搜档网
当前位置:搜档网 › 质粒与载体

质粒与载体

质粒与载体
质粒与载体

质 质粒 粒与 与载 载体

体 中央研究院 植物研究所 杜 镇 研究员

一、质粒

绝大多数的生物都是以 DNA 的形式来储藏其遗传信息。遗传物质要能生生不息地传给后代 的首要条件就是它至少要具有一个复制原(ori, origin of replication ,或译为复制起点),使整 个基因体得以复制。含有复制原的遗传物质称为 replicon ,我们姑且把它译为为复制体吧!。 原核性复制体分为原核染色体、质粒(plasmids)和噬菌体基因体(phage genome)等三类。其中 质粒的基因体和原核染色体类似,是由双绞炼 DNA 构成,并以超卷曲的形式存在。它们的 基因体约由 2,000 至 150,000 个碱基对组成,绝大多数呈环状,但也有极少数是线状构造(如 Borrelia burgdorfferi)。事实上你可以把它们视为比较小的原核染色体。在自然环境中它们相 当普遍地生存在原核生物细胞内,并和其宿主的许多特殊功能有关,诸如:赤贺氏杆菌 (Shigella)的抗药、根瘤菌(Rhizobium)的固氮、农杆菌(Agrobacterium)的引瘤及假单胞杆菌 (Pseudomonas)对环状有机物的分解等等。以下我们谈的以细菌性质粒为主,尤其是革兰氏阴 性菌的质粒。

二、质粒的类型

当我们谈到质粒的类型时,就要看你从哪个角度来看它们,譬如说抗药性、结合生殖能力、 宿主范围及 DNA 复制方式等等。这些分型标准之间并无横向关联。你无法说能结合生殖的 质粒一定抗药或不抗药,也无法确定宿主范围和质粒套数的调控有何关联。我们用到这些名 词时,只是对特定质粒的性状做一些描述而已。质粒的真正系统分类标准并非靠些性状,而 是依据它们的不共容性(incompatibility)。

有的质粒带有显著特征可供我们侦测它们的存在,无已知特征的质粒称为隐性质粒(cryptic plasmids);有特征者称为显性质粒(acryptic plasmids);带有抗药基因的天然质粒称为 R-质 粒(R-plasmids)。有些质粒能在多种不同菌属细胞中生存,我们称它们为泛宿主性质粒 (broad-host-range plasmids);有一些质粒只能在少数相关宿主中生存,我们称它们为狭宿主 性质粒(narrow-host-range plasmids)。具有结合生殖(conjugation)能力的质粒为结合质粒 (conjugative plasmids);没有这种能力的质粒便是非结合质粒(non-conjugative plasmids)。其 它如侵袭性质粒(virulence plasmid)、 共生质粒(symbiotic plasmids)及巨型质粒(megaplasmids) 等等有关质粒性状叙述的名词不一而足。

三、质粒的复制

环状质粒的复制形式主要分 theta (θ)及 rolling circle 两种。基因体的复制都是由复制原开始。 原核性复制原约由 250 个碱基对组成,一般质粒的复制原常称为 oriV (origin of vegetative replication);有时 R-质粒的复制原称为 oriR ;大肠杆菌的复制原称为 oriC 。Theta 形式的质 粒复制与细菌基因体复制一样,以 RNA 聚合脢(RNA polymerase)在复制原制造 RNA 引子 (RNA primer),然后由 DNA 聚合脢(DNA polymerase)接手由此向两个方向分别复制 DNA , 直到整个基因体复制完成。在复制过程中当然还有许多其它酵素的参与,这些酵素多由宿主 提供。有的质粒自己携带一些与复制有关的基因,这些基因多被命名为 rep ,如 repA 、repB

等等。Rolling circle 形式的质粒复制与部分噬菌体基因体的复制相似。环状双绞链中的一股 在复制原附近被酵素切开,然后环状股与线状股被分别复制完成。至于线状质粒的复制则是 靠特殊的 RNA引子或该质粒所具有的 telomere-like sequence。

四、质粒的套数与套数调控(copy number control)

在一个宿主细胞中某一特定质粒出现的个数称为套数(copy number)。在大肠杆菌中,质粒的 套数由 F-质粒(fertility plasmid)的一个到 pUCs 的数百个不等。质粒套数的控制与该质粒复 制的调控机制有关,几乎每一种质粒都有它独特之处。有关质粒套数的控制我们仅以两种代 表型机制来说明。

1. 反意 RNA(antisense RNA):

ColE1 质粒的复制是由 RNA 聚合脢由其复制原(oriV)前方 555 个碱基对以前的启动子 (promoter)读出一段称为 RNA II的产物。这个称为前引子(preprimer)的 RNA II 会利用碱基 配对而自我折迭成可被 RNAase H(一种特殊的 RNA 水解脢)裁剪的立体结构。 RNA II经适当 的裁剪后就形成正确的复制引子,复制于焉开始。在 ColE1 质粒复制原前方 445个碱基对的

它与 RNA II 后方另有一个反向的启动子。 RNA聚合脢由此处转录出一条称为 RNA I的产物,

反向,刚好形成配对,这种 RNA称为反意 RNA(antisense RNA)。当 RNA I和 RNA II形成 RNA-RNA 杂合体(RNA-RNA hybrid)时,RNA II 无法形成可被 RNAase H剪裁的结构,复 制引子无法产生, 复制也不会有效地开始。 当然, 实际上还有许多辅助蛋白和酵素会控制 RNA I 和 RNA II之间的亲合力和 RNA I的水解速度。RNA I和 RNA II 的相对数量的增减决定了 ColE1 质粒的复制速度,也决定了该质粒的套数。

2. Iterons 与 repA:

质粒 pSC101的复制除了需要宿主供应的酵素外尚需要 RepA蛋白。RepA是 pSC101的基因 产物,在功能上他扮演了复制的活化因子(activator)与自我抑制因子(autorepressor)。RepA 基因位于 pSC101 复制原的前方,其转录方向和 pSC101 复制方向正好相反。在 RepA 基因 的启动子和 pSC101复制原中有好几个顺向和反向的重复 DNA 短段,长约 18~22 个碱基对, 称为 iteron(s)。RepA会粘黏在 iteron 上。质粒在低浓度(低套数)时,产生低浓度的 RepA促 进了质粒的复制;质粒在高浓度(高套数)时,产生大量的 RepA 粘黏在复制原和 RepA 基因 的启动子上抑制质粒的复制。于是,RepA和 iterons 的相互作用决定了 pSC101的套数。 五、质粒的不共容性(incompatibility)

有时我们会想知道一个细菌细胞中会同时出现多少种质粒呢(种类非个数,个数是指套数)? 这个问题倒没有一个确切的答案。 由自然环境分离的细菌细胞中含有一至三种质粒是常见的, 有时多至七、八种也不令人意外。质粒的种类虽多,但并非所有的质粒都能同时在同一个宿 主细胞中生存。有一些质粒在同一个宿主细胞中会发生相互排斥的现象,我们称这种现象为 质粒的不共容性(incompatibility)。质粒的不共容与他们的复制机制与套数调控有关。当两种 复制与套数调控机制毫不相干的质粒在同一个细胞中生存时,它们各自复制再各自分配到不 同的子细胞中,不会发生干扰。当两种复制机制与套数调控相关或甚至相同的质粒在同一个 细胞中生存时,复制与套数调控机制就会把它们看做同一种质粒而将他们的套数控制在一定 的数目内。因为细胞分裂时质粒在子细胞中分配不均匀的缘故,经过几十次的细胞分裂后你 只可能在特定的子细胞中找到其中一种质粒。根据这种不共容性,质粒被分为许多不共容群

(incompatibility group,简称为 inc),譬如 RP4 属于 incP;RSF1010 属于 incQ 而 pSa属于 incW 等。如果你在实验中发现有一种质粒竟然属于两个不同的不共容群或有不共容不完全 的现象。别惊慌!那是有可能发生的。在革兰氏阴性菌中,大肠杆菌与假单胞杆菌的质粒分 类是做的比较清楚的。

