度定义、意义、单位、方向.而影响加速度的因素则一直到牛顿运动定律一章才涉及到,给学生一种前后难照应的感觉,使学生掌握起来比较困难。为了能够更好的理解和掌握加速度现特把加速度的两个公式分别分析如下。 首先通过定义来认识加速度。 定义:速度的变化△V(速度的增量)与发生这一变化所用时间△t的比值叫加速度。 定义式:a=△V/△t。 通过定义式咱们可以知道加速度是描述速度变化快慢和变 化方向的物理量。要正确理解加速度的概念,必须区分速度(v)、速度的变化(Dv)和速度对时间的变化率(△V/△t)这三个

概念。一个运动的物体有速度但不一定有加速度,因为加速度(a)与速度(v)无直接关系。只有物体的速度发生了变化(有Dv),才有加速度。而且加速度的方向和速度变化(Dv=v2-v1)的方向一致,但Dv大,加速度a不一定大,因为加速度大小不是由Dv这一个因素唯一决定,而是由速度的变化率(△V/△t)来决定和度量的。由此可见,加速度是描述速度变化快慢和变化方向的物理量。加速度大,表示速度变化的快,并不表示速度大和速度的变化大。如:汽车启动时加速度很大但速度却很小,正常行驶的汽车速度很大但加速度却很小甚至为零。a的方向和Dv的方向相同,与v的方向无必然的联系。a可以与v成任意角度(如在抛体运动中)。但a与v的方向又一起决定了运动的类型:当a与v同向时无论a大小如何变化物体总是做加速运动,只是速度增大的快慢程度不同;当a与v反向时无论a大小如何变化物体总是做减速运动,只是速度减小的快慢程度不同。 以上是从运动学的角度来理解加速度的,要真正全面认识加速度还必须从产生加速度的原因上进行分析。加速度的意义表示速度变化的快慢,即运动状态改变的快慢。而运动状态改变的难易程度取决于物体的惯性的大小,而质量是物体惯性大小的量度。因此加速度的大小与物体的质量m有关。当要求物体运动状态易改变时应尽可能的减小物体的质量。如:歼击机质量要比运输机和轰炸机小的多,并且战斗时要

高中物理速度选择器和回旋加速器技巧(很有用)及练习题

高中物理速度选择器和回旋加速器技巧(很有用)及练习题 一、速度选择器和回旋加速器 1.某一具有速度选择器的质谱仪原理如图所示,A为粒子加速器,加速电压为U1;B为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U2,距离为d;C为偏转分离器,磁感应强度为B2,方向垂直纸面向里。今有一质量为m、电荷量为e的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D上。求: (1)磁场B1的大小和方向 (2)现有大量的上述粒子进入加速器A,但加速电压不稳定,在11 U U -?到 11 U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C,则打在照相底片D上的宽度和速度选择器两板的电势差的变化范围。 【答案】(1)2 1 1 2 U m B d U e =2) ()() 1111 2 22 2m U U m U U D B e e +?-? =, () 11 min 1 U U U U U -? = () 11 max 1 U U U U U +? = ] 【解析】 【分析】 【详解】 (1)在加速电场中 2 1 1 2 U e mv = 1 2U e v m = 在速度选择器B中

2 1U eB v e d = \ 得 1B = 根据左手定则可知方向垂直纸面向里; (2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为 1v = 1 12 mv R eB = 最大值为 2v = \ 222 mv R eB = 打在D 上的宽度为 2122D R R =- 22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有 1U eB v e d = 得 U=B 1vd 【 代入B 1得 2U U = 再代入v 的值可得电压的最小值 min U U =最大值 max U U =

