搜档网
当前位置:搜档网 › 计算机图形学课程设计 图形绘制变换

计算机图形学课程设计 图形绘制变换

计算机图形学课程设计  图形绘制变换
计算机图形学课程设计  图形绘制变换

计算机图形学

实验报告

课程名称 : 计算机图形学

实验名称 :图形绘制与变换

学院 : 电子信息工程学院

专业 : 计算机科学与技术

班级 : 11计科本 01班

学号 : 111102020103 姓名 : 张慧

指导教师 : 王征风

二零一四年

目录

一、引言------------------------------------------------------------------------------------------------------------- 3

二、设计需求 ------------------------------------------------------------------------------------------------------ 3

2.1 设计目标----------------------------------------------------------------------------------------------- 3

2.2 设计环境----------------------------------------------------------------------------------------------- 3

2.2.1 VC++6.0-------------------------------------------------------------------------------------- 3

2.2.2 MFC-------------------------------------------------------------------------------------------- 4

2.3 设计题目及要求 ------------------------------------------------------------------------------------ 4

2.4 总体流程图 ------------------------------------------------------------------------------------------ 4

三、课程设计原理 ------------------------------------------------------------------------------------------------ 5

3.1 实现的算法-------------------------------------------------------------------------------------------- 5

3.1.2 Bresenham算法画直线 -------------------------------------------------------------------- 5

3.1.3 中心点算法画圆和椭圆-------------------------------------------------------------------- 5

3.2 图形变换的基本原理-------------------------------------------------------------------------------- 7

3.2.1 平移变换-------------------------------------------------------------------------------------- 7

3.2.2 旋转变换 ------------------------------------------------------------------------------------ 8

3.2.3 比例变换 ------------------------------------------------------------------------------------ 8

四、总体设计与功能实现 --------------------------------------------------------------------------------------- 8

4.1 主要界面设计----------------------------------------------------------------------------------------- 8

4.2 设置颜色界面----------------------------------------------------------------------------------------- 8

4.2.1 界面设置代码-------------------------------------------------------------------------------- 8

4.2.2 运行结果-------------------------------------------------------------------------------------- 9

4.3 二维线画图元实现----------------------------------------------------------------------------------- 9

4.4 画多边形功能的实现 ---------------------------------------------------------------------------- 13

4.5 画Bezier曲线功能的实现--------------------------------------------------------------------- 14

4.6 二维图形变换的实现 ---------------------------------------------------------------------------- 16

4.7 三维图形的变换 ---------------------------------------------------------------------------------- 17

五、实验心得体会

一、引言

计算机图形学(Computer Graphics,简称CG)是一种使用数学算法将二维或三维图形转化为计算机显示器的栅格形式的科学。简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。是计算机科学的一个分支领域,主要关注数字合成与操作视觉的图形内容。计算机图形学研究的是应用计算机产生图像的所有工作,不管图像是静态的还是动态的,可交互的还是固定的,等等。图形API是允许程序员开发包含交互式计算机图形操作的应用而不需要关注图形操作细节或任务系统细节的工具集。计算机图形学有着广泛的应用领域,包括物理、航天、电影、电视、游戏、艺术、广告、通信、天气预报等几乎所有领域都用到了计算机图形学的知识,这些领域通过计算机图形学将几何模型生成图像,将问题可视化从而为各领域更好的服务。

计算机图形学利用计算机产生让人赏心悦目的视觉效果,必须建立描述图形的几何模型还有光照模型,再加上视角、颜色、纹理等属性,再经过模型变换、视图变换、投影操作等,这些步骤从而实现一个完整的OpenGL程序效果。OpenGL是一个开放的三维图形软件包,它独立于窗口系统和操作系统,以它为基础开发的应用程序可以十分方便地在各种平台间移植。计算机图形学通过应用OpenGL的功能,使得生成的图形效果具有高度真实感。学习计算机图形学的重点是掌握OpenGL在图形学程序中的使用方法。事实上,图形学也把可以表示几何场景的曲线曲面造型技术和实体造型技术作为其主要的研究内容。同时,真实感图形计算的结果是以数字图像的方式提供的,计算机图形学也就和图像处理有着密切的关系。

通过21世纪是信息的时代,在日新月异的科技更新中相信计算机会发挥越来越重要的作用,计算机图形学也会在更多的领域所应用,虽然我国在这方面还比较薄弱,但相信会有越来越好的时候的。

二、设计需求

2.1 设计目标

以图形学算法为目标,深入研究。继而策划、设计并实现一个能够表现计算机图形学算法原理的或完整过程的演示系统,并能从某些方面作出评价和改进意见。通过完成一个完整程序,经历策划、设计、开发、测试、总结和验收各阶段,达到:巩固和实践计算机图形学课程中的理论和算法;学习表现计算机图形学算法的技巧;培养认真学习、积极探索的精神。

2.2 设计环境

2.2.1 VC++6.0

VC++6.0是 Microsoft 公司推出的一个基于 Windows 系统平台、可视化的集成开发环境,它的源程序按 C++语言的要求编写,并加入了微软提供的功能强大的 MFC(Microsoft Foundation Class)类库。MFC 中封装了大部分 Windows API 函数和 Windows 控件,它包含的功能涉及到整个 Windows 操作系统。MFC 不仅给用户提供了 Windows 图形环境下应用程序的框架,而且还提供了创建应用程序的组件,这样,开发人员不必从头设计创建和管理一个标准 Windows 应用程序所需的程序,而是从一个比较高的起点编程,故节省了大量的时间。另外,它提供了大量的代码,指导用户编程时实现某些技术和功能。因此,使用VC++提供的

高度可视化的应用程序开发工具和 MFC 类库,可使应用程序开发变得简单。

2.2.2 MFC

MFC(Microsoft Foundation Classes) ,是一个微软公司提供的类库( class libraries)以 C++类的形式封装了 Windows 的 API,,它包含了窗口等许多类的定义。各种类的集合构成了一个应运程序的框架结构,以减少应用程序开发人员的工作量。其中包含的类包含大量 Windows 句柄封装类和很多 Windows 的内建控件和组件的封装类。MFC 6.0 版本封装了大约 200 个类,其中的一些可以被用户直接使用。例如CWnd 类封装了窗口的功能,包括打印文本、绘制图形及跟踪鼠标指针的移动等;CsplitterWnd 类是从 CWnd 类派生出来的,继承了基类或称父类 CWnd 类的所有特性,但增加了自己的功能,实现拆分窗口,使窗口至少可被拆分成两个窗口,用户可以移动两个窗口之间的边框来改变窗口的大小;CtoolBar 类可以定义工具栏等。MFC 命名的惯例是类的名字通常是由“C”打头;成员变量使用前缀“m_”,接着使用一个字母来指明数据类型,然后是变量的名称;所有的单词用大写字母开头。

2.3 设计题目及要求

(1)题目:实现多边形和曲线的绘制和变换

(2)要求:学会使用VC++编写实现图形的绘制变换,需包括直线、曲线、多边形的绘制和变换,及三维立体图形的相应变换.

2.4 总体流程图

三、课程设计原理

3.1 实现的算法

3.1.1 DDA算法画直线

DDA是数字微分分析式(Digital Differential Analyzer)的缩写。

已知直线两端点(x1,y1)、(x2,y2)则斜率m为:m = (y2-y1)/(x2-x1)= Dx/Dy;直线中的

每一点坐标都可以由前一点坐标变化一个增量(Dx, Dy)而得到,即表示为递归式: xi+1=xi+Dx yi+1=yi+Dy 。

递归式的初值为直线的起点(x1, y1),这样,就可以用加法来生成一条直线。具体算法是:

该算法适合所有象限,其中用了用了两个函数如:Integer(-8.5)= -9; Integer(8.5)

=8;Sign(i),根据i的正负,分别得到-1,0,+1;

相应代码:

//DDA DrawLine

{if(abs(x2-x1) > abs(y2-y1))

length = abs(x2-x1);

else

length = abs(y2-y1);

Dx = (x2-x1)/length;

Dy = (y2-y1)/length;

x = x1+0.5*Sign(Dx);

y = x2 + 0.5*Sign(Dy);

i = 1;

while(i <= lenght)

{ setpixel(Integer(x),Integer(y),color);

x= x + Dx;

y= y + Dy;

i+=1;} }

3.1.2 Bresenham算法画直线

思路如下:

// 假设该线段位于第一象限内且斜率大于0小于1,设起点为(x1,y1),终点为(x2,y2).

// 根据对称性,可推导至全象限内的线段.

1.画起点(x1,y1).

2.准备画下个点。x坐标增1,判断如果达到终点,则完成。否则,由图中

可知,下个要画的点要么为当前点的右邻接点,要么是当前点的右上邻接点.如果线段

ax+by+c=0与x=x1+1的交点的y坐标大于M点的y坐标的话,下个点为U(x1+1,y1+1),否则,

下个点为B(x1+1,y1),3.画点(U或者B).4.跳回第2步.5.结束.

3.1.3中心点算法画圆和椭圆

(1)中心点算法画圆

在一个方向上取单位间隔,在另一个方向的取值由两种可能取值的中点离圆的远近而定。

实际处理中,用决策变量的符号来确定象素点的选择,因此算法效率较高。生成圆弧的中点算

法和上面讲到的生成直线段的中点算法类似。

考虑第一象限内[0,x R ∈的八分之一圆弧段。经过计算,得出判别式的递推公式为: 1

2302()5

i i i i i i d x d d d x y d +++≤?=?

