搜档网
当前位置:搜档网 › 线线角、线面角、二面角知识点及练习

线线角、线面角、二面角知识点及练习

线线角、线面角、二面角知识点及练习
线线角、线面角、二面角知识点及练习

线线角、线面角、面面角专题

一、异面直线所成的角

1.已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的锐角(或直角)叫异面直线,a b 所成的角。

2.角的取值范围:090θ<≤?;

垂直时,异面直线当b a ,900=θ。

例1.如图, 在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== ,点D 为AB 的中点

求异面直线1AC 与1B C 所成角的余弦值

二、直线与平面所成的角

1. 定义:平面的一条斜线和它在平面上的射影所成的锐角, 叫这条斜线和这个平面所成的角

2.角的取值范围:?

?

≤≤900θ。

例2. 如图、四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,

求(1)BC 与平面SAB 所成的角。

(2)SC 与平面ABC 所成的角的正切值。

B

M

H S C

A

_1

_A

一、 二面角:

1. 从一条直线出发的两个半平面所组成的图形叫做二面角。这条直线叫做二面角的棱,这两个半

平面叫做二面角的面。 2. 二面角的取值范围:?

?

≤≤1800θ 两个平面垂直:直二面角。

3.作二面角的平面角的常用方法有六种:

1.定义法 :在棱上取一点O ,然后在两个平面内分别作过棱上O 点的垂线。

2.三垂线定理法:先找到一个平面的垂线,再过垂足作棱的垂线,连结两个垂足即得二面角的平面角。

3.向量法:分别作出两个半平面的法向量,由向量夹角公式求得。二面角就是该夹角或其补角。 二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。 例3.如图,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求 (1)二面角111D C A D --所成的角的余弦值 (2)平面AB 1E 和底面C C BB 11所成锐角的正切值.

A 1

D 1

B 1

C 1 E

D

B

C

A

巩固练习

1.若直线a 不平行于平面α,则下列结论成立的是( )

A.α内所有的直线都与a 异面;

B.α内不存在与a 平行的直线;

C.α内所有的直线都与a 相交;

D.直线a 与平面α有公共点.

2.空间四边形ABCD 中,若AB AD AC CB CD BD =====,则AD 与BC 所成角为( )

A.030

B.045

C.060

D.090 3.正方体ABCD-A 1B 1C 1D 1中,与对角线AC 1异面的棱有( )条

A.3

B.4

C.6

D.8

4.如图长方体中,AB=AD=23,CC 1=2,则二面角C 1—BD —C 的大小为(

A.300

B.450

C.600

D.900

5.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E 、F 分别是AB 、BD 的中点.

求证:(1)直线EF ∥面ACD .

(2)平面EFC ⊥平面BCD .

6.如图,DC ⊥平面ABC ,EB ∥DC ,AC =BC =EB =2DC =2,∠ACB =120°,P ,Q 分别为AE ,AB 的中点.

(1)证明:PQ ∥平面ACD ;

(2)求AD 与平面ABE 所成角的正弦值.

A

B

C D A 1

B 1

C 1

D 1

7.如图,已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,设SA=4,AB=2,

求点A到平面SBD的距离;

线线角,线面角,二面角的一些题目

B 1 D 1 A D C 1 B C A 1线线角与线面角习题 一、复习目标 1.理解异面直线所成角的概念,并掌握求异面直线所成角的常用方法. 2.理解直线与平面所成角的概念,并掌握求线面角常用方法. 3.掌握求角的计算题步骤是“一作、二证、三计算”,思想方法是将空间图形转化为平面图形即“降维”的思想方法. 二、课前预习 1.在空间四边形ABCD 中,AD=BC=2, E 、F 分别为AB 、CD 的中点且EF=3,AD 、BC 所成的角为 . 2.如图,在长方体ABCD-A 1B 1C 1D 1中 ,B 1C 和C 1D 与底面所成的角分别为60ο 和45ο,则异面直线B 1C 和C 1D 所成角的余弦值为 ( ) (A). 46 (B).36 (C).6 2 (D).63 3.平面α与直线a 所成的角为3 π ,则直线a 与平面α内所有直线所成的角的取值范围是 . 4.如图,ABCD 是正方形,PD ⊥平面ABCD,PD=AD,则PA 与BD 所成的角的度数为 (A).30ο (B).45ο (C).60ο (D).90ο 5.有一个三角尺ABC,∠A=30ο, ∠C=90ο,BC 是贴于桌面上, 当三角尺与桌面成45ο 角时,AB 边与桌面所成角的正弦值 是 . 三、典型例题 例1.(96·全国) 如图,正方形ABCD 所在平面与正方形 ABEF 所在平面成60ο角,求异面直线AD 与BF 所成角的余弦值. 备课说明:1.求异面直线所成的角常作出所成角的平面图形.作法有: ①平移法:在异面直线的一条上选择“特殊点”,作另一条直线平行线 或利用中位线.②补形法:把空间图形补成熟悉的几何体,其目的在于容 易发现两条异面直线的关系.2.解立几计算题要先作出所求的角,并 要 有严格的推理论证过程,还要有合理的步骤. A C B D B P C D A C B F E