高一物理必修一加速度与速度图像

速度与加速度图像练习 1.如图示,是甲、乙两质点的v—t图象,由图可知() A.t=O时刻,甲的速度大。 B.甲、乙两质点都做匀加速直线运动。 C.相等时间内乙的速度改变大。 D.在5s末以前甲质点速度大。 2.A、B两物体在同一直线上从某点开始计时的速度图像如图中的A、B所示, 时间内( ) 则由图可知,在0-t A.A、B运动始终同向,B比A运动的快。 时间AB相距最远,B开始反向。 B.在t 1 C.A、B的加速度始终同向,B比A的加速度大。 D.在t 时刻,A、B并未相遇,仅只是速度相同。 2 3、关于直线运动的位移、速度图象,下列说法正确的是() A、匀速直线运动的速度-时间图象是一条与时间轴平行的直线 B、匀速直线运动的位移-时间图象是一条与时间轴平行的直线 C、匀变速直线运动的速度-时间图象是一条与时间轴平行的直线 D、非匀变速直线运动的速度-时间图象是一条倾斜的直线 4.甲、乙两物体的v--t图象如图所示,下列判断正确 的是( ) A、甲作直线运动,乙作曲线运动 B、t 时刻甲乙相遇 l 时间内甲的位移大于乙的位移 C、t l 时刻甲的加速度大于乙的加速度 D、t l 5.如图示,是一质点从位移原点出发的v--t图象,下列说法正确的是( ) A、1s末质点离开原点最远 B 2S末质点回到原点 C.3s末质点离开原点最远 D.4s末质点回到原点

1. 两个物体a 、b 同时开始沿同一条直线运动。从开始运动起计时,它们的位移图象如右图所示。关于这两个物体的运动,下列说法中正确的是: [ ] A.开始时a 的速度较大,加速度较小 B.a 做匀减速运动,b 做匀加速运动 C.a 、b 速度方向相反,速度大小之比是2∶3 D.在t=3s 时刻a 、b 速度相等,恰好相遇 2. 某同学从学校匀速向东去邮局,邮寄信后返回学校,在图中能够正确反映该同学运动情况s-t 图像应是图应是( ) 3.图为P 、Q 两物体沿同一直线作直线运动的s-t 图,下列说法中正确的有 ( ) A. t1前,P 在Q 的前面 B. 0~t1,Q 的路程比P 的大 C. 0~t1,P 、Q 的平均速度大小相等,方向相同 D. P 做匀变速直线运动,Q 做非匀变速直线运动 4.物体A 、B 的s-t 图像如图所示,由右图可知 ( ) A.从第3s 起,两物体运动方向相同,且vA>vB B.两物体由同一位置开始运动,但物体A 比B 迟3s 才开始运动 C.在5s 内物体的位移相同,5s 末A 、B 相遇 D.5s 内A 、B 的加速度相等 5. A 、 B 、 C 三质点同时同地沿一直线运动,其s -t 图象如图所示,则在0~t 0这段时间内,下列说法中正确的是 ( ) A .质点A 的位移最大 B .质点 C 的平均速度最小 C .三质点的位移大小相等 D .三质点平均速度不相等 0t

高中物理速度选择器和回旋加速器及其解题技巧及练习题

高中物理速度选择器和回旋加速器及其解题技巧及练习题 一、速度选择器和回旋加速器 1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+ 2.如图所示,半径为R 的圆与正方形abcd 相内切,在ab 、dc 边放置两带电平行金属板,在板间形成匀强电场,且在圆内有垂直纸面向里的匀强磁场.一质量为m 、带电荷量为+q 的粒子从ad 边中点O 1沿O 1O 方向以速度v 0射入,恰沿直线通过圆形磁场区域,并从bc 边中点O 2飞出.若撤去磁场而保留电场,粒子仍从O 1点以相同速度射入,则粒子恰好打到某极板边缘.不计粒子重力.