+-+>?

这两个递推公式的初值条件为: 00,0(,)(0,)5/4r x y R d R

=??

=-?

编写成员函数如下:

void CMy2_9View::MidPointEllipse(CDC *pDC, double a, double b, int color) {

double x,y,d,xP,yP,squarea,squareb; squarea=a*a; squareb=b*b;

xP=(int)(0.5+(double)squarea/sqrt((double)(squarea+squareb))); yP=(int)(0.5+(double)squareb/sqrt((double)(squarea+squareb))); x=0; y=b;

d=4*(squareb-squarea*b)+squarea; pDC->SetPixel(x,y,color); while(x<=xP)

{if(d<=0) d+=4*squareb*(2*x+3); else

{d+=4*squareb*(2*x+3)-8*squarea*(y-1); y--;} x++;

pDC->SetPixel(x,y,color);} x=a; y=0;

d=4*(squarea-a*squareb)+squareb; pDC->SetPixel(x,y,color) ; while(y

{ if(d<=0) d+=4*squarea*(2*y+3); else

{d+=4*squarea*(2*y+3)-8*squareb*(x-1); x--; } y++;

pDC->SetPixel(x,y,color);}} 编写OnDraw 函数如下:

void CMy2_9View::OnDraw(CDC* pDC) {CMy2_9Doc* pDoc = GetDocument(); ASSERT_V ALID(pDoc);

MidPointEllipse(pDC,500,300,RGB(0,0,0));}

(2)中心点算法画椭圆

我们先考虑圆心在原点的椭圆的生成,对于中心不是原点的椭圆,可以通过坐标的平移变换获得相应位置的椭圆。中心在原点。焦点在坐标轴上的标准椭圆具有X轴对称、Y轴对称和原点对称特性,已知椭圆上第一象限的P点坐标是(x, y),则椭圆在另外三个象限的对称点分别是(x, -y)、(-x, y)和(-x, -y)。因此,只要画出第一象限的四分之一椭圆,就可以利用这三个对称性得到整个椭圆。

相应代码:

void MP_Ellipse(int xc , int yc , int a, int b)

{ double sqa = a * a;

double sqb = b * b;

double d = sqb + sqa * (-b + 0.25);

int x = 0;

int y = b;

EllipsePlot(xc, yc, x, y);

while( sqb * (x + 1) < sqa * (y - 0.5))

{if (d < 0)

{d += sqb * (2 * x + 3);}

else

{ d += (sqb * (2 * x + 3) + sqa * (-2 * y + 2));

y--; }

x++;

EllipsePlot(xc, yc, x, y);}

d = (b * (x + 0.5)) * 2 + (a * (y - 1)) * 2 - (a * b) * 2;

while(y > 0)

{if (d < 0)

{

d += sqb * (2 * x + 2) + sqa * (-2 * y + 3);

x++; }

else

{d += sqa * (-2 * y + 3); }

y--;

EllipsePlot(xc, yc, x, y);}}

3.2 图形变换的基本原理

3.2.1 平移变换

平移变换函数如下:

void glTranslate{fd}(TYPE x, TYPE y, TYPE z);

三个函数参数就是目标分别沿三个轴向平移的偏移量。这个函数表示用于这三个偏移量生成的矩阵乘以当前矩阵。当参数是(0.0,0.0,0.0)时,表示对函数glTranslate*()的操作是单位矩阵,也就是对物体没有影响。

3.2.2 旋转变换

旋转变换函数如下:

Void glRota{fd}TYPE angle, TYPE x, TYPE y, TYPE z);

函数中第一个参数是表示目标沿从点(x,y,z)到原点方向逆时针旋转的角度,后三个参数是旋转的方向点坐标。这个函数表示用这四个参数生成的矩阵乘以当前矩阵。当角度参数是0.0时,表示对物体没有影响。

3.2.3 比例变换

比例变换函数如下:

Void glScale{fd}(TYPE x, TYPE y, TYPE z);

单个函数参数值就是目标分别沿三个轴方向缩放的比例因子。这个函数表示用这三个比例因子生成的矩阵乘以当前矩阵。这个函数能完成沿相应的轴对目标进行拉伸、压缩和反射三项功能。以参数x为例,若当x大于1.0时,表示沿x方向拉伸目标;若x小于1.0,表示沿x 轴方向收缩目标;若x=-1.0表示沿x轴反射目标。其中参数为负值时表示对目标进行相应轴的反射变换。

四、总体设计与功能实现

4.1 主要界面设计

4.2 设置颜色界面

4.2.1 界面设置代码:

void CGraphicsView::OnClock()

{ WHAT_TO_DO=ID_CLOCK;

clean();

int xx = 450, yy = 300, r = 150,d = 5;

int i, white = RGB (255,255,255);

mile (xx, yy, r, COLOR);

Matrix m (xx, 240), s (xx, 200);

Matrix t1 (xx, yy, true), t2 (-xx, -yy, true), mr ( PI/1800 ), sr ( PI/30 );

mile (m.getx (), m.gety (), d+1, COLOR);

mile (s.getx (), s.gety (), d, COLOR);

dne ( m.getx (), m.gety (), xx, yy, COLOR );

dne ( s.getx (), s.gety (), xx, yy, COLOR );

for (i=0;i<120;i++){

::Sleep (80);

mile (m.getx (), m.gety (), d+1, white);

mile (s.getx (), s.gety (), d, white);

dne ( m.getx (), m.gety (), xx, yy, white );

dne ( s.getx (), s.gety (), xx, yy, white );

m = t1*mr*t2*m;

s = t1*sr*t2*s;

mile (m.getx (), m.gety (), d+1, COLOR);

mile (s.getx (), s.gety (),d, COLOR);

dne ( m.getx (), m.gety (), xx, yy, COLOR );

dne ( s.getx (), s.gety (), xx, yy, COLOR );}}

4.2.2 点击“设置--颜色”后,运行结果如下:

4.3 二维线画图元实现

4.3.1 实现代码:

void CGraphicsView::MidCir(CDC *pdc, int x0, int y0, int x1, int y1, int color)

{ int r,x,y,deltax,deltay,d;

r=sqrt(((double)x1-(double)x0)*((double)x1-(double)x0)+((double)y1-(double)y0)*((double)y1-(double)y0));

x=0;

y=r;

deltax=3;

deltay=2-r-r;

d=1-r;

while(x<=y)

{ ::Sleep(time);

pdc->SetPixel(x+x0,y+y0,color);

::Sleep(time);

pdc->SetPixel(-x+x0,y+y0,color);

::Sleep(time);

pdc->SetPixel(x+x0,-y+y0,color);

::Sleep(time);

pdc->SetPixel(-x+x0,-y+y0,color);

::Sleep(time);

pdc->SetPixel(y+x0,x+y0,color);

::Sleep(time);

pdc->SetPixel(-y+x0,x+y0,color);

::Sleep(time);

pdc->SetPixel(y+x0,-x+y0,color);

::Sleep(time);

pdc->SetPixel(-y+x0,-x+y0,color);

if(d<0)

{ d+=deltax;

deltax+=2;

x++;}

else

{ d+=deltax+deltay;

deltax+=2;

deltay+=2;

x++;

y--; }}}

void CGraphicsView::midellispse(int xx, int yy, int r1, int r2, int color) { }

void CGraphicsView::Ellipse(CDC *pdc, int x1, int y1, int x2, int y2, int color) { xx0=(x2+x1)/2;

yy0=(y2+y1)/2;

rra=abs(x2-x1)/2;

rrb=abs(y2-y1)/2;

if(rra==0 && rrb==0) return;

Ellipse0(pdc,xx0,yy0,rra,rrb,color);}

void CGraphicsView::Ellipse0(CDC *pdc, int x0, int y0, int a, int b, int color) { int i,yy;

int x,y,deltax,deltay;

int aa,aa2,aa3,bb,bb2,bb3;

double d1,d2;

aa=a*a;

aa2=aa*2;

aa3=aa*3;

bb=b*b;

bb2=bb*2;

bb3=bb*3;

x=0;

y=b;

d1=bb+aa*(-b+0.25);

deltax=bb3;

deltay=-aa2*b+aa2;

pdc->SetPixelV(x+x0,y+y0,color);

pdc->SetPixelV(x+x0,-y+y0,color);

while(bb*(x+1)

{

yy=y;

if(d1<0)

{ d1+=deltax;

deltax+=bb2;

x++;}

else

{

d1+=deltax+deltay;

deltax+=bb2;

deltay+=aa2;

x++;

y--;}

::Sleep(time);

pdc->SetPixelV(x+x0,y+y0,color);

::Sleep(time);

pdc->SetPixelV(-x+x0,y+y0,color);

::Sleep(time);

pdc->SetPixelV(x+x0,-y+y0,color);

::Sleep(time);

pdc->SetPixelV(-x+x0,-y+y0,color);}

d2=bb*(x+0.5)*(x+0.5)+aa*(y-1)*(y-1)-aa*bb; deltax-=bb;

deltay+=aa;

while(y>0)

{ if(d2<0)

{ d2+=deltax+deltay;

deltax+=bb2;

deltay+=aa2;

x++;

y--; }

else

{ d2+=deltay;

deltay+=aa2;

y--; }

::Sleep(time);

pdc->SetPixelV(x+x0,y+y0,color);

::Sleep(time);

pdc->SetPixelV(-x+x0,y+y0,color);

::Sleep(time);

pdc->SetPixelV(x+x0,-y+y0,color);