六、质粒的宿主范围(host range)

质粒间的宿主范围有很大的差异。 能在多种不同菌属的细胞中生存的质粒称为泛宿主性质粒, 如 RP4 和 RSF1010;只能在单一或极为相近的宿主中生存的质粒称为狭宿主性质粒,如 F- 质粒和 ColE1。质粒的宿主范围与其复制所需要的条件和质粒本身所携带的基因有关。如果 一个质粒携有与本身复制有关的基因,而这些基因的启动子又是最容易启动的,那它对宿主 的需求自然很少,它的宿主范围当然很广。如RP4 在几乎所有的革兰氏阴性菌中都能生存。 相反的,一个对宿主需求很多的质粒,对宿主的依赖自然很强,它的宿主范围当然很窄。如 F-质粒只能在大肠杆菌中生存。

七、质粒的结合生殖(conjugation)

有的质粒具有在细菌细胞间进行结合生殖的能力,这些质粒称为结合质粒(conjugative plasmids)或自动转移质粒(self-transmissible plasmids)。质粒的结合生殖过程包含了细菌细胞 间的结合与质粒的 DNA 复制。与质粒结合生殖有关的基因很多,其中包括主持其事的基因 和许多调控结合生殖的基因。这些基因在不同的质粒系统中各有其名,但多数被命名为 tra(Transfer)或 mob(mobility),如 traA、tra、mobA、mobB 等等。一个结合质粒至少要具 有下列三个基本条件:1.产生性线毛(sex pili)的能力、2.具有转移原 oriT(origin of transfer) 及 3.能辨认 oriT 的特殊 DNA内切脢(DNA endonuclease)。

结合质粒有产生线毛蛋白(pilin)的基因,线毛蛋白产生后组成性线毛。虽然性线毛因来源质 粒不同而有 F-线毛(来自 F-质粒)、R-线毛(来自 R-质粒)等之分,但在功能上它们的作用都是 用来刺激细菌细胞使之结合。含有结合质粒能产生性线毛的细菌细胞称为雄型(male type)或 正型(+ type);不含结合质粒无性线毛的细菌细胞称为雌型(female type)或负型(- type)。结合 生殖时正型称为授株(donor);负型称为受株(recipient)。结合生殖的结果使负型变为新的正 型,此时新的正型称为 transconjugant(有些情况称为 exoconjugant)。

质粒在结合生殖时要靠特殊的 DNA内切脢将质粒 DNA中的一股在特定的地方切成单链, 然 后将切成单链的一股 DNA 经由两个细胞的结合处传送到受株中,同时以 rolling circle 方式 完成各股 DNA 的复制。质粒 DNA 中被切开的特定的地方就是 oriT 或称为 bom(basis of mobility)、 nic(nick site), 它们具有一定的DNA序列。 切oriT的DNA内切脢有时称为nickase, 它是 tra 基因中之一的产物。每一类的 oriT 均有它特定的 DNA 内切脢,并且内切脢应该切 oriT 处的哪一条链及哪两个碱基之间也是一定的。

非结合质粒中有些因为具有 oriT或 bom, 所以可以经由具 tra 基因的 helper质粒协助而被传 送。 可被传送的非结合质粒称为可移动质粒(mobilizable plasmids), pBR322就属于这个类型; 不可被传送者称为不可移动质粒(non-mobilizable plasmids),RSF1010 属这一型。可移动质 粒与 helper质粒的搭配使用在基因转殖上是常被利用的技术。

结合质粒 F 上有若干个与大肠杆菌染色体上相同的转位子。在偶然的状况下因为相同 DNA 序列的转位子发生同源重组(homologous recombination),结果使 F-质粒与染色体 DNA融成 一体。这种授株被称为 Hfr(high frequency of recombination)。当 Hfr的 F-质粒做结合生殖 时,整个与其黏合的大肠杆菌染色体会依序地被传送到受株中。大肠杆菌的基因图谱就是靠 这种方式完成的。你也可以利用泛宿主性结合质粒在其它菌种中做类似的工作,但因 DNA 定序技术的高度发展已使得这类工作显得费时与不够精确了。

八、载体(vector)

载体的主要功能在基因选殖(cloning),选殖的主要目的是分离、纯化及繁殖特定的基因。细 菌性载体主要有质粒载体(plasmid vector)和噬菌体载体(phage vector)两种,我们这里所谈的 以质粒载体为主。质粒载体的基本条件是:1.它们是复制体,能生生不息地被复制;2.它们有 适当的标示基因,可供做转形株(transformant)和非转形株(non-transformant)的辨识;3.它们 有另一组具有限制脢单切点的标示基因,可供插入外来基因并做为选殖株(clone)和非选殖株 (non-clone)的辨识。此外它们的基因体要小,以便于操作和细胞转形。

利用质粒发展成载体第一个最成功的例子是 pBR322(Bolivar et al, 1977)。它含有 pMB1 的复 制原、pSC101的抗四环霉素(tetracycline)基因 tet和 Tn3(一种转位子)的抗青霉素(penicillin) 基因 bla。你可以把外来基因插在这两个抗药基因中的任何一个内,利用中断抗药基因的消 失做选殖筛选,利用剩下的一个完整抗药基因做转形株筛选。因为 pBR322 的成功构筑,才 使基因选殖有了长足的进展。

细胞转形(cell transformaiton)是基因选殖的重点工作之一。 但细胞的转形率与外来 DNA 的大 小成级数反比。以几万碱基对大小的 DNA 来转形大肠杆菌细胞几乎是不可能的。为了改善 这种情况,结合了 pBR322 的载体特性和噬菌体 λ(lambda)的壳蛋白包裹(packing)特性发展 出 cosmid pHC79 (Hohn and Collins 1980)。噬菌体 λ的基因体由 48,502个碱基对构成。它在 宿主中的 DNA 复制产物是多个 λ 基因体相连的多元体(concatemers)。当噬菌体壳蛋白接近 完成时才将 λ 基因多元体由一端「吸入」。当壳蛋白已经包裹了约相当于 λ 基因体 75%的 DNA(约 36,000碱基对)时, 一个特殊的 λ DNA内切脢开始被活化并寻找适当的切点以便切开 λ基因多元体完成包裹动作。 如果壳蛋白已经包裹了约相当于λ基因体110%的DNA(约54,000 碱基对)还没发现适当的切点时,包裹动作就会被放弃。这个「适当的切点」平时就在线状 λ 基因体 DNA的两端,称为 cohesive sites (cos)。将噬菌体 λ的 cos切出植入 pBR322中使新 构筑的载体兼有质粒载体与可被视为 λ 基因体而被包入 λ 壳蛋白中的特性,可使 30,000~50,000碱基对大小的 DNA轻易地被选殖出来。因为它结合了 λ cos site和 plasmid, 故称为 cosmid。

载体 pUCs(如 pUC18、pUC19,Y anisch-Perron et al, 1980)则是利用 pBR322做了选殖株筛 选的进一步发展。它的特点是利用了呈色基因取代了 pBR322 中的一个抗药基因。大肠杆菌 乳醣分解脢(β-galactosidase)可分解许多 β-半乳醣化合物(β-galactoside),其中也包括了 X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside)。X-gal 呈淡黄色,分解后呈蓝色。大肠 杆菌的乳醣分解脢有两个不寻常的特色:1.该酵素 N-端的廿几个氨基酸和酵素活性无关,可 以任意修改成连串的限制脢切点 MCS (multiple cloning site)而不影响酵素活性;2. .该酵素基 因如果被适当地分成两段(如前段 lacZ’和后段 lacZΔM15),这两段基因的产物(α-chain 和 β-chain)尚能互补而具有酵素活性。载体 pUCs利用了 pBR322的基本骨架,以突变除去抗青 霉素基因中的 PstI 切点,切除抗四环霉素基因并在该处加入具有 MCS的 lacZ’。至于后段的 lacZΔM15 则是利用 F-质粒或噬菌体带入乳醣分解脢缺失型的大肠杆菌中。利用了这种载体 与宿主的基因互补,pUCs 改善了选殖株筛选的方式。何况在培养基中加乳醣分解脢基因的 诱发物(inducer)IPTG(isopropyl-1-thio-β-D-galactopyranoside),更可诱发乳醣分解脢大量表 现。你只要看颜色就能鉴别选殖株与非选殖株。

