搜档网
当前位置:搜档网 › 基于MATLAB的通用飞行器仿真

基于MATLAB的通用飞行器仿真

基于MATLAB的通用飞行器仿真
基于MATLAB的通用飞行器仿真

基于 MATLAB 的QPSK系统仿真设计与实现

通信系统仿真设计实训报告1.课题名称:基于MATLAB 的QPSK系统仿真设计与实现 学生学号: 学生姓名: 所在班级: 任课教师: 2016年10月25日

目录 1.1QPSK系统的应用背景简介 (3) 1.2 QPSK实验仿真的意义 (3) 1.3 实验平台和实验内容 (3) 1.3.1实验平台 (3) 1.3.2实验内容 (3) 二、系统实现框图和分析 (4) 2.1、QPSK调制部分, (4) 2.2、QPSK解调部分 (5) 三、实验结果及分析 (6) 3.1、理想信道下的仿真 (6) 3.2、高斯信道下的仿真 (7) 3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (8) 总结: (10) 参考文献: (11) 附录 (12)

1.1QPSK系统的应用背景简介 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 1.2 QPSK实验仿真的意义 通过完成设计内容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。了解QPSK的实现方法及数学原理。并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。 理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。复习MATLAB编程的基础知识和编程的常用算法以及使用MATLAB仿真系统的注意事项,并锻炼自己的编程能力,通过编程完成QPSK调制解调系统的仿真,以及误码率测试,并得出响应波形。在完成要求任务的条件下,尝试优化程序。 通过本次实验,除了和队友培养了默契学到了知识之外,还可以将次实验作为一种推广,让更多的学生来深入一层的了解QPSK以至其他调制方式的原理和实现方法。可以方便学生进行测试和对比。足不出户便可以做实验。 1.3 实验平台和实验内容 1.3.1实验平台 本实验是基于Matlab的软件仿真,只需PC机上安装MATLAB 6.0或者以上版本即可。 (本实验附带基于Matlab Simulink (模块化)仿真,如需使用必须安装simulink 模块) 1.3.2实验内容 1.构建一个理想信道基本QPSK仿真系统,要求仿真结果有 a.基带输入波形及其功率谱 b.QPSK信号及其功率谱

四旋翼飞行器的建模与控制外文翻译

译文 四旋翼飞行器的建模与控制 摘要 迄今为止,大多数四旋翼空中机器人有是基于飞行玩具。虽然这样的系统可以作为原型,它们是不够健全,作为实验机器人平台。我们已经开发出了X-4传单,采用四旋翼机器人定制底盘和航空电子设备与现成的,现成的电机和电池,是一个高度可靠的实验平台。车用调谐厂带有板载嵌入式姿态动力学控制器以稳定飞行。线性单输入单输出系统控制器旨在规范传单态度。 1介绍 直升机的主要限制是需要广泛的,和昂贵,维护可靠的飞行。无人驾驶航空飞行器(无人机)和微型飞行器(MAV)旋翼机也不例外。简化了机械飞行机的结构产生明显的福利操作这些设备的物流。四转子是强大和简单的直升机,因为他们没有复杂的旋转倾转盘和联系在传统的旋翼机发现。多数四转子的飞行器从遥控玩具构建组件。其结果是,缺少必要的这些工艺可靠性和性能是切实可行的实验平台。 1.1现有的四旋翼平台 几个四转子工艺最近已开发用作玩具或进行研究。许多研究旋翼飞行器开始了生活作为市售的玩具,如作为HMX -4和Rctoys的Draganflyer 。未经修改的,这些工艺通常由光机身塑料转子。它们是由镍镉电池或锂聚合物电池供电,使用速度反馈的微机电系统陀螺仪。这些四转子一般没有稳定的稳态。 研究四旋翼添加自动稳定及使用各种硬件和控制方案。澳大利亚联邦科学与工业研究组织的如图1 :X-4传单型号2的。四旋翼飞行器,例如,是一个Draganflyer衍生使用视觉伺服和惯性测量单元(IMU ),以稳定的工艺在一个被做成动画的目标。其他四转子包括Eidgenossische TECHNISCHE Hochschule的苏黎世' OS4 '[ Bouabdallah等,2004 ] ,皮带驱动飞与低纵横比的叶片; CEA的“X4- flyer'1 ,小四转子电机每四个刀片[ Guenard等,2005 ]。和康奈尔大学的自治飞行器,采用的爱好飞机螺旋桨的大型工艺。

