搜档网
当前位置:搜档网 › 超级电容器电化学测试方法

超级电容器电化学测试方法

超级电容器电化学测试方法
超级电容器电化学测试方法

超级电容器电化学测试方法

武汉科思特仪器有限公司

超级电容器 (Suepercapacitor)是一种新型储能装置,它具有充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。超级电容器用途广泛。用作起重装置的电力平衡电源,可提供超大电流的电力;用作车辆启动电源,启动效率和可靠性都比传统的蓄电池高,可以全部或部分替代传统的蓄电池;用作车辆的牵引能源可以生产电动汽车、替代传统的内燃机、改造现有的无轨电车此外还可用于其他机电设备的储能能源。用于超级电容器电极的材料有各种碳材料,金属氧化物和导电聚合物[1-4],尤其是导电聚合物,自从1970年导电聚乙炔薄膜被成功合成出来后,科学家对导电聚合物就产生了浓厚的兴趣。

超级电容器的主要技术指标有比容量、充放电速率、循环寿命等。而CS350系列电化学工作站专门为超级电容器的性能评价设计了恒电流充放电测试方法,可以非常方便地评估电容器的循环寿命。下面逐一介绍基于CS350工作站的超级电容器性能评价方法。

1. 循环伏安测试:

基于CV 曲线的电容器容量计算,可以根据公式(1)计算。

q t C i i /V V

?=

==ν??(ν为扫速,单位V/s) (1) 从式(1)来看,对于一个电容器来说,在一定的扫速ν下做CV 测试。充电状态下,通过电容器的电流i 是一个恒定的正值,而放电状态下的电流则为一个恒定的负值。这样,在CV 图上就表现为一个理想的矩形。由于界面可能会发生氧化还原反应,实际电容器的CV 图总是会略微偏离矩形。因此,CV 曲线的形状可以反映所制备材料的电容性能。对双电层电容器,CV 曲线越接近矩形,说明电容性能越理想;而对于赝电容型电容器,从循环伏安图中所表现出的氧化还原峰的位置,我们可以判断体系中发生了哪些氧化还原反应。

CV 测试步骤:从corrtest 软件中选择“测试方法”→“循环伏安”→“线性循环伏安”

1.1. 参数设置:

系统默认是从高电位扫向低电位,例如在-0.4V~ 0.6V的电压范围内,正向扫描:高电位设为0.6V(相对参比电极),低电位设为-0.4V(相对参比电极),反向扫描,高电位设为-0.4V(相对参比电极),低电位设为0.6V(相对参比电极)。扫描速率可以根据需要设置,注意扫描速率和采样频率的设置是对应的,若是扫描速率较高(100mV/s),则采样频率也应较高(100Hz),以保证较小的电位间隔(1mV)。在电容性能测试中,在进行第一圈扫描时,可能电极表面没有达到平衡,因而CV曲线可能不能完全闭合,因此有必要多循环几次以便选取最佳的循环。

1.2. 仪器参数设置:

电流量程选择“自动切换”,电流量程应大于测试体系的最大电流值;无欧姆降补偿;接地模式:实地;滤波器电容值越小滤波效果越差,一搬设置电容值为2.2nF 。

1.3. 电解池参数设置:

电极面积也就是所采用的工作电极的面积。

对CV图的后期处理可以在电化学工作站自带的Cview软件中进行。可以进行CV的电流对电压的积分,算出材料的比电容。此外,CV也可以做电池的循环寿命测试。设置固定的扫速和循环次数,就可以进行电容器的寿命测试。

1.4. 测试实例

图1为PPy/TSA(聚吡咯)电极在0.5M Na2SO4 溶液中的循环伏安测试曲线。在-0.4V~0.6V 范围内,CV曲线均呈现出较理想的电容矩形特征[5],并且曲线关于零电流基线基本对称,说明材料在充放电过程中所发生的氧化还原过程基本可逆。当扫描速度增加到100mV/s的时候,CV曲线仍没有偏离矩形;同时,当扫描电位方向改变时,电流表现出了快速响应特征,说明电极在充放电过程中动力学可逆性良好[6]

武汉科思特仪器有限公司 武汉市东湖高新区SBI 创业街10栋C 座1-1102

-0.4-0.20.00.20.40.6

-0.06

-0.04

-0.02

0.00

0.02

0.04

C u r r e n t d e n s i t y / A c m

-2

Voltage / V vs .SCE

10mV /s

50mV /s

100mV /s

S p e c i f i c c a p a c i t a n c e / F g

-1

Scan rate / mV s

-1

图1 .PPy/TSA 电极在不同扫速下的CV 曲线 图2. PPy/TSA 电极的比电容与扫速的关系

图1显示,当扫描速度从10mV/s 增加到100mV/s ,材料的比电容仅减少了6.8%,显示PPy/TSA 电极具有良好的高倍率充放电行为。

2. 交流阻抗测试:

交流阻抗可以反映电极材料在电极/溶液界面的电荷传递和物质扩散方面的动力学细节。可以计算出电容器的等效串联电阻、溶液电阻、材料/电解液界面双电层电容和赝电容等。

交流阻抗测试施加的交流幅值一般为5mV ,测试频率范围为10-2~105,阻抗测量时“分析器设置”:欧姆补偿:信号去偏√,输出衰减:*0.01。交流阻抗的结果可以Zview 软件中处理,构建一个等效电路,通过全频段进行拟合,即可计算出与电容充放电相关的电化学参数。

2.1. 测试实例

一般多孔材料的EIS 主要由高频部分的半圆环和低频部分的垂直线组成[7],其中高频区阻抗的实部反应了带电粒子在孔隙内扩散的难易程度,低频段的直线则反映了PPy 电极的赝电容性能[8-9]。图3是PPy/TSA 电极在1000次循环前后的Nyquist 图,可知经过1000次循环后,PPy/TSA 电极在低频区的直线比循环前的直线偏离虚轴更远,即循环后PPy/TSA 电极的赝电容下降。根据其阻抗谱特征,构建了一个等效电路并进行EIS 解析,如图4。

Z'/ Ω

图3. PPy/TSA电极在1000次循环前后的交流阻抗图谱(空心三角形为循环前的交流阻抗图谱,

实心三角形为循环后的交流阻抗图谱)

R

s C

d l

R

c t

C

f

图4. 交流阻抗拟合用等效电路图

3.恒电流充放电测试

从恒电流充放电中可以计算出电极材料的比电容,其依据为公式

C=

I t

m V

?

?