载体 pBluescripts(如 pBluescript II KS(+)、pBluescript II KS(-),(Alting-Mees and Short, 1989))则是利用 pUCs 做了 DNA 不同形式生产的进一步发展。它的特点是结合了 pUCs的质

故称为phagemid。 线状噬菌体(filamentous phage) 粒载体特色与线状噬菌体的DNA复制特色,

是一群以线状单链 DNA为基因体,以大量单一种类蛋白质(B 蛋白)呈螺旋状包裹的极细长噬 菌体。它们藉由性线毛的协助感染宿主,基因体进入宿主后会环状化(circulization)并复制互

补链成为双绞链。DNA复制以 rolling circle 方式产生大量单链基因体 DNA。基因体 DNA被 壳蛋白包裹后从宿主中「穿出」,并不会杀死宿主。将线状噬菌体 f1 的复制原切出植入质粒 中并不会影响质粒的复制。 但如果以适当的 helper线状噬菌体感染含有 phagemid的宿主时, phagemid就会产生大量的单链DNA。 这些phagemid单链DNA也会被包入噬菌体壳蛋白中, 并且包入的单链 DNA与当初 f1复制原在 phagemid 上的方向有关(+或-)。 如此你就可以从宿 主细胞中纯化 phagemid 双链 DNA从事选殖等用途;从噬菌体中纯化单链 DNA从事定序工 作。

载体 pETs(如 pET12a、pET25b,Moffatt and Studier, 1986)则是结合了 pBR322、pUCs 或 pBluescripts 等的载体功能与噬菌体 T7的基因调控。它的命名与外星人 ET无关,而是结合 了 expression 和 T7 system。T7是溶菌型噬菌体。它在感染大肠杆菌后,首先利用宿主 RNA 聚合脢及核醣体制造出包含 T7 RNA 聚合脢及 T7 蛋白激脢(protein kinase)等噬菌体早期蛋 白。T7蛋白激脢将宿主 RNA聚合脢磷酸化使之失去活性;T7 RNA 聚合脢马上接管宿主细 胞中所有的转录工作。T7 RNA 聚合脢是一条多胜链(single polypeptide)构成,只认识 T7启 动子不认得宿主启动子。载体 pETs 是将 T7特有的启动子切出插入适当的载体中,利用这个 启动子来启动欲表达的基因。 至于T7 RNA聚合脢则是选殖入乳醣分解脢基因启动子的后方, 以 λ噬菌体带入适当的宿主细胞内。当我们在培养基中加入 IPTG 诱发 T7 RNA 聚合脢的大 量制造时,大量的 T7 RNA聚合脢就转而大量地转录我们欲表达的基因。利用这种方式可以 大量生产选殖在 T7 启动子后方的基因产物。生产量竟然能达到大肠杆菌蛋白质总量的 1/10 呢!这种载体称为表达载体(expression vectors)。在生理学、遗传学及研究经验上,大肠杆菌 及它的质粒和噬菌体都是我们最熟悉的。分子生物学及基因选殖也是从大肠杆菌开始发迹。 基于这些原因,无论我们选殖动、植物基因或其它原核基因时,所考虑的第一个中间宿主总 是大肠杆菌。在我们已经完成大肠杆菌中的基因选殖、鉴定及定序等工作后,选殖的基因总 要送回原来的生物细胞或生物体中才有意义。然而绝大多数的大肠杆菌载体是无法在其它生 物细胞中生存的。为了克服这种困难,于是人们纷纷切下包括动、植物及其它各种原核生物 的质粒复制原、病毒复制原、染色体复制原,甚至染色体的部分 DNA,将之插入大肠杆菌载 体中。再配上其它适当的启动子,如此构筑成的载体不但可以用来转形大肠杆菌以外的细胞 并且可以在这些细胞中做适当的基因表达。这一类能穿梭于两种不同生物细胞之间的载体便 称为穿梭载体(shuttle vectors)。

九、载体的适当利用

载体的种类繁多,厂商能够提供的及研究室或研究个人能够提供不计其数。当你需要利用载 体时,你必须清楚你的目的。载体与宿主的搭配也非常重要,必须了解它们的特性与基因标 示才能得心应手的运用。最后,也提供一些常用的质粒、载体与宿主来源:

机构:

ATCC: https://www.sodocs.net/doc/6116458978.html,

CABRI: https://www.sodocs.net/doc/6116458978.html,

CGSC/Yale University: https://www.sodocs.net/doc/6116458978.html,

DSMZ: http://www.dsmz.de

National Institute of Genetics/Japan: https://www.sodocs.net/doc/6116458978.html,b.nig.ac.jp

食工所生物资源保存及研究中心: https://www.sodocs.net/doc/6116458978.html,.tw/ch-home.htm

厂商:

Clontech: https://www.sodocs.net/doc/6116458978.html,

Fermentas: https://www.sodocs.net/doc/6116458978.html,

New England Biolabs: https://www.sodocs.net/doc/6116458978.html, Novagen: https://www.sodocs.net/doc/6116458978.html, Promega: https://www.sodocs.net/doc/6116458978.html, Roche: https://www.sodocs.net/doc/6116458978.html, Stratagen: https://www.sodocs.net/doc/6116458978.html,

如何阅读分析质粒图谱

如何阅读分析质粒图谱 日期:2012-04-18来源:未知作者:xilu点击:次 如何阅读分析质粒图谱 载体主要有病毒和非病毒两大类,其中质粒DNA是一种新的非病毒转基因载体。 一个合格质粒的组成要素 1. 复制起始位点Ori即控制复制起始的位点。原核生物DNA分子中只有一个复制起始点。而真核生物DNA分子有多个复制起始位点。 2. 抗生素抗性基因可以便于加以检测,如Amp+ ,Kan+ 3. 多克隆位点MCS 克隆携带外源基因片段 4. P/E 启动子/增强子 5. Terms 终止信号 6. 加poly(A)信号可以起到稳定mRNA作用 如何阅读质粒图谱 第一步:首先看Ori的位置,了解质粒的类型(原核/真核/穿梭质粒) 所谓穿梭质粒是指一类人工构建的具有两种不同复制起点和选择标记,因而可以在两种不同类群宿主中存活和复制的质粒载体。此概念不仅用于不同的微生物菌群之间,也可以推广到真核生物表达载体的构建,如用于枯草的pBE2、酵母的pPIC9K、哺乳动物表达载体pMT2 和用于植物细胞的Ti 质粒。这些穿梭质粒不仅可以在大肠杆菌中复制扩增,也可以在相应的枯草、酵母、动物或植物细胞中扩增和表达。这样利于对质粒的分子生物学操作和大量制备。 第二步:再看筛选标记,如抗性,决定使用什么筛选标记。 1. Ampr水解β-内酰胺环,解除氨苄的毒性。 2. tetr可以阻止四环素进入细胞。 3. camr生成氯霉素羟乙酰基衍生物,使之失去毒性。

4. neor(kanr) 氨基糖苷磷酸转移酶使G418(长那霉素衍生物)失活 5. hygr使潮霉素β失活。 第三步:看多克隆位点(MCS)。它具有多个限制酶的单一切点。便于外源基因的插入。如果在这些位点外有外源基因的插入,会导致某种标志基因的失活,而便于筛选。决定能不能放目的基因以及如何放置目的基因。 第四步:再看外源DNA插入片段大小。质粒一般只能容纳小于10Kb的外源DNA片段。一般来说,外源DNA片段越长,越难插入,越不稳定,转化效率越低。 第五步:是否含有表达系统元件,即启动子-核糖体结合位点-克隆位点-转录终止信号。这是用来区别克隆载体与表达载体。克隆载体中加入一些与表达调控有关的元件即成为表达载体。选用那种载体,还是要以实验目的为准绳。 启动子-核糖体结合位点-克隆位点-转录终止信号