开关电源《基于MatlabSimulink的BOOST电路仿真》

基于Matlab/Simulink 的BOOST电路仿真 姓名: 学号: 班级: 时间:2010年12月7日

1引言 BOOST 电路又称为升压型电路, 是一种直流- 直流变换电路, 其电路结构如图1 所示。此电路在开关电源领域内占有非常重要的地位, 长期以来广泛的应用于各种电源设备的设计中。对它工作过程的理解掌握关系到对整个开关电源领域各种电路工作过程的理解, 然而现有的书本上仅仅给出电路在理想情况下稳态工作过程的分析, 而没有提及电路从启动到稳定之间暂态的工作过程, 不利于读者理解电路的整个工作过程和升压原理。采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOO ST 电路的工作特性。 图1BOO ST 电路的结构 2电路的工作状态 BOO ST 电路的工作模式分为电感电流连续工作模式和电感电流断续工作模式。其中电流连续模式的电路工作状态如图2 (a) 和图2 (b) 所示, 电流断续模式的电路工作状态如图2 (a)、(b)、(c) 所示, 两种工作模式的前两个工作状态相同, 电流断续型模式比电流连续型模式多出一个电感电流为零的工作状态。 (a) 开关状态1 (S 闭合) (b) 开关状态2 (S 关断) (c) 开关状态3 (电感电流为零) 图2BOO ST 电路的工作状态

3matlab仿真分析 matlab 是一种功能强大的仿真软件, 它可以进行各种各样的模拟电路和数字电路仿真,并给出波形输出和数据输出, 无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。本文应用基于matlab软件对BOO ST 电路仿真, 仿真图如图3 所示,其中IGBT作为开关, 以脉冲发生器脉冲周期T=0.2ms,脉冲宽度为50%的通断来仿真图2 中开关S的通断过程。 图3BOO ST 电路的PSp ice 模型 3.1电路工作原理 在电路中IGBT导通时,电流由E经升压电感L和V形成回路,电感L储能;当IGBT关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻断IGBT导通是,电容的放电回路。调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。负载侧输出电压的平均值为: (3-1) 式(3-1)中T为开关周期, 为导通时间,为关断时间。

四旋翼飞行器建模与仿真Matlab

四轴飞行器的建模与仿真 摘要 四旋翼飞行器是一种能够垂直起降的多旋翼飞行器,它非常适合近地侦察、监视的任务,具有广泛的军事和民事应用前景。本文根据对四旋翼飞行器的机架结构和动力学特性做详尽的分析和研究,在此基础上建立四旋翼飞行器的动力学模型。四旋翼飞行器有各种的运行状态,比如:爬升、下降、悬停、滚转运动、俯仰运动、偏航运动等。本文采用动力学模型来描述四旋翼飞行器的飞行姿态。在上述研究和分析的基础上,进行飞行器的建模。动力学建模是通过对飞行器的飞行原理和各种运动状态下的受力关系以及参考牛顿-欧拉模型建立的仿真模型,模型建立后在Matlab/simulink软件中进行仿真。 关键字:四旋翼飞行器,动力学模型,Matlab/simulink Modeling and Simulating for a quad-rotor aircraft ABSTRACT The quad-rotor is a VTOL multi-rotor aircraft. It is very fit for the kind of reconnaissance mission and monitoring task of near-Earth, so it can be used in a wide range of military and civilian applications. In the dissertation, the detailed analysis and research on the rack structure and dynamic characteristics of the laboratory four-rotor aircraft is showed in the dissertation. The dynamic model of the four-rotor aircraft areestablished. It also studies on the force in the four-rotor aircraft flight principles and course of the campaign to make the research and analysis. The four-rotor aircraft has many operating status, such as climbing, downing, hovering and rolling movement, pitching movement and yawing movement. The dynamic model is used to describe the four-rotor aircraft in flight in the dissertation. On the basis of the above analysis, modeling of the aircraft can be made. Dynamics modeling is to build models under the principles of flight of the aircraft and a variety of state of motion, and Newton - Euler model with reference