高中数学线面角与线线角例题、习题-学生

线面角与线线角专练(小练习一)【知识网络】 1、异面直线所成的角:(1)范围:(0,]2π θ∈; (2)求法; 2、直线和平面所成的角:(1)定义:(2)范围:[0,90]o o ;(3)求法; 【典型例题】 例1:(1)在正方体1111ABCD A B C D -中,下列几种说法正确的是 ( ) A 、11AC AD ⊥ B 、11D C AB ⊥ C 、1AC 与DC 成45o 角 D 、11AC 与1B C 成60o 角 (2)在正方体AC 1中,过它的任意两条棱作平面,则能作得与A 1B 成300角的平面的个数为 ( ) A 、2个 B 、4个 C 、6个 D 、8个 (3)正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1底面边长是1,2则这个棱柱的侧 面对角线E 1D 与BC 1所成的角是 ( ) A .90o B .60o C .45o D .30o (4)在空间四边形ABCD 中,AB ⊥CD ,BC ⊥DA ,那么对角线AC 与BD 的位置关系是 。 (5)点AB 到平面α距离距离分别为12,20,若斜线AB 与α成030的角,则AB 的长等于__ ___. 例2:.如图:已知直三棱柱ABC —A 1B 1C 1,AB =AC ,F 为棱BB 1上一点,BF ∶FB 1=2∶1,BF =BC =2a 。 (I )若D 为BC 的中点,E 为AD 上不同于 A 、D 的任意一点,证明EF ⊥FC 1; (II )试问:若AB =2a ,在线段AD 上的E 点能否使EF 与平面BB 1C 1C 成60°角,为什么?证明你的结论。 例3: 如图, 四棱锥P-ABCD 的底面是AB=2, BC =2的矩形, 侧面PAB 是等边三角形, 且侧面 PAB ⊥底面ABCD. (Ⅰ)证明:BC ⊥侧面PAB; (Ⅱ)证明: 侧面PAD ⊥侧面PAB; (Ⅲ)求侧棱PC 与底面ABCD 所成角的大小; A B C D P

线面角及二面角的求法

第9节线面角及二面角的求法 【基础知识】 求线面角、二面角的常用方法: (1)线面角的求法,找出斜线在平面上的射影,关键就是作垂线,找垂足,要把线面角转化到一个三角形中求解. (2)二面角的大小求法,二面角的大小用它的平面角来度量. 【规律技巧】 平面角的作法常见的有①定义法;②垂面法.注意利用等腰、等边三角形的性质. 【典例讲解】 【例1】如图,在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A =AB=BC,E就是PC的中点. (1)求PB与平面P AD所成的角的大小; (2)证明:AE⊥平面PCD; (3)求二面角A-PD-C的正弦值. (1)解在四棱锥P-ABCD中, 因P A⊥底面ABCD,AB?平面ABCD, 故P A⊥AB、又AB⊥AD,P A∩AD=A, 从而AB⊥平面P AD, 故PB在平面P AD内的射影为P A, 从而∠APB为PB与平面P AD所成的角. 在Rt△P AB中,AB=P A,故∠APB=45°、 所以PB与平面P AD所成的角的大小为45°、 (2)证明在四棱锥P-ABCD中,

因P A⊥底面ABCD,CD?平面ABCD, 故CD⊥P A、由条件CD⊥AC,P A∩AC=A, ∴CD⊥平面P AC、 又AE?平面P AC,∴AE⊥CD、 由P A=AB=BC,∠ABC=60°,可得AC=P A、 ∵E就是PC的中点,∴AE⊥PC、 又PC∩CD=C,综上得AE⊥平面PCD、 【变式探究】如图所示,在四棱锥P-ABCD中,底面ABCD就是正方形,侧棱PD⊥底面ABCD,PD=DC、E就是PC的中点,作EF⊥PB交PB于点F、 (1)证明P A∥平面EDB; (2)证明PB⊥平面EFD; (3)求二面角C-PB-D的大小. (1)证明如图所示,连接AC,AC交BD于O,连接EO、 ∵底面ABCD就是正方形, ∴点O就是AC的中点. 在△P AC中,EO就是中位线, ∴P A∥EO、 而EO?平面EDB且P A?平面EDB, ∴P A∥平面EDB、 【针对训练】 1.如图,四棱锥P-ABCD中,底面ABCD为菱形,P A⊥底面ABCD,AC=22,P A=2,E就是PC上的一点,PE=2EC、

线线角、线面角、二面角知识点及练习

线线角、线面角、面面角专题 一、异面直线所成的角 1.已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的锐角(或直角)叫异面直线,a b 所成的角。 2.角的取值范围:090θ<≤?; 垂直时,异面直线当b a ,900=θ。 例1.如图, 在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== ,点D 为AB 的中点异面直线1AC 与1B C 所成角的余弦值 二、直线与平面所成的角 1. 定义:平面的一条斜线和它在平面上的射影所成的锐角, 叫这条斜线和这个平面所成的角 2.角的取值范围:? ? ≤≤900θ。 _1 _A

例2. 如图、四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中 点,求(1)BC 与平面SAB 所成的角。 (2)SC 与平面ABC 所成的角的正切值。 一、 二面角: 1. 从一条直线出发的两个半平面所组成的图形叫做二 面角。这条直线叫做二面角的棱,这两个半平面叫做二面角的面。 2. 二面角的取值范围:? ? ≤≤1800θ 两个平面垂直:直二面角。 B M H S C A

3.作二面角的平面角的常用方法有六种: 1.定义法 :在棱上取一点O ,然后在两个平面内分别作过棱上O 点的垂线。 2.三垂线定理法:先找到一个平面的垂线,再过垂足作棱的垂线,连结两个垂足即得二面角的平面角。 3.向量法:分别作出两个半平面的法向量,由向量夹角公式求得。二面角就是该夹角或其补角。 二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。 例3.如图,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求 (1)二面角111D C A D --所成的角的余弦值 (2)平面AB 1E 和底面C C BB 11所成锐角的正切值. A 1 D 1 B 1 C 1 E D B C A