质粒载体的发展

质粒载体的发展 质粒载体即,在由限制性核酸内切酶修饰过的质粒DNA序列中插入外源的目的基因,以质粒为载体,将目的基因通过转化或转导的方法导进宿主细胞,进行重组、筛选、扩增的过程。 目录

的易感或抗性、产生限制酶、产生稀有的氨基酸和毒素、决定毒力、降解复杂有机分子,以及形成共生关系的能力和在生物界内转移DNA的能力。 编辑本段质粒的基本特征 质粒(plasmid)是细菌或细胞染色质以外的,能自主复制的,与细菌或细胞共生的遗传成分。其特点如下: 是染色质外的双链共价闭合环形DNA (covalently closed circuar DNA,cccDNA),可自然形成超螺旋结构,不同质粒大小在2-300kb之间,<15kb的小质粒比较容易分离纯化,>15kb 的大质粒则不易提取。 能自主复制,是能独立复制的复制子 (autonomous replicon)。一般质粒DNA复制的质粒可随宿主细胞分裂而传给后代。按质粒复制的调控及其拷贝数可分两类:严紧控制(stringent control)型质粒的复制常与宿主的繁殖偶联,拷贝数较少,每个细胞中只有1个到十几个拷贝;另一类是松弛控制(relaxed control)型质粒,其复制宿主不偶联,每个细胞中有几十到几百个拷贝。每个质粒DNA上都有复制的起点,只有ori能被宿主细胞复制蛋白质识别的质粒才能在该种细胞中复制,不同质粒复制控制状况主要与复制起点的序列结构相关。有的质粒的可以整合到宿主细胞染色质DNA中,随宿主DNA复制,称为附加体,例如细菌的性质粒就是一种附加体,它可以质粒形式存在,也能整合入细菌的DNA,又能从细菌染色质DNA上切下来。F因子携带基因编码的蛋白质能使两个细菌间形成纤毛状细管连接的接合(conjugation),通过这细管遗传物质可在两个细菌间传递。 质粒对宿主生存并不是必需的 这点不同于线粒体,线粒体DNA也是环状双链分子,也有独立复制的调控,但线粒体的功能是细胞生存所必需的。线粒体是细胞的一部分,质粒也往往有其表型,其表现不是宿主生存所必需的,但也不妨碍宿主的生存。某些质粒携带的基因功能有利于宿主细胞的特定条件下生存,例如,细菌中许多天然的质粒带有抗药性基因,如编码合成能分解破坏四环素、氯霉素、氨芐表霉素等的酶基因,这种质粒称为抗药性质粒,又称R质粒,带有R质粒的细菌就能在相应的抗生素存在生存繁殖。所以质粒对宿主不是寄生的,而是共生的。医学上遇到许多细菌的抗药性,常与R质粒在细菌间的传播有关,F质粒就能促使这种传递。 现在分子生物学使用的质粒载体都已不是原来细菌或细胞中天然存在的质粒,而是经过了许多的人工的改造。从不同的实验目的出发,人们设计了各种不同的类型的质粒载体,近年来发展很快,新的有特定用途的质

如何阅读质粒图谱(更新版本)

如何阅读质粒图谱 最近由于实验需要,需要查阅载体图谱,到园子里搜罗一番,发现虽然有人问载体图谱阅读的问题,也有前辈回答,但都不详细,借自己也在琢磨这个问题的机会,将我学到的东西整理一下,于 大家分享。 载体主要有病毒和非病毒两大类,其中质粒DNA是一种新的非病毒转基因载体。 一个合格质粒的组成要素 #复制起始位点Oril 即控制复制起始的位点。原核生物DNA分子中只有一个复制起始点。而真核生物DNA分子有多个复制起始位点。 #抗生素抗性基因可以便于加以检测,如Amp+l ,Kan+ #多克隆位点MCS 克隆携带外源基因片段l #P/E 启动子/增强子l #Termsl 终止信号 #加poly(A)信号l 可以起到稳定mRNA作用 二、如何阅读质粒图谱 第一步:首先看Ori的位置,了解质粒的类型(原核/真核/穿梭质粒) 第二步:再看筛选标记,如抗性,决定使用什么筛选标记。 (1)Ampr 水解β-内酰胺环,解除氨苄的毒性。 (2)tetr 可以阻止四环素进入细胞。 (3)camr 生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr)氨基糖苷磷酸转移酶使G418(卡那霉素衍生物)失活 (5)hygr 使潮霉素β失活。 第三步:看多克隆位点(MCS)。它具有多个限制酶的单一切点。便于外源基因的插入。如果在这些位点外有外源基因的插入,会导致某种标志基因的失活,而便于筛选。决定能不能放目的基因以及如何放置目的基因。 第四步:再看外源DNA插入片段大小。质粒一般只能容纳小于10Kb的外源DNA片段。一般来说,外源DNA片段越长,越难插入,越不稳定,转化效率越低。 第五步:是否含有表达系统元件,即启动子-核糖体结合位点-克隆位点-转录终止信号。这是用来区别克隆载体与表达载体。克隆载体中加入一些与表达调控有关的元件即成为表达载体。选用那种载体,还是要以实验目的为准绳。 启动子-核糖体结合位点-克隆位点-转录终止信号 #启动子-促进DNA转录的DNA顺序,这个DNA区域常在基因或操纵子编码顺序的上游,是DNA分子上可以与RNApol特异性结合并使之开始转录的部位,但启动子本身不被转录。 #增强子/沉默子-为真核基因组(包括真核病毒基因组)中的一种具有增强邻近基因转录过程的调控顺序。其作用与增强子所在的位置或方向无关。即在所调控基因上游或下游均可发挥作用。/沉默子-负增强子,负调控序列。 #核糖体结合位点/起始密码/SD序列(Rbs/AGU/SDs):mRNA有核糖体的两个结合位点,对于原核而言是AUG(起始密码)和SD序列。l #转录终止顺序(终止子)/翻译终止密码子:结构基因的最后一个外显子中有一个AATAAA的保守序列,此位点down-stream有一段GT或T富丰区,这2部分共同构成poly(A)加尾信号。

各种表达载体介绍

pET 载体中,目标基因克隆到 T7 噬菌体强转录和翻译信号控制之下,并通过在宿主细胞提供 T7 RNA 聚合酶来诱导表达。 Novagen 的 pET 系统不断扩大,提供了用于表达的新技术和选择,目前共包括 36 种载体类型、 15 种不同宿主菌和设计用于有效检测和纯化目标蛋白的许多其它相关产品。 优点 · 是原核蛋白表达引用最多的系统 · 在任何大肠杆菌表达系统中,基础表达水平最低 · 真正的调节表达水平的“变阻器”控制 · 提供各种不同融合标签和表达系统配置 · 可溶性蛋白生产、二硫键形成、蛋白外运和多肽生产等专用载体和宿主菌 · 许多载体以 LIC 载体试剂盒提供,用于迅速定向克隆 PCR 产物 · 许多宿主菌株以感受态细胞形式提供,可立即用于转化 阳性 pFORCE TM 克隆系统具有高效克隆 PCR 产物、阳性选择重组体和高水平表达目标蛋白等特点。 pET 系统概述 pET 系统是在大肠杆菌中克隆和表达重组蛋白的最强大系统。根据最初由 Studier 等开发的 T7 启动子驱动系统, Novagen 的 pET 系统已用于表达成千上万种不同蛋白。 控制基础表达水平 pET 系统提供 6 种载体 - 宿主菌组合,能够调节基础表达水平以优化目标基因的表达。没有单一策略或条件适用于所有目标蛋白,所以进行优化选择是必要的。 宿主菌株 质粒在非表达宿主菌中构建完成后,通常转化到一个带有 T7 RNA 聚合酶基因的宿主菌(λDE3 溶原菌)中表达目标蛋白。在λ DE3 溶原菌中, T7 RNA 聚合酶基因由 lacUV5 启动子控制。未诱导时便有一定程度转录,因此适合于表达其产物对宿主细胞生长无毒害作用的一些基因。而宿主菌带有 pLysS 和 pLyE 时调控会更严紧。 pLys 质粒编码 T7 溶菌酶,它是 T7 RNA 聚合酶的天然抑制物,因此可降低其在未诱导细胞中转录目标基因的能力。 pLysS 宿主菌产生低量 T7 溶菌酶,而 pLysE 宿主菌产生更多酶,因此是最严紧控制的λ DE3 溶原菌。 有 11 种不同DE3 溶原化宿主菌。使用最广泛的为 BL21 及其衍生菌株,它的优点在于缺失 lon 和 ompT

