搜档网
当前位置:搜档网 › 13 旋风分离器说明书

13 旋风分离器说明书

13 旋风分离器说明书
13 旋风分离器说明书

目录

1.简介-------------------------------------------------------------------------------------------2

1.1 一般规定-------------------------------------------------------------------------------2

1.2 用途-------------------------------------------------------------------------------------2

1.3 主要特点-------------------------------------------------------------------------------2

2. 结构及原理

2.1 结构-------------------------------------------------------------------------------------2

2.2 工作原理-------------------------------------------------------------------------------3

3. 安装------------------------------------------------------------------------------------------- 3

3.1 基础-------------------------------------------------------------------------------------3

3.2 安装前准备----------------------------------------------------------------------------3

3.3 装配-------------------------------------------------------------------------------------3

3.4 管线连接要求-------------------------------------------------------------------------3

3.5 安装注意事项-------------------------------------------------------------------------4

3.6 检验-------------------------------------------------------------------------------------4

4. 操作------------------------------------------------------------------------------------------- 4

4.1 通气前的准备-------------------------------------------------------------------------4

4.2 通气操作-------------------------------------------------------------------------------4

4.3 正常操作状态-------------------------------------------------------------------------4

5. 维护------------------------------------------------------------------------------------------- 4

5.1 排尘------------------------------------------------------------------------------------5

5.2 清洗-------------------------------------------------------------------------------------5

6. 常见故障及分析处理---------------------------------------------------------------------- 5

欢迎您选用沈阳鑫联石化设备有限公司生产的系列旋风分离器,我们将竭诚为您服务。安装使用前请仔细阅读安装使用说明书,并严格按照其要求操作、使用、维护、和排除故障。

………………………………………………………………………………………………………1.简介

1.1一般规定

本旋风分离器是接受《压力容器安全技术监察规程》监察的二类压力容器,被分离介质天然气为易燃、易爆气体,故为保证旋风分离器安全运行,该旋风分离器的设计、制造、检验、安装、使用、修理及改造等环节,必须遵循GB150-1998《钢制压力容器》、《压力容器安全技术监察规程》(99版)等的有关规定。

1.2 用途

本旋风分离器作为一种除尘设备,它主要用于除去输送气体介质中携带的固、液相杂质和粉尘微粒,以确保天然气管道及设备的正常运行。

1.3 主要特点

◆分离效率高。

◆性能稳定,操作、管理及维护方便。

◆结构简单,不需要附属设备,占地面积小。

2.原理与结构

2.1 结构

旋风分离器主要由壳体、旋风子组件、喷淋装置以及各用途开孔接管组成。壳体被上下隔板分成上中下三个腔。旋风子组件由旋风子和上下隔板组成。喷淋装置由圆形(沿圆周与Y轴成120度角的方位均布喷水孔)喷淋管和进水管组成,主要用来清洗旋风分离器下腔筒壁附着的粉尘。

旋风分离器结构示意图

2.2 工作原理

旋风分离器是利用离心沉降原理从气流中分离出固、液相杂质和粉尘微粒的设备。即被分离介质-含尘天然气-从旋风分离器进气口经过弯管进入由旋风子组件上下隔板与筒体组成的中腔,然后从各个旋风子进气管以切线方向进入,按螺旋形路线向器底旋转,到达底部后折向上,成为内层的上旋气流,称为气芯,然后从各个旋风子顶部的中央排气管排到旋风分离器上腔,最后从旋风分离器的排气口排出,进入输送管线。气流中所夹带的尘粒在随气流旋转的过程中逐渐趋向旋风子器壁,碰到器壁后滑向旋风子出口,最后落到旋风分离器下腔。

3.安装

3.1 基础

3.1.1本旋风分离器的基础应由具备工业与民用建筑设计资质的设计单位按旋风分离器总图的要求设计。且应由具备工业建筑施工资质的单位进行基础施工。旋风分离器基础为圆形,旋风分离器立式安装,用地脚螺栓固定。

3.1.2本旋风分离器的安装应考虑其周围具有足够大的空间,以便清灰检修。

3.2 安装前准备

3.2.1按我厂提供的装箱清单清点各件,确保零部件齐全。

3.2.2检查各零部件,确保零部件完好无损。

3.2.3备齐各种安装所需消耗材料及所需用具。

3.2.4检查地基预制质量,确保地基预制质量合乎安装要求。

3.2.5检查各人手孔、放空口、人工清灰口紧固件,确保紧固件齐全、无松动。

3.3 装配

3.3.1将旋风分离器按图就位,旋风分离器应座落于圆形基础上,与基础用地脚螺栓和螺母固定。

3.3.2将进气口、排气口、放空口及排尘口的配对法兰和与之相对应的管线焊接牢固;检验合格后,中间垫上缠绕垫片,与筒体上的接管法兰用紧固件拧紧、固定;喷淋清洗口的配对法兰与水泵管线相连接并检验合格后,中间垫上缠绕垫片,与筒体上的接管法兰用紧固件拧紧、固定。

3.4 管线连接要求

本旋风分离器介质进、出口与管线均为法兰连接。

3.5 安装注意事项

3.5.1旋风分离器腿式支座底板应与地基接触良好,如不平应用垫铁找平。

3.5.2旋风分离器轴线应垂直于基础,并应满足设计要求。

3.5.3安装后应保证各连接处密封良好,紧固件齐全、完好。

3.6 检验

本设备安装完成后,若进行系统整体压力试验,应按图样及GB150-1998《钢制压力容器》、《压力容器安全技术监察规程》等规定进行。水压强度试验完毕后应用压缩空气将旋风分离器内部吹干。

