搜档网
当前位置:搜档网 › 2012年1月4月7月10月全国自考概率论与数理统计(经管类)试题及答案

2012年1月4月7月10月全国自考概率论与数理统计(经管类)试题及答案

2012年1月4月7月10月全国自考概率论与数理统计(经管类)试题及答案
2012年1月4月7月10月全国自考概率论与数理统计(经管类)试题及答案

全国2012年4月自考概率论与数理统计(经管类)试题

课程代码:04l83

一、单项选择题(本大题共10小题,每小题2分,共20分)

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设A,B 为B 为随机事件,且A B ?,则AB 等于( ) A .AB B.B C.A

D.A

2.设A ,B 为随机事件,则()P A B -= ( ) A.()()P A P B - B.()()P A P AB - C.()()()P A P B P AB -+

D.()()()P A P B P AB +-

3.设随机变量X 的概率密度为1

,3

()30,f x ??=???其他,

则{}3<4=P X ≤( )

A .{}1<2P X ≤ B.{}4<5P X ≤ C.{}3<5P X ≤

D.{}2<7P X ≤

4.已知随机变量X 服从参数为λ的指数分布,则X 的分布函数为( )

A .e ,0,

()0, 0.x x F x x λλ-?>=?≤?

B.1e ,0,

()0, 0.x x F x x λλ-?->=?≤?

C.1e ,0,

()0, 0.

x x F x x λ-?->=?≤?

D.1e ,0,

()0, 0.

x x F x x λ-?+>=?≤?

5.设随机变量X 的分布函数为F(x),则( )

A .()1F -∞= B.(0)0F = C.()0F +∞=

D.()1F +∞=

6.设随机变量X 与Y 相互独立,它们的概率密度分别为(),()X Y f x f y ,则(X ,Y )的概率密度为( )

A .[]1

()()2

X Y f x f y + B.()()X Y f x f y + C.

1

()()2

X Y f x f y D.()()X Y f x f y

7.设随机变量~(,)X B n p ,且() 2.4,() 1.44E X D X ==,则参数n,p 的值分别为( ) A .4和0.6 B.6和0.4 C.8和0.3

D.3和0.8

8.设随机变量X 的方差D(X)存在,且D(X)>0,令Y X =-,则X γρ=( ) A .1- B.0 C.1

D.2

9.设总体2

~(2,3),X N x 1,x 2,…,x n 为来自总体X 的样本,x 为样本均值,则下列统计量中服从标准正态分布的是( ) A.

2

3x - B.

2

9x - C.2

3/x n

- D.

2

9/x n

- 10.设样本x 1,x 2,…,x n 来自正态总体2

(,)N μσ,且2

σ未知.x 为样本均值,s 2为样本方 差.假设检验问题为01:1,:1H H μμ=≠,则采用的检验统计量为( ) A.

/x

n σ

B.

1

/x n σ-

C./x s n

D.

1

/x s n

-

二、填空题(本大题共15小题,每小题2分,共30分)

请在每小题的空格中填上正确答案。错填、不填均无分。

11.在一次读书活动中,某同学从2本科技书和4本文艺书中任选2本,则选中的书都 是科技书的概率为______.

12.设随机事件A 与B 相互独立,且()0.5,()0.3P A P AB ==,则()P B =______. 13.设A ,B 为随机事件,()0.5,()0.4,()0.8P A P B P A B ===,则()P B A =______. 14.设袋中有2个黑球、3个白球,有放回地连续取2次球,每次取一个,则至少取到一个黑球的概率是______.

15.设随机变量X 的分布律为 ,则P{x ≥1)=______.

16.设二维随机变量(X ,Y )在区域D 上服从均匀分布,其中0202D x y ≤≤≤≤:,.记 (X ,Y)的概率密度为()f x y ,,则(11)f =,______. 17.设二维随机变量(X ,Y )的分布律为

则P {X =Y }=______.

18.设二维随机变量(X ,Y )的分布函数为--(1e )(1-e ),0,0,()0x y x y F x y ?->=??

>,, 其他,则

{}P X Y =≤1,≤1______.

19.设随机变量X 服从参数为3的泊松分布,则()E 3X -=______.

20.设随机变量X 的分布律为 ,a,b 为常数,且E (X )=0,则a b -=______.

21.设随机变量X ~N (1,1),应用切比雪夫不等式估计概率{

}P ()2X E X -≥≤______. 22.设总体X 服从二项分布B (2,0.3),x 为样本均值,则()

E x =______.

23.设总体X ~N (0,1),123x x x ,,为来自总体X 的一个样本,且2

2

2

2

123~()x x x n χ++,则n =______.

24.设总体~(1)X N μ,,12x x ,为来自总体X 的一个样本,估计量11211

22

x x μ=

+

,2121233

x x μ=+

,则方差较小的估计量是______.

25.在假设检验中,犯第一类错误的概率为0.01,则在原假设H 0成立的条件下,接受H 0

的概率为______.

三、计算题(本大题共2小题,每小题8分,共16分)

26.设随机变量X 的概率密度为()2,010cx x f x ?=??≤≤,

, 其他.

求:(1)常数c ;(2)X 的分布函数()F x ;(3)102P x ??<<

????

. 27.设二维随机变量(X ,Y )的分布律为

求:(1)(X ,Y )关于X 的边缘分布律;(2)X +Y 的分布律.

四、综合题(本大题共2小题,每小题12分,共24分)

28.设随机变量X 与Y 相互独立,且都服从标准正态分布,令,X Y X Y ξη=+=-. 求:(1)(),(),(),()E E D D ξηξη; (2)ξηρ.

29.设总体X 的概率密度(1),01,(;)0,x x f x θθθ?+<<=??

其他, 其中未知参数>1,θ-12,,,n

x x x ?是来自该总体的一个样本,求参数θ的矩估计和极大似然估计.