所有质粒载体汇总

酿酒酵母表达载体 pYES2,pYES2/NT,pYES2/CT,pYES3,pYES6, pYCplac22-GFP, 酵母载体pAUR123,pRS303TEF,pRS304, pRS305,pRS306,pY13TEF,pY14TEF pY15TEF, pY16TEF, 酵母基因重组表达载体pUG6, pSH47, 酵母单杂载体pHISi,pLacZi,pHIS2, pGAD424,酵母双杂交系统:酿酒酵母Y187, 酿酒酵母AH109;质粒pGADT7,pGBKT7 ;对照质粒pGBKT7-53 , pGBKT7-lam , pGADT7-T , PCL1,酿酒酵母菌株INVSc1,YM4271, AH109,丫187,丫190, 毕赤酵母表达载体 pPIC9K,pPIC9K-His,pPIC3.5K,pPICZalphaA,B,C,pPICZA,B,C,pGAPZ a A,pAO815,pPIC9k-His,pHIL-S1,pPink hc , 配套毕赤酵母Pichiapink, 毕赤酵母宿主X33, KM71 , KM71H , GS115, 原核表达载体pQE30,31,32,40,60,61,62等原核表达载体,包括pET系列,pET-GST, pGEX 系列(含GST标签),pMAL 系列pMAL-c2x,-c4x,-c4e,-c5x,- p5x,pBAD,pBADHis,pBADmycHis 系列,pQE 系列,pTrc99a,pTrcHis系列, pBV220,221,222,pTXB 系列,pLLP-ompA,pIN-III-ompA (分泌型表达系列),pQBI63 (原核表达带荧光)pET3a, pET 3d, pET 11a, pET 12a, pET 14b, pET 15b, pET 16b, pET 17b, pET 19b, pET 20b, pET 21a,b,d, pET 22b, pET 23a, pET 23b, pET 24a,b, pET 25b, pET 26b, pET 27b, pET 28a,b, pET 29a, pET 30a, pET 31b, pET 32a, pET 35b, pET 38b, pET 39b, pET 40b, pET 41a,b pET 42a, pET 43.1a,b pET 44a, pET 49b pET302,303 pET His,pET Dsb,pET GST,pET Trx pQE2, pQE9 pQE30,31,32, pQE 40 pQE70 pQE80L pQETirs system pRSET-A pRSET-B pRSET-C pGEX4T-1,-2,-3,5x-1,6p-1,6p-2,2tk,3c pBV220,221,222 pTrcHisA,B,C pBAD24,34,43 pBAD HisA,B,C pPi nPoi nt-Xa1,Xa2,Xa3 pMALc2x, p2x pBV220 pGEM Ex1, pGEM7ZF (+) , pTrc99A, pTwin1, pEZZ18 pkk232-8,pkk 233- 3,pACYC184,pBR322,pUC119 pTYB1,pTYB2,pTYB4,pTYB11 pBlueScript SK (+) ,pBlueScript SK (-) pLLP ompA, pINIIIompA, pMBP-P ,pMBP-C,大肠杆菌冷激质粒:pColdI pColdII pColdIII pColdTF原核共表达质粒:pACYCduet-1,pETduet- 1,pCDFduet-1, pRSFduet-1 Takara公司大肠杆菌分子伴侣:pG-KJE8 pGro7 pKJE7 pGTf2 pTf16 大肠杆菌宿主细胞:DH5a JM101 JM103

(整理)质粒的分子生物学与质粒载体

第三章质粒的分子生物学与质粒载体 一、填空题 1.基因工程中有3种主要类型的载体:——-------、------------一、-----------. 2.由于不同构型的DNA插入EB的量不同,它们在琼脂糖凝胶电泳中的迁移率也不同,SC DNA的泳动速度—----------—,OC DNA泳动速度—---------—,L DNA居中,通过凝胶电泳和EB染色的方法可将不同构型的DNA分别开来。 3.质粒的复制像染色体的复制一样,是从特定的起始点区开始的。然而,质粒的复制可以是—---—向的、或是—----—向的。在杂种质粒中,每个复制子的起点都可以有效地加以使用。但是在正常条件下只有一个起点可能居支配地位。并认为:当某些具有低拷贝数的严紧型质粒与松弛性质粒融合后,在正常情况下—------—的复制起点可能被苯闭。 4.就克隆一个基因(DNA片段)来说,最简单的质粒载体也必需包括三个部分:—-----—、—---------—、—----------------—。另外,一个理想的质粒载体必须具有低分子量。 5.如果两个质粒不能稳定地共存于同一个寄主细胞中,则属于—---------—群,这是因为它们的——————————所致。 6.质粒拷贝数是指细胞中—------------------------—。 7.复制子由三部分组成:(1)—-----------------—---(2)——-----------————(3)—--------------—。 8.酵母的2μm质粒有------------,可以配对形成哑铃结构。 9.一个带有质粒的细菌在有EB的培养液中培养一段时间后,一部分细胞中已测不出质粒,这种现象叫----------------。 10.pBR322是一种改造型的质粒,它的复制子来源于----——,它的四环素抗性基因来自于—-----------—,它的氨苄青霉素抗性基因来自于—---------—。 11.质粒的消失同染色体基因的突变是不同的,前者不能恢复,后者可以通过—------—恢复该基因的性状。 12.ColEl质粒复制的起始需要三种酶,即—-----------—、一------------和一------。 13.YAC的最大容载能力是—-----------—,BAC载体的最大容载能力是—---------—。 14.pSCl01是一种---------——复制的质粒。 15.把那些没有可检测表型的质粒称为—--------------—。 16.转座子主要由下列部分组成:(1)—-----————————(2)---------------—— (3)—----------------—。

各章习题

各章习题 第1章 1.什么是菌落?了解菌落有何实际意义? 2.绘出细菌的基本结构和特殊结构图。 3.比较革兰阳性菌和阴性菌的细胞壁结构及化学组成的差异。 4.试述脂多糖及外膜蛋白的组成及功能。 5.叙述细菌核体与真核细胞核的异同。 6.解释荚膜的概念及其功能。 7.S层是什么样的结构? 8.试述鞭毛的结构和功用。 9.菌毛的本质、分类及功能如何? 10.叙述芽胞的结构、功能及对外界环境抵抗力强的原因。 11.根据鞭毛、芽胞为何能鉴别细菌? 12.什么是革兰染色?有何意义?其染色机制如何? 13.试述应用电镜观察细菌有哪些特点和限制? 第2章 1.细菌菌体分裂为什么只需较短时间? 2.细菌的生长曲线如何确定?有何意义? 3.试述细菌生长的各个期的特点。 4.培养基有哪些种类?各有何用途? 6.生物被膜有何特点? 7.何谓密度感应系统调控?举例说明其作用。 8.试述益生菌及益生元的概念及应用价值。 9.何谓菌群失调?保持动物正常菌群有何重要意义? 10.试述悉生生物学和悉生动物的概念、实验动物分类(包括定义)以及培育实验动物的意义。 第3章 1.何谓灭菌、消毒、防腐?举例比较它们的异同。 2.试述影响微生物的主要物理因素及其实用价值。 3.试述各种热力灭菌法的方法原理及其主要用途。 4.根据对微生物的灭活作用可分为哪些类型?列举常用的辐射方法及其杀菌原理和应用。5.试述滤过除菌的概念及其应用。 第4章 1.什么是柯赫法则?如何从分子水平解释柯赫法则? 2.试述致病菌侵入宿主细胞的主要过程。 3.什么样的细菌能内化入胞?意义何在? 4.什么是细菌外毒素?其基本特性及组成如何? 5.什么是类毒素?有何用途? 6.试述内毒素的来源、组成、致病意义及检测方法。