4.操作

本设备操作管理人员需要熟悉旋风分离器的结构和工作原理,掌握操作技能,严格执行操作规程,操作人员和维修人员必须经过技术培训合格后方可上岗。

4.1通气前准备

4.1.1确保连接处密封良好、紧固件齐全、完好。

4.1.2确保相连管线各部件正常。

4.1.3确保与排尘口和喷淋清洗口相连管线的阀门处于关闭状态。

4.2通气操作

4.2.1缓慢打开与进、出气口相连管线的阀门,使旋风分离器中的压力逐渐升高到操作压力。

4.2.2对于并联操作的两个或多个旋风分离器,进气管通径应保持一致。4.3正常操作状态

4.3.1与进、出气口相连管线阀门处于全开状态;

4.3.2与排尘口和喷淋清洗口相连管线的阀门处于关闭状态;

4.3.3旋风分离器操作压力和进气量保持稳定。

5.维护

5.1排尘

5.1.1排尘周期

(1)使用初期一般每周两次。

(2)正常操作状态下,根据气质不同,采取不同的排尘周期。气质差,天

然气中的粉尘微粒多或大,则一般每周一次;气质良好,则一般每两周一次。

5.1.2排尘方法

首先关闭进、排气口阀门,其次缓慢打开排尘口阀门,等灰尘排放干净后关闭排尘口阀门,最后打开进、出气口阀门,旋风分离器进入正常运行状态。

5.2清洗

5.2.1清洗周期

根据气质不同,采取不同的清洗周期。气质差,天然气中的粉尘微粒多或大,则一般每月一次;气质良好,则一般每季度一次。

5.2.2清洗方法和步骤

(1)首先关闭进、排气口阀门,其次缓慢打开排尘口阀门,等灰尘排放干净旋风分离器中的压力降至常压后关闭排尘口阀门;

(2)打开清灰口;

(3)打开喷淋口阀门,喷淋管喷出的水冲洗分离器下部筒壁后从清灰口流出;

(4)当清灰口持续流出干净的水流后,关闭喷淋口阀门,等旋风分离器下部的水排放干净后,密封清灰口;

(5)打开进、排气口阀门,旋风分离器进入正常运行状态。

6.常见故障及分析处理

本旋风分离器常见故障的现象、可能存在的原因与建议采取的措施方法见下表:

旋风分离器计算

作成 作成::时间时间::2009.5.14 一、問題提出 PHLIPS FC9262/01 這款吸塵器不是旋風除塵式的,現在要用這款吸塵器測參數選擇旋風分離裝置。二、計算過程 1.選擇工作狀況選擇工作狀況:: 根據空氣曲線選擇吸入效率最高點的真空度和流量作為旋風分離器的工作狀態。 吸塵器旋風分離器選擇 Bryan_Wang

已知最大真空度h和最大流量Q,則H-Q曲線的兩個軸截距已知,可確H-Q直線的方程。 再在這個直線上求得吸入功率H*Q最高點(求導數得)。求解過程不再詳述。求得最大吸入功率時真空度H=16.5kPa;流量Q=18.5L/s;吸入功率P2=305.25w 現將真空度及流量按照吸入功率計算值與實際值的比例放大,得真空度H=18.3kPa;流量Q=20.5L/s;2.選擇旋風分離器 為使旋風分離裝置體積最小,選擇允許的最小旋風分離器尺寸。一般旋風分離器筒體直徑不小于50mm,故選擇筒體直徑為50mm。按照標準旋風分離器的尺寸比例,確定旋風除塵器的結構尺寸。 D0=50mm b=12.5mm a=25mm de=25mm h0=20mm h=75mm H-h=100mm D2=12.5mm 計算α約為11度 發現計算得到的吸入功率最大值與產品標稱值375W相差一些,可能是由于測量誤差存在以及壓力損失的原因。

一般要求旋風分離器進氣速度不超過25m/s,這里取旋風分離器進氣速度為22m/s. 計算入口面積為S=3.125e-4平方米。 則單個旋風除塵器流量為Q=6.9e-3平方米/秒則所需旋風除塵器個數為3個計算分級效率 根據GB/T 20291-2006吸塵器標準,這里使用標準礦物灰塵,為大理石沙。进气粒径分布 103058 10019037575015002010 10102016113 顆粒密度ρp=2700kg/m3 進口含塵濃度取為10g/Nm3,大致選取空氣粘度μ=1.8e-6Pa*s 按照以下公式計算顆粒分級效率: 平均粒徑(μm)比重(%)

简述旋风分离器性能的优化

简述旋风分离器性能的优 化 摘要:综合了国内众多优秀论文的观点,从旋风分离器的结构设计、故障排除等角度讲述了提高旋风分离器工作效率,减少压降、阻力(延长使用寿命)的优化措施。阐述了工艺优化后旋风分离器性能上的改善,为进一步扩展其应用领域提供了必要的依据。 关键词:旋风分离器:分离效率;压降;使用寿命;性能优化 0 引言 旋风分离器作为一种重要的除尘设备,在石油化工、燃煤发电等许多行业都得到广泛应用。但是,由于其除尘效率一般多在90%左右,同时对粉尘粒径较小的粉尘除去效果一般,故对于除尘要求较高的生产场合,它一般只作为多级除尘中的一级除尘使用。这就使得旋风除尘器的使用条件受到了很大的限制。本文综合了国内众多优秀论文的观点,从旋风分离器的结构设计、故障排除等角度论述其性能优化的方法措施,使旋风分离器能适用于更广阔的应用领域。 1 旋风分离器结构设计对其性能优化的影响 1.1 旋风分离器与多孔材料的组合 人们为提高旋风分离器的效率,做了许多努力:将金属多孔材料安置于旋风分离器中,组合成的旋风—过滤复合式除尘器就是其中之一。这种结构设计在锥筒底部加了一段直管,机器到了增加分离的目的,又起到减缓旋流的目的,以避免二次扬尘的产生。 为此,实验人员做了相关的测定实验,选取了铁合金冶炼粉尘等4种直径大小从0.05μm~10μm的不等的颗粒(基本上涵盖了所有常见粉尘的粒径范围),让实验更具有广泛的实用性,分离效率可大幅提高至近100%。实验结束后,用氮气反吹滤管后,得到的结果非常理想,可进行再次实验,即实验的再生效果好。 1.2 改变入口切入角及外筒直径对旋风分离器性能的影响