线线角,线面角,二面角的几何法

新高考一轮复习之立体几何线线角、线面角、面面角的几何解法 一、异面直线所成角 解题口诀:一平二构三边四余弦 一平:异面直线通过平行线平移至相交 二构:构造三角形 三边:计算三角形的三边长(注意是否为特殊三角形) 四余弦:利用余弦定理求角(注意异面直线的夹角范围为00(0,90],所以余弦值应该为正的) 练习题: 1、在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( ) A B C D 2、在正方体1111ABCD A B C D -中,O 为AC 的中点,则异面直线1AD 与1OC 所成角的余弦值为( ) A 、12 B C D 3、在四面体ABCD 中,若2AB CD ==,,,E F G 分别是,,BC BD AC 中点,若 FF =AB CD 与所成角为( ) A 、030 B 、045 C 、060 D 、0120 4、在长方体1111ABCD A B C D -中,12AB BC AA ==,则异面直线1A B 与1B C 所成的角的余弦值为( ) A B 、15 C D

5、已知直三棱柱111ABC A B C -中,0120ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( ) A 、3 B 、15 C 、10 D 、3 6、如图,在三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点M N 、分别为,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是 答案:78 二、线面角(线面角的难点在于找出垂线以及计算边长) 题型一:能证明出垂线的 解题步骤: ①先找斜足 ②过斜线上一点作平面的垂线,交点为垂足(线面垂直,需要证明) ③连接斜足和垂足,称为斜线的射影,射影和斜线所成的角即为线面角 基础例题: 1、正方体中,(1)求1BD 和底面ABCD 所成的角 (2)求1BD 和面11AA D D 所成的角 A B C D 1A 1B 1C 1D

空间中线线角,线面角,面面角成法原理和求法思路

D B A C α 空间中的夹角 福建屏南一中 李家有 QQ52331550 空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 1、异面直线所成的角 (1)异面直线所成的角的范围是2 , 0(π 。求两条异面直线所成的角的大小一般方法是通过平行移动 直线,把异面问题转化为共面问题来解决。 具体步骤如下: ①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上; ②证明作出的角即为所求的角; ③利用解三角形来求角。简称为“作,证,求” 2、线面夹角 直线与平面所成的角的范围是]2 , 0[π 。求直线和平面所成的角用的是射影转化法。 具体步骤如下:(若线面平行,线在面内,线面垂直,则不用此法,因为角度不用问你也知道) ①找过斜线上一点与平面垂直的直线; ②连结垂足和斜足,得出斜线在平面的射影,确定出所求的角; ③把该角置于三角形中计算。 也是简称为“作,证,求” 注:斜线和平面所成的角,是它和平面内任何一条直线所成的一切角中的最小角,即若θ为线面角,β为斜线与平面内任何一条直线所成的角, 则有θβ≤;(这个证明,需要用到正弦函数的单调性,请跳过。在右图的解释为 BAD CAD ∠>∠) ) 2.1确定点的射影位置有以下几种方法: ①斜线上任意一点在平面上的射影必在斜线在平面的射影上; ②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上; 已知:如图,BAC ∠在一个平面α内, ,,PN AC PM AB PN PM ⊥⊥且=(就是点P 到角 两边的距离相等)过P 作PO α⊥(说明点O 为P 点在面α内的射影) 求证:OAN OAM ∠∠= (OAN OAM ∠∠=,所以AO 为BAC ∠的角平分线,所以点O 会在BAC ∠的角平分线上) 证明:PA =PA ,PN =PM , 90PNA PMA ∠∠?== PNA PMA ∴???(斜边直角边定理) AN AM ∴= ① (PO NO MO PN PM α⊥? ?=?? 斜线长相等推射影长相等) =

立体几何中二面角和线面角

立体几何中的角度问题 一、 异面直线所成的角 1、如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积; (2)异面直线BC 与AE 所成的角的大小。 2、如图6,已知正方体1111ABCD A B C D -的棱长为2,点E是正方形11BCC B 的中心,点F、G分别是棱111,C D AA 的中点.设点11,E G 分别是点E,G在平面11DCC D 内的正投影. (1)求以E为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积; (2)证明:直线11FG FEE ⊥平面; (3)求异面直线11E G EA 与所成角的正弦值

二、直线与平面所成夹角 1、如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC , 90BAD ∠=,PA ⊥ 底面ABCD ,且2P A A D A B B C ===,M N 、分别为PC 、PB 的中点。 求CD 与平面ADMN 所成的角的正弦值。 2、长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角的正弦值。 三、二面角与二面角的平面角问题 1、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60?,PA PD == E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值.

2、如图5,?AEC 是半径为a 的半圆,AC 为直径,点E 为?AC 的中点,点B 和点C 为线 段AD 的三等分点,平面AEC 外一点F 满足FB FD ==,EF =。 (1)证明:EB FD ⊥; (2已知点,Q R 为线段,FE FB 上的点,23FQ FE =,2 3 FR FB =,求平面BED 与平面RQD 所成二面角的正弦值。

线线角和线面角

线线角和线面角 [重点]:确定点、斜线在平面内的射影。 [知识要点]: 一、线线角 1、定义:设a、b是异面直线,过空间一点O引a′//a,b′//b,则a′、b′所成的锐角(或直角),叫做异面直线a、b所成的角. 2、范围:(0,] 3. 向量知识: 对异面直线AB和CD (1); (2) 向量和的夹角<,>(或者说其补角)等于异面直线AB 和CD的夹角; (3) 二、线面角 1、定义:平面的一条斜线和它在这个平面内的射影所成的锐角,斜线和平面所成角的范围是(0,). 2、直线在平面内或直线与平面平行,它们所成角是零角; 直线垂直平面它们所成角为, 3、范围: [0,]。 4、射影定理:斜线长定理:从平面外一点向这个平面所引的垂线段和斜线段中: (1)射影相等的两条斜线段相等,射影较长的斜线段也较长; (2)相等的斜线段的射影相等,较长的斜线段的射影也较长; (3)垂线段比任何一条斜线段都短。