(2)

其中I为充电电流,?t为放(充)电时间,ΔV是放(充)电电势差,m是材料质量。通过多次循环测量,还可以对电容器的循环寿命进行评估。从充电曲线和放电曲线是否对称,可以判断电容器充放电和相应的电化学反应是否可逆。

3.1. 恒电流充放电参数:

充电电流:系统默认的是充电电流为负,放电电流为正,因此在设置的时候注意充电电流和放电电流是一对相反数。充放电的时间也是一样的,只要将充放电时间设置的大于实际的充放电时间就行。电位反转,强调一下是反转,若是在-0.4V~0.6V 进行电化学测试,电容器充电的时候电压下降,当电压下降到-0.4V时,电位反向;放电的时候电压增大,当增大到0.6V的时候电位发生反转,因此在设定的时候根据

你所选取的电位范围,设置充电电位小于较负的值,放电电位大于较正的值。

对一个非理想电容器,由于存在各种电阻(材料的接触电阻,孔电阻,电解液电阻等等),因此,在不同的电流密度下所得到的电容是不同的。循环次数则根据需要来设置:如果仅仅想知道在不同充放电流密度下的比电容,可以只循环几次来计算电容值。若是要进行电容器的循环寿命测试,则应该将循环测试设置为所需要循环的次数,比如将第1000次循环计算的电容值除以第1次循环计算得到的电容值,我们就可以评价电容器在1000次循环后的稳定性。

3.2. 测试实例

在不同电流密度下对PPy/TSA 电极进行恒流充放电测试,结果如图5。可见在-0.4~0.6V 范围内,充电曲线和放电曲线有较理想的对称性,说明化学氧化法制备的PPy/TSA 电极在0.5M Na 2SO 4中所进行的氧化反应和还原反应是可逆的[10]。

计算表明,在10mA/cm 2电流密度下PPy/TSA 电极的比容量为270 F/g ,该值尽管相对于有机电解质体系不算大,但与其它材料在水系电解液中的比容量相当。

E / V v s . S C E

t / s

V o l t a g e / V v s . S C E

t / s

图5. PPy/TSA 电极在不同电流密度下的充放电曲线

图6. PPy/TSA 电极 在10mA/cm 2下的比电容量与循环次数的关系

在0.5M 的Na 2SO 4中采用10mA/cm 2电流对PPy/TSA 电极进行循环寿命测试,结果如图6。经过1000次充放电循环后,PPy/TSA 电极的比容量下降了约25.5%。循环寿命在最初的200次下降较快,这是因为在长时间充放电过程中,掺杂态聚吡咯会发生聚合物链的膨胀/收缩[11],导致聚吡咯的主链破坏,电极材料内的部分孔隙遭到破坏和隔断,阻碍了带电粒子在孔隙内的传递,使得材料的比电容急剧下降。

[1] M. Winter, R.J. Brodd, Chem Rev, 104 (2004) 4245-4269.

[2] D.Y. Qu, J Power Sources, 109 (2002) 403-411.

[3] V. Khomenko, E. Raymundo-Pinero, F. Beguin, J Power Sources, 153 (2006) 183-190.

[4] M. Mastragostino, C. Arbizzani, F. Soavi, Solid State Ionics, 148 (2002) 493-498.

[5] 刘辰光, 方海涛, 王大伟, 李峰, 刘敏, 成会明, 新型炭材料, 20 (2005) 205-210.

[6] 张晶, 孔令斌, 蔡建军, 杨贞胜, 罗永春, 康龙, Wlhx, (2010).

[7] 古宁宇, 钱新明, 赵峰, 董绍俊, 分析化学, 30 (2002) 1-5.

[8] 周鹏伟, 李宝华, 康飞宇, 曾毓群, 新型炭材料, 21 (2006) 125-131.

[9] W.G. Pell, B.E. Conway, N. Marincic, J Electroanal Chem, 491 (2000) 9-21.

[10] 李永舫, 高分子通报, 4 (2005) 51-57.

[11] E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. Beguin, J Power Sources, 153 (2006) 413-418.

采样率:

数码音频系统是通过将声波波形转换成一连串的二进制数据来再现原始声音的,实现这个步骤使用的设备是模/数转换器(A/D)它以每秒上万次的速率对声波进行采样,每一次采样都记录下了原始模拟声波在某一时刻的状态,称之为样本。

将一串的样本连接起来,就可以描述一段声波了,把每一秒钟所采样的数目称为采样频率或采率,单位为HZ(赫兹)。采样频率越高所能描述的声波频率就越高。对于每个采样系统均会分配一定存储位(bit数)来表达声波的声波振幅状态,称之为采样分辩率或采样精度,每增加一个bit,表达声波振幅的状态数就翻一翻,并且增加6db的动态范围态,即6db的动态范围,一个2bit的数码音频系统表达千种状态,即12db的动态范围,以此类推。如果继续增加bit数则采样精度就将以非常快的速度提高,可以计算出16bit能够表达65536种状态,对应,96db 而20bit可以表达1048576种状态,对应120db。24bit可以表达多达16777216种状态。对应144db的动态范围,采样精度越高,声波的还原就越细腻。(注:动态范围是指声音从最弱到最强的变化范围)人耳的听觉范围通常是20HZ~20KHZ。

根据奈魁斯特(NYQUIST)采样定理,用两倍于一个正弦波的频繁率进行采样就能完全真实地还原该波形,因此一个数码录音波的休样频率直接关系到它的最高还原频率指标例如,用44.1KHZ的采样频率进行采样,则可还原最高为22.05KHZ的频率-----这个值略高于人耳的听觉极限,(注:可录MD,例R900的取样频率为44.1KHZ 并且有取样频率转换器,可将输入的32KHz/44.1KHZ/48KHZ转换为该机的标准取样频率44.1KHZ的还原频率足已记示和真实再现世界上所有人再能辩的声音了,所以

CD音频的采样规格定义为16bit。44KHZ,即使在最理想的环境下用现实生活中几乎不可能制造的高精密电子元器件真实地实现了16bit的录音,仍然会受到滤波和声特定位等问题的困扰,人们还是能察觉出一些微小的失真所以很多专业数码音频系统已经使用18bit甚至24bit 进行录音和回放了。

电化学原理与方法课程中下半学期课程复习题 (1)剖析

1请你简要论述一下,电化学研究方法中,暂态测量技术有哪些?以及暂态研究技术的应用有哪些? 暂态测量技术有哪些? 暂态测量方法的种类 ①按极化或控制的幅度分( 幅度:电极极化的幅度,界面电位变化量) a. 大幅度暂态测量(研究电极过程) |Δφ|>10 mV ( 大幅度) b. 小幅度暂态测量(用于测定参数Rr、RL、C d) |Δφ|<10 mV(小幅度) ②按控制方式分: a. 控制电流法暂态测量 b. 控制电位法暂态测量 控电流法:单电流阶跃;断电流;方波电流;双脉冲电流 控电位法:阶跃法、方波电位法等;线性扫描(单程线性扫描,连续三角波扫描);脉冲电位(阶梯伏安,常规脉冲,差分脉冲,方波伏安) [从电极极化开始到各个子过程(电化学反应过程、双电层充电过程、传质过程和离子导电过程)做出响应并进入稳态过程所经历的不稳定的,变化的“过渡阶段”,称为暂态.] [电化学暂态测试技术也称为电化学微扰测试技术,即用指定的小幅度电流或电压讯号加到研究电极上,使电极体系发生微弱的扰动,同时测量电极参数的响应来研究电极反应参数] 暂态研究技术的应用? 暂态技术提供了比稳态技术更多的信息,用来研究电极过程动力学,测定电极反应动力学参数和确定电极反应机理,而且还可将测量迁越反应速率常数的上限提高2~3个数量级,有可能研究大量快速的电化学反应。暂态技术对于研究中间态和吸附态存在的电极反应也特别有利。暂态技术中测得的一些参量,例如双电层电容、欧姆电阻、由迁越反应速率常数决定的迁越电阻等,在化学电源、电镀、腐蚀等领域也有指导意义。 2.请你谈谈电化学测量中要获得电化学信号需要哪些电极以及设备,它们分别的作用是什么? 一、需要①参比电极:参比电极的性能直接影响着电极电势的测量或控制的稳定性。 ②盐桥:当被测电极体系的溶液与参比电极的溶液不同时,常用盐桥把研究电极和参比电极连接起来。盐桥的作用主要有两个,一个是减小接界电势,二是减少研究、参比溶液之间的相互污染。