五、应用题(10分)

30.某生产线上的产品按质量情况分为A ,B ,C 三类.检验员定时从该生产线上任取2件产品进行抽检,若发现其中两件全是A 类产品或一件A 类一件B 类产品,就不需要调试设备,否则需要调试.已知该生产线上生产的每件产品为A 类品、B 类品和C 类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.求:(1)抽到的两件产品都为B 类品的概率1P ;(2)抽检后设备不需要调试的概率2P .

全国2012年7月高等教育自学考试

概率论与数理统计(经管类)

课程代码:04183

一、单项选择题(本大题共10小题,每小题2分,共20分) 1. 设A ,B 为两个互不相容事件,则下列各式错误..的是( ) A. P (AB )=0

B. P (A∪B)=P (A )+P (B )

C. P (AB )=P (A )P (B )

D. P (B-A )=P (B )

2. 设事件A ,B 相互独立,且P (A )=3

1

,P (B )>0,则P (A|B )=( ) A. 151 B. 5

1 C.

15

4 D. 3

1

3. 设随机变量X 的概率密度为f(x),则f(x)一定满足( )

A. 0≤f(x)≤1

B. ?∞

-=>X

dt )t (f }x X {P

C. ?+∞

-=1dx )x (f

D. f(+∞)=1

4. 设随机变量X 的概率密度为f (x),且P {X ≥0}=1,则必有( )

A. f (x)在(0,+∞)内大于零

B. f (x)在(-∞,0)内小于零

C. ?+∞

=01f(x)dx

D. f (x)在(0,+∞)上单调增加

5. 已知随机变量X 的概率密度为f X (x ),令Y=-2X ,则Y 的概率密度f Y (y)为( )

A. 2f X (-2y)

B. f X )2

(y

-

C. )2(21y f X --

D. )2

(21

y f X -

6. 设离散随机变量X 的分布列为,

X 2 3 P

0.7

0.3

则D (X )=( ) A. 0.21 B. 0.6

C. 0.84

D. 1.2

7. 设二维随机向量(X,Y )~N(μ1,μ2,ρσσ,,222

1),则下列结论中错误..

的是( ) A. X~N (2

1,1σμ),Y~N (222,σμ)

B. X 与Y 相互独立的充分必要条件是ρ=0

C. E (X+Y )=21μ+μ

D. D (X+Y )=2

221σσ+

8. 设二维随机向量(X ,Y )~N (1,1,4,9,2

1),则Cov (X ,Y )=( )

A. 2

1

B. 3

C. 18

D. 36

9. 设随机变量X 1,X 2,…,X n ,…独立同分布,且i=1,2…,0

令∑===n

i i n .n ,X Y 121 ,,Φ(x )为标准正态分布函数,则

=??

????????≤--∞→11lim n )p (np np Y P n ( ) A. 0

B. Φ(1)

C. 1-Φ(1)

D. 1

10. 设Ф(x)为标准正态分布函数,X i =?

??不发生,事件发生;

事件A A ,0,1i=1,2,…,100,且

P(A)=0.8,X 1,X 2,…,X 100相互独立。令Y=∑=100

1

i i X ,则由中心极限定理知Y 的分布函数F(y)近似于

( ) A. Ф(y)

B. Ф)4

80

(

-y C. Ф(16y+80)

D. Ф(4y+80)

二、填空题(本大题共15小题,每小题2分,共30分)

请在每小题的空格中填上正确答案。错填、不填均无分。

11. 一口袋中装有3只红球,2只黑球,今从中任意取出2只球,则这2只球恰为一红一黑的概率是_______________.

12. 设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则 P (A B )=_______________..

13. 设A,B,C 为三个随机事件,P(A)=P(B)=P(C)=41,P(AB)=P(AC)=P(BC)=6

1,P(ABC)=0,则P(A B C)=___________.

14. 设X 为连续随机变量,c 为一个常数,则P {X =c }=_______________.

15. 已知连续型随机变量X 的分布函数为????

?????<+<=.2,1;20),1(31

;0,

31)(≥≤x x x x e x F x

设X 的概率密度为f(x),则当x<0,f(x)= _______________.

16. 已知随机变量X 的分布函数为F X (x),则随机变量Y=3X+2的分布函数 F Y (y)=___________.

17. 设随机变量X ~N (2,4),则P {X ≤2}=_______________. 18. 设随机变量X 的概率密度为f(x)=

+∞<<-∞-x e

x ,212

2

π,则E(X+1)=____________.

19. 设随机变量X 与Y 相互独立,且X ~N (0,5),Y ~X 2(5),则随机变量Y

X Z =服从

自由度为5的_______________分布。

20. 设随机变量X 与Y 相互独立,且D(X)=2,D(Y)=1,则D(X-2Y+3)=___________.

21. 已知二维随机向量(X ,Y )服从区域G :0≤x ≤1, 0≤y ≤2上的均匀分布,则

=????

??

≤≤210Y P _______________.

22. 设总体X ~N (,,),,(212X X σμ…,X n 为来自总体X 的样本,X 为样本均值,则D(X )= . 23. 设二维随机向量(X ,Y )的概率密度为f (x,y )=??

?≤≤≤≤+其它

,0;

10,10,y x y x 则当

0≤y ≤1时,(X ,Y )关于Y 的边缘概率密度f Y (y)= . 24. 设总体X 的分布列为

X 0 1 P

1-p

P

其中p 为未知参数,且X 1,X 2,…,X n 为其样本,则p 的矩估计∧

p =___________. 25. 设总体X 服从正态分布N (0,0.25),X 1,X 2,…,X 7为来自该总体的一个样本, 要使∑=7

1227i i )(~X a χ,则应取常数a =_______________.

三、计算题(本大题共2小题,每小题8分,共16分)

26. 设某地区地区男性居民中肥胖者占25%,中等者占60%,瘦者占15%,又知肥胖者患高血压病的概率为20%,中等者患高血压病的概率为8%,瘦者患高血压病的概率为2%,试求: (1)该地区成年男性居民患高血压病的概率;

(2)若知某成年男性居民患高血压病,则他属于肥胖者的概率有多大?