14元阵列天线方向图及其MATLAB仿真

14元阵列天线方向图及其MATLAB仿真

阵列天线方向图及其MATLAB 仿真 1设计目的 1.了解阵列天线的波束形成原理写出方向图函数 2.运用MATLAB 仿真阵列天线的方向图曲线 3.变换各参量观察曲线变化并分析参量间的关系 2设计原理 阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。 阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。 在本次设计中,讨论的是均匀直线阵天线。均匀直线阵是等间距,各振源电流幅度相等,而相位依次递增或递减的直线阵。均匀直线阵的方向图函数依据方向图乘积定理,等于元因子和阵因子的乘积。 二元阵辐射场: 式中: 类似二元阵的分析,可以得到N 元均匀直线振的辐射场: 令 ,可得到H 平面的归一化方向图函数,即阵因子的方向函数: 式中:ζφθψ+=cos sin kd 均匀直线阵最大值发生在0=ψ 处。由此可以得出 ])[,(212121ζθθθ?θj jkr jkr m e r e r e F E E E E --+=+=12 cos ),(21jkr m e F r E E -=ψ?θθζ φθψ+=cos sin kd ∑-=+-=10)cos sin (),(N i kd ji jkr m e e r F E E ζ?θθ?θ2πθ=)2/sin()2/sin(1)(ψψψN N A =kd m ζ?-=cos

这里有两种情况最为重要。 1.边射阵,即最大辐射方向垂直于阵轴方向,此时 ,在垂直于阵轴的方向上,各元观察点没有波程差,所以各元电流不需要有相位差。 2.端射振,计最大辐射方向在阵轴方向上,此时0=m ?或π,也就是说阵的各元电流沿阵轴方向依次超前或滞后kd 。 3设计过程 本次设计的天线为14元均匀直线阵天线,天线的参数为:d=λ/2,N=14相位滞后的端射振天线。基于MATLAB 可实现天线阵二维方向图和三维方向图的图形分析。 14元端射振天线H 面方向图的源程序为: a=linspace(0,2*pi); b=linspace(0,pi); f=sin((cos(a).*sin(b)-1)*(14/2)*pi)./(sin((cos(a).*sin(b)-1)*pi/2)*14); polar(a,f.*sin(b)); title('14元端射振的H 面方向图 ,d=/2,相位=滞后'); 得到的仿真结果如图所示: 14元端射振天线三维方向图的源程序为: y1=(f.*sin(a))'*cos(b); z1=(f.*sin(a))'*sin(b); x1=(f.*cos(a))'*ones(size(b)); surf(x1,y1,z1); 2 π?±=m

基于MATLAB的Boost电路仿真

知识就堤力量— 基于Matlab 的Boost 电路仿真 姓名: 学号: 班级:

知识就堤力量 1、前言 由于DC/DC开关电源具有高效率,高功率密度和高可靠性等优点,越来越广泛地应用于通信、计算机、工业设备和家用电器等领域。在近几十年里,开关电源技术得到了长足的发展。在很多场合下,需要从低压电源变换到高压电源,Boost变换器是最基本,也是最常用的一种变换器。 在电力电子系统的研究中,仿真研究由于其高效、高精度及高的经济性与可靠性而得到大量应用。近二十年来,仿真已逐渐成为电力电子技术研究的有力工具。Matlab语言的强大仿真功能和方便性受到广大使用者的广泛爱好。本文对Boost变换器电路进行简单的介绍,采用Matlab来完成建模和仿真。 2、Boost电路的工作状态 Boost变换器的电路结构如下图所示: iT. n Boost电路的结构 ⑻开关状态1 (S闭合)(b)开关状态2 (S关断)