::Sleep(time);

pdc->SetPixelV(-x+x0,-y+y0,color); }}

void CGraphicsView::DDALine(CDC *pdc, int x0, int y0, int x1, int y1, int color) {

int xx,yy,s,s1,s2,di;

float dx,dy,k,x,y;

dx=x1-x0;

if(dx>=0) s1=1;

else s1=-1;

dy=y1-y0;

if(dy>=0) s2=1;

else s2=-1;

dx=abs(dx);

dy=abs(dy);

if(dx>=dy)

{

s=0;

di=(int)dx;

k=dy/dx*s2;}

else

{ s=1;

di=(int)dy;

k=dx/dy*s1;}

x=x0;

y=y0;

for(int i=0;i<=di;i++)

{if(s==0)

{

xx=(int)x;

yy=(int)(y+0.5);

::Sleep(time);

pdc->SetPixel(xx,yy,color);

x+=s1;

y+=k;}

else{

xx=(int)(x+0.5);

yy=(int)y;

::Sleep(time);

pdc->SetPixel(xx,yy,color);

y+=s2;

x+=k;}}}

4.3.2 点击二维线画图元,课相应画出直线、圆和椭圆,结果如下:

4.4 画多边形功能的实现

4.4.1 部分实现代码:

void CGraphicsView::OnDrawDuoBX()

{ Vertex_Count dlg;

if(dlg.DoModal()==IDOK)

{ if(dlg.m_vertex_count>MAX)

{ MessageBox("输入顶点数过大");

return; }

VertexTotal=dlg.m_vertex_count;

CDC *pDC=GetDC();

CPen pen(PS_SOLID,2,RGB(255,255,255));

CPen *pOldpen=pDC->SelectObject(&pen);

pDC->MoveTo((int)(inVertexArray[0].x+0.5),(int)(inVertexArray[0].y+0.5));

int i;

for(i=1;i

pDC->LineTo((int)(inVertexArray[i].x+0.5),(int)(inVertexArray[i].y+0.5));

pDC->LineTo((int)(inVertexArray[0].x+0.5),(int)(inVertexArray[0].y+0.5));

pDC->SelectObject(pOldpen);

ReleaseDC(pDC);

inLength=0;

outLength=0;

WHAT_TO_DO=ID_DrawDuoBX;}}

4.4.2 点击多边形,输入定点个数,可绘制出相应的多边形,结果如下:

4.5 画Bezier曲线功能的实现

4.5.1 部分实现代码:

void CGraphicsView::OnBezier()

{

// TODO: Add your command handler code here

WHAT_TO_DO=ID_BEZIER;

CDC *p=GetDC ();

p->TextOut (10, 20, "PS:鼠标左键添加曲线,鼠标右键修改曲线.");

ReleaseDC (p);}

void CGraphicsView::OnBezierClear()

{ n = -1;

RedrawWindow();}

void CGraphicsView::DrawBezier(DPOINT *p)

{ if (n <= 0) return;

if((p[n].x < p[0].x+1) && (p[n].x > p[0].x-1) && (p[n].y < p[0].y+1) && (p[n].y > p[0].y-1)) { pDC->SetPixel(p[0].x, p[0].y, COLOR);

return; }

DPOINT *p1;

p1 = new DPOINT[n+1];

int i, j;

p1[0] = p[0];

for(i=1; i<=n; i++)

{ for(j=0; j<=n-i;j++)

{ p[j].x = (p[j].x + p[j+1].x)/2;

p[j].y = (p[j].y + p[j+1].y)/2; }

p1[i] = p[0];}

DrawBezier(p);

DrawBezier(p1);

delete p1; }

void CGraphicsView::OnBezierAdd()

{ AddorMove = 1; }

void CGraphicsView::OnBezierMove()

{ AddorMove = -1;}

void CGraphicsView::OnMouseMove(UINT nFlags, CPoint point)

{ switch(WHAT_TO_DO)

{ case ID_BEZIER:

{ if(current >= 0 )

{ points[current].x = point.x;

points[current].y = point.y;

RedrawWindow();}

if(current2 >= 0 )

{ points[current2].x = point.x;

points[current2].y = point.y;

RedrawWindow();}

break; }

default:break;}

CView::OnMouseMove(nFlags, point);}

4.5.2 点击曲线--Beizer曲线,可实现Beizer曲线的绘制功能,绘制结果如下图:

图 1 图 2

4.5.3 点击曲线--Beizer曲线,可实现Beizer曲线的移动,鼠标点击其中的任一点,可实现曲线的移动,绘制结果如下图:

上图1移动后的曲线

上图2移动后的曲线

4.6 二维图形变换的实现

可以实现一椭圆在界面上的随机移动,一圆在界面上饶某一点的旋转和一正方形由大变小在变大的变化,部分实现代码如下:

void CGraphicsView::OnXuanzhuan()

{ WHAT_TO_DO=ID_XUANZHUAN;

time=0;

OnClear();

CClientDC dc(this);

CDC* pDC=&dc;

int i, white=RGB(255,255,255), point [2][2]={{300,200},{300,250}};

Matrix a (point[0][0],point[0][1]), b (point[1][0],point[1][1]);

int midx=(point[0][0]+point[1][0])/2,midy=(point[0][1]+point[1][1])/2;

Matrix t1 (midx, midy,true), t2 (-midx, -midy,true);

Matrix r (PI/50);

Matrix temp (midx, midy,true);

temp = t1*r*t2;

for(i=0;i<200;i++){

::Sleep(50);

MidCir(pDC, a.getx(), a.gety(), b.getx(), b.gety(), white);

a = temp*a;

b = temp*b;

MidCir(pDC, a.getx(), a.gety(), b.getx(), b.gety(), COLOR); } for(i=0;i<200;i++){

::Sleep(50);

MidCir ( pDC,a.getx(), a.gety(), b.getx(), b.gety(), white);

a = temp*a;

b = temp*b;

MidCir (pDC, a.getx(), a.gety(), b.getx(), b.gety(), COLOR); }

time=5;}

void CGraphicsView::OnUpdateXuanzhuan(CCmdUI* pCmdUI)

{ pCmdUI->SetCheck(WHA T_TO_DO==ID_XUANZHUAN);}

void CGraphicsView::OnScale()

{ WHAT_TO_DO=ID_SCALE;

OnClear();

CClientDC dc(this);

CDC* pDC=&dc;

time=0;

int i,white=RGB(255,255,255), point[4][2]={{300,250},{400,250},{300,300},{400,300}};

float sx=0.9,sy=0.85;

int midx=(point[0][0]+point[3][0])/2,midy=(point[0][1]+point[3][1])/2;

Matrix s1 (sx,sy),s2 (1/sx,1/sy);

Matrix t1 (midx, midy,true), t2 (-midx, -midy,true);

Matrix a (point[0][0],point[0][1]), b (point[1][0],point[1][1]);

Matrix c (point[2][0],point[2][1]), d (point[3][0],point[3][1]);

Matrix temp (midx, midy,true);

temp = t1*s1*t2;

DDALine (pDC,a.getx(),a.gety(),b.getx(),b.gety(),COLOR);

DDALine (pDC,a.getx(),a.gety(),c.getx(),c.gety(),COLOR);

DDALine (pDC,c.getx(),c.gety(),d.getx(),d.gety(),COLOR);

DDALine (pDC,d.getx(),d.gety(),b.getx(),b.gety(),COLOR);

for(i=0;i<20;i++){

::Sleep (30);

DDALine (pDC,a.getx(),a.gety(),b.getx(),b.gety(),white);

DDALine (pDC,a.getx(),a.gety(),c.getx(),c.gety(),white);

DDALine (pDC,c.getx(),c.gety(),d.getx(),d.gety(),white);

DDALine (pDC,d.getx(),d.gety(),b.getx(),b.gety(),white);

a=temp*a;

b=temp*b;

c=temp*c;

d=temp*d;

DDALine (pDC,a.getx(),a.gety(),b.getx(),b.gety(),COLOR);

DDALine (pDC,a.getx(),a.gety(),c.getx(),c.gety(),COLOR);

DDALine (pDC,c.getx(),c.gety(),d.getx(),d.gety(),COLOR);

DDALine (pDC,d.getx(),d.gety(),b.getx(),b.gety(),COLOR);}

temp = t1*s2*t2;

for(i=0;i<20;i++){

::Sleep (30);

DDALine (pDC,a.getx(),a.gety(),b.getx(),b.gety(),white);

DDALine (pDC,a.getx(),a.gety(),c.getx(),c.gety(),white);

DDALine (pDC,c.getx(),c.gety(),d.getx(),d.gety(),white);

DDALine (pDC,d.getx(),d.gety(),b.getx(),b.gety(),white);

a=temp*a;

b=temp*b;

c=temp*c;

d=temp*d;

DDALine (pDC,a.getx(),a.gety(),b.getx(),b.gety(),COLOR);

DDALine (pDC,a.getx(),a.gety(),c.getx(),c.gety(),COLOR);

DDALine (pDC,c.getx(),c.gety(),d.getx(),d.gety(),COLOR);

DDALine (pDC,d.getx(),d.gety(),b.getx(),b.gety(),COLOR); }

time=5;}

void CGraphicsView::OnUpdateScale(CCmdUI* pCmdUI)

{ pCmdUI->SetCheck(WHA T_TO_DO==ID_SCALE);}

4.7 三维图形的变换

主要实现三维图形的上下左右平移,分别绕X轴Y轴Z轴的旋转,放大和缩小,以及正方体六个面的颜色变换,除此之外,还可以选择背景颜色的改变

4.7.1 部分代码如下:

void CGraphicsView::OnAoduomianti()