5、最小角定理:平面的一条斜线与平面所成的角,是这条直线和平面内过斜足的直线所成的一切角中最小的角。 6、向量知识 (法向量法)与平面的斜线共线的向量和这个平面的一个法向量的夹角<,>(或者说其补角)是这条斜线与该平面夹角的余角. [例题分析与解答] 例1.如图所示,在棱长为a的正方体ABCD-A1B1C1D1中,求:异面直线BA1与AC所成的角. 分析:利用,求出向量的夹角,再根据异面直线BA1,AC所成角的范围确定异面直线所成角. 解:∵,, ∴ ∵AB⊥BC,BB1⊥AB,BB1⊥BC, ∴ ∴ 又 ∴ ∴ 所以异面直线BA1与AC所成的角为60°. 点评:求异面直线所成角的关键是求异面直线上两向量的数量积,而要求两向量的数量积,必须会把所求向量用空间的一组基向量来表示. 例2.如图(1),ABCD是一直角梯形,AD⊥AB,AD//BC,AB=BC=a, AD=2a,且PA⊥平面ABCD,PD与平面ABCD成30°角.

线面角的计算方法

教师姓名 余永奇 学生姓名 洪 懿 上课时间 2014.11.15 辅导学科 数学 学生年级 高二 教材版本 人教版 课题名称 线面角,二面角的计算方法(文科) 本次学生 课时计划 第(10)课时 共(60)课时 教学目标 线面角的计算方法 教学重点 线面角的计算方法 教学难点 线面角的计算方法 教师活动 学生活动 上次作业完成情况(%) 一.检查作业完成情况,并讲解作业中存在的问题 二.回顾上次课辅导内容 三.知识回顾,整体认识 1、本章知识回顾 (1)空间点、线、面间的位置关系; (2)直线、平面平行的判定及性质; (3)直线、平面垂直的判定及性质。 2、本章知识结构框图 (二)整合知识,发展思维 1、刻画平面的三个公理是立体几何公理体系的基石,是研究空间图形问题,进行逻辑推理的基础。 公理1——判定直线是否在平面内的依据; 公理2——提供确定平面最基本的依据; 公理3——判定两个平面交线位置的依据; 公理4——判定空间直线之间平行的依据。 2、空间问题解决的重要思想方法:化空间问题为平面问题; 3、空间平行、垂直之间的转化与联系: 平面(公理1、公理2、公理3、公理4) 空间直线、平面的位置关系 直线与直线的位置关系 直线与平面的位置关系 平面与平面的位置关系 直线与直线平行 直线与平面平行 平面与平面平行

4、观察和推理是认识世界的两种重要手段,两者相辅相成,缺一不可。 典型例题: 线面夹角的计算 例1(2014浙江高考文科20题)如图,在四棱锥A-BCDE 中,平面ABC ⊥平面BCDE ,∠CDE=∠BED =90°,AB=CD=2, DE=BE=1,AC=2. (Ⅰ)证明: AC ⊥平面BCDE ; (Ⅱ)求直线AE 与平面ABC 所成的角的正切值. 例2(2013浙江,文20)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB =BC =2,AD =CD =7,PA =3,∠ABC =120°,G 为线段PC 上的点. (1)证明:BD ⊥平面APC ; ( 43 3 ) (2)若G 为PC 的中点,求DG 与平面APC 所成的角的正切值;(3)若G 满足PC ⊥平面BGD ,求PG GC 的值.(3/2) 直线与直线垂直 直线与平面垂直 平面与平面垂直

§52 线线角与线面角(教案)

B 1 D 1 A D C 1 B C A 1 §线线角与线面角(教案) 一、复习目标 1.理解异面直线所成角的概念,并掌握求异面直线所成角的常用方法. 2.理解直线与平面所成角的概念,并掌握求线面角常用方法. 3.掌握求角的计算题步骤是“一作、二证、三计算”,思想方法是将空间图形转化为平面图形即“降维” 的思想方法. 二、课前预习 1.在空间四边形ABCD中,AD=BC=2, E、F分别为AB、CD的中点且EF=3,AD、BC所成的角 为. 2.如图,在长方体ABCD-A1B1C1D1中,B1C和C1D与底面所成的角分别为60ο和45ο,则异面直线B1C 和C1D所成角的余弦值为( ) (A). 4 6 (B). 3 6 (C). 6 2 (D). 6 3 3.平面α与直线a所成的角为 3 π ,则直线a与平面α内所有直线所成的角的取值范围是. 4.如图,ABCD是正方形,PD⊥平面ABCD,PD=AD,则PA与BD所成的角的度数为 ( ) (A).30ο(B).45ο(C).60ο(D).90ο 5.有一个三角尺ABC,∠A=30ο, ∠C=90ο,BC是贴于桌面上, 当三角尺与桌面成45ο角时,AB边与桌面所成角的正弦值 是. 三、典型例题 例1.(96·全国) 如图,正方形ABCD所在平面与正方形ABEF所在平面成60ο角,求异面直线AD与BF 所成角的余弦值. 备课说明:1.求异面直线所成的角常作出所成角的平面图形.作法有: ①平移法:在异面直线的一条上选择“特殊点”,作另一条直线平行线 或利用中位线.②补形法:把空间图形补成熟悉的几何体,其目的在于容 易发现两条异面直线的关系. 2.解立几计算题要先作出所求的角,并要有严格的推理论证过 程,还要有合理的步骤. A C B D B P C D A C B F E