27. 设随机变量X 的概率密度为??

?

??<<=.,0;10,)(其它x cx x f α 且E(X)=0.75,求常数c 和α.

四、综合题(本大题共2小题,每小题12分,共24分)

28. 设随机变量X 的概率密度为??

?

??≤<-≤≤=,,021,210,)(其它x x x x x f

求:(1)X 的分布函数F (x );(2)P{X<0.5},P{X>1.3}.

29. 设二维随机向量(X,Y)的联合分布列为

试求:(1)(X,Y)关于X和关于Y的边缘分布列;(2)X与Y是否相互独立?为什么?

(3)P{X+Y=0}.

五、应用题(本大题共1小题,10分)

30. 某大学从来自A ,B 两市的新生中分别随机抽取5名与6名新生,测其身高(

单位:cm )后算得x =175.9,y =172.0;12s =11.3,2

2s =9.1.假设两市新生身高分别服从

正态分布X ~N ),(21σμ,Y ~N ),(22σμ,其中2σ未知。试求21μμ-的置信度为0.95的置 信区间。(t 0.025(9)=2.2622,t 0.025(11)=2.2010)

全国历自学考试概率论与数理统计(二)试题与答案

全国2011年4月自学考试概率论与数理统计(二) 课程代码:02197 选择题和填空题详解 试题来自百度文库 答案由王馨磊导师提供 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为( A ) A .C B A B .C B A C .C B A D .C B A 2.设随机事件A 与B 相互独立, 且P (A )=5 1, P (B )=5 3, 则P (A ∪B )= ( B ) A .253 B .2517 C .5 4 D .2523 3.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( C ) A .0.352 B .0.432 C .0.784 D .0.936 解:P{X ≥1}=1- P{X=0}=1-(1-0.4)3=0.784,故选C. 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( C ) A .0.2 B .0.35 C .0.55 D .0.8 解:P {-2<X ≤4}= P {X =-1}+ P {X =2}=0.2+0.35=0.55,故选C. 5.设随机变量X 的概率密度为4 )3(2 e 2 π21)(+-= x x f , 则E (X ), D (X )分别为 ( ) A .2,3- B .-3, 2 C .2,3 D .3, 2 与已知比较可知:E(X)=-3,D(X)=2,故选B. 6.设二维随机变量 (X , Y )的概率密度为? ??≤≤≤≤=,,0, 20,20,),(其他y x c y x f 则常数 c = ( A ) A .4 1 B .2 1 C .2 D .4 解:设D 为平面上的有界区域,其面积为S 且S>0,如果二维随机变量 (X ,Y )的概率密度为 则称 (X ,Y )服从区域D 上的均匀分布,

概率论与数理统计学习知识资料心得与分享与分享之第一章

第一章 概率论的基本概念 确定性现象:在一定条件下必然发生的现象 随机现象:在个别试验中其结果呈现出不确定性,在大量重复试验中其结果又具有统计规律性的现象 随机试验: 具有下述三个特点的试验: 1.可以在相同的条件下重复地进行 2.每次试验的可能结果不止一个,且能事先明确试验的所有可能结果 3.进行一次试验之前不能确定哪一个结果会出现 样本空间: 将随机试验E 的所有可能出现的结果组成的集合称为E 的样本空间,记为S 样本点: 样本空间的元素,即E 的每个结果,称为样本点 样本空间的元素是由试验的目的所确定的。 随机事件: 一般,我们称试验E 的样本空间S 的子集为E 的随机事件,简称事件 在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生。 基本事件: 由一个样本点组成的单点集,称为基本事件。 必然事件: 样本空间S 包含所有的样本点,它是S 自身的子集,在每次试验中它总是发生的,称为必然事件。 不可能事件: 空集Φ不包含任何样本点,它也作为样本空间的子集,在每次试验中,称为不可能事件。 事件间的关系与运算: 设试验E 的样本空间为S ,而A,B,k A (k=1,2,…)是S 的子集。 1.若B A ?,则称事件B 包含事件A ,这指的是事件A 发生必然导致事件B 发生。 若B A ?且A B ?,即A=B ,则称事件A 与事件B 相等。 2.事件{x B A =?|A x ∈或}B x ∈称为事件A 与事件B 的和事件。当且仅当A,B 中至少有一个发生时,事件B A ?发生。 类似地,称n k U 1 =k A 为事件,,21A A …n A ,的和事件;称k k A U ∞ =1 为可列个事件,,21A A … 的和事件。 3.事件B A ?=x {|A x ∈且}B x ∈称为事件A 与事件B 的积事件。当且仅当A,B 同时发生时,事件B A ?发生。B A ?记作AB 。

《概率论与数理统计》讲义#(精选.)

第一章 随机事件和概率 第一节 基本概念 1、排列组合初步 (1)排列组合公式 )! (! n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。 )! (!! n m n m C n m -= 从m 个人中挑出n 个人进行组合的可能数。 例1.1:方程 x x x C C C 765107 11=-的解是 A . 4 B . 3 C . 2 D . 1 例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少? (2)加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 (3)乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。 例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法? 例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? 例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜

色,且相邻区域的颜色必须不同,则共有不同的涂法 A.120种B.140种 C.160种D.180种 (4)一些常见排列 ①特殊排列 ②相邻 ③彼此隔开 ④顺序一定和不可分辨 例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单? ①3个舞蹈节目排在一起; ②3个舞蹈节目彼此隔开; ③3个舞蹈节目先后顺序一定。 例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法? 例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法? ①重复排列和非重复排列(有序) 例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法? ②对立事件 例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法? 例1.11:15人中取5人,有3个不能都取,有多少种取法? 例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?