3、Matlab 仿真分析 Matlab 是一种功能强大的仿真软件,它可以进行各种各样的模拟电路和数 字电路仿真,并给出波形输出和数据输出,无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。采用 Matlab 仿真分析方法,可直观、详细的描述 Boost 电路由启动到达稳态的工作过程,并对其中各种现象进行细致深入的分 析,便于我们真正掌握Boost 电路的工作特性。仿真图如下所示: 电路工作原理: 在电路中IGBT 导通时,电流由E 经升压电感L 和V 形成回路,电感L 储能; 当IGBT 关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而 在负载侧得到高于电源的电压,二极管的作用是阻断 IGBT 导通是,电容的放电 回路。调节开关器件V 的通断周期,可以调整负载侧输出电流和电压的大小。 4- Vo |t\a ?E MeJsnuramQ Stfi?RLC Ewnch HR ltd g e Sours I ll c —— ScQpe (c)开关状态3 (电感电流为零) Scoptl V Current Measurement Diode KDT Cm rue nt Measuremehti C T

基于MATLAB的QPSK通信系统仿真设计毕业设计论文

基于MATLAB的QPSK通信系统仿真设计 摘要 随着移动通信技术的发展,以前在数字通信系统中采用FSK、ASK、PSK 等调制方式,逐渐被许多优秀的调制技术所替代。本文主要介绍了QPSK调制与解调的实现原理框图,用MATLAB软件中的SIMULINK仿真功能对QPSK调制与解调这一过程如何建立仿真模型,通过对仿真模型的运行,得到信号在QPSK 调制与解调过程中的信号时域变化图。通过该软件实现方式,可以大大提高设计的灵活性,节约设计时间,提高设计效率,从而缩小硬件电路设计的工作量,缩短开发周期。 关键词 QPSK,数字通信,调制,解调,SIMULINK -I-

Abstract As mobile communications technology, and previously in the adoption of digital cellular system, ASK, FSK PSK modulation, etc. Gradually been many excellent mod ulation technology substitution, where four phase-shift keying QPSK technology is a wireless communications technology in a binary modulation method. This article prim arily describes QPSK modulation and demodulation of the implementation of the prin ciple of block diagrams, focuses on the MATLAB SIMULINK software emulation in on QPSK modulation and demodulation the process how to build a simulation model, through the operation of simulation model, I get signal in QPSK modulation and dem odulation adjustment process domain change figure. The software implementation, ca n dramatically improve the design flexibility, saving design time, increase efficiency, design to reduce the workload of hardware circuit design, and shorten the developmen t cycle. Keywords QPSK, Digital Communication,modulation,demodulation,SIMULINK -II-

用matlab 仿真不同天线阵列个天线的相关系数

2.3.1 阵列几何图 天线阵可以是各种排列,下图所示分别为圆阵(UCA)、线阵(ULA)、矩形阵(URA)排列方式与空间来波方向关系图,为简化整列分析,假设阵元间不考虑耦合,L 为天线数目,天线间距相等且均为d ,为入射在阵列上的水平波达角,为垂直波达角。 图2- 1 阵列排列方式与空间来波方向的关系 1) 圆阵排列方式的天线响应矢量为: 011cos() cos() cos() cos() (,)[,,...,,...,]l L j j j j T U C A a e e e e ξ?ψξ?ψξ?ψξ?ψ θ?-----= 公 式2- 1 其中2/,0,1,...,1l l L l L ψπ==-为第l 天线阵元的方位角,sin(),w w k r k ξθ=为波 数 2) 线阵排列方式的天线响应矢量为: cos sin (1)cos sin (,)[1,,...,]w w jk d jk d L T U LA a e e ?θ ?θ θ?-= 公式2- 2 3) 矩形阵列方式的天线响应矢量为: (1)()[(1)] (1)[(1)(1)](,)(()())[1,,...,,,,... ,...,,...,] T jv j p v ju j u v u URA N p j u p v j N u j N u p v T a vec a u a v e e e e e e e θ?-++---+-== 公式2- 3 ,N P 分别为x ,y 方向的天线数目,这里设x y d d =, (1)()[1,,...,]ju j N u T N a u e e -=; cos sin w x u k d ?θ=; (1)()[1,,...,]jv j p v T p a v e e -=;