{ WHAT_TO_DO=ID_AODUOMIANTI;

CDrawDLG dlg1;

dlg1.DoModal();}

void CGraphicsView::OnUpdateAoduomianti(CCmdUI* pCmdUI)

{ pCmdUI->SetCheck(WHA T_TO_DO==ID_AODUOMIANTI);}

void CDrawDLG::OnPaint()

{ CPaintDC dc(this); // device context for painting

CWnd *pWnd=GetDlgItem(IDC_DRAW);

pWnd->UpdateWindow();

// CDC *PDC=pWnd->GetDC();

Draw();}

void CDrawDLG::Draw()

{ CWnd *pWnd=GetDlgItem(IDC_DRAW);

pWnd->UpdateWindow();

CDC *pDC=pWnd->GetDC();

CRect rect;

pWnd->GetClientRect(rect);

D v[8]={

{-fs,-fs,fs},{-fs,fs,fs},{fs,fs,fs},{fs,-fs,fs},{-fs,-fs,-fs},{-fs,fs,-fs},{fs,fs,-fs},{fs,-fs,-fs} },d[8];

POINT p0[4],p1[4],p2[4],p3[4],p4[4],p5[4],w[8];

int z[8];

for (int i=0; i<8; i++)

{ d[i].x=v[i].x;

d[i].y=(int)(v[i].y*cos(a*DU)-v[i].z*sin(a*DU));

d[i].z=(int)(v[i].y*sin(a*DU)+v[i].z*cos(a*DU));

v[i].x=(int)(d[i].x*cos(b*DU)+d[i].z*sin(b*DU));

v[i].y=d[i].y;

v[i].z=(int)(d[i].z*cos(b*DU)-d[i].x*sin(b*DU));

d[i].x=(int)(v[i].x*cos(c*DU)-v[i].y*sin(c*DU));

d[i].y=(int)(v[i].x*sin(c*DU)+v[i].y*cos(c*DU));

d[i].z=v[i].z;

w[i].x=d[i].x+cx;

w[i].y=d[i].y+cy;

z[i]=d[i].z;}

p0[0]=w[0];p0[1]=w[1];p0[2]=w[2];p0[3]=w[3];

p1[0]=w[4];p1[1]=w[5];p1[2]=w[6];p1[3]=w[7];

p2[0]=w[0];p2[1]=w[1];p2[2]=w[5];p2[3]=w[4];

p3[0]=w[1];p3[1]=w[2];p3[2]=w[6];p3[3]=w[5];

p4[0]=w[2];p4[1]=w[3];p4[2]=w[7];p4[3]=w[6];

p5[0]=w[0];p5[1]=w[3];p5[2]=w[7];p5[3]=w[4];

switch (Maxnum(z,7))

{ case 0:fill(p0,p2,p5,0,2,5);break;

case 1:fill(p0,p2,p3,0,2,3);break;

case 2:fill(p0,p3,p4,0,3,4);break;

case 3:fill(p0,p4,p5,0,4,5);break;

case 4:fill(p1,p2,p5,1,2,5);break;

case 5:fill(p1,p2,p3,1,2,3);break;

case 6:fill(p1,p3,p4,1,3,4);break;

case 7:fill(p1,p4,p5,1,4,5);break;}}

BOOL CDrawDLG::OnInitDialog()

{ CDialog::OnInitDialog();

m_scroll1.SetScrollRange(-180,180);

m_scroll1.SetScrollPos(0);

m_scroll2.SetScrollRange(-180,180);

m_scroll2.SetScrollPos(0);

m_scroll3.SetScrollRange(-180,180);

m_scroll3.SetScrollPos(0);

m_scroll4.SetScrollRange(0,350);

m_scroll4.SetScrollPos(200);

m_scroll5.SetScrollRange(0,300);

m_scroll5.SetScrollPos(115);

m_scroll6.SetScrollRange(0.00,300.00);

m_scroll6.SetScrollPos(50.00);

a=b=c=0;

fs=50.00;

SetTimer(1,100,NULL);

Ctrl=0;

cx=200;

cy=115;

COLOR1=RGB(123,234,43);

COLOR2=RGB(123,123,0);

COLOR3=RGB(123,24,235);

COLOR4=RGB(0,123,95);

COLOR5=RGB(23,234,34);

COLOR6=RGB(234,124,0);

COLOR7=RGB(0,43,98);

return TRUE; // return TRUE unless you set the focus to a control}

void CDrawDLG::OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar) { int nID=pScrollBar->GetDlgCtrlID();

switch(nID)

{ case IDC_SCROLLBAR1: a=pScrollBar->GetScrollPos();

switch (nSBCode)

{ case SB_LINELEFT: a--;break;

case SB_LINERIGHT: a++;break;

case SB_PAGELEFT: a-=10;break;

case SB_PAGERIGHT: a+=10;break;

case SB_THUMBTRACK: a=nPos;break; }

if (a>180)a=-180;

pScrollBar->SetScrollPos(a);

break;

case IDC_SCROLLBAR2: b=pScrollBar->GetScrollPos();

switch (nSBCode)

{ case SB_LINELEFT: b--;break;

case SB_LINERIGHT: b++;break;

case SB_PAGELEFT: b-=10;break;

case SB_PAGERIGHT: b+=10;break;

case SB_THUMBTRACK: b=nPos;break; }

if (b<-180)b=180;

if (b>180)b=-180;

pScrollBar->SetScrollPos(b);

break;

case IDC_SCROLLBAR3: c=pScrollBar->GetScrollPos();

switch (nSBCode)

{ case SB_LINELEFT: c--;break;

case SB_LINERIGHT: c++;break;

case SB_PAGELEFT: c-=10;break;

case SB_PAGERIGHT: c+=10;break;

case SB_THUMBTRACK: c=nPos;break; }

if (c<-180)c=180;

if (c>180)c=-180;

pScrollBar->SetScrollPos(c);

break;

case IDC_SCROLLBAR4: cx=pScrollBar->GetScrollPos();

switch (nSBCode)

{ case SB_LINELEFT: cx--;break;

case SB_LINERIGHT: cx++;break;

case SB_PAGELEFT: cx-=10;break;

case SB_PAGERIGHT: cx+=10;break;

case SB_THUMBTRACK: cx=nPos;break;}

if (cx<0)cx=200;

if (cx>350)cx=200;

pScrollBar->SetScrollPos(cx);

break;

case IDC_SCROLLBAR5: cy=pScrollBar->GetScrollPos();

switch (nSBCode)

{ case SB_LINELEFT: cy--;break;

case SB_LINERIGHT: cy++;break;

case SB_PAGELEFT: cy-=10;break;

case SB_PAGERIGHT: cy+=10;break;

case SB_THUMBTRACK: cy=nPos;break; }

计算机图形学真实图形

#include #include /* Initialize material property, light source, lighting model, * and depth buffer. */ void init(void) { GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 }; GLfloat mat_shininess[] = { 50.0 }; GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 }; GLfloat lightPos[]={0.0f,0.0f,75.0f,1.0f}; GLfloat ambientLight[]={0.0f,0.0f,75.0f,1.0f}; GLfloat specular[]={0.0f,0.0f,75.0f,1.0f}; GLfloat specref[]={0.0f,0.0f,75.0f,1.0f}; GLfloat spotDir[]={0.0f,0.0f,75.0f,1.0f}; glClearColor (0.0, 0.0, 0.0, 0.0); glShadeModel (GL_SMOOTH);//设置阴影模型 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);//镜面光分量强度glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);//镜面光反射指数glLightfv(GL_LIGHT0, GL_POSITION, light_position);//设置光源的位置 glLightModelfv(GL_LIGHT_MODEL_AMBIENT,ambientLight); glLightfv(GL_LIGHT1,GL_DIFFUSE,ambientLight); glLightfv(GL_LIGHT1,GL_SPECULAR,specular); glLightfv(GL_LIGHT1,GL_POSITION,lightPos); glLightf(GL_LIGHT1,GL_SPOT_CUTOFF,50.0f); glEnable(GL_LIGHT1); glEnable(GL_COLOR_MATERIAL); glColorMaterial(GL_FRONT,GL_AMBIENT_AND_DIFFUSE); glMaterialfv(GL_FRONT,GL_SPECULAR,specref); glMateriali(GL_FRONT,GL_SHININESS,128); glEnable(GL_LIGHTING);//启动光照 glEnable(GL_LIGHT0);//激活光源 glEnable(GL_LIGHT1);//激活光源 glEnable(GL_DEPTH_TEST); } /* 调用glut函数绘制一个球*/ void display(void) { glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

计算机图形学-图形的几何变换

贵州大学实验报告 学院:计算机科学与技术专业:软件工程班级:软件132 姓名常伟学号1308060226 实验地点一教704 实验时间2016.5.9 指导教师李智实验成绩 实验项目名称试验四、图形的几何变换 实验目的1.掌握矢量运算。 2.熟练使用齐次坐标。 3.掌握采用齐次坐标进行几何变换。 实验要求1.理解几何图形变换的原理,编程实现图形的几何变换。 2.编程界面友好,实现变换的所有方式,包括平移、缩放、旋转、对称、错切以及基本变换基础上的组合变换。 3.几何变换使用矩阵进行运算。