超级电容器的组装及性能测试实验指导书 (1)汇总

超级电容器的组装及性能测试指导书 实验名称:超级电容器的组装及性能测试 课程名称:电化学原理与方法 一、实验目的 1.掌握超级电容器的基本原理及特点; 2.掌握电极片的制备及电容器的组装; 3.掌握电容器的测试方法及充放电过程特点。 二、实验原理 1.电容器的分类 电容器是一种电荷存储器件,按其储存电荷的原理可分为三种:传统静电电容器,双电层电容器和法拉第准电容器。 传统静电电容器主要是通过电介质的极化来储存电荷,它的载流子为电子。 双电层电容器和法拉第准电容储存电荷主要是通过电解质离子在电极/溶液界面的聚集或发生氧化还原反应,它们具有比传统静电电容器大得多的比电容量,载流子为电子和离子,因此它们两者都被称为超级电容器,也称为电化学电容器。 2.双电层电容器 双电层理论由19世纪末Helmhotz等提出。Helmhotz模型认为金属表面上的净电荷将从溶液中吸收部分不规则的分配离子,使它们在电极/溶液界面的溶液一侧,离电极一定距离排成一排,形成一个电荷数量与电极表面剩余电荷数量相等而符号相反的界面层。于是,在电极上和溶液中就形成了两个电荷层,即双电层。 双电层电容器的基本构成如图1,它是由一对可极化电极和电解液组成。 双电层由一对理想极化电极组成,即在所施加的电位范围内并不产生法拉第反应,所有聚集的电荷均用来在电极的溶液界面建立双电层。 这里极化过程包括两种: (1)电荷传递极化(2)欧姆电阻极化。 当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中成电中性,这便是双电层电容的充放电原理。

电化学工作站测试超级电容器

电化学工作站测试超级电容器 郑州世瑞思仪器科技有限公司 RST5200E电化学工作站提供了许多适合于超级电容器研究的电化学测试方法,如:“恒流限压快速循环充放电”、“微分电容-频率”、“线性扫描循环伏安法“交流阻抗谱”等,可对超级电容器进行深入的研究。 以前,人们大多用“电池循环充放电仪”对超级电容器进行充放电研究。随着超级电容器应用领域的不断扩展,特别是对快速充放电要求的提高,使得用电池测试仪器 研究超级电容器显得力不从心。对超级电容器实施快速循环充放电,需要设立一个限 压换流模块,属于反馈控制。就是当采集单元检测到超级电容器两端的电压超越限定 值后,立即通知驱动单元改变电流方向。 限压换流的过程必须快速,否则就控制不住了。在 RST5200E 电化学工作站中, 限压换流功能由硬件实现,从而确保该反馈控制过程小于1mS。下表列出了一些电化学测试仪器的指标: 下面对RST5200E 电化学工作站中的“恒流限压快速循环充放电”方法进行简单介绍。 1. 超级电容器的连接 工作电极引线夹(绿蓝)接超级电容器正极。 参比电极引线夹(白黄)接超级电容器负极;辅助电极引线夹(红)接超级电容器 负极。 运行中,请勿断开超级电容器。

2 .软件功能 2.1 界面布局 左上部为文本框,用于显示运行参数和测量数据。 左下部为操作面板,用于接受操作者的选择。 右边为图形框,用于显示被选中的循环,这些循环属于该曲线的一部分。 2.2 定位显示 本方法将测量获得的曲线以充放电循环作为单元显示于图形框中。通过操作面板, 可调 整显示参数:起始循环、循环数量。 2.3 数据计算 软件自动对显示于图形框中的循环进行统计计算,其结果显示于文本框中,有:充电电量、放电电量、充电能量、放电能量、电容量、等效串联电阻等。 2.4 删除多余的循环 在菜单<数据处理>中,设有三个子菜单。 2.4.1 <删除最初一个循环>:通常,由于电容器测试前的初始储能状态不确定,使得 第一个循环的充放电不完整,通过该菜单可以删除这个循环。再次操作该菜单,可再 删除一个循环。 2.4.2 <删除最后一个循环>:如果手动停止实验,最后一个循环的充放电可能不完整,通过 该菜单可以删除这个循环。再次操作该菜单,可再删除一个循环。 2.4.3 <删除未显示的循环>:如果只对显示于图形框中的那些循环感兴趣,可用该菜 单删除显示区域之外的循环。 3. 设定参数 3.1 充电电流 充电过程中的恒定电流。其最大值Im可由下式估算:Im =(充电限制电压 - 放电限制电压)/ 等效串联电阻。如果所设的充电电流超过 Im,则电压曲线立即越过 充电限制电压线,无法对超级电容器实施充电。充电电流一般应设在Im / 2以下。

超级电容器的三种测试方法详解(终审稿)

超级电容器的三种测试 方法详解 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

超级电容器电极材料性能测试的三种常用电化学方法,欢迎大家一起交流 ★★★★★★★★★★ 关于超级电容器电极材料性能测试常用的三种电化学手段,大家一起交流交流自己的经验。我先说说自己的蠢蠢的不成熟的经验。不正确或者不妥的地方欢迎大家指正批评,共同交流。希望大家都把自己的小经验,测试过程中遇到的问题后面如何解决的写出来,共同学习才能共同进步。也希望大家可以真正的做到利用电化学板块解决自己遇到的电化学问题。 循环伏安cyclic voltammetry (CV) 由CV曲线,可以直观的知道大致一下三个方面的信息 Voltage window(水系电解液的电位窗口大致在1V左右,有机电解液的电位窗口会在左右)关于很多虫虫问,电位窗口应该从具体的哪个电位到哪个电位,这个应该和你的参比电极和测试体系有关。工作站所测试的电位都应该是相对于参比电极的,所以不要纠结于为什么别人的是0-1V,而你测试的是,这个与参比电极的本身电位(相对于氢标的电位)以及测试的体系本身有很大关系。 Specific capacitance (比电容,这个是超级电容器重要的参数之一,可以利用三种测试手段来计算,我一般都是利用恒电流充放电曲线来计算) Cycle life (超级电容器电极材料好坏的另一个比较重要的参数,因为一个很棒的电极材料应该是要做到既要有比较高的比电容又要有比较好的循环稳定性) 测试的时候比较重要的测试参数:扫描速度和电位扫描范围。电位的扫描范围,一般会在一个比较宽的范围扫描一次然后选择电容性能还比较好的区间再进行线性扫描,扫描速度会影响比电容,相同的电极材料相同测试体系扫速越大计算出的比电容会越小。恒电流充放电galvanostatic charge–discharge (GCD) 由GCD测试曲线,一般可以得到以下几方面的信息: ?the change of specific capacitance(比电容的变化可以从有限多次的恒电流充放电中体现,直观的就是每次充放电曲线的放电时间的变化) ?degree of reversibility(由充放电曲线的对称也可以中看出电极材料充放电的可逆性) ?Cycle life(循环寿命,换句话也就是随着充放电次数的增多,电极材料比电容的保持率) 恒电流充放电测试过程中比较重要的测试参数有电流密度,还有充放电反转的电位值。电流密度可以设置为电流/电极面积,也可以设置为电流/活性物质质量。我在测试的过程中一般依据活性物质的质量设置为XXmA/mg。充放电反转的电位值可以依据循环伏安的电位窗口,可以设置为该区间或者小于该区间。 交流阻抗electrochemical impedance spectroscopy (EIS)