影响旋风分离器性能的因素有很多,可以从改变其入口切入角和外筒直径这两个方面考虑工艺的优化。根据模拟结果显示,r=6000mm、θ=7.5°构造的旋风分离器效率接近95%,分离效果较好。现实验人员研究的就是在此基础上的设计优化。 首先,把入口切入角θ改为θ=9°及θ=6°两组,发现θ=9°比θ=6°入口速度高,但速度衰减慢,速度场分布均匀,速度偏差小,减少了对颗粒的二次卷吸,在外筒壁面处速度高,分离效率提高了。 其次,实验人员将外筒直径由6000mm变更为5600mm、5800mm、6200mm、6400mm,发现当直径增大,离心力作用小,分离效率降低;直径减少后,分离效果好,但由于在下部形成内旋涡卷吸了一些下沉颗粒,分离效果下降。故可利用此外筒直径与分离效率的变化关系,寻找最合适的外筒直径大小,以达到最佳的分离效率。 1.3加装循环管和防液罩对旋风分离器性能的影响 对旋风分离器加装循环管前后进行实验对比分析可知,加装循环管的旋风分离器压降小于不带循环管的分离器,这就是说,带循环管的旋风分离器在入口摩擦损失、器内气流旋转的动能损失等方面均要小于不带循环管的分离器。 防液罩的存在对分离器压降影响不大,但带防液罩的分离器在不同高度剖面上的切向速度明显大于不带防液罩的分离器,那么他的分离效率就会相应提高。因此,防液罩可以在不增加压降损失的同时,进一步提高切向速度,从而提高气、液相的分离效率。 1.4新设计样式的旋风分离器与旋风分离器性能的影响 已有许多研究人员着手于新型旋风分离器的设计与研究,新型双蜗壳旋风分离器就是新设计出的一种新型旋风分离器。他的上行流区的静压变化为顺压梯度,有利于气体的顺利排出,减少旋风分离器的压力损失。 另外,循环式旋风分离器也有着提高分离效率,降低系统能耗的作用。 2 排除故障以优化旋风分离器的效率 2.1 消除三旋单管堵塞 笔者以比较常见的三级旋风分离器为例,简述通过工艺手段,消除由于

旋风分离器工作原理

旋风分离器的作用 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。 工作原理 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 性能指标 分离精度旋风分离器的分离效果:在设计压力和气量条件下,均可除去≥10μm的固体颗粒。在工况点,分离效率为99%,在工况点±15%范围内,分离效率为97%。压力降正常工作条件下,单台旋风分离器在工况点压降不大于0.05MPa。设计使用寿命旋风分离器的设计使用寿命不少于20年。 结构设计 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。通常,气体入口设计分三种形式:a) 上部进气b) 中部进气c) 下部进气对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm 的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点

旋风分离器设计

旋风分离器设计中应该注意的问题 旋风分离器被广泛的使用已经有一百多年的历史。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分。但人们还是对旋风分离器有一些误解。主要是认为它效率不高。还有一个误解就是认为所有的旋风分离器造出来都是一样的,那就是把一个直筒和一个锥筒组合起来,它就可以工作。旋风分离器经常被当作粗分离器使用,比如被当做造价更高的布袋除尘器和湿式除尘器之前的预分离器。 事实上,需要对旋风分离器进行详细的计算和科学的设计,让它符合各种工艺条件的要求,从而获得最优的分离效率。例如,当在设定的使用范围内,一个精心设计的旋风分离器可以达到超过99.9%的分离效率。和布袋除尘器和湿式除尘器相比,旋风分离器有明显的优点。比如,爆炸和着火始终威胁着布袋除尘器的使用,但旋风分离器要安全的多。旋风分离器可以在1093 摄氏度和500 ATM的工艺条件下使用。另外旋风分离器的维护费用很低,它没有布袋需要更换,也不会因为喷水而造成被收集粉尘的二次处理。 在实践中,旋风分离器可以在产品回收和污染控制上被高效地使用,甚至做为污染控制的终端除尘器。 在对旋风分离器进行计算和设计时,必须考虑到尘粒受到的各种力的相互作用。基于这些作用,人们归纳总结出了很多公式指导旋风分离器的设计。通常,这些公式对具有一致的空气动力学形状的大粒径尘粒应用的很好。在最近的二十年中,高效的旋风分离器技术有了很大的发展。这种技术可以对粒径小到5微米,比重小于1.0的粒子达到超过99%的分离效率。这种高效旋风分离器的设计和使用很大程度上是由被处

理气体和尘粒的特性以及旋风分离器的形状决定的。同时,对进入和离开旋风分离器的管道和粉尘排放系统都必须进行正确的设计。工艺过程中气体和尘粒的特性的变化也必须在收集过程中被考虑。当然,使用过程中的维护也是不能忽略的。 1、进入旋风分离器的气体 必须确保用于计算和设计的气体特性是从进入旋风分离器的气体中测量得到的,这包括它的密度,粘度,温度,压力,腐蚀性,和实际的气体流量。我们知道气体的这些特性会随着工艺压力,地理位置,湿度,和温度的变化而变化。 2、进入旋风分离器的尘粒 和气体特性一样,我们也必须确保尘粒的特性参数就是从进入旋风分离器的尘粒中测量获得的。很多时候,在想用高效旋风分离器更换低效旋风分离器时,人们习惯测量排放气流中的尘粒或已收集的尘粒。这种做法值得商榷,有时候是不对的。 获得正确的尘粒信息的过程应该是这样的。首先从进入旋风分离器的气流中获得尘粒样品,送到专业实验室决定它的空气动力学粒径分布。有了这个粒径分布就可以计算旋风分离器总的分离效率。 实际生产中,进入旋风分离器的尘粒不是单一品种。不同种类的尘粒比重和物理粒径分布都不相同。但空气动力学粒径分布实验有机地将它们统一到空气动力学粒径分布中。 3、另外影响旋风分离器的设计的因素包括场地限制和允许的压降。例如,效率和场地限制可能会决定是否选用并联旋风分离器,或是否需要加大压降,或两者同时采用。 4、旋风分离器的形状 旋风分离器的形状是影响分离效率的重要因素。例如,如果入口