如何选择质粒

一、一个合格质粒的组成要素 复制起始位点Ori 即控制复制起始的位点。原核生物DNA分子中只有一个复制起始点。而真核生物DNA分子有多个复制起始位点。 抗生素抗性基因可以便于加以检测,如Amp+ ,Kan+ 多克隆位点MCS 克隆携带外源基因片段 P/E 启动子/增强子 Terms 终止信号 加poly(A)信号可以起到稳定mRNA作用 二、如何阅读质粒图谱 第一步:首先看Ori的位置,了解质粒的类型(原核/真核/穿梭质粒) 第二步:再看筛选标记,如抗性,决定使用什么筛选标记。 (1)Ampr 水解β-内酰胺环,解除氨苄的毒性。 (2)tetr 可以阻止四环素进入细胞。 (3)camr 生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr)氨基糖苷磷酸转移酶使G418(长那霉素衍生物)失活 (5)hygr 使潮霉素β失活。 第三步:看多克隆位点(MCS)。它具有多个限制酶的单一切点。便于外源基因的插入。如果在这些位点外有外源基因的插入,会导致某种标志基因的失活,而便于筛选。决定能不能放目的基因以及如何放置目的基因。 第四步:再看外源DNA插入片段大小。质粒一般只能容纳小于10Kb的外源DNA片段。一般来说,外源DNA片段越长,越难插入,越不稳定,转化效率越低。 第五步:是否含有表达系统元件,即启动子-核糖体结合位点-克隆位点-转录终止信号。这是用来区别克隆载体与表达载体。克隆载体中加入一些与表达调控有关的元件即成为表达载体。选用那种载体,还是要以实验目的为准绳。 启动子-核糖体结合位点-克隆位点-转录终止信号 启动子-促进DNA转录的DNA顺序,这个DNA区域常在基因或操纵子编码顺序的上游,是DNA分子上可以与RNApol特异性结合并使之开始转录的部位,但启动子本身不被转录。增强子/沉默子-为真核基因组(包括真核病毒基因组)中的一种具有增强邻近基因转录过程的调控顺序。其作用与增强子所在的位置或方向无关。即在所调控基因上游或下游均可发挥作用。/沉默子-负增强子,负调控序列。 核糖体结合位点/起始密码/SD序列(Rbs/AGU/SDs):mRNA有核糖体的两个结合位点,对于原核而言是AUG(起始密码)和SD序列。 转录终止顺序(终止子)/翻译终止密码子:结构基因的最后一个外显子中有一个AA TAAA 的保守序列,此位点down-stream有一段GT或T富丰区,这2部分共同构成poly(A)加尾信号。结构基因的最后一个外显子中有一个AA TAAA的保守序列,此位点down-stream 有一段GT或T富丰区,这2部分共同构成poly(A)加尾信号。 回答有人之前提出的一个问题:为什么质粒图谱上有的箭头顺时针有的箭头逆时针,那其实是代表两条DNA链,即质粒是环状双链DNA,它的启动子等在其中一条链上,而它的抗性基因在另一条链上. 三、介绍一下关于载体的知识(虽然课本上都有写) 1. 什么是载体

基因工程考试 质粒的分子生物学与质粒载体

第二章 DNA重组克隆的单元操作 练习题 质粒的分子生物学与质粒载体(练习题) 一、填空题 1. 基因工程中有3 种主要类型的载体:、、。 2. 由于不同构型的DNA 插入EB 的量不同,它们在琼脂糖凝胶电泳中的迁移率也不同,SC DNA 的泳动速度,OC DNA 泳动速度,L DNA 居中,通过凝胶电泳和EB 染色的方法可将不同构型的DNA 分别开来。 3. 质粒的复制像染色体的复制一样,是从特定的起始点开始的。然而,质粒的复制可以是向的、或是向的。在杂种质粒中,每个复制子斑点都可以有效地加以使用。但是在正常条件下只有一个起点可能居支配地位。并认为:当某些具有低拷贝数的严紧型质粒与松弛性质粒融合后,在正常情况下的复制起点可能被关闭。 4. 就克隆一个基因(DNA 片段) 来说,最简单的质粒载体也必需包括三个部 分:、、。另外,一个理想的质粒载体必须具有低分子量。 5. 如果两个质粒不能稳定地共存于同一个寄主细胞中,则属于群,这是因为它们的所致。 6. 质粒拷贝数是指细胞中。 7. 复制子由三部分组成:(1) (2) (3) 。 8. 酵母的2μm 质粒有,可以配对形成哑铃结构。 9. 一个带有质粒的细菌在有EB 的培养液中培养一段时间后,一部分细胞中已测不出质粒,这种现象叫。 10. pBR322 是一种改造型的质粒,它的复制子来源于,它的四环素抗性基因来自于,它的氨苄青霉素抗性基因来自于。 11. 粒的消失同染色体基因的突变是不同的,前者不能恢复,后者可以通过恢复 该基因的性状。 12. ColEl 质粒复制的起始需要三种酶,即、和。 13. YAC 的最大容载能力是,BAC 载体的最大容载能力是。 14. pSCl01 是一种复制的质粒。 15. 把那些没有可检测表型的质粒称为。 16. 转座子主要由下列部分组成:(1) (2) (3) 。 17. pUCl8 质粒是目前使用较为广泛的载体。pUC 系列的载体是通过和两种质粒改造而来。它的复制子来自,Amp 抗性基因则是来自。 二、判断题 1.迄今发现的质粒DNA 都是环状的。 2.线性质粒同环状质粒一样都不带有宿主必需的基因。 3.有a、b、c 三个质粒,因为a 和b 能够共存于一个细胞,a 和c 也可共存于同一个细胞, 所以b 和c 一定能够共存于同一个细胞。 4. 插入元件(1S)也是一种转座元件,它除了有转座酶基因外,还有附加基因。 5. 如果两个不同的质粒可以稳定地共存于同一个细胞中,这两种质粒则属于同一个不亲和 群。 6. 一个带有反向重复序列的双链DNA 经变性后,复性时其单链可形成发夹环。