超级电容测试方案

10.备用电源系统测试 10.1测试工具及仪器 (1)数字万用表FLUKE 289 1台; (2)数字示波器Tektronix DPO3034 1台(含电流卡钳A622,高压隔离探头P5210);(3)数字兆欧表HIOKI 345 1台,VC60D 1台; (4)功率分析仪YOKOGAWA WT1600 1台; (5)耐压测试仪 TOS5101 1台; (6)输出可调超级电容充电机 BN-CDJ350V 1台; (7) 24V直流电源一台; (8)变桨距系统控制柜轴一柜; (9)变桨试验台SY_BJ_T_V3.1 1台; (10)调压器9KV A 1台; (11)PRODIGIT 3257电子负载; (12)滑动变阻器 BX8-27-2.5A 2台; 10.2.超级电容单体性能测试 10.2.1单体容量测试 ★测试方法: 采用恒流放电法测90V超级电容模块的总容量,由于90V超级电容模块含36个超级电容单体,将总容量乘以36即可得到超级电容单体的容量。 测试电路如图10.1所示。

图10.1. 容量测试电路图 放电电流I1及放电电压下降的电压U1和U2见下表。分级方法应根据分立标准。 ★测试步骤: (1)如图10.1进行接线,设定充电机充电电压为150V,闭合F1; (2)断开F3,闭合F2,对超级电容模块C充电。C达到额定电压后,保持充电机输出30min,以I2=1A电流充电,每15s记录一次150V超级电容模块端电压;以I2’=2A电流充电,每30s记录一次150V超级电容模块端电压; (3)将示波器电压探头接C的正负极端,将电子负载设置为恒流模式,电流值设置为I1=4A放电。断开F2并闭合F3对超级电容进行放电,每30s记录一次150V超级电容模块端电压。 (4)记录C的正负极之间电压U随时间的变化曲线(如图10.2示意);

电化学暂态测试方法(包括交流阻抗法)、in situ方法、总结及案例

电化学暂态测试方法(包括交流阻抗法)、in situ方法、总 结及案例

目录1. 交流阻抗法 1.1 交流阻抗法概述 1.2电化学极化下的交流阻抗 1.3 浓差极化下的交流阻抗 1.4复杂体系的交流阻抗 2. 电化学暂态测试方法 2.1 电化学暂态测试方法概述 2.2 电化学极化下的恒电流暂态方法 2.3 浓差极化下的恒电流暂态方法 2.4 电化学极化下的恒电位暂态方法 2.5 浓差极化下的恒电位暂态方法 2.6动电位扫描法 3.原位(in situ)电化学研究方法 4.案例 参考文献

1.交流阻抗法 1.1 交流阻抗法概述 交流阻抗法是指小幅度对称正弦波交流阻抗法。就是控制电极交流电位(或控制电极的交流电流)按小幅度(一般小于10毫伏)正弦波规律变化,然后测量电极的交流阻抗,进而计算电极的电化学参数。由于使用小幅度对称交流电对电极极化,当频率足够高时,以致每半周期所持续的时间很短,不致引起严重的浓差极化及表面状态变化。而且在电极上交替地出现阳极过程的阴极过程,即使测量讯号长时间作用于电解池,也不会导致极化现阶段象的积累性发展。因此这种方法具有暂态法的某些特点,常称为“暂稳态法”。“暂态”是指每半周期内有暂态过程的特点,“稳态”是指电极过程老是进行稳定的周期性的变化。 交流阻抗法适于研究快速电极过程,双电层结构及吸附等,在金属腐蚀和电结晶等电化学研究中也得到广泛应用。研究电化学体系的阻抗图谱,获得电极反应体系的控制步骤和动力学参数、反应机理以及各因素的影响规律,方法有两种: 1)等效电路方法 理论:建立各种典型电化学体系在不同控制步骤下的等效电路,理论推导出其阻抗图谱。 测试方法:由阻抗图谱对照理论画出对应的等效电路。 优缺点:此法直观,但一个等效电路可能对应不止1个等效电路。 2)数据模型方法 理论:建立各种典型电化学体系在不同控制步骤下的理论数据模型,理论计算出其阻抗图谱。 测试方法:由阻抗图谱对照理论获得数据模型。 优缺点:此法准确,但实际电化学体系复杂模型难以建立,正在发展中。 阻抗、导纳与复数平面图 1)阻抗:Z= E / I 而如正弦交流电压E = Emsinωt 等,E 、I 、 Z 均为角频率ω (=2πf )或频率 f 的函数。 2) 导纳:Y Y=1/Z 3) 阻抗的矢量表示与复数平面图 Z 可以表示为实—虚平面的矢量: Z = A + jB Z 可由模数 Z 和相角φ来定义: φ φ sin cos Z B Z A == 2 2B A Z += A B tg = φ 阻抗谱:阻抗随交流信号角频率或频率的变化关系

用电化学工作站测试超级电容器

用电化学工作站测试超级电容器 郑州世瑞思仪器科技有限公司 RST5200E电化学工作站提供了许多适合于超级电容器研究的电化学测试方法,如:“恒流限压快速循环充放电”、“微分电容-频率”、“线性扫描循环伏安法“交流阻抗谱”等,可对超级电容器进行深入的研究。 以前,人们大多用“电池循环充放电仪”对超级电容器进行充放电研究。随着超级电容器应用领域的不断扩展,特别是对快速充放电要求的提高,使得用电池测试仪器研究超级电容器显得力不从心。对超级电容器实施快速循环充放电,需要设立一个限压换流模块,属于反馈控制。就是当采集单元检测到超级电容器两端的电压超越限定值后,立即通知驱动单元改变电流方向。 限压换流的过程必须快速,否则就控制不住了。在 RST5200E 电化学工作站中,限压换流功能由硬件实现,从而确保该反馈控制过程小于1mS。下表列出了一些电化学测试仪器的指标: 下面对RST5200E 电化学工作站中的“恒流限压快速循环充放电”方法进行简单介绍。 1. 超级电容器的连接 工作电极引线夹(绿蓝)接超级电容器正极。 参比电极引线夹(白黄)接超级电容器负极;辅助电极引线夹(红)接超级电容器负极。 运行中,请勿断开超级电容器。 2 .软件功能 2.1 界面布局 左上部为文本框,用于显示运行参数和测量数据。 左下部为操作面板,用于接受操作者的选择。 右边为图形框,用于显示被选中的循环,这些循环属于该曲线的一部分。