基于matlab的电路仿真

基于matlab的电路仿真 杨泽辉51130215 %基于matlab的电路仿真 %关键词: RC电路仿真, matlab, GUI设计 % 基于matlab的电路仿真 %功能:产生根据输入波形与电路的选择产生输出波形 close all;clear;clc; %清空 figure('position',[189 89 714 485]); %创建图形窗口,坐标(189,89),宽714,高485;Na=['输入波形[请选择]|输入波形:正弦波|',... '输入波形:方形波|输入波形:脉冲波'];%波形选择名称数组; Ns={'sin','square','pulse'}; %波形选择名称数组; R=2; % default parameters: resistance 电阻值 C=2; % default parameters: capacitance电容值 f=10; % default parameters: frequency 波形频率 TAU=R*C; tff=10; % length of time ts=1/f; % sampling length sys1=tf([1],[1,1]); % systems for integral circuit %传递函数; sys2=tf([1,0],[1,1]); % systems for differential circuit a1=axes('position',[0.1,0.6,0.3,0.3]); %创建坐标轴并获得句柄; po1=uicontrol(gcf,'style','popupmenu',... %在第一个界面的上方创建一个下拉菜单'unit','normalized','position',[0.15,0.9,0.2,0.08],... %位置 'string',Na,'fontsize',12,'callback',[]); %弹出菜单上的字符为数组Na,字体大小为12, set(po1,'callback',['KK=get(po1,''Value'');if KK>1;',... 'st=char(Ns(KK-1));[U,T]=gensig(st,R*C,tff,1/f);',... 'axes(a1);plot(T,U);ylim([min(U)-0.5,max(U)+0.5]);',... 'end;']); %pol触发事件:KK获取激发位置,st为当前触发位置的字符串,即所选择的波形类型; %[U,T],gensing,产生信号,类型为st的值,周期为R*C,持续时间为tff, %采样周期为1/f,U为所产生的信号,T为时间; %创建坐标轴al;以T为x轴,U为y轴画波形,y轴范围。。。 Ma=['电路类型[请选择]|电路类型:积分型|电路类型:微分型']; %窗口2电路类型的选择数组; a2=axes('position',[0.5,0.6,0.3,0.3]);box on; %创建坐标轴2; set(gca,'xtick',[]);set(gca,'ytick',[]); %去掉坐标轴的刻度 po2=uicontrol(gcf,'style','popupmenu',... %在第二个窗口的位置创建一个下拉菜单,同1 'unit','normalized','position',[0.55,0.9,0.2,0.08],... 'string',Ma,'fontsize',12,'callback',[]); set(po2,'callback',['KQ=get(po2,''Value'');axes(a2);',... %po2属性设置,KQ为选择的电路类型,'if KQ==1;cla;elseif KQ==2;',... %1则清除坐标轴,2画积分电路,3画微分电路 'plot(0.14+0.8i+0.02*exp(i*[0:.02:8]),''k'');hold on;',... 'plot(0.14+0.2i+0.02*exp(i*[0:.02:8]),''k'');',... 'plot(0.84+0.2i+0.02*exp(i*[0:.02:8]),''k'');',... 'plot(0.84+0.8i+0.02*exp(i*[0:.02:8]),''k'');',... 'plot([0.16,0.82],[0.2,0.2],''k'');',... 'plot([0.16,0.3],[0.8,0.8],''k'');',... 'plot([3,4,4,3,3]/10,[76,76,84,84,76]/100,''k'');',... 'plot([0.4,0.82],[0.8,0.8],''k'');',... 'plot([0.6,0.6],[0.8,0.53],''k'');',... 'plot([0.6,0.6],[0.2,0.48],''k'');',... 'plot([0.55,0.65],[0.53,0.53],''k'');',... 'plot([0.55,0.65],[0.48,0.48],''k'');',... 'text(0.33,0.7,''R'');',...