旋风分离器设计计算的研究.

文章编号:1OO8-7524C 2OO3D O8-OO21-O3 IMS P 旋风分离器设计计算的研究 蔡安江 C 西安建筑科技大学机电工程学院, 陕西西安 摘要:在理论研究和设计实践的基础上, 提出了旋风分离器的设计计算方法O 关键词:旋风分离器9压力损失9分级粒径9计算中图分类号:TD 922+-5 文献标识码:A 71OO55D O 引言 旋风分离器在工业上的应用已有百余年历 离器性能的关键指标压力损失AP 作为设计其筒体直径D O 的基础, 用表征旋风分离器使用性能的关键指标分级粒径dc 作为其筒体直径D O 的修正依据, 来高效~准确~低成本地完成旋风分离器的设计工作O 1 压力损失AP 的计算方法 压力损失AP 是设计旋风分离器时需考虑的关键因素, 对低压操作的旋风分离器尤其重要O 旋风分离器压力损失的计算式多是用实验数据关联成的经验公式, 实用范围较窄O 由于产生压力损失的因素很多, 要详尽计算旋风分离器各部分的压力损失, 我们认为没有必要O 通常, 压力损失的表达式用进口速度头N H 表示较为方便O 进口速度头N H 的数值对任何旋风分离器将是常数O 目前, 使用的旋风分离器为减少压

力损失和入口气流对筒体内气流的撞击~干扰以及其内旋转气流的涡流, 进口形式大多从切向进口直入式改为18O ~36O 的蜗壳式, 但现有文献上的压力损失计算式均只适用于切向进口, 不具有通用性, 因此, 在参考大量实验数据的基础上, 我们提出了压力损失计算的修正公式, 即考虑入口阻力系数, 使其能适用于各种入口型式下的压力损失计算O 修正的压力损失计算式是: 史O 由于它具有价格低廉~结构简单~无相对运动部件~操作方便~性能稳定~压力损耗小~分离效率高~维护方便~占地面积小, 且可满足不同生产特殊要求的特点, 至今仍被广泛应用于化工~矿山~机械~食品~纺织~建材等各种工业部门, 成为最常用的一种分离~除尘装置O 旋风分离器的分离是一种极为复杂的三维~二相湍流运动, 涉及许多现代流体力学中尚未解决的难题, 理论研究还很不完善O 各种旋风分离器的设计工作不得不依赖于经验设计和大量的工业试验, 因此, 进行提高旋风分离器设计计算精度~提高设计效率, 降低设计成本的研究工作就显得十分重要O 科学合理地设计旋风分离器的关键是在设计过程中充分考虑其所分离颗粒的特性~流场参数和运行参数等因素O 一般旋风分离器常规设计的关键是确定旋风分离器的筒体直径D O , 只要准确设计计算出筒体直径D O , 就可以依据设计手册完成其它结构参数的标准化设计O 鉴于此, 我们在理论研究和设计实践的基础上, 提出了分级用旋风分离器筒体直径D O 的计算方法O 即用表征旋风分 收稿日期:2OO3-O3-O3 -21- AP = CjPV j 7N H 2

旋风分离器计算结果.doc

旋风除尘器性能的模拟计算 一、下图为旋风除尘器几何形状及尺寸,如图1所示,图中D、L 及入口截面的长宽比在数值模拟中将进行变化与调整,其余参数保持不变。 图1 旋风分离器几何形状及尺寸(正视图)

旋风分离器的空间视图如图2所示。 图2 旋风分离器空间视图 二、旋风分离器数值仿真中的网格划分 仿真计算时,首先对旋风除尘器进行网格划分处理,计算网格采用非结构化正交网格,如图3所示。 图3 数值仿真时旋风分离器的网格划分(空间)

图4为从空间不同角度所观测到的旋风分离器空间网格。 图4 旋风分离器空间网格空间视图 本数值仿真生成的非结构化空间网格数大约为125万,当几何尺寸(如D、L及长宽比)改变时,网格数会略有变化。 三、对旋风分离器的数值模拟仿真 采用混合模型,应用Eulerian(欧拉)模型,欧拉方法,对每种工况条件下进行旋风分离器流场与浓度场的计算,计算残差<10-5,每种工况迭代约50000步,采用惠普工作站计算,CPU耗时约12h。 以下是计算结果的后处理显示结果。由于计算算例较多,此处仅列出了两种工况条件下的计算后处理结果。 图5是L=1.3m ,D=1.05m 入口长宽比1:3 ,入口速度10m/s时,在y=0截面(旋风分离器中心截面)上粒径为88微米烟尘的体积百分数含量分布图。可以明显看出由于旋风除尘器的离心作用,灰尘被甩到外壁附近,而在靠近中心排烟筒下方筒壁四周,烟尘的体积浓度最大。

粒径88微米烟尘的空间浓度分布(空间) 粒径88微米烟尘的浓度分布(旋风分离器中心截面)