2.2 定位显示 本方法将测量获得的曲线以充放电循环作为单元显示于图形框中。通过操作面板,可调 整显示参数:起始循环、循环数量。 2.3 数据计算 软件自动对显示于图形框中的循环进行统计计算,其结果显示于文本框中,有:充电电量、放电电量、充电能量、放电能量、电容量、等效串联电阻等。 2.4 删除多余的循环 在菜单<数据处理>中,设有三个子菜单。 2.4.1 <删除最初一个循环>:通常,由于电容器测试前的初始储能状态不确定,使得第一个循环的充放电不完整,通过该菜单可以删除这个循环。再次操作该菜单,可再删除一个循环。 2.4.2 <删除最后一个循环>:如果手动停止实验,最后一个循环的充放电可能不完整,通过 该菜单可以删除这个循环。再次操作该菜单,可再删除一个循环。 2.4.3 <删除未显示的循环>:如果只对显示于图形框中的那些循环感兴趣,可用该菜单删除显示区域之外的循环。 3. 设定参数 3.1 充电电流 充电过程中的恒定电流。其最大值Im可由下式估算:Im =(充电限制电压- 放电限制电压)/ 等效串联电阻。如果所设的充电电流超过 Im,则电压曲线立即越过充电限制电压线,无法对超级电容器实施充电。充电电流一般应设在Im / 2以下。 3.2 放电电流 放电过程中的恒定电流。其最大值Im可由下式估算:Im =(充电限制电压 - 放电限制电压)/ 等效串联电阻。如果所设的放电电流超过 Im,则电压曲线立即越过放电限制电压线,无法对超级电容器实施放电。放电电流一般应设在Im / 2以下。 3.3 充电限制电压 应低于超级电容器的击穿电压,例如:3V。 3.4 放电限制电压 应低于充电限制电压,例如:0V。 3.5采样周期 采样周期应根据不同的测量目的来设定,一般以每个充放电循环 100 至 1000 个样点为为宜。例如:(A)测量电压阶跃值,可将采样周期设为0.01S、0.001S,以

电化学研究方法总结及案例

电化学研究方法总结及案例\

目录1. 交流阻抗法 1.1 交流阻抗法概述 1.2电化学极化下的交流阻抗 1.3 浓差极化下的交流阻抗 1.4复杂体系的交流阻抗 2. 电化学暂态测试方法 2.1 电化学暂态测试方法概述 2.2 电化学极化下的恒电流暂态方法 2.3 浓差极化下的恒电流暂态方法 2.4 电化学极化下的恒电位暂态方法 2.5 浓差极化下的恒电位暂态方法 2.6动电位扫描法 3.原位(in situ)电化学研究方法 4.案例 参考文献

1.交流阻抗法 1.1 交流阻抗法概述 交流阻抗法是指小幅度对称正弦波交流阻抗法。就是控制电极交流电位(或控制电极的交流电流)按小幅度(一般小于10毫伏)正弦波规律变化,然后测量电极的交流阻抗,进而计算电极的电化学参数。由于使用小幅度对称交流电对电极极化,当频率足够高时,以致每半周期所持续的时间很短,不致引起严重的浓差极化及表面状态变化。而且在电极上交替地出现阳极过程的阴极过程,即使测量讯号长时间作用于电解池,也不会导致极化现阶段象的积累性发展。因此这种方法具有暂态法的某些特点,常称为“暂稳态法”。“暂态”是指每半周期内有暂态过程的特点,“稳态”是指电极过程老是进行稳定的周期性的变化。 交流阻抗法适于研究快速电极过程,双电层结构及吸附等,在金属腐蚀和电结晶等电化学研究中也得到广泛应用。研究电化学体系的阻抗图谱,获得电极反应体系的控制步骤和动力学参数、反应机理以及各因素的影响规律,方法有两种: 1)等效电路方法 理论:建立各种典型电化学体系在不同控制步骤下的等效电路,理论推导出其阻抗图谱。 测试方法:由阻抗图谱对照理论画出对应的等效电路。 优缺点:此法直观,但一个等效电路可能对应不止1个等效电路。 2)数据模型方法 理论:建立各种典型电化学体系在不同控制步骤下的理论数据模型,理论计算出其阻抗图谱。 测试方法:由阻抗图谱对照理论获得数据模型。 优缺点:此法准确,但实际电化学体系复杂模型难以建立,正在发展中。 阻抗、导纳与复数平面图 1)阻抗:Z= E / I 而如正弦交流电压E = Emsinωt 等,E 、I 、 Z 均为角频率ω (=2πf )或频率 f 的函数。 2) 导纳:Y Y=1/Z 3) 阻抗的矢量表示与复数平面图 Z 可以表示为实—虚平面的矢量: Z = A + jB Z 可由模数 Z 和相角φ来定义: φ φ sin cos Z B Z A == 2 2B A Z += A B tg = φ 阻抗谱:阻抗随交流信号角频率或频率的变化关系

超级电容器的三种测试方法详解

超级电容器电极材料性能测试的三种常用电化学方法,欢迎大家一起交流 ★★★★★★★★★★ 关于超级电容器电极材料性能测试常用的三种电化学手段,大家一起交流交流自己的经验。我先说说自己的蠢蠢的不成熟的经验。不正确或者不妥的地方欢迎大家指正批评,共同交流。希望大家都把自己的小经验,测试过程中遇到的问题后面如何解决的写出来,共同学习才能共同进步。也希望大家可以真正的做到利用电化学板块解决自己遇到的电化学问题。 循环伏安cyclic voltammetry (CV) 由CV曲线,可以直观的知道大致一下三个方面的信息 ? Voltage window(水系电解液的电位窗口大致在1V左右,有机电解液的电位窗口会在2.5V 左右)关于很多虫虫问,电位窗口应该从具体的哪个电位到哪个电位,这个应该和你的参比电极和测试体系有关。工作站所测试的电位都应该是相对于参比电极的,所以不要纠结于为什么别人的是0-1V,而你测试的是-0.5-0.5V,这个与参比电极的本身电位(相对于氢标的电位)以及测试的体系本身有很大关系。 ?Specific capacitance (比电容,这个是超级电容器重要的参数之一,可以利用三种测试手段来计算,我一般都是利用恒电流充放电曲线来计算) ?Cycle life (超级电容器电极材料好坏的另一个比较重要的参数,因为一个很棒的电极材料应该是要做到既要有比较高的比电容又要有比较好的循环稳定性) 测试的时候比较重要的测试参数:扫描速度和电位扫描范围。电位的扫描范围,一般会在一个比较宽的范围扫描一次然后选择电容性能还比较好的区间再进行线性扫描,扫描速度会影响比电容,相同的电极材料相同测试体系扫速越大计算出的比电容会越小。 恒电流充放电 galvanostatic charge–discharge (GCD) 由GCD测试曲线,一般可以得到以下几方面的信息: ?the change of specific capacitance(比电容的变化可以从有限多次的恒电流充放电中体现,直观的就是每次充放电曲线的放电时间的变化) ?degree of reversibility(由充放电曲线的对称也可以中看出电极材料充放电的可逆性) ?Cycle life(循环寿命,换句话也就是随着充放电次数的增多,电极材料比电容的保持率)恒电流充放电测试过程中比较重要的测试参数有电流密度,还有充放电反转的电位值。电流密度可以设置为电流/电极面积,也可以设置为电流/活性物质质量。我在测试的过程中一般依据活性物质的质量设置为XXmA/mg。充放电反转的电位值可以依据循环伏安的电位窗口,可以设置为该区间或者小于该区间。 交流阻抗 electrochemical impedance spectroscopy (EIS) 由交流阻抗曲线可以看出体系随着频率改变的变化趋势,得出测试体系某个状态下的包括溶液电阻、扩散阻抗的情况,可以通过测试交流阻抗对测试的未知体系进行电化学元件模拟。