(1)求两极板间电压U 的大小 (2)若撤去电场而保留磁场,粒子从O 1点以不同速度射入,要使粒子能打到极板上,求粒子入射速度的范围. 【答案】(1)20mv q (2)002121 22 v v v -+≤≤ 【解析】 试题分析:(1)由粒子的电性和偏转方向,确定电场强度的方向,从而就确定了两板电势的高低;再根据类平抛运动的规律求出两板间的电压.(2)先根据有两种场均存在时做直线运动的过程,求出磁感应强度的大小,当撤去电场后,粒子做匀速圆周运动,要使粒子打到板上,由几何关系求出最大半径和最小半径,从而由洛仑兹力提供向心力就能得出最大的速度和最小速度. (1)无磁场时,粒子在电场中做类平抛运动,根据类平抛运动的规律有: 212 R at = ,02R v t =,2qU a Rm = 解得:2 mv U q = (2)由于粒子开始时在电磁场中沿直线通过,则有:02U qv B q R = 撤去电场保留磁场粒子将向上偏转,若打到a 点,如图甲图: 由几何关系有:2r r R = 由洛伦兹力提供向心力有:2 11v qv B m r = 解得:1021 2 v v = 若打到b 点,如图乙所示:

高中物理速度选择器和回旋加速器解题技巧及练习题及解析

高中物理速度选择器和回旋加速器解题技巧及练习题及解析 一、速度选择器和回旋加速器 1.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场E 和磁场B 都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样。一带正电的粒子质量为m 、电荷量为q 从P (x =0,y =h )点以一定的速度平行于x 轴正向入射。这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.求: (1)若只有磁场,粒子做圆周运动的半径R 0大小; (2)若同时存在电场和磁场,粒子的速度0v 大小; (3)现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点。(不计重力)。粒子到达x =R 0平面时速度v 大小以及粒子到x 轴的距离; (4)M 点的横坐标x M 。 【答案】(1)0mv qB (2)E B (302v ,02R h +(4)2 2000724 M x R R R h h =++-【解析】 【详解】 (1)若只有磁场,粒子做圆周运动有:2 00 qB m R =v v 解得粒子做圆周运动的半径0 0m R qB ν= (2)若同时存在电场和磁场,粒子恰好做直线运动,则有:0qE qB =v 解得粒子的速度0E v B = (3)只有电场时,粒子做类平抛,有: 00y qE ma R v a t v t === 解得:0y v v =

所以粒子速度大小为:22 002y v v v v =+= 粒子与x 轴的距离为:2 0122 R H h at h =+ =+ (4)撤电场加上磁场后,有:2 v qBv m R = 解得:02R R = 粒子运动轨迹如图所示: 圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4 π ,由几何关系得C 点坐标为: 02C x R =, 02 C R y H R h =-=- 过C 作x 轴的垂线,在ΔCDM 中: 02CM R R == 2 C R C D y h ==- 解得:2 2 2 20074 DM CM CD R R h h =-=+-M 点横坐标为:2 2000724 M x R R R h h =+- 2.如图所示,相距为d 的平行金属板M 、N 间存在匀强电场和垂直纸面向里、磁感应强度为B 0的匀强磁场;在xOy 直角坐标平面内,第一象限有沿y 轴负方向场强为E 的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B 的匀强磁场.一质量为m 、电荷量为q 的正离子(不计重力)以初速度v 0沿平行于金属板方向射入两板间并做匀速直线运动,从P 点垂直y 轴进入第一象限,经过x 轴上的A 点射出电场进入磁场.已知离子过A 点时的速

高中物理速度选择器和回旋加速器技巧(很有用)及练习题及解析

高中物理速度选择器和回旋加速器技巧(很有用)及练习题及解析 一、速度选择器和回旋加速器 1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。求: (1)磁场B 1的大小和方向 (2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -?到11U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。 【答案】(1)2112U m B d U e = 2)()()11112222m U U m U U D B e e +?-?=,()11min 1 U U U U U -?=() 11max 1 U U U U U +?=【解析】 【分析】 【详解】 (1)在加速电场中 2112 U e mv = 12U e v m = 在速度选择器B 中

2 1U eB v e d = 得 1B = 根据左手定则可知方向垂直纸面向里; (2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为 1v = 1 12 mv R eB = 最大值为 2v = 2 22 mv R eB = 打在D 上的宽度为 2122D R R =- 22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有 1U eB v e d = 得 U=B 1vd 代入B 1 得 2U U = 再代入v 的值可得电压的最小值 min U U =最大值 max U U =

相关主题