基于MATLAB的整流电路仿真分析

密级:公开 科学技术学院 NANCHANG UNIVERSITY COLLEGE OF SCIENCE AND TECHNOLOGY 学士学位论文 THESIS OF BACHELOR (2008—2012年) 题目基于MATLAB的整流电路仿真分析 学科部: 专业: 班级: 学号: 学生姓名: 指导教师: 起讫日期:

目录 摘要 ............................................................................................................... Ⅰ矚慫润厲钐瘗睞枥庑赖。Abstract . (Ⅱ) 第一章三相桥式全控整流电路的仿真....................................................... 0聞創沟燴鐺險爱氇谴净。 1.1 电路的构成及工作特点.................................................................. 0残骛楼諍锩瀨濟溆塹籟。 1.2 建模及仿真...................................................................................... 1酽锕极額閉镇桧猪訣锥。 1.3参数设置及仿真............................................................................... 2彈贸摄尔霁毙攬砖卤庑。 1.4 故障分析.......................................................................................... 3謀荞抟箧飆鐸怼类蒋薔。 1.5 小结.................................................................................................. 4厦礴恳蹒骈時盡继價骚。第二章基于MATLAB的单相桥式整流电路仿真分析................................. 5茕桢广鳓鯡选块网羈泪。 2.1单相桥式半控整流电路................................................................ 5鹅娅尽損鹌惨歷茏鴛賴。 2.2 单相桥式半控整流电路带纯电阻性负载情况............................ 7籟丛妈羥为贍偾蛏练淨。 2.3 单相桥式全控整流电路.............................................................. 12預頌圣鉉儐歲龈讶骅籴。 2.4 单相桥式全控整流电路带纯电阻性负载情况.......................... 14渗釤呛俨匀谔鱉调硯錦。 2.5 单相桥式全控整流电路带电阻电感性负载情况...................... 16铙誅卧泻噦圣骋贶頂廡。结论 .............................................................................................................. 18擁締凤袜备訊顎轮烂蔷。参考文献:................................................................................................... 19贓熱俣阃歲匱阊邺镓騷。致谢 .............................................................................................................. 20坛摶乡囂忏蒌鍥铃氈淚。

QPSK通信系统性能分析与MATLAB仿真报告

淮海工学院课程设计报告书 课程名称:通信系统的计算机仿真设计 题目:QPSK通信系统性能分析 与MATLAB仿真 学院:电子工程学院 学期:2013-2014-2 专业班级: 姓名: 学号: 评语: 成绩: 签名: 日期:

QPSK通信系统性能分析与MATLAB仿真 1 绪论 1.1 研究背景与研究意义 数字信号传输系统分为基带传输系统和频带传输系统,频带传输系统也叫数字调制系统,该系统对基带信号进行调制,使其频谱搬移到适合在信道(一般为带通信道)上传输的频带上。数字调制和模拟调制一样都是正弦波调制,即被调制信号都为高频正弦波。数字调制信号又称为键控信号,数字调制过程中处理的是数字信号,而载波有振幅、频率和相位3个变量,且二进制的信号只有高低电平两个逻辑量即1和0,所以调制的过程可用键控的方法由基带信号对载频信号的振幅、频率及相位进行调制,最基本的方法有3种:正交幅度调制(QAM) 、频移键控( FSK) 、相移键控( PSK) 。根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制) 。 本实验采用QPSK。QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 1.2 课程设计的目的和任务 目的在于使学生在课程设计过程中能够理论联系实际,在实践中充分利用所学理论知识分析和研究设计过程中出现的各类技术问题,巩固和扩大所学知识面,为以后走向工作岗位进行设计打下一定的基础。 课程设计的任务是: (1)掌握一般通信系统设计的过程,步骤,要求,工作内容及设计方法,掌握用计算机仿真通信系统的方法。 (2)训练学生网络设计能力。 (3)训练学生综合运用专业知识的能力,提高学生进行通信工程设计的能力。1.3 可行性分析 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,

MATLAB仿真天线阵代码

天线阵代码 一、 clc clear all f=3e9; N1=4;N2=8;N3=12; a=pi/2; %馈电相位差 i=1; %天线电流值 lambda=(3e8)/f; %lambda=c/f 波长 d=lambda/2; beta=2.*pi/lambda; W=-2*pi:0.001:2*pi; y1=sin((N1.*W./2))./(N1.*(sin(W./2))); %归一化阵因子 y1=abs(y1); r1=max(y1); y2=sin((N2.*W./2))./(N2.*(sin(W./2))); %归一化阵因子 y2=abs(y2); r2=max(y2); y3=sin((N3.*W./2))./(N3.*(sin(W./2))); %归一化阵因子 y3=abs(y3); r3=max(y3); %归一化阵因子绘图程序, figure(1) subplot(311);plot(W,y1) ; grid on; %绘出N=4等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=4,d=1/2波长,a=π/2') subplot(312);plot(W,y2) ; grid on; %绘出N=8等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=8,d=1/2波长,a=π/2') subplot(313);plot(W,y3) ; grid on; %绘出N=12等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=12,d=1/2波长,a=π/2') %--------------------- %只有参数N改变的天线方向图 t=0:0.01:2*pi; W=a+(beta.*d.*cos(t)); z1=(N1/2).*(W);