线面角与二面角的向量解法

线面角与二面角的向量解法 广州市第65中学 朱星如 510450 几何中的距离和角是初等几何学的核心问题,是新旧教材的教学重点,也是高考常考点。近几年来,各种数学杂志发表了不少用向量解几何题的文章,笔者觉得有些方法在实际解题中,操作起来并不方便,在教学中效果不佳。如线面角论及得较少;而用法向量求二面角的平面角时,两法向量的夹角与二面角的平面角是相等或互补,但不易确定取哪种关系。本文就这两个问题的解答方法作一介绍,但愿对同行的教学有所裨益。 先推导一个线面角公式。设PQ 是平面a 的一条斜线段,P 、Q 均 不为斜足,线段PQ 所在直线与平面α交于点Q ',直线PQ 与平 面α所成的角为q ,见图1。P '为直线PQ 上的一点,作P 'Q a ^ 于H ,连H Q ',则P Q H q ⅱ?。设平面a 的法向量为n r ,则有: 90HP Q q ⅱ+?o ,,HP Q n PQ ⅱ ?uuu r r 或,n PQ p -uuu r r , sin cos cos ,HP Q n PQ q ⅱ=?=uuu r r PQ n PQ n ×uuu r r g uuu r r ,从而 arcsin (1)PQ n PQ n q =×uuu r r g L uuu r r 。 注:当Q 点为斜足或点P 、Q 在平面α的异侧时本公式也适用。 我们改编一个91年全国的高考题例说公式(1)的应用。 例1:已知正方形ABCD 的边长为4,PA ⊥平面ABCD ,PA =2,E 、F 分别为BC 、 CD 的中点。求直线EB 、FB 分别与平面PEF 所成的角(见图2)。 解:以A 为原点,AD 所在的直线为x 轴,AB 所在的直线为y 轴,AP 所在的 直线为z 轴,建立空间右手直角坐标系。则有 B (0,4,0),C (4,4,0),D (4,0,0),P (0,0,2)。用中点坐标公式 可得E (2,4,0),F (4,2,0)。(2,2,0),(2,4,2)E F E P =-=--u u u r u u u r ,(2,0,0)EB =-u u u r , (4,2,0)FB =-u u u r 。设平面PEF 的法向量为(),,n x y z =r ,则有 0,0n EF n EP ==u u u r u u u r r r g g ,由此得:220,2420x y x y z -=--+=,可解出: ,3y x z x ==,取1x =得()1,1,3n =r , 记直线BE 、BF 与平面PEF 所成的角分别为1θ、2θ,则由公式(1)得 1sin n EB n EB q == =uuu r r g uuu r r ,1arcsin q = 22sin arcsin n FB n FB q q == ==uu u r r g uu u r r 。 处理线面角问题用公式(1),可回避找斜线在平面内的射影之苦,从而提高学生的学习效率,真正为学生减负。 () A O B D 图 2 P ' Q ' θ 图1

线线角、线面角,二面角(高考立体几何法宝)

1 A 1 B 1 C 1 D A B C D E F G 线线角、线面角、二面角的求法 1.空间向量的直角坐标运算律: ⑴两个非零向量与垂直的充要条件是 1122330a b a b a b a b ⊥?++= ⑵两个非零向量与平行的充要条件是 a 2 b =±|a ||b | 2.向量的数量积公式 若a 与b 的夹角为θ(0≤θ≤π),且123(,,)a a a a =,123(,,)b b b b =,则 (1)点乘公式: a 2b =|a ||b | cos θ (2)模长公式:则2 12||a a a a a =?=++,2 ||b b b b =?=+(3)夹角公式:2 cos ||||a b a b a b a ??==?+ (4)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则 2 | |(AB AB x ==,A B d = ①两条异面直线a 、b 间夹角0,2πα?? ∈ ??? 在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>= 例1 (福建卷)如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是( ) A .5 15arccos B . 4 π C .5 10 arccos D .2π (向量法,传统法)

P B C A 例 2 (2005年全国高考天津卷)如图,PA ⊥平面ABC ,90ACB ∠=?且 PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于_____. 解:(1)向量法 (2)割补法:将此多面体补成正方体'''DBCA D B C P -,PB 与AC 所成的角的大小即此正方体主对角线PB 与棱BD 所成角的大小,在Rt △PDB 中 ,即 t a n 2PD DBA DB ∠ = =. 点评:本题是将三棱柱补成正方体'''DBCA D B C P - ②直线a 与平面α所成的角0,2πθ?? ∈ ??? (重点讲述平行与垂直的证明) 可转化成用向量→ a 与平面α的法向量→ n 的夹角ω表示,由向量平移得:若 ππ(图);若ππ 平面α的法向量→ n 是向量的一个重要内容,是求直线与平面所成角、求点到平面距离的必备工具.求平面法向量的一般步骤: (1)找出(求出)平面内的两个不共线的向量的坐标111222(,,),(,,)a a b c b a b c == (2)设出平面的一个法向量为(,,)n x y z = (3)根据法向量的定义建立关于x,y,z 的方程组(0a << (4)解方程组,取其中的一组解,即得法向量。 图1- 图1- 图1- 1 D 1 B 1 C P D B C A