概率论与数理统计习题及答案

概率论与数理统计习题及答案 习题一 1.见教材习题参考答案. 2.设A,B,C为三个事件,试用A,B,C (1)A发生,B,C都不发生; (2)A与B发生,C (3)A,B,C都发生; (4)A,B,C (5)A,B,C都不发生; (6)A,B,C (7)A,B,C至多有2个发生; (8)A,B,C至少有2个发生. 【解】(1)A BC(2)AB C(3)ABC (4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC (5) ABC=A B C(6) ABC (7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C (8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC 3.. 4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB). 【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)] =1-[0.7-0.3]=0.6 5.设A,B是两事件,且P(A)=0.6,P(B)=0.7, (1)在什么条件下P(AB (2)在什么条件下P(AB) 【解】(1)当AB=A时,P(AB)取到最大值为0.6. (2)当A∪B=Ω时,P(AB)取到最小值为0.3. 6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0, P(AC)=1/12,求A,B,C至少有一事件发生的概率. 【解】P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)

= 14+14+13-112=34 7. 52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少? 【解】 p =5332 131313131352C C C C /C 8. (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)= 517=(17 )5 (亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故 P (A 2)=5567 =(67)5 (3) 设A 3={五个人的生日不都在星期日} P (A 3)=1-P (A 1)=1-( 17 )5 9..见教材习题参考答案. 10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n

概率论与数理统计心得体会

概率课感想与心得体会 笛卡尔说过:“有一个颠扑不破的真理,那就是当我们不能确定什么是真的时候,我们就应该去探求什么是最最可能的。”随机现象在日常生活中随处可见,概率是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的方法,同时为统计学的发展提供了理论基础。 概率起源于现实生活,应用于现实生活,如我们讨论了摸球问题,掷硬币正反面的试验,拍骰子问题等等。都是接近生活实践的概率应用实例。 同时,通过概率课还了解了概率的意义,概率是用来度量随机事件发生可能性大小的一个量,而实际结果是事件发生或不发生这两种情况中的一种。但是我们不能根据随机事件的概率来断定某次试验出现某种结果或者不出现某种结果。同时,我们还可以利用概率来判定游戏规则,譬如,在各类游戏中,如果每个人获胜的概率相等,那么游戏就是公平的,这就是说,要保证所制定的游戏规则是公平的,需要保证每个人获胜的概率相等。概率教学中的试验或游戏结果,如果不进行足够多的次数,是很难得出比较接近概率的频率的,也就是说当试验的次数很多的时候,频率就逐渐接近一个稳定的值,这个稳定的值就是概率。我们说,当进行次数很多的时候,时间发生的次数所占的总次数的比例,即频率就是概率。换句话说,就是时间发生的可能性最大。 概率不仅在生活上给了我们很大的帮助,同时也能帮我们验证某些理论知识,譬如投针问题: ()行直线相交的概率. 平的针,试求该针与任一一根长度为线,向此平面上任意投的一些平行平面上画有等距离为a L L a <

我们解如下: 平行线的距离; :针的中心到最近一条 设:X 此平行线的夹角.:针与? 上的均匀分布;, 服从区间则随机变量?? ? ?? ? 20a X []上的均匀分布;服从区间随机变量π?,0相互独立.与并且随机变量?X ()的联合密度函数为 ,所以二维随机变量?X ()??? ??≤≤≤≤=. , 02 02 其它,,π?π?a x a x f {} 针与任一直线相交设:=A , . sin 2? ?? ???<=?L X A 则所以, ()? ?????<=?sin 2L X P A P 的面积的面积 D A =.22 sin 20 a L a d L ππ??π == ?

《概率论与数理统计》读书感想

《概率论与数理统计》读书感想 班级: 学号: 姓名:本学期我们开设了《概率论与数理统计》这门课程。在正式学习这门课程之前,我对于它的了解仅限于高中时期所学习的简单的概率与统计相关的定义、概型以及运算。在学习了这门课程之后,我对于将数学知识运用到实践中有了更加深刻的认识。 本门课程总共八章。在第一章中,我在复习到的高中时期基础知识的基础上更加深入的学习了随机事件与概率相关知识,其中我感觉比较重要的就是条件概率与乘法公式、全概率公式和被贝努力公式以及事件的独立性和N重贝努利概型。在第二章中,我理解了随即变量及其概率分布的概念、连续型随机变量及其概率密度的概念,了解了泊松定理的结论和应用条件并学会了用泊松分布近似的表示二项分布,还学会了均匀分布、指数分布、正太分布及其应用。在第三章中,我们学习了二维随机变量及其分布,其中二位二维离散随机变量和二维连续型随机变量以及二维随机变量函数的分布是我感觉比较陌生的。学起来也比较吃力。第四章是随机变量的数字特征,其中数学期望、方差都是高中学过的,学起来比较简单,而协方差、相关系数和矩则是比较新的知识了。第五章是大数定律和中心极限定理,都是新内容,这期间,我掌握了切比雪夫不等式的条件和结论、切比雪夫大数定律、贝努利大数定律以及辛钦大数定律成立的条件和结论,并能运用切比雪夫不等式进行简单的概率估计,另外还学习了独立同分布的中心极限定理以及棣莫弗—拉普拉斯定理的条件与结论。第六章中,主要学习了数理统计的基本概念:总体、个体、简单随机样本、统计量的概念、样本均值、样本方差和样本矩。第七章是参数估计的相关知识,重点是点估计、估计量以及估计值得相关概念还有矩估计法和极大似然估计法,另外,我还掌握了两个正态总体的均值差和方差比的置信区间。在最后的第八章,我们主要学习了假设检验,我掌握了假设检验的基本概念,学会了对单正态总体参数的假设检验和对双正态总体均值方差的假设检验。 通过对本门课程的学习,我对概率论和数理统计有了更加深刻的了解,我相信这将对我以后的学习大有裨益。