基于MATLAB的Boost电路仿真

基于Matlab的Boost 电路仿真 姓名: 学号: 班级:

1、前言 由于DC/DC开关电源具有高效率,高功率密度和高可靠性等优点,越来越广泛地应用于通信、计算机、工业设备和家用电器等领域。在近几十年里,开关电源技术得到了长足的发展。在很多场合下,需要从低压电源变换到高压电源,Boost变换器是最基本,也是最常用的一种变换器。 在电力电子系统的研究中,仿真研究由于其高效、高精度及高的经济性与可靠性而得到大量应用。近二十年来,仿真已逐渐成为电力电子技术研究的有力工具。Matlab语言的强大仿真功能和方便性受到广大使用者的广泛爱好。本文对Boost变换器电路进行简单的介绍,采用Matlab来完成建模和仿真。 2、Boost电路的工作状态 Boost变换器的电路结构如下图所示: Boost 电路的结构 (a) 开关状态1 (S 闭合) (b) 开关状态2 (S 关断)

(c) 开关状态3 (电感电流为零) 3、Matlab仿真分析 Matlab 是一种功能强大的仿真软件,它可以进行各种各样的模拟电路和数字电路仿真,并给出波形输出和数据输出,无论对哪种器件和哪种电路进行仿真,均可以得到精确的仿真结果。采用Matlab仿真分析方法,可直观、详细的描述Boost 电路由启动到达稳态的工作过程,并对其中各种现象进行细致深入的分析,便于我们真正掌握Boost电路的工作特性。仿真图如下所示: 电路工作原理: 在电路中IGBT导通时,电流由E经升压电感L和V形成回路,电感L储能;当IGBT关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻断IGBT导通是,电容的放电回路。调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。

基于MATLAB的QPSK系统仿真设计与实现

通信系统仿真设计实训报告1.课题名称:基于 MATLAB 的QPSK系统仿真设计与实现 学生学号: 学生: 所在班级: 任课教师: 2016年 10月25日

目录 1.1QPSK系统的应用背景简介 (3) 1.2 QPSK实验仿真的意义 (3) 1.3 实验平台和实验容 (3) 1.3.1实验平台 (3) 1.3.2实验容 (3) 二、系统实现框图和分析 (4) 2.1、QPSK调制部分, (4) 2.2、QPSK解调部分 (5) 三、实验结果及分析 (6) 3.1、理想信道下的仿真 (6) 3.2、高斯信道下的仿真 (7) 3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (8) 总结: (10) 参考文献: (11) 附录 (12)

1.1QPSK系统的应用背景简介 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 1.2 QPSK实验仿真的意义 通过完成设计容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。了解QPSK的实现方法及数学原理。并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。 理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。复习MATLAB编程的基础知识和编程的常用算法以及使用MATLAB仿真系统的注意事项,并锻炼自己的编程能力,通过编程完成QPSK调制解调系统的仿真,以及误码率测试,并得出响应波形。在完成要求任务的条件下,尝试优化程序。 通过本次实验,除了和队友培养了默契学到了知识之外,还可以将次实验作为一种推广,让更多的学生来深入一层的了解QPSK以至其他调制方式的原理和实现方法。可以方便学生进行测试和对比。足不出户便可以做实验。 1.3 实验平台和实验容 1.3.1实验平台 本实验是基于Matlab的软件仿真,只需PC机上安装MATLAB 6.0或者以上版本即可。 (本实验附带基于Matlab Simulink (模块化)仿真,如需使用必须安装simulink 模块) 1.3.2实验容 1.构建一个理想信道基本QPSK仿真系统,要求仿真结果有 a.基带输入波形及其功率谱 b.QPSK信号及其功率谱