线线角与线面角

线线角与线面角 线线,线面,面面的平行与垂直,异面直线所成角,直线与平面所成角 异面直线所成角,直线与平面所成角 知识整合: 1.转化思想:将异面直线所成的角,直线与平面所成的角转化为平面角,然后解三角形;??⊥?⊥?⊥线线平行线面平行面面平行,线线线面面面 2.求角的三个步骤:一猜,二证,三算.猜是关键,在作线面角时,利用空间图形的平行,垂直,对称关系,猜斜线上一点或斜线本身的射影一定落在平面的某个地方,然后再证 热点题型1 例1、如图, 在直三棱柱111ABC A B C -中, 13,4,5,4AC BC AB AA ==== ,点D 为AB 的 中点 (Ⅰ)求证1AC BC ⊥; (Ⅱ) 求证11AC CDB 平面; (Ⅲ)求异面直线1AC 与1B C 所成角的余弦值 解析;异面直线所成角的平面角顶点O 的选取一般 选在两异面直线的端点处,初学者或观察能力有限者可采用穷举法,实行逐个端点考察,也有取在某线段的中点处. 解:(I )直三棱柱ABC -A 1B 1C 1,底面三边长AC=3,BC=4AB=5, ∴ AC ⊥BC ,且BC 1在平面ABC 内的射影为BC ,∴ AC ⊥BC 1; (II )设CB 1与C 1B 的交点为E ,连结DE ,∵ D 是AB 的中点,E 是BC 1的中点,∴ DE//AC 1, ∵ DE ?平面CDB 1,AC 1?平面CDB 1,∴ AC 1//平面CDB 1; (III )∵ DE//AC 1,∴ ∠CED 为AC 1与B 1C 所成的角, 在△CED 中,ED=21AC 1=25,CD=21 AB=2 5, CE=2 1 CB 1=22, ∴ 8cos 5 5 22 CED ∠= = ?, 1 A 1 A

线面角与二面角

二面角及其度量 平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面。从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面。 棱为l ,两个面分别为,αβ的二面角,记作l αβ--。A α∈,B β∈,二面角也可以记作A l B --。 在二面角l αβ--的棱上任取一点O ,在两半平面内分别做射线OA l ⊥,OB l ⊥,则AOB ∠叫做二面角l αβ--的平面角。显然,这个平面角与点O 在l 上的位置无关。 二面角的大小可以用它的平面角来度量。二面角的平面角是几度,就说这个二面角是几度。我国发射的第一颗人造卫星的倾角是68.5,这个倾角指的是人造卫星的轨道平面和地球赤道平面所成的角。 我们约定,二面角的范围是[0,]π。 平面角是直角的二面角叫做直二面角。互相垂直的平面也就是相交成直二面角的两个平面。 我们可以用向量的夹角来研究二面角的性质及其度量。 如图,分别在二面角l αβ--的面,αβ内,作向量1n l ⊥,2n l ⊥,则我们可以用向量1n 与2n 的夹角来度量这个二面角。 如图,设1m α⊥,2m β⊥,则角12,m m <>与该二面角大小相等或互补。 O O 1 A B A 1 B 1 l α β α 1m 2m β l 1n 2n

2 如图 四棱锥ABCD P -底面为直角梯形,平面⊥=⊥⊥PA AB CD AD CD AD AB ,2,, ABCD . ⑴BC 与平面PCD 成角. ⑵求二面角C BD P --的平面角. ⑶设Q 为侧棱PC 上一点,PC PQ λ=,试确定λ的值,使得二面角P BD Q --为.45?

高考数学线线角与线面角复习

第5课时线线角与线面角 ?要点·疑点·考点 ?课前热身 ?能力·思维·方法 ?延伸·拓展 ?误解分析

要点·疑点·考点 1.线线角 (2)范围:?? ? ??20π,(1)定义:设a 、b 是异面直线,过空间任一点O 引,则所成的锐角(或直角),叫做异面直线a 、b 所成的角. b a '',a 'b b a ////',

2.线面角 (3)范围:?? ????20π,(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫这条斜线和这个平面所成的角 (2)若直线l ⊥平面α,则l 与α所成角为直角 若直线l ∥平面α,或直线l 平面α,则l 与α所成角为0° ?

(4)射影定理:从平面α外一点向这个平面所引的 垂线段和斜线段中: ①射影相等的两条斜线段相等,射影较长的斜线 段也较长; ②相等的斜线段的射影相等,较长的斜线段的射 影也较长; ③垂线段比任何一条斜线段都短 (5)最小角定理:斜线和平面所成的角,是这条斜 线和平面内过斜足的直线所成的一切角中的最小 的角. 返回

2. 相交成90°的两条直线与一个平面所成的角分别是30°与45°,则这两条直线在该平面内的射影所成角的正弦值为( )(A) (B) (C) (D) 332336261. 平面α的斜线与α所成的角为30°,则此斜线和α内所有不过斜足的直线中所成的角的最大值是( )(A)30°(B)60°(C)90°(D)150° 课前热身 C C

3.如图,正方形ABCD所在平面与正方形ABEF所 在的平面成60°的二面角,则异面直线 AD与BF所 成角的余弦值是___________. 4 2

线线角_线面角_二面角的讲义

B 1D 1A D C 1 B C A 1 线线角与线面角 一、课前预习 1.在空间四边形ABCD 中,AD=BC=2, E 、F 分别为AB 、CD 的中点且EF=3,AD 、BC 所成的角为 . 2.如图,在长方体ABCD-A1B1C1D1中 ,B1C 和C1D 与底面所成的角分别为60ο和45ο,则异面直线B1C 和C1D 所成角的余弦值为 ( ) (A). 46 (B).36 (C).62 (D).63 3.平面α与直线a 所成的角为3π ,则直线a 与平面α所有直线所成的角的取值围是 . 4.如图,ABCD 是正方形,PD ⊥平面ABCD,PD=AD,则PA 与 BD 所成的角的度数为 (A).30ο (B).45ο (C).60ο (D).90ο 5.有一个三角尺ABC,∠A=30ο, ∠C=90ο,BC 是贴于桌面上, 当三角尺与桌面成45ο角时,AB 边与桌面所成角的正弦值 是 . 二、典型例题 例1.(96·全国) 如图,正方形ABCD 所在平面与正方形 ABEF 所在平面成60ο角,求异面直线AD 与BF 所成角的余弦值. 【备课说明:1.求异面直线所成的角常作出所成角的平A C B D B P C D A C B