粒径200微米烟尘的空间浓度分布(空间) 粒径200微米烟尘的浓度分布(旋风分离器中心截面) 图5 L=1.3m、D=1.05m、长宽比1:3 ,入口速度10m/s时烟尘空间分布

旋风分离器的建模及fluent模拟

旋风分离器的建模及 f l u e n t模拟 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

Gambit建模部分 本次模拟为一旋风分离器,具体设置尺寸见建模过程,用空气作为材料模拟流 场。为方便图形截取,开始先设置界面为白色窗体,依次点击“Edit”,“Defaults”,“GRAPHICS”,选择“WINDOWS_BACKGROUND_COLOR”设置为“White”,点击Modify。关闭对话框。 一.利用Gambit建立几何模型 1.双击打开, 2.先创建椭圆柱 依次点击“Operation”下的“Geometry”创建体“Volume”,点击“Create Real Frustum”,输入数据基于Z轴正方向创建“height 475;radius1 ; radius3 95”,点击Apply,生产椭圆柱体。如图1-1,图1-2。 3.创建圆柱体 再次利用创建椭圆柱按钮,输入数据基于Z轴正方向创建“height 285; radius1 95;radius3 95”,点击Apply。 移动刚刚创建的圆柱体,依次点击“Geometry”,“Volume”,点击“Move/copy”,选择刚刚创建的圆柱体,点击“Move——>Translate”,输入移动的数据“X=0,Y=0,Z=475”,并选择Connected Geometry,点击Apply。如图1-3,1-4所示。 图1-1椭圆柱设置对话框图1-2椭圆柱生成图

同样的方法创建小圆柱体,输入数据基于Z轴正方向创建“height 150;radius1 32;radius3 32”,点击Apply。 同样的方式移动小圆柱体,点击“Move——>Translate”,输入移动的数据“X=0,Y=0,Z=665”,不选择Connected Geometry,点击Apply。如图1-5,图 1-6,图1-7所示。 显示实体图,如图1-8。 4.将小圆柱体进行分割,分成上下两个圆柱面,点击“Split Volume”,选择被分割的圆柱体Volume2,选择下部组合体为分割体,点击“Bidirectional 和connected”,点击Apply。删除Volume3。如图1-9,图1-10所示。 5.创建旋风分离器进风口,点击依次点击“Geometry”,“Volume”,“create real brick”,基于中心,输入数据“width 140 ,depth 38,height 95”,点击Apply。如图1-11,图1-12所示。 图1-6小圆柱体移动命令对话框 图1-3圆柱体移动设置对话框图1-4圆柱体生成图图1-5生成小圆柱体 图1-7小圆柱体移动生成图图1-8实体图图1-9实体分割命令对话框图1-10生成实体图

旋风分离器的设计

旋风分离器的设计 姓名:顾一苇 班级:食工0801 指导老师:刘茹 设计成绩: 华中农业大学食品科学与技术学院 食品科学与工程专业 2011年1月14日 目录 第一章、设计任务要求与设计条件 (3) 第二章、旋风分离器的结构和操作 (4) 第三章、旋风分离器的性能参数 (6) 第四章、影响旋风分离器性能的因素 (8) 第五章、最优类型的计算 (11) 第六章、旋风分离器尺寸说明 (19) 附录 1、参考文献 (20) 任务要求 1.除尘器外筒体直径、进口风速及阻力的计算 2.旋风分离器的选型 3.旋风分离器设计说明书的编写

4.旋风分离器三视图的绘制 5.时间安排:2周 6.提交材料含纸质版和电子版 设计条件 风量:900m3/h ; 允许压强降:1460Pa 旋风分离器类型:标准型 (XLT型、XLP型、扩散式) 含尘气体的参数: 气体密度:kg/m3 粘度:x 10-5Pa?s 颗粒密度:1200 kg/m3 颗粒直径:6 [1 m 旋风分离器的结构和操作 原理: 含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。颗粒的离心力较大,被甩向外层,气流在内层。气固得以分离。 在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管排出;固相沿内壁落入灰斗。 旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。 旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、

压力限制,分离效率高。一般用于除去直径5um以上的尘粒,也可分离雾沫。

旋风分离器的工艺计算

旋风分离器的工艺计算 》 : *

目录 一.前言 (3) 应用范围及特点 (3) 分离原理 (3) 分离方法 (4) ) 性能指标 (4) 二.旋风分离器的工艺计算 (4) 旋风分离器直径的计算 (5) 由已知求出的直径做验算 (5) 计算气体流速 (5) < 计算旋风分离器的压力损失 (5) 旋风分离器的工作范围 (6) 进出气管径计算 (6) 三.旋风分离器的性能参数 (6) 分离性能 (6) ~ 临界粒径d pc (7) 分离效率 (8) 旋风分离器的压强降 (8) 四.旋风分离器的形状设计 (9) 五.入口管道设计 (10) $ 六.尘粒排出设计 (10) 七.算例(以天然气作为需要分离气体) (11) 工作原理 (11) 基本计算公式 (12) 算例 (13) ( 八.影响旋风分离器效率的因素 (14) 气体进口速度 (14) 气液密度差 (14) 旋转半径 (14) 参考文献 (15) …

' 旋风分离器的工艺计算 摘要:分离器已经使用十分广泛无论在家庭生活中还是工业生产,而且种类繁多每种都有各自的优缺点。现阶段旋风分离器运用比较广泛,它的性能的好坏主要决定于旋风分离器性能的强弱。这篇文章主要是讨论旋风分离器工艺计算。旋风分离器是利用离心力作用净制气体,主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,以达到气固液分离,以保证管道及设备的正常运行。在本篇文章中,主要是对旋风分离器进行工艺计算。 [ 关键字:旋风分离器、工艺计算 一.前言 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分制造方便、分离效率高,并可用于高温含尘气体的分离,而得到广泛运用。 ' 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。 通常,气体入口设计分三种形式: a) 上部进气 b) 中部进气 c) 下部进气 对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点 旋风分离器适用于净化大于1-3微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、