概率论与数理统计考研复习资料

概率论与数理统计复习 第一章 概率论的基本概念 一.基本概念 随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集. 必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算 1.A ?B(事件B 包含事件A )事件A 发生必然导致事件B 发生. 2.A ∪B(和事件)事件A 与B 至少有一个发生. 3. A ∩B=AB(积事件)事件A 与B 同时发生. 4. A -B(差事件)事件A 发生而B 不发生. 5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生. 6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德?摩根律 B A B A = B A B A = 三. 概率的定义与性质 1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ; (3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…), P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质 (1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n , P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ?B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) . (5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n ()()() () +∑ + ∑ - ∑=≤<<≤≤<≤=n k j i k j i n j i j i n i i n A A A P A A P A P A A A P 111 21 …+(-1)n-1P(A 1A 2…A n ) 四.等可能(古典)概型 1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型. 2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率 1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0). 2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)= ()()i n i i B A P B P ∑=1

概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第六章 随机变量数字特征 一.填空题 1. 若随机变量X 的概率函数为 1 .03.03.01.02.04 3211p X -,则 =≤)2(X P ;=>)3(X P ;=>=)04(X X P . 2. 若随机变量X 服从泊松分布)3(P ,则=≥)2(X P 8006.0413 ≈--e . 3. 若随机变量X 的概率函数为).4,3,2,1(,2)(=?==-k c k X P k 则=c 15 16 . 4.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=,P (B )=,则()P AB =____________.() 5.设事件A 、B 互不相容,已知()0.4=P A ,()0.5=P B ,则()=P AB 6. 盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为____________.( 13 ) 7.设随机变量X 服从[0,1]上的均匀分布,则()E X =____________.( 12 ) 8.设随机变量X 服从参数为3的泊松分布,则概率密度函数为 __. (k 3 3(=,0,1,2k! P X k e k -==L )) 9.某种电器使用寿命X (单位:小时)服从参数为1 40000 λ=的指数分布,则此种电器的平 均使用寿命为____________小时.(40000) 10在3男生2女生中任取3人,用X 表示取到女生人数,则X 的概率函数为 11.若随机变量X 的概率密度为)(,1)(2 +∞<<-∞+= x x a x f ,则=a π1 ;=>)0(X P ;==)0(X P 0 . 12.若随机变量)1,1(~-U X ,则X 的概率密度为 1 (1,1) ()2 x f x ?∈-? =???其它

概率论与数理统计(经管类)公式

概率论与数理统计必考知识点 一、随机事件和概率 1、随机事件及其概率 运算律名称 表达式 交换律 A B B A +=+ BA AB = 结合律 C B A C B A C B A ++=++=++)()( ABC BC A C AB ==)()( 分配律 AC AB C B A ±=±)( ))(()(C A B A BC A ++=+ 德摩根律 B A B A =+ B A AB += 2、概率的定义及其计算 公式名称 公式表达式 求逆公式 )(1)(A P A P -= 加法公式 )()()()(AB P B P A P B A P -+=+ 条件概率公式 ) () ()(A P AB P A B P = 乘法公式 )()()(A B P A P AB P = )()()(B A P B P AB P = 全概率公式 ∑== n i i i A B P A P B P 1 )()()( 贝叶斯公式 (逆概率公式) ∑∞ == 1 ) ()() ()()(i i j j j j A B P A P A B P A P B A P 伯努利概型公式 n k p p C k P k n k k n n ,1,0,)1()(=-=- 两件事件相互独立相应 公式 )()()(B P A P AB P =;)()(B P A B P =;)()(A B P A B P =;1)()(=+A B P A B P ; 1)()(=+A B P A B P 二、随机变量及其分布 1、分布函数性质 )()(b F b X P =≤ )()()(a F b F b X a P -=≤< 2、离散型随机变量 分布名称 分布律 0–1分布),1(p B 1,0,)1()(1=-==-k p p k X P k k 二项分布),(p n B n k p p C k X P k n k k n ,,1,0,)1()( =-==-

概率论学习心得

心得体会 汇报人 注意:本文档适合对应岗位使用,实际使用者需要根据本岗位的实际工作内容和工作职责进行相应调整,下载之前请务必预览前页内容。

概率论学习心得 概率论与数理统计是研究随机现象统计规律的科学,既是重要的基础理论,又是实践性很强的应用科学。 概率论是十七世纪因保险事业发展而产生的,与博弈实践有关;数理统计学源于对天文和测地学中的误差分析以及中世纪欧洲流行黑死病的统计。数理统计学与概率论这两个学科的密切联系就是基于统计数据的随机性。 概率论与数理统计具有很强的实用性,科学研究与社会活动都需要进行数据的收集、整理以及精炼的形式表达,并以此为基础进行定量或定性估计、描述和解释,预测其未来可能的发展状况。而对大量随机数据进行整理并描述评估、预测其发展正是数理统计学与概率论的重要内容。 实用性赋予了概率论与数理统计强大的生命力。17世纪概率论与数理统计作为学科诞生后,其方法就被英国古典政治经济学创始人佩蒂引进到社会经济问题的研究中,他提倡让实际数据说话,其对资本主义经济的研究从流通领域进入生产领域,对商品的价值量做了正确的分析。 二战后随着科技的发展特别是计算机的发展,概率论与数理统计在新的实践条件下得以迅猛发展,其理论日益完善与深入,其手段日益先进和便利,其作用日益重要和广泛,大量应用到国民经济、工农业生产及各学科领域,许多新兴科学都是以概率论与数理统计作为基础的,如信息论、对策论、排队论、控制论等。 概率论与数理统计不仅在自然科学中发挥重要作用,实证的方法就是基于数据分析整理并推理预测,而且在社会实践中发挥着重要的不可替代的作用,这是因为: 1、人类活动的各个领域都不同程度与数据打交道,都有如何收集和分析数据的问题,因此概率论与数理统计学的理论和方法,与人类活动的各个领域都有关联。 2、组成社会的单元——人、家庭、单位、地区等,都有很大的变异性、不确定性,如果说,在自然现象中尚有一些严格的、确定性的规律,在社会现象中