实验原理 二维齐次坐标变换的矩阵的形式是 ? ? ? ? ? ? ? ? ? ? i h g f e d c b a 这个矩阵的每一个元素都是有特殊含义的。其中,? ? ? ? ? ? e d b a 可以对图形进行缩放、旋 转、对称和错切等变换;? ? ? ? ? ? f c 是对图形进行平移变换;[]h g是对图形作投影变换;[]i 则是对图形进行缩放变换。 下面给出几个基本变换的矩阵运算。 1.平移变换 ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? + + = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? 1 ) , ( 1 1 1 1 1 1 ' ' y x T y x y x t t t t t t y x y x y x y x 2.缩放变换 ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? 1 ) , ( 1 1 1 1 ' ' y x s s S y s x s y x s s y x y x y x y x 3.旋转矩阵 ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? + - = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?- = ? ? ? ? ? ? ? ? ? ? 1 ) ( 1 cos sin sin cos 1 1 cos sin sin cos 1 ' ' y x R y x y x y x y x θ θ θ θ θ θ θ θ θ 4.对称矩阵 ? ? ? ? ? ? ? ? ? ? + + = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? 1 1 1 1 ' ' ey dx by ax y x e d b a y x 对称变换其实只是a、b、d、e取0、1等特殊值产生的一些特殊效果。 5.错切变换 ? ? ? ? ? ? ? ? ? ? + + = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? 1 1 1 1 1 1 ' ' y dx by x y x d b y x

计算机图形学实验

实验1 直线的绘制 实验目的 1、通过实验,进一步理解和掌握DDA和Bresenham算法; 2、掌握以上算法生成直线段的基本过程; 3、通过编程,会在TC环境下完成用DDA或中点算法实现直线段的绘制。实验环境 计算机、Turbo C或其他C语言程序设计环境 实验学时 2学时,必做实验。 实验内容 用DDA算法或Besenham算法实现斜率k在0和1之间的直线段的绘制。 实验步骤 1、算法、原理清晰,有详细的设计步骤; 2、依据算法、步骤或程序流程图,用C语言编写源程序; 3、编辑源程序并进行调试; 4、进行运行测试,并结合情况进行调整; 5、对运行结果进行保存与分析; 6、把源程序以文件的形式提交; 7、按格式书写实验报告。 实验代码:DDA: # include # include

void DDALine(int x0,int y0,int x1,int y1,int color) { int dx,dy,epsl,k; float x,y,xIncre,yIncre; dx=x1-x0; dy=y1-y0; x=x0; y=y0; if(abs(dx)>abs(dy)) epsl=abs(dx); else epsl=abs(dy); xIncre=(float)dx/(float)epsl; yIncre=(float)dy/(float)epsl; for(k=0;k<=epsl;k++) { putpixel((int)(x+0.5),(int)(y+0.5),4); x+=xIncre; y+=yIncre; } } main(){ int gdriver ,gmode ;

计算机图形学上机实验4_实现Bezier曲线和Bezier曲面的绘制

昆明理工大学理学院 信息与计算科学专业操作性实验报告 年级: 10级姓名:刘陈学号: 201011101128 指导教师: 胡杰 实验课程名称:计算机图形学程序设计开课实验室:理学院机房216 实验内容: 1.实验/作业题目:用计算机高级语言VC++6.0实现计算机的基本图元绘制2.实验/作业课时:2学时 3.实验过程(包括实验环境、实验内容的描述、完成实验要求的知识或技能):实验环境:(1)硬件:每人一台PC机 (2)软件:windows OS,VC++6.0或以上版本。 试验内容及步骤: (1)在VC++环境下创建MFC应用程序工程(单文档) (2)编辑菜单资源 (3)添加菜单命令消息处理函数 (4)添加成员函数 (5)编写函数内容 试验要求: (1)掌握Bezier曲线、Bezier曲面、及另一个曲面的算法。 (2)实现对Bezier曲线、Bezier曲面、及另一个曲面。 (3)试验中调试、完善所编程序,能正确运行出设计要求结果。 (4)书写试验报告上交。 4.程序结构(程序中的函数调用关系图)

5.算法描述、流程图或操作步骤: 在lab4iew.cpp文件中添加如下头文件及变量 int flag_2=0; int n_change; #define M 30 #define PI 3.14159 //圆周率 #include "math.h" //数学头文件 在lab4iew.h文件中的public内添加变量: int move; int graflag; void Tiso(float p0[3],float x0, float y0, float p[3]); void OnBezierface(); 在lab4iew.h文件中的protected内添加变量: int n;//控制点数 const int N;//控制点数的上限 CPoint* a;//控制点存放的数组 double result[4][2]; 在lab4iew.cpp文件中的函数Clab4iew::OnDraw(CDC* pDC)下添加如下代码: int i,j; for(i=0;iFillSolidRect(a[i].x-2,a[i].y-2,4,4,RGB(255,55,255)); } pDC->MoveTo(a[0]);

计算机图形学教程课后习题参考答案.

第一章 1、试述计算机图形学研究的基本内容? 答:见课本P5-6页的1.1.4节。 2、计算机图形学、图形处理与模式识别本质区别是什么?请各举一例说明。 答:计算机图形学是研究根据给定的描述,用计算机生成相应的图形、图像,且所生成的图形、图像可以显示屏幕上、硬拷贝输出或作为数据集存在计算机中的学科。计算机图形学研究的是从数据描述到图形生成的过程。例如计算机动画制作。 图形处理是利用计算机对原来存在物体的映像进行分析处理,然后再现图像。例如工业中的射线探伤。 模式识别是指计算机对图形信息进行识别和分析描述,是从图形(图像)到描述的表达过程。例如邮件分捡设备扫描信件上手写的邮政编码,并将编码用图像复原成数字。 3、计算机图形学与CAD、CAM技术关系如何? 答:见课本P4-5页的1.1.3节。 4、举3个例子说明计算机图形学的应用。 答:①事务管理中的交互绘图 应用图形学最多的领域之一是绘制事务管理中的各种图形。通过从简明的形式呈现出数据的模型和趋势以增加对复杂现象的理解,并促使决策的制定。 ②地理信息系统 地理信息系统是建立在地理图形基础上的信息管理系统。利用计算机图形生成技术可以绘制地理的、地质的以及其它自然现象的高精度勘探、测量图形。 ③计算机动画 用图形学的方法产生动画片,其形象逼真、生动,轻而易举地解决了人工绘图时难以解决的问题,大大提高了工作效率。 5、计算机绘图有哪些特点? 答:见课本P8页的1.3.1节。 6、计算机生成图形的方法有哪些? 答:计算机生成图形的方法有两种:矢量法和描点法。 ①矢量法:在显示屏上先给定一系列坐标点,然后控制电子束在屏幕上按一定的顺序扫描,逐个“点亮”临近两点间的短矢量,从而得到一条近似的曲线。尽管显示器产生的只是一些短直线的线段,但当直线段很短时,连成的曲线看起来还是光滑的。 ②描点法:把显示屏幕分成有限个可发亮的离散点,每个离散点叫做一个像素,屏幕上由像素点组成的阵列称为光栅,曲线的绘制过程就是将该曲线在光栅上经过的那些像素点串接起来,使它们发亮,所显示的每一曲线都是由一定大小的像素点组成的。当像素点具有多种颜色或多种灰度等级时,就可以显示彩色图形或具有不同灰度的图形。 7、当前计算机图形学研究的课题有哪些? 答:见课本P10-11页的1.4节。

计算机图形学--图形几何变换实现

实验五 图形几何变换的实现 班级:信计二班 学号: :解川 分数: 一、实验目的 为了掌握理解二维、三维的数学知识、变换原理、变换种类、变换方法;进一步理解采用齐次坐标进行二维、三维变换的必要性;利用VC++语言实现二维、三维图形的基本变换与复合变换。 二、实验容 (1) 理解采用齐次坐标进行图形变换的必要性——变换的连续性,使复合变换 得以实现。 (2) 掌握二维、三维图形基本变换的原理及数学公式。 (3) 利用VC++语言实现二维、三维图形的基本变换、复合变换,在评不上显 示变换过程或变换结果。 三、实验步骤 (1) 预习教材关于二维、三维图形变换的原理与方法。 (2) 使用VC++语言实现某一种或几种基本变换。 (3) 调试、编译、运行程序。 四、原理分析 源程序分别实现了对二维图形进行的平移变换—基本变换;对三维图形进行的绕某一个坐标轴旋转变换以及相对于立方体中心的比例变换—复合变换。 三维几何变换: (1) 比例变换: []1111z y x =[]1z y x T 3D =[]1z y x ????? ?? ?? ???s n m l r j i h q f e d p c b q 局部比例变换: s T =? ? ??? ???? ???1000000000000j e a 其中a 、b 、j 分别为在x 、y 、z 方向的比例系数。

整体比例变换: s T =? ? ??? ???? ???s 000010000100001其中s 为在xyz 方向的等比例系数。S>1时,整体缩小;s<1时,整体放大。 (2) 旋转变换: 旋转变换的角度方向为(沿坐标轴的反方向看去,各轴按逆时针方向旋转) 绕z 轴旋转: RZ T =?? ??? ???? ???-100 010000cos sin 00sin cos θθθθ 绕x 轴旋转: RX T =??????? ?? ???-10 00 0cos sin 00sin cos 000 01 θθθθ 绕y 轴旋转: RY T =????? ???? ???-10 0cos 0sin 00100sin 0cos θθθθ 程序代码: /*三维图形(立方体)旋转变换、比例变换*/ #include #include #include #include #include #include #define ZOOM_IN 0.9 #define ZOOM_OUT 1.1