旋风分离器计算结果

旋风分离器计算结果标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

旋风除尘器性能的模拟计算 一、下图为旋风除尘器几何形状及尺寸,如图1所示,图中D、L及入口 截面的长宽比在数值模拟中将进行变化与调整,其余参数保持不变。 图1 旋风分离器几何形状及尺寸(正视图) 旋风分离器的空间视图如图2所示。 图2 旋风分离器空间视图 二、旋风分离器数值仿真中的网格划分 仿真计算时,首先对旋风除尘器进行网格划分处理,计算网格采用非结构化正交网格,如图3所示。 图3 数值仿真时旋风分离器的网格划分(空间)图4为从空间不同角度所观测到的旋风分离器空间网格。 图4 旋风分离器空间网格空间视图 本数值仿真生成的非结构化空间网格数大约为125万,当几何尺寸(如D、L及长宽比)改变时,网格数会略有变化。 三、对旋风分离器的数值模拟仿真 采用混合模型,应用Eulerian(欧拉)模型,欧拉方法,对每种工况条件下进行旋风分离器流场与浓度场的计算,计算残差<10-5,每种工况迭代约50000步,采用惠普工作站计算,CPU耗时约12h。 以下是计算结果的后处理显示结果。由于计算算例较多,此处仅列出了两种工况条件下的计算后处理结果。 图5是L=1.3m,D=1.05m 入口长宽比1:3,入口速度10m/s时,在y=0截面(旋风分离器中心截面)上粒径为88微米烟尘的体积百分数含量分布

图。可以明显看出由于旋风除尘器的离心作用,灰尘被甩到外壁附近,而在靠近中心排烟筒下方筒壁四周,烟尘的体积浓度最大。 粒径88微米烟尘的空间浓度分布(空间) 粒径88微米烟尘的浓度分布(旋风分离器中心截面) 粒径200微米烟尘的空间浓度分布(空间) 粒径200微米烟尘的浓度分布(旋风分离器中心截面) 图5 L=1.3m、D=1.05m、长宽比1:3,入口速度10m/s时烟尘空间分布 粒径88微米烟尘的空间浓度分布(空间) 粒径88微米烟尘的浓度分布(旋风分离器中心截面) 粒径200微米烟尘的空间浓度分布(空间) 粒径200微米烟尘的浓度分布(旋风分离器中心截面) 图6 L=2.3m、D=1.5m、长宽比1:1,入口速度15m/s时烟尘空间分布 四、计算结果 计算中,首先确定几何尺寸L,按照给定的两种烟尘颗粒,分别对 L=2.3m、L=1.8m、L=1.3m、L=0.8m四种情况进行对比计算,对比计算结果为L=2.3m、L=1.3m时除尘效率较高。随后的计算将采用此两种尺寸继续进行。 a)采用L=2.3m,分别计算入口速度V=15m/s、V=14m/s、V=13m/s、 V=12m/s、V=11m/s五种情况,经比较V=15m/s除尘效率最高。 b)当旋风分离器进口速度为V=15m/s,改变旋风分离除尘器的出口直径 D,进行对比计算。旋风分离器直径分别为D=1.05m、D=1.2m、 D=1.35m、D=1. 5m,经比较计算D=1.05m时,旋风分离器分离效果 最佳。 c)当旋风分离器进口速度V=15m/s、D=1.05m时,改变旋风除尘器入口 宽高比例进行对比计算,所选用的三个比例为1:3,3:1和1: 1 。选择宽高比例时,满足入口截面积不变。经对比计算,当宽高

旋风分离器的设计

旋风分离器的设计公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

旋风分离器的设计 姓名:顾一苇 班级:食工0801 指导老师:刘茹 设计成绩: 华中农业大学食品科学与技术学院 食品科学与工程专业 2011年1月14日 目录 第一章、设计任务要求与设计条件 (3) 第二章、旋风分离器的结构和操作 (4) 第三章、旋风分离器的性能参数 (6) 第四章、影响旋风分离器性能的因素 (8) 第五章、最优类型的计算 (11) 第六章、旋风分离器尺寸说明 (19) 附录 1、参考文献 (20) 任务要求 1.除尘器外筒体直径、进口风速及阻力的计算 2.旋风分离器的选型 3.旋风分离器设计说明书的编写 4.旋风分离器三视图的绘制

5.时间安排:2周 6.提交材料含纸质版和电子版 设计条件 风量:900m3/h ; 允许压强降:1460Pa 旋风分离器类型:标准型 (XLT型、XLP型、扩散式) 含尘气体的参数: 气体密度: kg/m3 粘度:×10-5Pa·s 颗粒密度:1200 kg/m3 颗粒直径:6μm 旋风分离器的结构和操作 原理: 含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。 颗粒的离心力较大,被甩向外层,气流在内层。气固得以分离。 在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。 在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管排出; 固相沿内壁落入灰斗。 旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。 旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般用于除去直径5um以上的尘粒,也可分离雾沫。对于

旋风分离器设计

旋风分离器: 旋风分离器,是用于气固体系或者液固体系的分离的一种设备。工作原理为靠气流切向引入造成的旋转运动,使具有较大惯性离心力的固体颗粒或液滴甩向外壁面分开。旋风分离器的主要特点是结构简单、操作弹性大、效率较高、管理维修方便,价格低廉,用于捕集直径5~10μm以上的粉尘,广泛应用于制药工业中。 主要功能: 旋风分离器设备的主要功能是尽可能除去输送气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行,在西气东输工程中,旋风分离器是较重要的设备。 机构简介: 旋风分离器,是用于气固体系或者液固体系的分离的一种设备。工作原理为靠气流切向引入造成的旋转运动,使具有较大惯性离心力的固体颗粒或液滴甩向外壁面分开。是工业上应用很广的一种分离设备。 工作原理: 旋风分离器是利用气固混合物在作高速旋转时所产生的离心力,将粉尘从气流中分离出来的干式气固分离设备。由于颗粒所受的离心力远大于重力和惯性力,所以分离效率较高。 常用的(切流)切向导入式旋风分离器的分离原理及结构如图所示。主要结构是一个圆锥形筒,筒上段切线方向装有一个气体入口管,圆筒顶部装有插入筒内一定深度的排气管,锥形筒底有接受细粉的出