《概率论与数理统计》基本名词中英文对照表

《概率论与数理统计》基本名词中英文对照表英文中文 Probability theory 概率论 mathematical statistics 数理统计 deterministic phenomenon 确定性现象 random phenomenon 随机现象 sample space 样本空间 random occurrence 随机事件 fundamental event 基本事件 certain event 必然事件 impossible event 不可能事件 random test 随机试验 incompatible events 互不相容事件 frequency 频率 classical probabilistic model 古典概型 geometric probability 几何概率 conditional probability 条件概率 multiplication theorem 乘法定理 Bayes's formula 贝叶斯公式 Prior probability 先验概率 Posterior probability 后验概率 Independent events 相互独立事件 Bernoulli trials 贝努利试验 random variable 随机变量

probability distribution 概率分布 distribution function 分布函数 discrete random variable 离散随机变量distribution law 分布律hypergeometric distribution 超几何分布 random sampling model 随机抽样模型binomial distribution 二项分布 Poisson distribution 泊松分布 geometric distribution 几何分布 probability density 概率密度 continuous random variable 连续随机变量uniformly distribution 均匀分布exponential distribution 指数分布 numerical character 数字特征mathematical expectation 数学期望 variance 方差 moment 矩 central moment 中心矩 n-dimensional random variable n-维随机变量 two-dimensional random variable 二维离散随机变量joint probability distribution 联合概率分布 joint distribution law 联合分布律 joint distribution function 联合分布函数boundary distribution law 边缘分布律

概率论与数理统计课本_百度文库

第二章随机变量及其分布第一节随机变量及其分布函数 一、随机变量 随机试验的结果是事件,就“事件”这一概念而言,它是定性的。要定量地研究随机现象,事件的数量化是一个基本前提。很自然的想法是,既然试验的所有可能的结果是知道的,我们就可以对每一个结果赋予一个相应的值,在结果(本事件)数值之间建立起一定的对应关系,从而对一个随机试验进行定量的描述。 例2-1 将一枚硬币掷一次,观察出现正面H、反面T的情况。这一试验有两个结果:“出现H”或“出现T”。为了便于研究,我们将每一个结果用一个实数来代表。比如,用数“1”代表“出现H”,用数“0”代表“出现T”。这样,当我们讨论试验结果时,就可以简单地说成结果是1或0。建立这种数量化的关系,实际上就相当于引入一个变量X,对于试验的两个结果,将X的值分别规定为1或0。如果与样本空间 { } {H,T}联系起来,那么,对于样本空间的不同元素,变量X可以取不同的值。因此,X是定义在样本空间上的函数,具体地说是 1,当 H X X( ) 0,当 T 由于试验结果的出现是随机的,因而X(ω)的取值也是随机的,为此我们称 X( )X(ω)为随机变量。 例2-2 在一批灯泡中任意取一只,测试它的寿命。这一试验的结果(寿命)本身就是用数值描述的。我们以X记灯泡的寿命,它的取值由试验的结果所确定,随着试验结果的不同而取不同的值,X是定义在样本空间 {t|t 0}上的函数 X X(t) t,t 因此X也是一个随机变量。一般地有 定义2-1 设 为一个随机试验的样本空间,如果对于 中的每一个元素 ,都有一个实数X( )与之相对应,则称X为随机变量。 一旦定义了随机变量X后,就可以用它来描述事件。通常,对于任意实数集合L,X在 L上的取值,记为{X L},它表示事件{ |X( ) L},即 。 {X L} { |X( ) L} 例2-3 将一枚硬币掷三次,观察出现正、反面的情况。设X为“正面出现”的次数,则X是一个随机变量。显然,X的取值为0,1,2,3。X的取值与样本点之间的对应关系如表2-1所示。 表2-1 表2-1

概率论与数理统计(经管类)复习试题及答案

概率论和数理统计真题讲解 (一)单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则() A.P(B|A)=0 B.P(A|B)>0 C.P(A|B)=P(A) D.P(AB)=P(A)P(B) 『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。 解析:A:,因为A与B互不相容,,P(AB)=0,正确; 显然,B,C不正确;D:A与B相互独立。 故选择A。 提示:① 注意区别两个概念:事件互不相容与事件相互独立; ② 条件概率的计算公式:P(A)>0时,。 2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=() A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3) 『正确答案』分析:本题考察正态分布的标准化。 解析:, 故选择C。 提示:正态分布的标准化是非常重要的方法,必须熟练掌握。 3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=() 『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。第33页 解析:, 故选择A。 提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=() A.-3 B.-1 C.- D.1 『正确答案』分析:本题考察概率密度的性质。 解析:1=,所以c=-1, 故选择B。 提示:概率密度的性质: 1.f(x)≥0; 4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。课本第38页 5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是() A.f(x)=-e-x B. f(x)=e-x C. f(x)= D.f(x)= 『正确答案』分析:本题考察概率密度的判定方法。 解析:① 非负性:A不正确;② 验证:B:发散; C:,正确;D:显然不正确。 故选择C。 提示:判定方法:若f(x)≥0,且满足,则f(x)是某个随机变量的概率密度。 6.设二维随机变量(X,Y)~N(μ1,μ2,),则Y ~() 『正确答案』分析:本题考察二维正态分布的表示方法。 解析:显然,选择D。