计算机图形学——绘制Bezier曲线

计算机图形学 实验报告 专业:信息与计算科学 班级: 1002班 学号: 1008060*** 姓名: ****

实验目的: (1)掌握直线的参数表示法。 (2)掌握德卡斯特里奥算法的几何意义。 (3)掌握绘制二维Bezier曲线的方法。 实验要求: (1)使用鼠标左键绘制个数为10以内的任意控制点,使用直线连接构成控制多边形。 (2)使用鼠标右键绘制Bezier曲线。 (3)在状态栏显示鼠标的位置坐标。 (4)B ezier曲线使用德卡斯特里奥算法绘制。 实验算法: Bezier曲线的分割递推德卡斯特里奥算法 给定空间n+1个点P i(i=0,1,2,…,n)及参数t,有 P r i(t)=(1-t)P1-r i(t)+t P1-r1i+(t) 式中,r=1,2,…,n;i=0,1,…,n-r;t∈[0,1]。 且规定当r=0时,P0i(t)=P i, P n0(t)是在曲线上具有参数t的点。 德卡斯特里奥算法的基础就是在矢量? ?→ ? P P10 上选择一个点P,使 得P点划分矢量? ?→ ? P P10为|P P0|:|P P1|=t:1-t,给定点P0、P1 的坐标以及t的值,点P的坐标为P=P0+t(P1-P0)=(1-t)P0+tP1。式中,t∈[0,1]。 定义贝塞尔曲线的控制点编号为P r i,其中,r表示迭代次数。德卡斯特里奥证明了,当r=n时,P n0表示Bezier曲线上的点。

函数功能介绍 1.德卡斯特里奥函数: long CMy12View::DeCasteliau(double t,long *p) { double P[N_MAX_POINT][N_MAX_POINT]; int n=CtrlPNum-1; for(int k=0;k<=n;k++) { P[0][k]=p[k]; } for(int r=1;r<=n;r++) { for(int i=0;i<=n-r;i++) { P[r][i]=(1-t)*P[r-1][i]+t*P[r-1][i+1]; } } return(long(P[n][0])); } 函数功能介绍:此函数为德卡斯特里奥算法函数。在绘制Bezier 曲线时,需调用两次此函数,分别关于x方向和y方向上的调用。由DrawBezier()函数调用。 2. void CMy12View::DrawBezier() 函数功能介绍:此函数为绘制Bezier曲线。绘制二维Bezier曲线,需要对x方向和y方向进行计算。这个函数就是解决这个问题,然后通过OnRButtonDown(UINT nFlags,CPoint point)调用进行绘制。 3 .void CMy12View::DrawCtrPolygon() 函数功能介绍:此函数为绘制控制多边形。定义一个CPen型NewPen,和CPen*型PoldPen,进行绘制多边形,为了突出控制点,使用黑色填充边长为4个像素的正方形块代表控制点。 4. void CMy12View::OnLButtonDown(UINT nFlags,CPoint point) 函数功能介绍:此函数为鼠标左键按下函数。按下鼠标左键,将鼠

计算机图形学必考知识点

Phong Lighting 该模型计算效率高、与物理事实足够接近。Phong模型利用4个向量计算表面任一点的颜色值,考虑了光线和材质之间的三种相互作用:环境光反射、漫反射和镜面反射。Phong模型使用公式:I s=K s L s cosαΦα:高光系数。计算方面的优势:把r和v归一化为单位向量,利用点积计算镜面反射分量:I s=K s L s max((r,v)α,0),还可增加距离衰减因子。 在Gouraud着色这种明暗绘制方法中,对公用一个顶点的多边形的法向量取平均值,把归一化的平均值定义为该顶点的法向量,Gouraud着色对顶点的明暗值进行插值。Phong着色是在多边形内对法向量进行插值。Phong着色要求把光照模型应用到每个片元上,也被称为片元的着色。 颜色模型RGB XYZ HSV RGB:RGB颜色模式已经成为现代图形系统的标准,使用RGB加色模型的RGB三原色系统中,红绿蓝图像在概念上有各自的缓存,每个像素都分别有三个分量。任意色光F都可表示为F=r [ R ] + g [ G ] + b [ B ]。RGB颜色立方体中沿着一个坐标轴方向的距离代表了颜色中相应原色的分量,原点(黑)到体对角线顶点(白)为不同亮度的灰色 XYZ:在RGB 系统基础上,改用三个假想的原色X、Y、Z建立了一个新的色度系统, 将它匹配等能光谱的三刺激值,该系统称为视场XYZ色度系统,在XYZ空间中不能直观地评价颜色。 HSV是一种将RGB中的点在圆柱坐标系中的表示法,H色相S饱和度V明度,中心轴为灰色底黑顶白,绕轴角度为H,到该轴距离为S,沿轴高度为S。 RGB优点:笛卡尔坐标系,线性,基于硬件(易转换),基于三刺激值,缺点:难以指定命名颜色,不能覆盖所有颜色范围,不一致。 HSV优点:易于转换成RGB,直观指定颜色,’缺点:非线性,不能覆盖所有颜色范围,不一致 XYZ:覆盖所有颜色范围,基于人眼的三刺激值,线性,包含所有空间,缺点:不一致 交互式计算机程序员模型 (应用模型<->应用程序<->图形库)->(图形系统<->显示屏).应用程序和图形系统之间的接口可以通过图形库的一组函数来指定,这和接口的规范称为应用程序编程人员接口(API),软件驱动程序负责解释API的输出并把这些数据转换为能被特定硬件识别的形式。API提供的功能应该同程序员用来确定图像的概念模型相匹配。建立复杂的交互式模型,首先要从基本对象开始。良好的交互式程序需包含下述特性:平滑的显示效果。使用交互设备控制屏幕上图像的显示。能使用各种方法输入信息和显示信息。界面友好易于使用和学习。对用户的操作具有反馈功能。对用户的误操作具有容忍性。Opengl并不直接支持交互,窗口和输入函数并没有包含在API中。 简单光线跟踪、迭代光线跟踪 光线跟踪是一种真实感地显示物体的方法,该方法由Appel在1968年提出。光线跟踪方法沿着到达视点的光线的相反方向跟踪,经过屏幕上每一象素,找出与视线所交的物体表面点P0,并继续跟踪,找出影响P0点光强的所有的光源,从而算出P0点上精确的光照强度。光线跟踪器最适合于绘制具有高反射属性表面的场景。优缺点:原理简单,便于实现,能生成各种逼真的视觉效果,但计算量开销大,终止条件:光线与光源相交光线超出视线范围,达到最大递归层次。一般有三种:1)相交表面为理想漫射面,跟踪结束。2)相交表面为理想镜面,光线沿镜面反射方向继续跟踪。3)相交表面为规则透射面,光线沿规则透射方向继续跟踪。 描述光线跟踪简单方法是递归,即通过一个递归函数跟踪一条光线,其反射光想和折射光线再调用此函数本身,递归函数用来跟踪一条光线,该光线由一个点和一个方向确定,函数返回与光线相交的第一个对象表面的明暗值。递归函数会调用函数计算指定的光线与最近对象表面的交点位置。 图形学算法加速技术BVH, GRID, BSP, OCTree 加速技术:判定光线与场景中景物表面的相对位置关系,避免光线与实际不相交的景物表面的求交运算。加速器技术分为以下两种:Bounding Volume Hierarchy 简写BVH,即包围盒层次技术,是一种基于“物体”的场景管理技术,广泛应用于碰撞检测、射线相交测试之类的场合。BVH的数据结构其实就是一棵二叉树(Binary Tree)。它有两种节点(Node)类型:Interior Node 和Leaf Node。前者也是非叶子节点,即如果一个Node不是Leaf Node,它必定是Interior Node。Leaf Node 是最终存放物体/们的地方,而Interior Node存放着代表该划分(Partition)的包围盒信息,下面还有两个子树有待遍历。使用BVH需要考虑两个阶段的工作:构建(Build)和遍历(Traversal)。另一种是景物空间分割技术,包括BSP tree,KD tree Octree Grid BSP:二叉空间区分树 OCTree:划分二维平面空间无限四等分 Z-buffer算法 算法描述:1、帧缓冲器中的颜色设置为背景颜色2、z缓冲器中的z值设置成最小值(离视点最远)3、以任意顺序扫描各多边形a) 对于多边形中的每一个采样点,计算其深度值z(x,y) b) 比较z(x, y)与z缓冲器中已有的值zbuffer(x,y)如果z(x, y) >zbuffer(x, y),那么计算该像素(x, y)的光亮值属性并写入帧缓冲器更新z缓冲器zbuffer(x, y)=z(x, y) Z-buffer算法是使用广泛的隐藏面消除算法思想为保留每条投影线从COP到已绘制最近点距离,在投影后绘制多边形时更新这个信息。存储必要的深度信息放在Z缓存中,深度大于Z缓存中已有的深度值,对应投影线上已绘制的多边形距离观察者更近,故忽略该当前多边形颜色,深度小于Z缓存中的已有深度值,用这个多边形的颜色替换缓存中的颜色,并更新Z缓存的深度值。 void zBuffer() {int x, y; for (y = 0; y < YMAX; y++) for (x = 0; x < XMAX; x++) { WritePixel (x, y, BACKGROUND_VALUE); WriteZ (x, y, 1);} for each polygon { for each pixel in polygon’s projection { //plane equation doubl pz = Z-value at pixel (x, y); if (pz < ReadZ (x, y)) { // New point is closer to front of view WritePixel (x, y, color at pixel (x, y)) WriteZ (x, y, pz);}}}} 优点:算法复杂度只会随着场景的复杂度线性增加、无须排序、适合于并行实现 缺点:z缓冲器需要占用大量存储单元、深度采样与量化带来走样现象、难以处理透明物体 着色器编程方法vert. frag 着色器初始化:1、将着色器读入内存2、创建一个程序对象3、创建着色器对象4、把着色器对象绑定到程序对象5、编译着色器6、将所有的程序连接起来7、选择当前的程序对象8、把应用程序和着色器之间的uniform变量及attribute变量关联起来。 Vertex Shader:实现了一种通用的可编程方法操作顶点,输入主要有:1、属性、2、使用的常量数据3、被Uniforms使用的特殊类型4、顶点着色器编程源码。输入叫做varying变量。被使用在传统的基于顶点的操作,例如位移矩阵、计算光照方程、产生贴图坐标等。Fragment shader:计算每个像素的颜色和其他属性,实现了一种作用于片段的通用可编程方法,对光栅化阶段产生的每个片段进行操作。输入:Varying 变量、Uniforms-用于片元着色器的常量,Samples-用于呈现纹理、编程代码。输出:内建变量。 观察变换 建模变换是把对象从对象标架变换到世界标架 观察变换把世界坐标变换成照相机坐标。VC是与物理设备无关的,用于设置观察窗口观察和描述用户感兴趣的区域内部分对象,观察坐标系采用左手直角坐标系,可在用户坐标系中的任何位置、任何方向定义。其中有一坐标轴与观察方向重合同向并与观察平面垂直。观察变换是指将对象描述从世界坐标系变换到观察坐标系的过程。(1):平移观察坐标系的坐标原点,与世界坐标系的原点重合,(2):将x e,y e轴分别旋转(-θ)角与x w、y w轴重合。 规范化设备坐标系 规范化设备坐标系是与具体的物理设备无关的一种坐标系,用于定义视区,描述来自世界坐标系窗口内对象的图形。 光线与隐式表面求交 将一个对象表面定义为f(x,y,z)=f(p)=0,来自P0,方向为d的光线用参数的形式表示为P(t)=P0+td. 交点位置处参数t的值满足:f(P0+td)=0,若f是一个代数曲面,则f是形式为X i Y j Z k的多项式之和,求交就转化为寻求多项式所有根的问题,满足的情况一:二次曲面,情况二:品面求交,将光线方程带入平面方程:p*n+c=0可得到一个只需做一次除法的标量方程p=p0+td。可通过计算得到交点的参数t的值:t=(p0*n+c)/(n*d). 几何变换T R S矩阵表示 三维平移T 三维缩放S旋转绕z轴Rz( ) 100dx 010dy 001dz 0001 Sx000 0Sy00 00Sz0 0001 cos-sin00 sin cos00 0010 0001 θθ θθ 旋转绕x轴Rx(θ) 旋转绕y轴Ry(θ) 1000 0cos-sin0 0sin cos0 0001 θθ θθ cos0sin0 0100 -sin0cos0 0001 θθ θθ 曲线曲面 Bezier曲线性质:Bezier曲线的起点和终点分别是特征多边形的第一个顶点和最后一个顶点。曲线在起点和终点处的切线分别是特征多边形的第一条边和最后一条边,且切矢的模长分别为相应边长的n倍;(2)凸包性;(3)几何不变性(4)变差缩减性。端点插值。 均匀B样条曲线的性质包括:凸包性、局部性、B样条混合函数的权性、连续性、B样条多项式的次数不取决于控制函数。 G连续C连续 C0连续满足:C1连续满足: (1)(0) p(1)=(1)(0)(0) (1)(0) px qx py q qy pz qz == ???? ???? ???? ???? (1)(0) p'(1)=(1)'(0)(0) (1)(0) p x q x p y q q y p z q z == ???? ???? ???? ???? C0(G0)连续:曲线的三个分量在连接点必须对应相等 C1连续:参数方程和一阶导数都对应相等 G1连续:两曲线的切线向量成比例 三维空间中,曲线上某点的导数即是该点的切线,只要求两个曲线段连接点的导数成比例,不需要导 数相等,即p’(1)=aq’(0) 称为G1几何连续性。将该思想推广到高阶导数,就可得到C n和G n连续性。