面图形.作法有: ①平移法:在异面直线的一条上选择“特殊点”,作另一条直线平行线或利用中位线.②补形法:把空间图形补成熟悉的几何体,其目的在于容易发现两条异面直线的关系.2.解立几计算题要先作出所求的角,并要有严格的推理论证过程,还要有合理的步骤.】 例2.如图在正方体AC1中, (1) 求BC1与平面ACC1A1所成的角; (2) 求A1B1与平面A1C1B 所成的角. 备课说明:求直线与平面所成角的关键是找直线在 此平面上的射影,为此必须在这条直线上找一点作 平面的垂线. 作垂线的方法常采用:①利用平面垂直 的性质找平面的垂线.②点的射影在面的特殊位置. 例 3. 已知直三棱住ABC-A1B1C1,AB=AC, F 为棱BB1上一点,BF ∶FB1=2∶1, BF=BC=a 2. (1)若D 为BC 的中 点,E 为线段AD 上不同于A 、D 的任意一点,证明:EF ⊥FC1; (2)试问:若AB=a 2,在线段AD 上的E 点能否 使EF 与平面BB1C1C 成60ο角,为什么?证明你的结论. 备课说明:这是一道探索性命题,也是近年高考热点问题,解 决这类问题,常假设命题成立,再研究是否与已知条件矛盾, 从而判断命题是否成立. 一、知识与方法要点: 1.斜线与平面所成的角就是斜线与它在平面的射影的夹角。求斜线与平面所成的角关键是找到斜线在平面的射影,即确定过斜线上A D C 1D 1A 1B 1C B A 1C B A B 1D C 1E F

专题:空间线面角与二面角的求解问题

专题一:空间线面角与二面角的求解问题 1.(2015浙江)如图,底面ABC为正三角形,EA⊥平面ABC,DC⊥平面ABC,EA=AB=2DC= 2a,设F为EB的中点. (1)求证:DF//平面ABC; (2)求直线AD与平面AEB所成角的正弦值. 2.(2014湖北检测)如图所示,长方体ABCD?A1B1C1D1中,AD=AA1=1 ,AB=2,点E是AB 的中点. (1)证明:BD1//平面A1DE; (2)证明:D1E⊥A1D; (3)求二面角D1?EC?D的正切值.

3.(2014深圳调研)如图所示,平面ABCD⊥平面BCEF,且四边形ABCD为矩形,四边形BCEF 为直角梯形,BF//CE,BC⊥CE,DC=CE=4,BC=BF=2. (1)求证:AF//平面CDE; (2)球平面ADE与平面BCEF所成锐二面角的余弦值; (3)球直线EF与平面ADE所成角的余弦值. 4.(2014浙江名校联考)如图,在长方形ABCD中,AB=3,BC=1,E为DC的三等分点(靠近C处),F为线段EC上的一动点(包括端点),现将?AFD沿AF折起,使点D在平面内的射影恰好落在AB边上,则当F运动时,二面角D?AF?B的余弦值的取值范围是________.

5.如图,在直三棱柱ABC?A1B1C1中,平面A1BC⊥侧面A1ABB1,若直线AC与平面A1BC所成的角为θ,二面角A1?BC?A的大小为φ,试判断θ与φ的大小关系,并予以证明. 6.如图所示,四棱锥S?ABCD中,SD⊥平面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC= SD=2,E为棱SB上一点,平面EDC⊥平面SBC,求二面角A?DE?C的大小.

线线角_线面角_二面角一些题目

B 1D 1A D C 1B C A 1线线角与线面角习题 一、复习目标 1.理解异面直线所成角的概念,并掌握求异面直线所成角的常用方法. 2.理解直线与平面所成角的概念,并掌握求线面角常用方法. 3.掌握求角的计算题步骤是“一作、二证、三计算”,思想方法是将空间图形转化为平面图形即“降维”的思想方法. 二、课前预习 1.在空间四边形ABCD 中,AD=BC=2, E 、F 分别为AB 、CD 的中点且EF=3,AD 、BC 所成的角为 . 2.如图,在长方体ABCD-A 1B 1C 1D 1中 ,B 1C 和C 1D 与底面所成的角分别为60ο和45ο,则异面直 线B 1C 和C 1D 所成角的余弦值为 ( ) (A). 46 (B).36 (C).62 (D).63 3.平面α与直线a 所成的角为3 π,则直线a 与平面α内所有直线所成的角的取值范围是 . 4.如图,ABCD 是正方形,PD ⊥平面ABCD,PD=AD,则PA 与BD 所成的角的度数为 (A).30ο (B).45ο (C).60ο (D).90ο 5.有一个三角尺ABC,∠A=30ο, ∠C=90ο,BC 是贴于桌面上, 当三角尺与桌面成45ο角时,AB 边与桌面所成角的正弦值 是 . 三、典型例题 例1.(96·全国) 如图,正方形ABCD 所在平面与正方形 ABEF 所在平面成60ο角,求异面直线AD 与BF 所成角的余弦值. 备课说明:1.求异面直线所成的角常作出所成角的平面图形.作法有: ①平移法:在异面直线的一条上选择“特殊点”,作另一条直线平行线 或利用中位线.②补形法:把空间图形补成熟悉的几何体,其目的在于容 易发现两条异面直线的关系.2.解立几计算题要先作出所求的角,并要 有严格的推理论证过程,还要有合理的步骤. 例2.如图在正方体AC 1中, (1) 求BC 1与平面ACC 1A 1所成的角; (2) 求A 1B 1与平面A 1C 1B 所成的角. 备课说明:求直线与平面所成角的关键是找直线在此平面上的射影,为此必须在这条直线上找一点作平面的垂线. 作垂线的方法常采用:①利用 平面垂直的性质找平面的垂线.②点的射影在面内的特殊位置. 例3. 已知直三棱住ABC-A 1B 1C 1,AB=AC, F 为棱BB 1上一点,BF ∶FB 1=2∶1, BF=BC=a 2. (1)若D 为BC 的中点,E 为线段AD 上不同于A 、D 的任意一点,证明:EF ⊥FC 1; (2)试问:若AB=a 2,在线段AD 上的E 点能否使EF 与平面BB 1C 1C 成60ο角,为什么?证明你的结论. 备课说明:这是一道探索性命题,也是近年高考热点问题,解 决这类问题,常假设命题成立,再研究是否与已知条件矛盾, 从而判断命题是否成立. 四、反馈练习 1设集合A 、B 、C 分别表示异面直线所成的角、平面的斜线与平面所成的角、直线与平面所成的角的取值范围,则 (A)A=B=C (B)A=B ?C (C)A ?B ?C (D) B ?A ?C. 2两条直线a ,b 与平面α所成的角相等,则直线a ,b 的位置关系是 (A)平行 (B)相交 (C)异面 (D) 以上均有可能. 3设棱长为1的正方体ABCD-A 1B 1C 1D 1中,M 、N 分别为AA 1和BB 1的中点,则直线CM 和D 1N 所成角的正弦值为 . A C B A D C 1D 1A 1B 1C B A 1C B A B 1D C 1E F D B P C D A C B F E