缩减讲稿超级电容器电极的制备及性能测试

超级电容器电极的制备及性能测试 超级电容器的主要技术指标有比容量、充放电速率、循环寿命等。 本实验采用EC500系列电化学工作站三电极法(包括循环伏安法、交流阻抗等),考察不同活化方法处理后电极的电化学性能。 1.循环伏安法 1.1电化学体系三电极介绍 电化学体系借助于电极实现电能的输入或输出,电极是实施电极反应的场所。 一般电化学体系分为二电极体系和三电极体系,循环伏安法通常采用三电极系统。相应的三个电极为工作电极(研究电极W)、参比电极(R)和辅助电极(对电极C)。 三电极组成两个回路: 研究电极和参比电极组成的回路构成一个不通或基本少通电的体系,利用参比电极电位的稳定性来测量工作电极的电极电位。 研究电极和辅助电极组成另一个回路构成一个通电的体系,用来测量工作电极通过的电流。这就是所谓的“三电极两回路”,也就是测试中常用的三电极体系。利用三电极体系,来同时研究工作电极的电位和电流的关系。 图 1 三电极系统原理图 对于三电极测试系统,之所以要有一个参比电极,是因为有些时候工作电极和辅助电极的电极电位在测试过程中都会发生变化,为了确切的知道其中某一个电极的电位(通常是工作电极的电极电位),就必须有一个在测试过程中电极电位恒定且已知的电极作为参比来进行测量,以为研究电极提供一个电位标准。 但是,仅仅使用三电极体系还不够,因为,随着电化学反应的进行,研究电极表面的反应物质的浓度不断减少,电极电位也随之发生或正或负的变化,也就是说随着电化学反应的进行,研究电极的电位会发生变化。为了使电极电位保持稳定,即将研究电极对参比电极的电位保持在设定的电位上,通常使用恒电位电解装置(恒电位仪),这样,便用了恒电位仪的三电极体系,可以为我们提供用以解释电化学反应的电流—电位曲线,这种测定电流—电位曲线的方法叫做伏安法。

电化学超级电容器

姓名:严臣凤学号:10121570125 班级:应化(1)班 电化学超级电容器 电化学超级电容器(electrochemical supercapacitor)亦称超大容量电容器,是一种介于电池和静电电容之间的新型储能器件。超级电容器具有功率密度比电池高、能量密度比静电电容高、充放电速度快、循环寿命长、对环境无污染等优点,成为本世纪的一种新型绿色能源。利用超级电容和电池组成混合动力系统能够很好地满足电动汽车启动、爬坡、加速等高功率密度输出场合的需要,并保护蓄电池系统。另外超级电容器可以用于电路元件、小型电器电源、直流开关电源等,还可以用于燃料电池的启动动力,移动通讯和计算机的电力支持等。 1.1 电化学超级电容器类型 电化学超级电容器依据其储能原理可以分为双电层电容器、法拉第准电容器、混合型电容器和锂离子电容器,电极材料主要有碳材料、金属氧化物和导电聚合物等。 (1)双电层电容器双电层电容器是建立在 双电层理论基础之上的.双电层理论由l9世纪末 Helmhotz等提出.Helmhotz模型认为电极表面的 静电荷从溶液中吸附离子,它们在电极/溶液界 面的溶液一侧离电极一定距离排成一排,形成一 个电荷数量与电极表面剩余电荷数量相等而符号 相反的界面层.由于界面上存在位垒,两层电荷 都不能越过边界彼此中和,因而形成了双电层电 容.为形成稳定的双电层,必须采用不和电解液 发生反应且导电性能良好的电极材料,还应施加 直流电压,促使电极和电解液界面发生“极化”. (2)法拉第准电容器法拉第准电容器 (Faradic capacitor)是在电极材料表面和近表面或体相中的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸附/脱附和氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容器,其储能过程不仅包括双电层存储电荷,而且包括电解液离子与电极活性物质发生的氧化还原反应。当电解液中的离子(如H+、OH、Li+等)在外加电场的作用下由溶液中扩散到电极/溶液界面时,会通过界面上的氧化还原反应而进入到电极表面活性氧化物的体相中,从而使得大量的电荷被存储在电极中。放电时,这些进入氧化物中的离子又会通过以上氧化还原反应的逆反应重新返回到电解液中,同时所存储的电荷通过外电路而释放出来,这就是法拉第准电容器的充放电机理。 (3)混合型电容器混合型电容器(hybrid capacitor)一般由双电层电容过程和法拉第准电容过程共同来构成,一部分是由碳电极形成双电层电容,另一部分是由导电聚合物或金属氧化物电极进行氧化还原反应或锂离子嵌入反应形成法拉第准电容。在水溶液电解质体系中,可以形成碳/氧化镍、碳/二氧化锰等混合电容器;在有机电解质体系中,可以形成双电层碳/锂离子嵌入型碳的锂离子型混合电容器。 (4)锂离子电容器锂离子电容器(1ithium—ion capacitor)是一种特殊的混合型电容器,它是将锂离子充电电池的负极与双电层电容器的正极组合在一起构造,是一种正负极充放电原理不同的非对称电容,因而同时具备双电层电容和锂离子电池的电化学储电性能。

实验二 超级电容器的组装及性能测试实验指导书

实验二超级电容器的组装及性能测试 实验名称:超级电容器的组装及性能测试 所涉及课程:工程化学 计划学时:4学时 一、实验目的 1.掌握超级电容器的基本原理及特点; 2.掌握电极片的制备及电容器的组装; 3.掌握电容器的测试方法及充放电过程特点。 二、实验原理 1.电容器的分类 电容器是一种电荷存储器件,按其储存电荷的原理可分为三种:传统静电电容器,双电层电容器和法拉第准电容器。 传统静电电容器主要是通过电介质的极化来储存电荷,它的载流子为电子。 双电层电容器和法拉第准电容储存电荷主要是通过电解质离子在电极/溶液界面的聚集或发生氧化还原反应,它们具有比传统静电电容器大得多的比电容量,载流子为电子和离子,因此它们两者都被称为超级电容器,也称为电化学电容器。 2.双电层电容器 双电层理论由19世纪末Helmhotz等提出。Helmhotz模型认为金属表面上的净电荷将从溶液中吸收部分不规则的分配离子,使它们在电极/溶液界面的溶液一侧,离电极一定距离排成一排,形成一个电荷数量与电极表面剩余电荷数量相等而符号相反的界面层。于是,在电极上和溶液中就形成了两个电荷层,即双电层。 双电层电容器的基本构成如图1,它是由一对可极化电极和电解液组成。 双电层由一对理想极化电极组成,即在所施加的电位范围内并不产生法拉第反应,所有聚集的电荷均用来在电极的溶液界面建立双电层。 这里极化过程包括两种: (1)电荷传递极化(2)欧姆电阻极化。 当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中成电中性,这便是双电层电容的充放电原理。

超级电容器的测试方法

超级电容器的测试方法 郑州世瑞思仪器科技有限公司 RST5200E电化学工作站提供了许多适合于超级电容器研究的电化学测试方法,如:“恒流限压快速循环充放电”、“微分电容-频率”、“线性扫描循环伏安法“交流阻抗谱”等,可对超级电容器进行深入的研究。 以前,人们大多用“电池循环充放电仪”对超级电容器进行充放电研究。随着超级电容器应用领域的不断扩展,特别是对快速充放电要求的提高,使得用电池测试仪器 研究超级电容器显得力不从心。对超级电容器实施快速循环充放电,需要设立一个限 压换流模块,属于反馈控制。就是当采集单元检测到超级电容器两端的电压超越限定 值后,立即通知驱动单元改变电流方向。 限压换流的过程必须快速,否则就控制不住了。在 RST5200E 电化学工作站中, 限压换流功能由硬件实现,从而确保该反馈控制过程小于1mS。下表列出了一些电化学测试仪器的指标: 下面对RST5200E 电化学工作站中的“恒流限压快速循环充放电”方法进行简单介绍。 1. 超级电容器的连接 工作电极引线夹(绿蓝)接超级电容器正极。 参比电极引线夹(白黄)接超级电容器负极;辅助电极引线夹(红)接超级电容器 负极。 运行中,请勿断开超级电容器。