质粒的基本知识

质粒 质粒是染色体外能够进行自主复制的遗传单位,包括真核生物的细胞器和细菌细胞中染色体以外的脱氧核糖核酸(DNA)分子。现在习惯上用来专指细菌、酵母菌和放线菌等生物中染色体以外的DNA分子。在基因工程中质粒常被用做基因的载体。 目前,已发现有质粒的细菌有几百种,已知的绝大多数的细菌质粒都是闭合环状DNA 分子(简称cccDNA)。细菌质粒的相对分子质量一般较小,约为细菌染色体的0.5%~3%。根据相对分子质量的大小,大致上可以把质粒分成大小两类:较大一类的相对分子质量是40×106以上,较小一类的相对分子质量是10×106以下(少数质粒的相对分子质量介于两者之间)。每个细胞中的质粒数主要决定于质粒本身的复制特性。按照复制性质,可以把质粒分为两类:一类是严紧型质粒,当细胞染色体复制一次时,质粒也复制一次,每个细胞内只有1~2个质粒;另一类是松弛型质粒,当染色体复制停止后仍然能继续复制,每一个细胞内一般有20个左右质粒。一般分子量较大的质粒属严紧型。分子量较小的质粒属松弛型。质粒的复制有时和它们的宿主细胞有关,某些质粒在大肠杆菌内的复制属严紧型,而在变形杆菌内则属松弛型。 在基因工程中,常用人工构建的质粒作为载体。人工构建的质粒可以集多种有用的特征于一体,如含多种单一酶切位点、抗生素耐药性等。常用的人工质粒运载体有pBR322、pSC101。pBR322含有抗四环素基因(Tcr)和抗氨苄青霉素基因(Apr),并含有5种内切酶的单一切点。如果将DNA片段插入EcoRI切点,不会影响两个抗生素基因的表达。但是如果将DNA片段插入到Hind III、Bam H I 或Sal I切点,就会使抗四环素基因失活。这时,含有DNA插入片段的pBR322将使宿主细菌抗氨苄青霉素,但对四环素敏感。没有DNA插入片段的pBR322会使宿主细菌既抗氨苄青霉素又抗四环素,而没有pBR322质粒的细菌将对氨苄青霉素和四环素都敏感。pSC101与pBR322相似,只是没有抗氨苄青霉素基因和PstI切点。质粒运载体的最大插入片段约为10 kb(kb表示为千碱基对)。 复制原点 DNA复制起点,即DNA聚合酶结合位点 标记基因 一般是运载体上的一段特殊DNA序列,能表达特定形状便于检测运载体是否导入受体(如抗氨苄青霉素基因,绿色荧光基因) 启动子 转录起始位点,即RNA聚合酶结合位点 终止子 转录终止位点,也是特殊的DNA序列 起始密码子(无启动密码子之说) mRNA上翻译起始的位置,通常为AUG,对应甲硫氨酸,少数细菌(属于原核生物)以GUG(缬氨酸)或UUG为起始密码,线粒体和叶绿体以AUG、AUU、AUA为起始密码子 终止密码子 翻译终止位置,不对应氨基酸,为UAA,UAG,UGA 目的基因 插入运载体,就是想要使其表达的那一段DNA序列,比如说想将人生长激素基因导入到小鼠体细胞中使其表达,那么人生长激素基因就是目的基因,经限制性内切酶切后与运载体相连

查询质粒方法汇总

如何查找质粒图谱之我见——plasmid map, Vector Sequence方法汇总 经常在坛子里看到一些人求助质粒图谱,很多时候我发现其实有些质粒图谱还是很容易找到了,刚开始帮忙查找了下,还公布了一些查找质粒图谱比较好的网站,后来看得多了,很多时候,这样的帖子直接跳过了。今天又看到几个求质粒图谱的帖子,因此决定就查找质粒图谱的方法,写个总结帖子,希望对虫子们有些帮助。这些方法,大部分是自己学习的过程中积累的,也许总结得还不够全面,望其他虫友指正。 方法一:安装软件Vector NT 做分子实验,经常和不同的质粒打交道,了解各种质粒的图谱信息是必需的,invitrogen公司的这款软件绝对是分子生物学虫子们的福音,功能强大、界面美观,使用起来很人性化。后面的很多方法都是基于在这款软件的使用之上,因此个人觉得要想对质粒图谱了解更直观,安装这款软件是非常必要的。而且,一旦安装了这款软件,你就发现这款软件的软件包里面会包括invitrogen公司的所有质粒图谱信息和其他比较常见和经典的质粒图谱。这里就不一一细说,各位虫子可以自己体验下。(这款软件的下载和使用说明书站内很多) 方法二:查找质粒图谱的网站: 这个之前有人求助质粒图谱时,我在回应求助帖里面公布过几个我经常用的网址,估计不是专题,很多人没看到,现在在此重新总结下 1.Vector Database 地址:https://https://www.sodocs.net/doc/6116458978.html,/g?a=vdb 这个网站很页面很人性化,直入主题,也是我经常用到一个网站,比如同样这个帖子求pRS类质粒图谱(注意,是一类质粒图谱,没关系,照样能找到),直接在搜索框输入pRS,可以看到,之类质粒一共有三十多个。

质粒载体基础

第一节质粒载体 一、质粒的基本特性 1.质粒的复制 通常一个质粒含有一个与相应的顺式作用控制要素结合在一起的复制起始区(整个遗传单位定义为复制子)。在不同的质粒中,复制起始区的组成方式是不同的,有的可决定复制的方式,如滚环复制和θ复制。在大肠杆菌中使用的大多数载体都带有一个来源于pMB1 质粒或ColE1 质粒的复制起始位点。图3-1 是其复制其始示意图。 在复制时,首先合成前RNAⅡ,即前引物,并与DNA 形成杂交体;而后RNase H 切割前RNAⅡ,使之成为成熟的RNAⅡ,并形成三叶草二级结构,该引物引导质粒的复制。形成的RNAⅠ可控制RNAⅡ形成二级结构,同时Rop 增强RNAⅠ的作用,从而控制质粒的拷贝数。削弱RNAⅠ和RNAⅡ之间相互作用的突变,将增加带有pMB1 或(ColE1)复制子的拷贝数。 图3-1 带pMB1(或ColE1)复制起点的质粒在复 制起始阶段所产生的转录的方向及其粗略大小。 2.质粒的拷贝数 质粒拷贝数分为严谨型与松驰型。严谨型质粒每个细胞中拷贝数有限,大约1 ~几个;松驰型质粒拷贝数较多,可达几百。表5-1 就是不同类的质粒与复

制子及拷贝数的大致关系。 表3-1 :质粒载体及其拷贝数 pUC 系列质粒的复制单位来自质粒pMB1 ,但其拷贝数较高。pMB1 质粒的复制并不需要质粒编码的功能蛋白,而是完全依靠宿主提供的半衰期较长的酶(DNA 聚合酶Ⅰ,DNA 聚合酶Ⅲ),依赖于DNA 的RNA 聚合酶,以及宿主基因dnaB 、dnaC 、dnaD 和danZ 的产物。因此,存在抑制蛋白质合成并阻断细菌染色体复制的氯霉素或壮观霉素等抗生素时,带有pMB1(或ColE1)复制子的质粒将继续复制,最后每个细胞中可积聚2~3 千个质粒。3.质粒的不相容性 两个质粒在同一宿主中不能共存的现象称质粒的不相容性,它是指在第二个质粒导入后,在不涉及DNA 限制系统时出现的现象。不相容的质粒一般都利用同一复制系统,从而导致不能共存于同一宿主中。两个不相容性质粒在同一个细胞中复制时,在分配到子细胞的过程中会竞争,随机挑选,微小的差异最终被放

质粒载体分类及阅读

质粒载体分类及阅读 一.九种表达载体 Pllp-OmpA, pllp-STII, pMBP-P, pMBP-C, pET-GST, pET-Trx, pET-His, pET-CKS, pET-DsbA 二.克隆载体 pTZ19R DNA pUC57 DNA PMD18T PQE30 pUC18 pUC19 pTrcHisA pTrxFus pRSET-A pRSET-B pVAX1 PBR322 pbv220 pBluescript II KS (+) L4440 pCAMBIA-1301 pMAL-p2X pGD926 三.PET系列表达载体 Protein Expression ? Prokaryotic Expression ? pET Dsb Fusion Systems 39b and 40b Protein Expression ? Prokaryotic Expression ? pET Expression System 33b Protein Expression ? Prokaryotic Expression ? p ET Expression Systems Protein Expression ? Prokaryotic Expression ? pET Expression Systems plus Competent Cells Protein Expression ? Prokaryotic Expression ? pET GST Fusion Systems 41 and 42 Protein Expression ? Prokaryotic Expression ? pET NusA Fusion Systems 43.1 and 44 Protein Expression ? Prokaryotic Expression ? pET Vector DNA Protein Purification ? Purification Systems ? Strep?Tactin Resins and Purification Kits 四.PGEX系列表达载体 T EcoR pGEX-1 I/BAP pGEX-2T pGEX-2TK pGEX-3X