二面角与线面角

直线和平面所成的角与二面角 一、选择题(共45题,题分合计225分) 1.在直二面角α- l-β中,直线m ?α,直线n ?β,且m 、n 均不与l 垂直,则 A. m 与n 不可能垂直,但可能平行 B. m 与n 可能垂直,但不可能平行 C. m 与n 可能垂直,也可能平行 D. m 与n 不可能垂直,也不可能平行 2.设有不同的直线a 、b 和不同的平面α、β、γ,给出下列三个命题: (1)若a a //,a b //,则b a //.(2)若a a //,β//a ,则β//a . (3)若γ⊥a ,γβ⊥,则β//a . 其中正确的个数是 A.0 B.1 C.2 D.3 3.如图△ABD ≌△CBD ,且△ABD 为等腰三角形,∠BAD =∠BCD =90°,且面ABD ⊥面BCD ,则下列4个结论中,正确结论的序号是 ①AC ⊥BD ②△ACD 是等边三角形③AB 与面BCD 成60°角④AB 与CD 成60°角 A.①②③ B.①②④ C.①③④ D.②③④ 4.一直线与直二面角的两个面所成的角分别为α、β,则α+β的范围为: A.0<α+β<π/2 B.α+β>π/2 C.0≤α+β≤π/2 D.0<α+β≤π/2 5.在直二面角α-AB -β的棱AB 上取一点P ,过P 分别在α、β两个平面内作与棱成45°的斜线PC 、PD ,那么∠CPD 的大小为 A.45° B.60° C.120° D.60°或120° 6.二面角α-l -β的平面角为120°,A ,B ∈l , AC ?α, BD ?β, AC ⊥l , BD ⊥l ,若AB =AC =BD =1,则CD 等于 A.2 B.3 C.2 D.5 7.60°的二面角α- l-β,直线a ?α,直线b ?β,且a 、b 无公共点.设a 、b 所成的角是θ,则cos θ的取值范围是

线线角与线面角

线线角和线面角 [重点]:确定点、斜线在平面内的射影。 [知识要点]: 一、线线角 1、定义:设a 、b 是异面直线,过空间一点 O 引a ' 〃a,b '则/域;b 所成的锐角(或直角), 叫 做异面直线a 、b 所成的角. 3. 向量知识: 对异面直线AB 和CD ⑵ 向量二_和匚匸 的夹角<_」,「「「: >(或者说其补角)等于异面直线 AB 和CD 的夹角; (3)..”厂,二:二「二 ■-- 二、线面角 1、定义:平面的一条斜线和它在这个平面内的射影所成的锐角,斜线和平面所成角的范围 是(0, _ ). 2、直线在平面内或直线与平面平行,它们所成角是零角; 直线垂直平面它们所成角为 - 3、范围:[0,二] 4、射影定理:斜线长定理:从平面外一点向这个平面所引的垂线段和斜线段中: (1) 射影相等的两条斜线段相等,射影较长的斜线段也较长; (2) 相等的斜线段的射影相等,较长的斜线段的射影也较长; 2、范围 7T 一

(3)垂线段比任何一条斜线段都短。

5、最小角定理:平面的一条斜线与平面所成的角,是这条直线和平面内过斜足的直线所成 的一切角中最小的角。 6、向量知识 (法向量法) ■* -f * 与平面的斜线共线的向量 显和这个平面的一个法向量 J 的夹角V 」,一1 >(或 者说其补角)是这条斜线与该平面夹角的余角 [例题分析与解答] 例1 ?如图所示,在棱长为 a 的正方体ABCD-A 1B 1C 1D 1中,求:异面直线 BA 1与AC 所成 的角. ■- - -11! ■',再根据异面直线 BA 1,AC 所成角的范围确定异面直线所成角 解:???】,—-匸二 , -!<■'.:― 二.':: =B T AB+BA BC+BB[ AB+BB[ BC ?/ AB 丄 BC ,BB 1 丄 AB ,BB 1± BC , ...「 i,T-; I, BB] BSC BA AB = -a\ ...二小 cos < BApAC >= — ---------- =-— ...-_三〔13二- 所以异面直线 BA i 与AC 所成的角为60°. 点评:求异面直线所成角的关键是求异面直线上两向量的数量积,而要求两向量的数量积, 必须会把所求向量用空间的一组基向量来表示 例2.如图⑴,ABCD 是一直角梯形, AD 丄AB ,AD//BC ,AB=BC=a, AD=2a,且PA 丄平面 ABCD ,PD 与平面 ABCD 成30。角. 分析: 利用〔[厂「J _ \ J - 的夹角

相关主题