计算机图形学

a.扫描线算法:目标:利用相邻像素之间的连贯性,提高算法效率。处理对象:简单多边形,非自交多边形(边与边之间除了顶点外无其它交点)。扫描线:平行于坐标轴的直线,一般取平行于X轴。区间:扫描线与边的交点间的线段。基本原理:将整个绘图窗口内扫描多边形的问题分解到一条条扫描线,只要完成每条扫描线的绘制就实现了多边形的扫描转换;一条扫描线与多边形的边有偶数个交点,每2个点形成一区间。步骤:(对于每一条扫描线)(1)计算扫描线与边的交点(2)交点按x坐标从小到大排序(3)交点两两配对,填充区间。算法:1、建立ET;2、将扫描线纵坐标y的初值置为ET中非空元素的最小序号,如图中,y=1;3、置AEL为空;4、执行下列步骤直至ET和AEL都为空.4.1、如ET中的第y类非空,则将其中的所有边取出并插入AEL 中;4.2、如果有新边插入AEL,则对AEL中各边排序;4.3、对AEL中的边两两配对,(1和2为一对,3和4为一对,…),将每对边中x坐标按规则取整,获得有效的填充区段,再填充.4.4、将当前扫描线纵坐标 y 值递值1;4.5、将AEL中满足y = ymax边删去(因为每条边被看作下闭上开的);4.6、对AEL中剩下的每一条边的x 递增deltax,即x = x+deltax. b.走样与反走样:走样:用离散量(像素)表示连续的量(图形)而引起的失真,称为走样,或称为混淆。光栅图形的走样现象:阶梯(锯齿)状边界、图形细节失真、狭小图形遗失:动画序列中时隐时现,产生闪烁。反走样:在图形显示过程中,用于减少或消除走样(混淆)现象的方法。方法:提高分辨率方法{方法简单,但代价非常大,显示器的水平、竖直分辩率各提高一倍,则显示器的点距减少一倍,帧缓存容量则增加到原来的4倍,而扫描转换同样大小的图元却要花4倍时间}、非加权区域采样{扫描转换线段的两点假设:像素是数学上抽象的点,它的面积为0,它的亮度由覆盖该点的图形的亮度所决定;直线段是数学上抽象直线段,它的宽度为0。而现实:像素的面积不为0;直线段的宽度至少为1个像素;假设与现实的矛盾是导致走样出现的原因之一。解决方法:改变直线段模型,线上像素灰度不等。方法步骤:1、将直线段看作具有一定宽度的狭长矩形;2、当直线段与某像素有交时,求出两者相交区域的面积;3、根据相交区域的面积,确定该像素的亮度值}、加权区域采样{权函数w(x, y),以像素A的中心为原点建立二维坐标系,w(x, y)反应了微面积元dA对整个像素亮度的贡献大小,与 dA 到像素中心距离d 成反比。实现步骤:1.求直线段与像素的相交区域2.计算的值3.上面所得到的值介于0、1之间,用它乘像素的最大灰度值,即设该像素的显示灰度。问题:计算量大。 c.为什么需要齐次坐标? 1、对多个点计算多次不同的变换时,分别利用矩阵计算各变换导致计算量大2、运算表示形式不统一:平移为“+”、旋转和放缩为“·”3、统一运算形式后,可以先合成变换运算的矩阵,再作用于图形对象。 d.Sutherland-Hodgman算法:S-H算法基本思想(亦称逐边裁剪算法):将多边形关于矩形窗口的裁剪分解为多边形关于窗口四边所在直线的裁剪。步骤:1、多边形由一系列顶点表示:V1V2…Vn2、按一定(左上右下)的次序依次裁剪; 与左边所在直线裁剪

计算机图形学第二版课后习题答案

第一章绪论 概念:计算机图形学、图形、图像、点阵法、参数法、 图形的几何要素、非几何要素、数字图像处理; 计算机图形学和计算机视觉的概念及三者之间的关系; 计算机图形系统的功能、计算机图形系统的总体结构。 第二章图形设备 图形输入设备:有哪些。 图形显示设备:CRT的结构、原理和工作方式。 彩色CRT:结构、原理。 随机扫描和光栅扫描的图形显示器的结构和工作原理。 图形显示子系统:分辨率、像素与帧缓存、颜色查找表等基本概念,分辨率的计算 第三章交互式技术 什么是输入模式的问题,有哪几种输入模式。 第四章图形的表示与数据结构 自学,建议至少阅读一遍 第五章基本图形生成算法 概念:点阵字符和矢量字符; 直线和圆的扫描转换算法; 多边形的扫描转换:有效边表算法; 区域填充:4/8连通的边界/泛填充算法;

内外测试:奇偶规则,非零环绕数规则; 反走样:反走样和走样的概念,过取样和区域取样。 5.1.2 中点 Bresenham 算法(P109) 5.1.2 改进 Bresenham 算法(P112) 习题答案