载体和质粒

克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。 克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。) 其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。 是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。 表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。 表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔 5-13bp),其后的多克隆位点可装载要表达的目标基因。 克隆载体目的在于复制足够多的目标质粒,所以常带有较强的自我复制元件,如复制起始位点等,往往在菌体内存在多拷贝,所以抽质粒会抽出一大堆。但不具备表达元件。而表达质粒有复杂的构成,为的是控制目标蛋白的表达,如各种启动子(T7),调节子(LacZ)等,而且以pET为代表的表达载体在菌体内都是低拷贝的,防止渗漏表达。 克隆载体只是把你要的基因片段拿到就可以了,不管读码框什么的,但是表达载体是不但要你的目的基因连在上面,而且要表达蛋白,所以就要求你的读码框不能乱了,否则就不能得到你想到的表达产物。 1.载体即要把一个有用的基因(目的基因——研究或应用基因)通过基因工程手段送到生物细胞(受体细胞),需要运载工具(交通工具)携带外源基因进入受体细胞,这种运载工具就叫做载体(ector)。 2. 载体的分类 按功能分成:(1)克隆载体: 都有一个松弛的复制子,能带动外源基因,在宿主细胞中复制扩增。它是用来克隆和扩增DNA片段(基因)的载体。(2)表达载体:具有克隆载体的基本元件(ori,Ampr,Mcs 等)还具有转录/翻译所必需的DNA顺序的载体。 按进入受体细胞类型分:(1)原核载体(2)真核载体(3)穿梭载体(sbuttle ector)指在两种宿主生物体内复制的载体分子,因而可以运载目的基因(穿梭往返两种生物之间). 克隆载体顾名思义就是质粒拷贝数比较高,在做上游克隆时比较方便, 其重点在于质粒的复制

各种感受态细胞的区别、用途和特征

各种感受态细胞的区别、用途和特征 Xl1-Blue菌株 基因型:endA1 gyrA96(nalR) thi-1 recA1 relA1 lac glnV44 F‘[Tn10 proAB+ lacIq Δ(lacZ)M15] hsdR17(rK- mK+)。 特点:具有卡那抗性、四环素抗性和氯霉素抗性。 用途:分子克隆和质粒提取。 BL21(DE3)菌株 基因型:F–ompT gal dcm lon hsdSB(rB- mB-) λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5])。 特点:该菌株用于以T7 RNA聚合酶为表达系统的高效外源基因的蛋白表达宿主。T7噬菌体RNA聚合酶基因的表达受控于λ噬菌体DE3区的lacUV5启动子,该区整合于BL21的染色体上。该菌适合于非毒性蛋白的表达。 用途:蛋白质表达。[生物秀-专心做生物https://www.sodocs.net/doc/6116458978.html,] BL21(DE3)ply菌株 基因型:F- ompT gal dcm lon hsdSB(rB- mB-) λ(DE3) pLysS(cmR)。 特点:该菌株带有pLysS,具有氯霉素抗性。此质粒还有表达T7溶菌酶的基因,T7溶菌酶能够降低目的基因的背景表达水平,但不干扰IPTG诱导的表达。适合于毒性蛋白和非毒性蛋白的表达。 用途:蛋白质表达 Competent E. coli Full Product Description BL21 Star? E. coli strains are high-performance BL21 hosts designed for improving protein yield in a T7 promoter-based expression system. Because T7 RNA polymerase synthesizes mRNA more rapidly than E. coli RNA polymerases, transcription from the T7 promoter is uncoupled to translation in E. coli. This results in mRNA transcripts unprotected by ribosomes, which are then subject to enzymatic degradation by endogenous RNases (1). The reduced level of transcripts in the cell often leads to greatly reduced levels of protein yield (Figure1). The BL21 Star? strains contain a mutation in the gene encoding RNaseE (rne131), which is one of the major sources of this mRNA degradation (2). BL21 Star? cells significantly improve the stability of mRNA transcripts and increase protein expression yield from T7 promoter-based vectors (3) (Figure 2). BL21 Star?(DE3) is ideal for expressing proteins that are non-toxic to E. coli. BL21 Star?(DE3)pLysS offers lower basal-level expression of heterologous genes than BL21 Star?(DE3). It is designed for expressing proteins that are slightly growth inhibitive to E. coli.

质粒与载体

质 质粒 粒与 与载 载体 体 中央研究院 植物研究所 杜 镇 研究员 一、质粒 绝大多数的生物都是以 DNA 的形式来储藏其遗传信息。遗传物质要能生生不息地传给后代 的首要条件就是它至少要具有一个复制原(ori, origin of replication ,或译为复制起点),使整 个基因体得以复制。含有复制原的遗传物质称为 replicon ,我们姑且把它译为为复制体吧!。 原核性复制体分为原核染色体、质粒(plasmids)和噬菌体基因体(phage genome)等三类。其中 质粒的基因体和原核染色体类似,是由双绞炼 DNA 构成,并以超卷曲的形式存在。它们的 基因体约由 2,000 至 150,000 个碱基对组成,绝大多数呈环状,但也有极少数是线状构造(如 Borrelia burgdorfferi)。事实上你可以把它们视为比较小的原核染色体。在自然环境中它们相 当普遍地生存在原核生物细胞内,并和其宿主的许多特殊功能有关,诸如:赤贺氏杆菌 (Shigella)的抗药、根瘤菌(Rhizobium)的固氮、农杆菌(Agrobacterium)的引瘤及假单胞杆菌 (Pseudomonas)对环状有机物的分解等等。以下我们谈的以细菌性质粒为主,尤其是革兰氏阴 性菌的质粒。 二、质粒的类型 当我们谈到质粒的类型时,就要看你从哪个角度来看它们,譬如说抗药性、结合生殖能力、 宿主范围及 DNA 复制方式等等。这些分型标准之间并无横向关联。你无法说能结合生殖的 质粒一定抗药或不抗药,也无法确定宿主范围和质粒套数的调控有何关联。我们用到这些名 词时,只是对特定质粒的性状做一些描述而已。质粒的真正系统分类标准并非靠些性状,而 是依据它们的不共容性(incompatibility)。 有的质粒带有显著特征可供我们侦测它们的存在,无已知特征的质粒称为隐性质粒(cryptic plasmids);有特征者称为显性质粒(acryptic plasmids);带有抗药基因的天然质粒称为 R-质 粒(R-plasmids)。有些质粒能在多种不同菌属细胞中生存,我们称它们为泛宿主性质粒 (broad-host-range plasmids);有一些质粒只能在少数相关宿主中生存,我们称它们为狭宿主 性质粒(narrow-host-range plasmids)。具有结合生殖(conjugation)能力的质粒为结合质粒 (conjugative plasmids);没有这种能力的质粒便是非结合质粒(non-conjugative plasmids)。其 它如侵袭性质粒(virulence plasmid)、 共生质粒(symbiotic plasmids)及巨型质粒(megaplasmids) 等等有关质粒性状叙述的名词不一而足。 三、质粒的复制 环状质粒的复制形式主要分 theta (θ)及 rolling circle 两种。基因体的复制都是由复制原开始。 原核性复制原约由 250 个碱基对组成,一般质粒的复制原常称为 oriV (origin of vegetative replication);有时 R-质粒的复制原称为 oriR ;大肠杆菌的复制原称为 oriC 。Theta 形式的质 粒复制与细菌基因体复制一样,以 RNA 聚合脢(RNA polymerase)在复制原制造 RNA 引子 (RNA primer),然后由 DNA 聚合脢(DNA polymerase)接手由此向两个方向分别复制 DNA , 直到整个基因体复制完成。在复制过程中当然还有许多其它酵素的参与,这些酵素多由宿主 提供。有的质粒自己携带一些与复制有关的基因,这些基因多被命名为 rep ,如 repA 、repB

相关主题