粉口。含尘气流一般以12—30m/s速度由进气管进入旋风分离器时,气流将由直线运动变为圆周运动。旋转气流的绝大部分,沿器壁自圆筒体呈螺旋形向下朝锥体流动。此外,颗粒在离心力的作用下,被甩向器壁,尘粒一旦与器壁接触,便失去惯性力,而靠器壁附近的向下轴向速度的动量沿壁面下落,进入排灰管,由出粉口落入收集袋里。旋转下降的外旋气流,在下降过程中不断向分离器的中心部分流入,形成向心的径向气流,这部分气流就构成了旋转向上的内旋流。内、外旋流的旋转方向是相同的。最后净化气经排气管排出器外,一部分未被分离下来的较细尘粒也随之逃逸。自进气管流入的另一小部分气体,则通过旋风分离器顶盖,沿排气管外侧向下流动,当到达排气管下端时,与上升的内旋气流汇合,进入排气管,于是分散在这部分上旋气流中的细颗粒也随之被带走,并在其后用袋滤器或湿式除尘器捕集。 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 特点: 旋风分离器的主要特点是结构简单、操作弹性大、效率较高、管

旋风分离器的建模及fluent模拟

Gambit 建模部分 本次模拟为一旋风分离器,具体设置尺寸见建模过程,用空气作为材料模拟流场。为方便图形截取,开始先设置界面为白色窗体,依次点击“Edit ”,“Defaults ”,“GRAPHICS ”,选择“WINDOWS_BACKGROUND_COLOR ”设置为“White ”,点击Modify 。关闭对话框。 一.利用Gambit 建立几何模型 1. 双击打开Gambit 2.4.6, 2. 先创建椭圆柱 依次点击“Operation ”下的“Geometry ”创建体“Volume ”,点击“Create Real Frustum ”,输入数据基于Z 轴正方向创建“height 475;radius1 36.25;radius3 95”,点击Apply ,生产椭圆柱体。如图1-1,图1-2。 3. 创建圆柱体 再次利用创建椭圆柱按钮,输入数据基于Z 轴正方向创建“height 285;radius1 95;radius3 95”,点击Apply 。 图1-1椭圆柱设置对话框 图1-2椭圆柱生成图

移动刚刚创建的圆柱体,依次点击“Geometry”,“Volume”,点击“Move/copy”,选择刚刚创建的圆柱体,点击“Move——>Translate”,输入移动的数据“X=0,Y=0,Z=475”,并选择Connected Geometry,点击Apply。如图1-3,1-4所示。 同样的方法创建小圆柱体,输入数据基于Z轴正方向创建“height 150;radius1 32;radius3 32”,点击Apply。 同样的方式移动小圆柱体,点击“Move——>Translate”,输入移动的数据“X=0,Y=0,Z=665”,不选择Connected Geometry,点击Apply。如图1-5,图1-6,图1-7所示。 图1-6小圆柱体移动命令对话框 图1-3圆柱体移动设置对话框图1-4圆柱体生成图图1-5生成小圆柱体 图1-7小圆柱体移动生成图图1-8实体图

旋风分离器的建模及fluent模拟

Gambit建模部分 本次模拟为一旋风分离器,具体设置尺寸见建模过程,用空气作为材料模拟流场。为方便图形截取,开始先设置界面为白色窗体,依次点击“Edit,” “Defaults, “GRAPHIC'S, 选择“WINDOWS_BACKGROUND_COLOR 设置为“White;'点击 Modify。关闭对话框。 一.利用Gambit建立几何模型 1. 双击打开 Gambit 2.4.6, 2. 先创建椭圆柱 依次点击“Operation下的“Geometry创建体“V lume”,点击“CreateReal Frustum”输入数据基于Z 轴正方向创建“height 475;r adius1 36.25;radius3 95”,点击Apply,生产椭圆柱体。如图1-1,图1-2。 3. 创建圆柱体 再次利用创建椭圆柱按钮,输入数据基于 Z 轴正方向创建“height 285; radius1 95; radius3 95”,点击 Apply。 移动刚刚创建的圆柱体,依次点击“Geometry' “olume”,点击“Move/copy,选择刚刚创建的圆柱体,点击“ Mov >Tra nslate,”输入移动的数据 X=0, Z=475”,并选择 Connected Geometry 点击 Apply。如图 1-3, 1-4 所示。 图1-1椭圆柱设置对话框图1-2椭圆柱生成图 Y=0,坤卩ly I Rcsc4 I OK*- * Mtwc □pcfaUnn: ? Tiiiis?V ROCSiJS -Y> RoflDCl 7 ScHiil Cwp制申驿-| L_5'II:1 >| TMf* ■ UwvfK-M geonwrlry