习题5(P144) 5.3 试用中点Bresenham算法画直线段的原理推导斜率为负且大于1的直线段绘制过程(要求写清原理、误差函数、递推公式及最终画图过程)。(P111) 解: k<=-1 |△y|/|△x|>=1 y为最大位移方向 故有 构造判别式: 推导d各种情况的方法(设理想直线与y=yi+1的交点为Q): 所以有: y Q-kx Q-b=0 且y M=y Q d=f(x M-kx M-b-(y Q-kx Q-b)=k(x Q-x M) 所以,当k<0, d>0时,M点在Q点右侧(Q在M左),取左点 P l(x i-1,y i+1)。 d<0时,M点在Q点左侧(Q在M右),取右点 Pr(x i,y i+1)。 d=0时,M点与Q点重合(Q在M点),约定取右点 Pr(x i,y i+1) 。 所以有 递推公式的推导: d2=f(x i-1.5,y i+2) 当d>0时, d2=y i+2-k(x i-1.5)-b 增量为1+k =d1+1+k

(计算机图形学)关于任意直线的对称变换

实验3:关于任意直线的对称变换 实验类型:验证、设计 所需时间:3学时 主要实验内容及要求: 对于任意直线的二维图形对称变化的实验,要求输入的直线是任意直线,直线的端点只能由键盘输入或者鼠标拾取,要做对称变换的图形也是一个任意图形(至少应是一个任意多边形)。 对称变换,先分析如何使用一系列简单变换来构造题目要求的复合变换。本体要实现的变换可以用如下一组变换组合来实现: ①将直线任一点移至与坐标原点重合 ②将平移后的直线绕原点旋转至与某一坐标轴重合 ③将题目要求的对称变换转为实现已知图形关于上述坐标轴的对称变换 ④按逆序求上述①、②变换的逆变换 ⑤将上述矩阵依次相乘得到最终的复合变换矩阵 则某一多边形关于任意直线的对称变换就转变为将该多边形的各顶点与上述求得的复合变换进行矩阵乘法,求得变换后的新多边形的各个顶点坐标。 根据上述流程,编程实现,并测试程序功能。 源代码: #include #include using namespace std;

void Initial(void) { glClearColor(1.0f,1.0f,1.0f,1.0f); glMatrixMode(GL_PROJECTION); gluOrtho2D(0.0,200.0,0.0,150.0); } class CPoint { public: int x; int y; CPoint(){} CPoint(int x1,int y1) { x=x1; y=y1; } static CPoint ZeroMoveToXY(CPoint p, CPoint XY);//原始坐标向屏幕坐标XY 的平移 static CPoint ToZero(CPoint p);//关于原点对称 static CPoint XYMoveToZero(CPoint p, CPoint XY);//XY坐标向屏幕坐标的平移

计算机图形学课后习题答案

第三章习题答案 3.1 计算机图形系统的主要功能是什么? 答:一个计算机图形系统应具有计算、存储、输入、输出、交互等基本功能,它们相互协作,完成图形数据的处理过程。 1. 计算功能 计算功能包括: 1)图形的描述、分析和设计;2)图形的平移、旋转、投影、透视等几何变换; 3)曲线、曲面的生成;4)图形之间相互关系的检测等。 2. 存储功能 使用图形数据库可以存放各种图形的几何数据及图形之间的相互关系,并能快速方便地实现对图形的删除、增加、修改等操作。 3. 输入功能 通过图形输入设备可将基本的图形数据(如点、线等)和各种绘图命令输入到计算机中,从而构造更复杂的几何图形。 4. 输出功能 图形数据经过计算后可在显示器上显示当前的状态以及经过图形编辑后的结果,同时还能通过绘图仪、打印机等设备实现硬拷贝输出,以便长期保存。 5. 交互功能 设计人员可通过显示器或其他人机交互设备直接进行人机通信,对计算结果和图形利用定位、拾取等手段进行修改,同时对设计者或操作员输入的错误给以必要的提示和帮助。 3.2 阴极射线管由哪些部分组成?它们的功能分别是什么? 答:CRT主要由阴极、电平控制器(即控制极)、聚焦系统、加速系统、偏转系统和阳极荧光粉涂层组成,这六部分都在真空管内。 阴极(带负电荷)被灯丝加热后,发出电子并形成发散的电子云。这些电子被电子聚集透镜聚焦成很细的电子束,在带正高压的阳极(实际为与加速极连通的CRT屏幕内侧的石墨粉涂层,从高压入口引入阳极高电压)吸引下轰击荧光粉涂层,而形成亮点。亮点维持发光的时间一般为20~40mS。 电平控制器是用来控制电子束的强弱的,当加上正电压时,电子束就会大量通过,在屏幕上形成较亮的点,当控制电平加上负电压时,依据所加电压的大小,电子束被部分或全部阻截,通过的电子很少,屏幕上的点也就比较暗。所以改变阴极和 控制电平之间的电位差,就可调节电子 束的电流密度,改变所形成亮点的明暗 程度。 利用偏转系统(包括水平方向和 垂直方向的偏转板)可将电子束精确定 位在屏幕的任意位置上。只要根据图形 的几何坐标产生适当的水平和垂直偏转磁场(或水平和垂直偏转板静电场),图 2.2CRT原理图

计算机图形学 图形几何变换的实现

计算机图形学图形几何变换的实现

————————————————————————————————作者:————————————————————————————————日期:

实验五图形几何变换的实现 班级08信计2 学号89姓名徐阳分数 一、实验目的和要求: 1、掌握理解二维、三维变换的数学知识、变换原理、变换种类、变换方法;进一步理解采用齐次坐标进行二维、三维变换的必要性;利用Turboc实现二维、三维图形的基本变换和复合变换。 二、实验内容: 1、理解采用齐次坐标进行图形变换的必要性——变换的连续性,使复合变换得以实现。 2、掌握二维、三维图形基本变换(平移、缩放、对称、旋转、错切)的原理及数学公式。 3、利用Turboc实现二维、三维图形的基本变换、复合变换,在屏幕上显示变换过程或变换结果。 三、实验结果分析: 程序代码如下: /*二维图形(直线)平移变换*/ #include #include #include main() {int x0,y0,x1,y1,i,j; int a[3][3]; char key; for(i=0;i<3;i++) for(j=0;j<3;j++) a[i][j]=0; for(i=0;i<3;i++) a[i][i]=1; int graphdriver=DETECT; int graphmode=0; initgraph(&graphdriver,&graphmode," "); cleardevice(); x0=250;y0=120;x1=350;y1=220; line(x0,y0,x1,y1); for( ; ;) {outtextxy(100,400,"<-:left->:right^:up v:down Esc->exit"); key=getch();

计算机图形学课程设计报告简单图形的绘制-

《计算机图形学》课程设计 报告 学生姓名:学号: 学院: 班级: 题目: 简单图形的绘制 职称2015年7月1日

目录 目录............................................................................................... I 一、选题背景 (1) 二、算法设计 (2) 2.1 绘制直线、圆、椭圆、抛物线 (2) 2.1.1 绘制直线 (2) 2.1.2 绘制圆 (2) 2.1.3 绘制椭圆 (2) 2.1.4 绘制抛物线 (2) 2.2 三维几何变换 (2) 三、程序及功能说明 (5) 3.1 绘制直线、圆、椭圆、抛物线...... (5) 3.1.1 绘制直线 (5) 3.1.2 绘制圆 (5) 3.1.3 绘制椭圆 (5) 3.1.4 绘制抛物线 (6) 3.2 图形的平移 (6) 3.3 图形的旋转 (6) 3.4 图形的缩放 (7) 四、结果分析 (7) 4.1 绘制直线、圆、椭圆、抛物线 (7) 4.1.1 直线 (7) 4.1.2 圆 (8)

4.1.3 椭圆 (8) 4.1.4 抛物线 (8) 4.2 图形的平移 (9) 4.3 图形的旋转 (10) 4.4 图形的缩放 (11) 五、总结 (10) 六、课程设计心得体会 (14) 参考文献 (15) 源程序 (16)

一、选题背景

二、算法设计 2.1 绘制直线、圆、椭圆、抛物线 2.1.1 绘制直线 通过两个点的坐标来绘制直线。计算机图形学中二维图形在显示输出之前需要扫描转换,生成直线的算法一般有DDA 算法和中点算法。 2.1.2 绘制圆 通过运用圆的参数方程cos ;sin x a r y b r θθ=+=+来绘制圆的图形,其中[0,2]θπ∈, (a,b )为圆心,r 为半径,运用参数方程,只需要确定半径的长度和圆心的位置,即可绘制出圆。 2.1.3 绘制椭圆 通过运用椭圆的参数方程cos ;sin x a y b θθ==来绘制椭圆的图形,其中 [0,2]θπ∈,是已知的变量,a ,b 分别为长半轴,短半轴,当确定a 和b 后,通过参数方程即可得到这个椭圆的方程。 2.1.4 绘制抛物线 根据点绘制抛物线图像是通过拟合完成,根据三个点的坐标,通过数据拟合,得到经过这三个点的函数关系式,从而再根据这个函数关系式绘制出抛物线上其他的点,形成一条连续的抛物线;或直接根据已知函数绘制图像是通过已知函数画出图像。 2.2 三维几何变换 三维几何变换是二维几何变换的推广。二维几何变换在齐次坐标空间中 可用3?3的变换矩阵表示,类似的,三维几何变换在齐次坐标空间中可用4?4的变换矩阵表示。三维空间中的点(),,x y z 的齐次坐标定义为(),,h h h x y z ,其中,h 为不等与零的任意常数,h x hx =,h y hy =,h z hz =。亦即点(),,x y z 对应4维齐次坐标空间的一条直线:

相关主题