2 .软件功能 2.1 界面布局 左上部为文本框,用于显示运行参数和测量数据。 左下部为操作面板,用于接受操作者的选择。 右边为图形框,用于显示被选中的循环,这些循环属于该曲线的一部分。 2.2 定位显示 本方法将测量获得的曲线以充放电循环作为单元显示于图形框中。通过操作面板, 可调 整显示参数:起始循环、循环数量。 2.3 数据计算 软件自动对显示于图形框中的循环进行统计计算,其结果显示于文本框中,有:充电电量、放电电量、充电能量、放电能量、电容量、等效串联电阻等。 2.4 删除多余的循环 在菜单<数据处理>中,设有三个子菜单。 2.4.1 <删除最初一个循环>:通常,由于电容器测试前的初始储能状态不确定,使得 第一个循环的充放电不完整,通过该菜单可以删除这个循环。再次操作该菜单,可再 删除一个循环。 2.4.2 <删除最后一个循环>:如果手动停止实验,最后一个循环的充放电可能不完整,通过 该菜单可以删除这个循环。再次操作该菜单,可再删除一个循环。 2.4.3 <删除未显示的循环>:如果只对显示于图形框中的那些循环感兴趣,可用该菜 单删除显示区域之外的循环。 3. 设定参数 3.1 充电电流 充电过程中的恒定电流。其最大值Im可由下式估算:Im =(充电限制电压 - 放电限制电压)/ 等效串联电阻。如果所设的充电电流超过 Im,则电压曲线立即越过 充电限制电压线,无法对超级电容器实施充电。充电电流一般应设在Im / 2以下。

超级电容测试方法

超级电容测试方法 1.静电容量测试方法: ⑴测试原理 超级电容器静电容量的测试,是采用对电容器恒流放电的方法测试,并按下列公式计算; C=It/(U1-U2) 式中:C——静电容量,F; I——恒定放电电流,A; U1 、U2——采样电压,V; t——U1 到U2所需的放电时间,S。 ⑵测试程序 用100A的电流对电容器充电,电容器充电到最高工作电压止并恒压10秒,然后,以100A的电流对电容器放电,取U1 为1.2V, U2为1.0V,记录该电压范围内的放电时间,共循环3次。计算每次循环的静电容量,取平均值。 2.储存能量测试 ⑴测试原理: 超级电容器能量的测试,是采用以电容器给定的电压范围,对电容器进行恒功率放电到1/2工作电压的方法进行。电容器的输出能量W是由恒定放电功率P和放电时间t关系得到的,即: W = P?t ⑵测试工序 用恒定电流100A对电容器充电到最高工作电压,然后,恒压至充电电流下降到规定电流(牵引型10A,启动型1A),静止5秒后,以恒定功率对电容器放电到1/2工作电压,录放电时间并计算能量值。循环3次测量,取平均值。 注:恒定功率值确定方法是以标称能量确定的,牵引型2W/KJ,启动型5W/KJ。3.等效串联电阻测试(DC) ⑴测试原理 电容器的内阻是根据电容器断开恒流充电电路10毫秒内,电压的突变来测量的。即:式中:R——电容器的内阻; U0——电容器切断充电前的电压; Ui——切断充电后10毫秒内的电压; I——切断充电前的电流。 ⑵测量工序 对电容器以恒定电流100A充电,充电至最高工作电压的80%时断开充电电路,用采样机分 别记录电容器断电后10毫秒内的电压变化值,并计算内阻,重复3次,取平均值。 4.漏电流测试 将电容器以恒电流100A充电至额定电压,在此电压值下恒压充电3h,记录充电过程的电流值。 5.自放电测试 将电容器以恒电流100A充电至额定电压后,在此电压值下恒压充电30min,然后开路搁置72h。在最初的三个小时内,每一分钟记录一次电压值,在剩余的时间内,每十分钟记录一次电压值。 计算自放电能量损失,SDLF(self-discharge energy loss factor)=1-(V/Vw)2,计算时间点分别为:

电化学测量方法 PDF

电化学测量方法 PDF 一、电化学测量方法的分类 ??第一类电化学热力学性质的测量方法 ??第二类单纯依靠电极电势、极化电流的的控制和测量进行动力学性质的测量。 ??第三类在电极电势、极化电流的控制和测量的同时引入光谱波谱技术、扫描探针显微技术的体系电化学性质测量方法二、电化学测量的基本原则要进行电化学测量研究某一个基本过程就必须控制实验条件突出主要矛盾使该过程在电极总过程中占据主导地位降低或消除其他基本过程的影响通过研究总的电极过程研究这一基本过程。三、电化学测量的主要步骤 ??1、实验条件的控制 ??2、实验结果的测 量 ??3、实验结果的解析四、电化学测量的基本知识 ??1、电极电势的测量和控制 ??2、电流的测量和控制 ??3、电化学测量的基本元件介绍 1、电极电势的测量 ?当用电势差计接在研究电极和参比电极之间时测量电路中没有电流流过此时测得的研究电极电势VV开E但是使用电压表作为测量仪器电路中不可能完全没有电压VV开i测R池 i测R仪器? E所以对测量和控制电极电势的仪器有一系列的要求。 ?要求测量仪器有足够高的输入阻抗以保障测量电路中的电流足够小使得电池的开路电压绝大部分都分配在仪器上同时测量电路中的电流小还不会导致被测电池发生极化干扰研究电极的电极电势和参比电极的稳定性。 ?要求仪器有适当的精度、量程一般要求能准确测量或控制到1mV。 ?对暂态测量要求仪器有足够快的响应速度具体测量时对上述指标的要求并不相同也各有侧重需要具体问题具体分析。 2、电流的测量和控制极化电流的测量和控制主要包括两种不同的方式 ?在极化回路中串联电流表适当选择电流表的量程和精度测量电流。这种方式适用于稳态体系的间断测量不适合进行快速、连续的测量 ?使用电流取样电阻或电流-电压转换电路将极化电流信号转变成电压信号然后使用测量、控制电压的仪器进行测量或控制。这种方法适用于极化电流的快速、连续、自动的测量和控制。 ?另外还可能对

超级电容器材料电化学电容特性测试

华南师大学实验报告 学生:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源 课程名称:化学电源实验 实验项目:超级电容器材料电化学电容特性测试 实验类型:验证设计综合实验时间:2014年5月19日-26日实验指导老师:易芬云组员:吕俊、郭金海、余启鹏 一、实验目的 1、了解超级电容器的原理; 2、了解超级电容器的比电容的测试原理及方法; 3、了解超级电容器双电层储能机理的特点; 4、掌握超级电容器电极材料的制备方法; 5、掌握利用循环伏安法及恒流充放电的测定材料比电容的测试方法。 二、实验原理 1、超级电容器的原理 超级电容器是由两个电极插入电解质中构成。超级电容与电解电容相比,具有非常高的功率密度和实质的能量密度。尽管超级电容器储存电荷的能力比普通电容器高,但是超级电容与电解电容或者电池的结构非常相似。