《概率论与数理统计》课程学习心得

《概率论与数理统计》课程学习感想 概率论与数理统计是研究随机现象统计规律的科学,既是重要的基础理论,又是实践性很强的应用科学。 概率论与数理统计是现代数学的一个重要分支。近二十年来,随着计算机的发展以及各种统计软件的开发,概率统计方法在金融、保险、生物、医学、经济、运筹管理和工程技术等领域得到了广泛应用。主要包括:极限理论、随机过程论、数理统计学、概率论方法应用、应用统计学等。极限理论包括强极限理论及弱极限理论;随机过程论包括马氏过程论、鞅论、随机微积分、平稳过程等有关理论。概率论方法应用是一个涉及面十分广泛的领域,包括随机力学、统计物理学、保险学、随机网络、排队论、可靠性理论、随机信号处理等有关方面。它主要是通过数学建模,理论分析、推导,数值计算以及计算机模拟等理论分析、统计分析和模拟分析,以求研究和分析所涉及的理论问题和实际问题。 实用性赋予了概率论与数理统计强大的生命力。17世纪概率论与数理统计作为学科诞生后,其方法就被英国古典政治经济学创始人佩蒂引进到社会经济问题的研究中,他提倡让实际数据说话,其对资本主义经济的研究从流通领域进入生产领域,对商品的价值量做了正确的分析。 生活中会遇到这样的事例:有四张彩票供三个人抽取,其中只有一张彩票有奖。第一个人去抽,他的中奖概率是25%,结果没抽到。第二个人看了,心里有些踏实了,他中奖的概率是33%,结果他也没抽到。第三个人心里此时乐开了花,其他的人都失败了,觉得自己很幸运,中奖的机率高达50%,可结果他同样没中奖。由此看来,概率的大小只是在效果上有所不同,很大的概率给人的安慰感更为强烈。但在实质上却没有区别,每个人中奖的概率都是50%,即中奖与不中奖。 同样的道理,对于个人而言,在生活中要成功做好一件事的概率是没有大小之分的,只有成功或失败之分。但这概率的大小却很能影响人做事的心态。 如果说概率有大小之分,那应该不是针对个体而言,而是从一个群体出发,因为不同的人有不同的信念,有不同的做事方法。把地球给撬起来,这在大多数

概率论与数理统计基本知识

概率论与数理统计基本知识点 一、概率的基本概念 1.概率的定义: 在事件上的一个集合函数P ,如果它满足如下三个条件: (1)非负性 A A P ?≥,0)( (2)正规性 1)(=ΩP (3)可列可加性 若事件,...,2,1,=n A n 两两互斥 则称P 为概率。 2.几何概型的定义: 若随机试验的样本空间对应一个度量有限的几何区域S ,每一基本事件与S 内的点一一对应,则任一随机事件A 对应S 中的某一子区域D 。(若事件A 的概率只与A 对应的区域D 的度量成正比,而与D 的形状及D 在S 中的位置无关。)==(每点等可能性)则称为几何概型。 的度量 对应区域的度量 对应区域S D )()()(Ω=Ω= A m A m A P 3.条件概率与乘法公式: 设A,B 是试验E 的两个随机事件,且0)(>B P ,则称) () ()|(B P AB P B A P = 为事件B 发生的条件下,事件A 发生的条件概率。(其中)(AB P 是AB 同时发生的概率) 乘法公式:)|()()|()()(B A P B P A B P A P AB P == 4.全概率公式与贝叶斯公式: (全概率公式)定理:设n A A A ...,21是样本空间Ω的一个划分,n i A P i ,...,2,1,0)(=>,B 是任一事件,则有∑== n i i i A B P A P B P 1 )|()()(。 (贝叶斯公式)定理:设n A A A ...,21是样本空间Ω的一个划分,n i A P i ,...,2,1,0)(=>,B 是任一事件,则∑== =?n k k k i i A B P A P A B P A P B A P n i 1 ) |()() |()()|(,,...,2,1。 5.事件的独立性: 两事件的独立性:(定义)设A 、B 是任意二事件,若P(AB)= P(A)P(B),则称事件A 、B 是相互独立的。(直观解释)A 、B 为试验E 的二事件,若A 、 B 的发生互不影响。 二、随机变量和分布函数:

《概率论与数理统计》课程自学指导书

《概率论与数理统计》课程自学指导书 前言 . . 《概率论与数理统计》是城市规划专业和地理信息系统专业的专业必修课。《概率统计》教材系统阐述了概率论和数理统计的基本内容、理论和应用方法。概率统计是研究随机现象客观规律的数学学科,它的应用非常广泛,并具有独特的思维和方法。通过概率论的学习能使学生了解概率与数理统计的基本概念和基本理论,初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。通过本课程的学习,能够为学生学习后继课程及进一步提高打下必要的数学基础。其内容可分为三大部分。第一部分概率论部分,包括第一、二、三、四、五章。作为基础知识,为读者提供了必要的理论基础。第二部分数理统计部分,包括第六、七、八、九章,主要讲述参数估计和假设检验,并介绍了方差分析和回归分析。第三部分随机过程部分,主要讨论了平稳随机过程,还介绍了马尔可夫过程。 本指导书是作为函授学员在集中授课后,指导自学而编制的。内容较为简明扼要。主要是为了让学员能够抓住要领,掌握重点,理解难点,从而达到能够融会贯通、灵活掌握概率统计的基本概念、基本理论从而解决实际问题的目的。 本指导书的主要参考书目: 1. 景泰等编。概率论与数理统计.上海科学技术文献出版社,1991. 2. 玉麟主编。概率论与数理统计.复旦大学出版社,1995。 3.大茵,陈永华编。概率论与数理统计。浙江大学出版 社.1996 本课程的考核内容以教学大纲为依据,注重基本概念、基本理论的掌握和应用的考核。主要考核方式为笔试。 第一章概率论的基本概念 一、内容概述 # 本章介绍了概率论的基本概念:随机试验、样本空间、随机事件、频率与概率,讨论研究等可能概型问题、条件概率及独立性问题。 二、教学目的要求 # (1) 理解并掌握概率论的基本概念。

04183概率论与数理统计(经管类)

04183概率论与数理统计(经管类) 一、单项选择题 1.若E(XY)=E(X))(Y E ?,则必有( B )。 A .X 与Y 不相互独立 B .D(X+Y)=D(X)+D(Y) C .X 与Y 相互独立 D .D(XY)=D(X)D(Y 2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回, 则第二次抽出的是次品的概率为 A 。 A .0.1 B .0.2 C .0.3 D .0.4 3.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。 A .1)(=+∞F B .0)(=-∞F C .1)(0≤≤x F D .)(x F 连续 4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。 A .n k k m q p C B .k n k k n q p C - C .k n pq - D .k n k q p - 5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则 (23)D X Y ++= C A .8 B .16 C .20 D .24 6.设n X X X Λ21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中 心极限定理得()1n i i P X a a =?? ≥???? ∑为常数的近似值为 B 。 A .1a n n μσ-??-Φ ??? B .1-Φ C .a n n μσ-?? Φ ??? D .Φ 7.设二维随机变量 的联合分布函数为,其联合分布律为 则(0,1)F = C 。 A .0.2 B .0.4 C .0.6 D .0.8 8.设k X X X ,,,21Λ是来自正态总体)1,0(N 的样本,则统计量2 2221k X X X Λ++服从 ( D )分布 A .正态分布 B .t 分布 C .F 分布 D .2 χ分布 9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。 A .21)0(=≤+Y X P B .21)1(=≤+Y X P C .21)0(=≤-Y X P D .21)1(=≤-Y X P 10.设总体X~N (2,σμ),2 σ为未知,通过样本n x x x Λ21,检验00:μμ=H 时,需要 用统计量( C )。