四旋翼飞行器仿真-实验报告

动态系统建模仿真实验报告(2) 四旋翼飞行器仿真 姓名: 学号: 指导教师: 院系: 2014.12.28

1实验容 基于Simulink建立四旋翼飞行器的悬停控制回路,实现飞行器的悬停控制; 建立GUI界面,能够输入参数并绘制运动轨迹; 基于VR Toolbox建立3D动画场景,能够模拟飞行器的运动轨迹。 2实验目的 通过在 Matlab 环境中对四旋翼飞行器进行系统建模,使掌握以下容: 四旋翼飞行器的建模和控制方法 在Matlab下快速建立虚拟可视化环境的方法。 3实验器材 硬件:PC机。 工具软件:操作系统:Windows系列;软件工具:MATLAB及simulink。 4实验原理 4.1四旋翼飞行器 四旋翼飞行器通过四个螺旋桨产生的升力实现飞行,原理与直升机类似。四个旋翼位于一个几何对称的十字支架前,后,左,右四端,如图 1 所示。旋翼由电机控制;整个飞行器依靠改变每个电机的转速来实现飞行姿态控制。 图1四旋翼飞行器旋转方向示意图

在图 1 中, 前端旋翼 1 和后端旋翼 3 逆时针旋转, 而左端旋翼 2 和右端的旋翼 4 顺时针旋转, 以平衡旋翼旋转所产生的反扭转矩。 由此可知, 悬停时, 四只旋翼的转速应该相等,以相互抵消反扭力矩;同时等量地增大或减小四只旋翼的转速,会引起上升或下降运动;增大某一只旋翼的转速,同时等量地减小同组另一只旋翼的转速,则产生俯仰、横滚运动;增大某一组旋翼的转速,同时等量减小另一组旋翼的转速,将产生偏航运动。 4.2建模分析 四旋翼飞行器受力分析,如图 2 所示 图2四旋翼飞行器受力分析示意图 旋翼机体所受外力和力矩为: 重力mg , 机体受到重力沿w z -方向; 四个旋翼旋转所产生的升力i F (i= 1 , 2 , 3 , 4),旋翼升力沿b z 方向; 旋翼旋转会产生扭转力矩i M (i= 1 , 2 , 3 , 4)。i M 垂直于叶片的旋翼平面,与旋转矢量相反。 力模型为:2i F i F k ω= ,旋翼通过螺旋桨产生升力。F k 是电机转动力系数, 可取826.1110/N rpm -?,i ω为电机转速。旋翼旋转产生旋转力矩Mi(i=1,2,3,4),

MATLAB仿真天线阵代码

天线阵代码 .pudn./downloads164/sourcecode/math/detail750575.htm l 一、 clc clear all f=3e9; N1=4;N2=8;N3=12; a=pi/2; %馈电相位差 i=1; %天线电流值 lambda=(3e8)/f; %lambda=c/f 波长 d=lambda/2; beta=2.*pi/lambda; W=-2*pi:0.001:2*pi; y1=sin((N1.*W./2))./(N1.*(sin(W./2))); %归一化阵因子 y1=abs(y1); r1=max(y1); y2=sin((N2.*W./2))./(N2.*(sin(W./2))); %归一化阵因子 y2=abs(y2); r2=max(y2); y3=sin((N3.*W./2))./(N3.*(sin(W./2))); %归一化阵因子 y3=abs(y3);

r3=max(y3); %归一化阵因子绘图程序, figure(1) subplot(311);plot(W,y1) ; grid on; %绘出N=4等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=4,d=1/2波长,a=π/2') subplot(312);plot(W,y2) ; grid on; %绘出N=8等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=8,d=1/2波长,a=π/2') subplot(313);plot(W,y3) ; grid on; %绘出N=12等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=12,d=1/2波长,a=π/2') %--------------------- %只有参数N改变的天线方向图 t=0:0.01:2*pi; W=a+(beta.*d.*cos(t)); z1=(N1/2).*(W); z2=(1/2).*(W); W1=sin(z1)./(N1.*sin(z2)); %非归一化的阵因子K1 K1=abs(W1); %---------------------- W=a+(beta.*d.*cos(t));

相关主题