图1 超级电容器的结构图 从图中可看出,超级电容器与电解电容或者电池的结构非常相似,主要差别是用到的电极材料不一样。在超级电容器里,电极基于碳材料技术,可提供非常大的表面面积。表面面积大且电荷间隔很小,使超级电容器具有很高的能量密度。大多数超级电容器的容量用法拉(F)标定,通常在1F到5,000F之间。 (1) 双电层超级电容器的工作原理 双电层电容是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙所产生的。对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。这时对某一电极而言,会在一定距离(分散层)产生与电极上的电荷等量的异性离子电荷,使其保持电中性;当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中成电中性,这便是双电层电容的充放电原理。根据双电层理论,双电层的微分电容约为20μF/cm2,采用具有很大比表面积的碳材料可获得较大的容量。双电层电容具有响应速度快,放电倍率高的特点,但储能比电容较小。 (2) 法拉第鹰电容的工作原理 法拉第鹰电容器是在电极表面或体相中的二维或准二维空间上,电极活性物质进行欠电位沉积,发生高度可逆的化学吸附脱附或氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容,其储存电荷的过程不仅包括双电层上的存储,而且包括电解液中离子在电极活性物质中由于氧化还原反应而将电荷储存于电极中。对于其双电层中的电荷存储与上述类似,对于化学吸脱附机理来说,一般过程为电解液中的离子一般为或在外加电场的作用下由溶液中扩散到电极溶液界面,而后通过界面的电化学反应而进入到电极表面活性氧化物的体相中若电极材料具有较大比表面积的氧化物,就会有相当多的这样的电化学反应发生,大量的电荷就被存储在电极中。放电时这些进入氧化物中的离子又会重新返回到电解液中,同时所存储的电荷通过外电路而释放出来,这就是法拉第准电容的充放电机理。法拉第鹰电容可以产生高的比电容,但因为法拉第反应的限制,倍率性能比双电层电容小。

超级电容器原理介绍及实验分析

五、结果与分析 1、实验过程总结与知识点查阅 ○1超级电容器的结构:[1] 超级电容器主要由三部分组成:电极、电解液和隔膜,其中电极由集流体和电极材料组成。本实验中,集流体为泡沫镍,集流体起到降低电极内阻的作用,活性物质为三维石墨烯-Co3O4复合材料。 ○2超级电容器的分类及原理 分为双电层电容器和赝电容器 双电层电容器:充电时,电解液中的带电粒子被吸附在电极表面,形成双电层结构,从而将能量储存起来。在双电层电容器工作的过程中,电解液中的粒子只发生电迁移、扩散、传质,完全是物理过程,不会和电极发生氧化还原反应。在充电时,接正极的电极集流体和活性物质带正电,活性物质吸附电解液中的负离子从而形成双电层结构。同样的,接负极的活性物质带负电,吸引电解液中的阳离子形成双电层结构。整个超级电容器相当于两个电容器串联。循环性能好,比电容较低。 赝电容器:由于电解液中粒子与电极材料发生高度可逆的氧化还原反应,形成不稳定的产物,将能量储存起来。在充电时,活性物质与电解液中的粒子在电极表面或者电极表面及内部发生高度可逆的化学吸附;在放电时则进行解吸附的过程。循环性能差,比电容高。 ○3超级电容器的电极材料[2]: (1)炭材料:活性炭、碳纳米管、石墨烯等。主要用于双电层电容器,比容量较低,而且能量密度与功率密度也较低。 ( 2 )过渡金属氧化物和导电聚合物,主要用于赝电容器,比容量与能量密度较高,导电性能和循环稳定性相对活性炭较差。 (3)改进材料:制备碳材料与金属氧化物或导电聚合物的复合材料,同时拥有比电容高和循环性能好的优点,如本实验中的三维石墨烯-Co3O4复合材料。 ○4循环伏安法测试及其原理 循环伏安法是指在工作电极和参比电极之间施加三角波扫描电压,记录工作电极上响应电流与施加电位之间的关系曲线,即循环伏安图。从伏安图的波形、氧化还原电流的数值及

关于超级电容器电极材料性能测试常用的三种电化学手段

循环伏安cyclic voltammetry (CV) 由CV曲线,可以直观的知道大致一下三个方面的信息 ? Voltage window(水系电解液的电位窗口大致在1V左右,有机电解液的电位窗口会在2.5V 左右)关于很多虫虫问,电位窗口应该从具体的哪个电位到哪个电位,这个应该和你的参比电极和测试体系有关。工作站所测试的电位都应该是相对于参比电极的,所以不要纠结于为什么别人的是0-1V,而你测试的是-0.5-0.5V,这个与参比电极的本身电位(相对于氢标的电位)以及测试的体系本身有很大关系。 ?Speci fic capacitance (比电容,这个是超级电容器重要的参数之一,可以利用三种测试手段来计算,我一般都是利用恒电流充放电曲线来计算) ?Cycle life (超级电容器电极材料好坏的另一个比较重要的参数,因为一个很棒的电极材料应该是要做到既要有比较高的比电容又要有比较好的循环稳定性) 测试的时候比较重要的测试参数:扫描速度和电位扫描范围。电位的扫描范围,一般会在一个比较宽的范围扫描一次然后选择电容性能还比较好的区间再进行线性扫描,扫描速度会影响比电容,相同的电极材料相同测试体系扫速越大计算出的比电容会越小。 恒电流充放电galvanostatic charge–discharge (GCD) 由GCD测试曲线,一般可以得到以下几方面的信息: ?the change of specific capacitance(比电容的变化可以从有限多次的恒电流充放电中体现,直观的就是每次充放电曲线的放电时间的变化) ?degree of reversibility(由充放电曲线的对称也可以中看出电极材料充放电的可逆性) ?Cycle life(循环寿命,换句话也就是随着充放电次数的增多,电极材料比电容的保持率)恒电流充放电测试过程中比较重要的测试参数有电流密度,还有充放电反转的电位值。电流密度可以设置为电流/电极面积,也可以设置为电流/活性物质质量。我在测试的过程中一般依据活性物质的质量设置为XXmA/mg。充放电反转的电位值可以依据循环伏安的电位窗口,可以设置为该区间或者小于该区间。 交流阻抗electrochemical impedance spectroscopy (EIS) 由交流阻抗曲线可以看出体系随着频率改变的变化趋势,得出测试体系某个状态下的包括溶液电阻、扩散阻抗的情况,可以通过测试交流阻抗对测试的未知体系进行电化学元件模拟。关于交流阻抗,谈谈频率和体系元件的响应关系,总的来说,交流阻抗之所以能得到诸多信息,关键在于不同器件本身对于频率的相应不同。Nyquist图中最先响应的总是纯电阻,然后是电容和电化学反应,最后是扩散过程。纯电阻,在电场建立的同时即可响应。交流阻抗的测试过程中会出现两个图:Nyquist图和Bode图,Nyquist图反应的是随着频率的变化虚轴的阻抗值和实轴的阻抗值的变化,Bode图反应的是阻抗的模值随着频率的变化以及相位角随频率的变化。 交流阻抗测试过程中比较重要的设置参数有:交流幅值以及频率范围。交流幅值对于超级电容器一般会选择5mV,频率一般会选择100kHz-10mHz,当然也会有不同体系不同对待,很多文献中会选择测试到0.1Hz就停止了,这样来说根本没有测试低频区体系真正的性能测试就已经停止了。真正反映测试体系的电容性能,漏电性的低频区的直线很重要。当然如果测

相关主题