数理统计培训心得体会

数理统计培训心得体会 篇一:《概率论与数理统计》课程学习心得 《概率论与数理统计》课程学习感想 概率论与数理统计是研究随机现象统计规律的科学,既是重要的基础理论,又是实践性很强的应用科学。 概率论与数理统计是现代数学的一个重要分支。近二十年来,随着计算机的发展以及各种统计软件的开发,概率统计方法在金融、保险、生物、医学、经济、运筹管理和工程技术等领域得到了广泛应用。主要包括:极限理论、随机过程论、数理统计学、概率论方法应用、应用统计学等。极限理论包括强极限理论及弱极限理论;随机过程论包括马氏过程论、鞅论、随机微积分、平稳过程等有关理论。概率论方法应用是一个涉及面十分广泛的领域,包括随机力学、统计物理学、保险学、随机网络、排队论、可靠性理论、随机信号处理等有关方面。它主要是通过数学建模,理论分析、推导,数值计算以及计算机模拟等理论分析、统计分析和模拟分析,以求研究和分析所涉及的理论问题和实际问题。 实用性赋予了概率论与数理统计强大的生命力。17世纪概率论与数理统计作为学科诞生后,其方法就被英国古典政治经济学创始人佩蒂引进到社会经济问题的研究中,他提倡让实际数据说话,其对资本主义经济的研究从流通领域进入生产领域,对商品的价值量做了正确的分析。

生活中会遇到这样的事例:有四张彩票供三个人抽取,其中只有一张彩票有奖。第一个人去抽,他的中奖概率是25%,结果没抽到。第二个人看了,心里有些踏实了,他中奖的概率是33%,结果他也没抽到。第三个人心里此时乐开了花,其他的人都失败了,觉得自己很幸运,中奖的机率高达50%,可结果他同样没中奖。由此看来,概率的大小只是在效果上有所不同,很大的概率给人的安慰感更为强烈。但在实质上却没有区别,每个人中奖的概率都是50%,即中奖与不中奖。 同样的道理,对于个人而言,在生活中要成功做好一件事的概率是没有大小之分的,只有成功或失败之分。但这概率的大小却很能影响人做事的心态。 如果说概率有大小之分,那应该不是针对个体而言,而是从一个群体出发,因为不同的人有不同的信念,有不同的做事方法。把地球给撬起来,这在大多数 人眼里是绝对不可能的。但在牛人亚里士多德眼里,他觉得成功做这事的概率那是100%——绝对没问题,只要你给他一个支点和足够长的杠杆。就像前面提到的抽奖一样,25%、33%和50%这些概率只不过是外界针对这个群体给出的。25%的机率同样能中奖,50%的机率也会不中奖,对于抽奖者个人而言,没有概率大小之分,只有中与不中之分。别人说做这件事相当容易,切莫掉以轻心,也许你做这件事

自考概率论与数理统计基础知识.

一、《概率论与数理统计(经管类)》考试题型分析: 题型大致包括以下五种题型,各题型及所占分值如下: 由各题型分值分布我们可以看出,单项选择题、填空题占试卷的50%,考查的是基本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。计算题和综合题主要是对前四章基本理论与基本方法的考查,要求考生不仅要牢记重要的公式,而且要能够灵活运用。应用题主要是对第七、八章内容的考查,要求考生记住解题程序和公式。结合历年真题来练习,就会很容易的掌握解题思路。总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。二、《概率论与数理统计(经管类)》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。第一章随机事件与概率 1.随机事件的关系与计算 P3-5 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念 2.古典概型中概率的计算 P9 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式 3. 利用概率的性质计算概率 P11-12 (一级重点)选择、填空 ,(考得多)等,要能灵活运用。 4. 条件概率的定义 P14 (一级重点)选择、填空记住条件概率的定义和公式: 5. 全概率公式与贝叶斯公式 P15-16 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。 6. 事件的独立性(概念与性质) P18-20(一级重点)选择、填空定义:若,则称A与B 相互独立。结论:若A与B相互独立,则A与,与B 与都相互独立。 7. n重贝努利试验中事件A恰好发生k次的概率公式 P21(一级重点)选择、填空在重贝努利试验中,设每次试验中事件的概率为(),则事件A恰好发生。第二章随机变量及其概率分布 8.离散型随机变量的分布律及相关的概率计算 P29,P31(一级重点)选择、填空、计算、综合。记住分布律中,所有概率加起来为1,求概率时,先找到符合条件的随机点,让后把对应的概率相加。求分布律就需要找到随机变量所有可能取的值,和每个值对应的概率。 9. 常见几种离散型分布函数及其分布律 P32-P33(一级重点)选择题、填空题以二项分布和泊松分布为主,记住分布律是关键。本考点基本上每次考试都考。 10. 随机变量的分布函数 P35-P37(一级重点)选择、填空、计算题记住分布函数的定义和性质是关键。要能判别什么样的函数能充当分布函数,记住利用分布函数计算概率的公式:①;②其中;③。 11. 连续型随机变量及其概率密度 P39(一级重点)选择、填空重点记忆它的性质与相关的计算,如①;;反之,满足以上两条性质的函数一定是某个连续型随机变量的概率密度。③;④ 设为的

相关主题