循环流化床锅炉旋风分离器的最新发展与高效运行 刘佳斌资料

循环流化床锅炉旋风分离器的最新发展与高效运行 刘佳斌 (山东大学能源与动力工程学院济南250010) 摘要:循环流化床的分离机构是循环流化床的关键部件之一,其主要作用是将大量高温固体物料从气流中分离出来,送回燃烧室,以维持燃烧室的快速流态化状态,保证燃料和脱硫剂多次循环、反复燃烧和反应。这样,才有可能达到理想的燃烧效率和脱硫效率。 关键词: 旋风分离器、循环流化床锅炉、循环效率、发展。 图1 75t/h循环流化床锅炉简图 1.循环流化床旋风分离器的工作原理 如图2、3为普遍采用的高温旋风分离器结构。此类分离器的体积庞大,占地面积与炉膛基本相当,它是利用旋转的含尘气体所产生的离心力,将颗粒从气流中分离出的一种干式气固分离装置。含灰烟气在炉膛出口处分进入旋风分离器,旋风分离器的圆形筒体和气体的切向入口使气固混合物进入围绕旋风分离器的2个同心涡流,外部涡流向下,内部涡流向上。由于固体密度比烟气密度大,在离心力作用下固体离开外部涡流移向壁面, 再沿旋风分离器的循环流化床的分离机构是循环流化床的关键部件 之一,其主要作用是将大量高温固体物料从气流中分 离出来,送回燃烧室,以维持燃烧室的快速流态化状态, 保证燃料和脱硫剂多次循环、反复燃烧和反应。这样, 才有可能达到理想的燃烧效率和脱硫效率。因此,循环 流化床分离机构的性能优劣,将直接影响整个循环流 化床锅炉的出力、效率及运行寿命。 随着循环流化床锅炉大型化的发展,对分离器提出 了更高的要求,它不但要能处理大容量的烟气,还要求 能在恶劣的环境中可靠、稳定运行。多年的商业运行 经验表明,高温旋风分离器目前仍是最适合(大型)循 环流化床锅炉的分离器之一。 图 3 高温旋风分离

旋风分离器的工艺计算

旋风分离器的工艺计算

目录 一.前言 (3) 1.1应用范围及特点 (3) 1.2分离原理 (3) 1.3分离方法 (4) 1.4性能指标 (4) 二.旋风分离器的工艺计算 (4) 2.1旋风分离器直径的计算 (5) 2.2由已知求出的直径做验算 (5) 2.2.1计算气体流速 (5) 2.2.2计算旋风分离器的压力损失 (5) 2.2.3旋风分离器的工作范围 (6) 2.3进出气管径计算 (6) 三.旋风分离器的性能参数 (6) 3.1分离性能 (6) 3.1.1临界粒径d pc (7) 3.1.2分离效率 (8) 3.2旋风分离器的压强降 (8) 四.旋风分离器的形状设计 (9) 五.入口管道设计 (10) 六.尘粒排出设计 (10) 七.算例(以天然气作为需要分离气体) (11) 7.1工作原理 (11) 7.2基本计算公式 (12) 7.3算例 (13) 八.影响旋风分离器效率的因素 (15) 8.1气体进口速度 (15) 8.2气液密度差 (15) 8.3旋转半径 (15) 参考文献 (15)

旋风分离器的工艺计算 摘要:分离器已经使用十分广泛无论在家庭生活中还是工业生产,而且种类繁多每种都有各自的优缺点。现阶段旋风分离器运用比较广泛,它的性能的好坏主要决定于旋风分离器性能的强弱。这篇文章主要是讨论旋风分离器工艺计算。旋风分离器是利用离心力作用净制气体,主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,以达到气固液分离,以保证管道及设备的正常运行。在本篇文章中,主要是对旋风分离器进行工艺计算。 关键字:旋风分离器、工艺计算 一.前言 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分制造方便、分离效率高,并可用于高温含尘气体的分离,而得到广泛运用。 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。 通常,气体入口设计分三种形式: a) 上部进气 b) 中部进气 c) 下部进气 对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 1.1应用范围及特点 旋风分离器适用于净化大于1-3微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、操作方便、耐高温、设备费用和阻力较高(80~160毫米水柱)的净化设备,旋风分离器在净化设备中应用得最为广泛。改进型的旋风分离器在部分装置中可以取代尾气过滤设备。 1.2分离原理 旋风分离器的分离原理有两种: 一、利用组分质量(重量)不同对混合物进行分离(如分离方法1、2、3、6)。 二、利用分散系粒子大小不同对混合物进行分离(如分离方法4、5)。

旋风分离器企业标准模板

Q/CNPC 中国石油天然气集团公司 大庆石化公司企业标准 Q/CNPC XXX.XX.XXX- 旋风分离器 -XX-XX发布-XX-XX实施 中国石油大庆石化工公司发布

目录 前言 (2) 1范围 (3) 2规范性引用文件..........................................................................................3 3制造通则 (3) 4技术要求 (3) 5检测规则 (4)

6标志、包装、运输、贮存 (5) 7.附录: 质量控制检验卡 (6)

前言 本标准由中国石油大庆石化公司机械厂提出。 本标准由中国石油大庆石化公司质量安全环保部技术归口。本标准起草单位: 中国石油大庆石化公司机械厂。 本标准主要起草人: XXX

旋风分离器技术标准 1 范围 本标准规定了催化裂化装置用旋风分离器的制造、安装、验收和运输等方面的内容。 本标准适用于炼油催化装置用各种旋风分离器( 多管式第三级旋风分离单管除外) 。 根据反应再生系统设备中两大器大型化均势, 旋风分离器设备且一般由同一个施工单位进行分片预制、现场组装的实际, 标准中有关分片现场组正确要求。 2 规范性引用文件 下列标准中所包含的条文, 经过本标准的引用而成为本标准的条文。在标准出版时, 所示版本均为有效, 所有标准都会被修订, 使用本标准的各方应探讨, 使用下列标准最新版本的可能性。 GB150-1998 钢制压力容器 SH3531- 隔热耐磨衬里技术规范 SH3504- 催化裂化装置反应再生系统设备施工及验收规范 JB4708- 钢制压力容器焊接工艺评定 JB/T4709- 钢制压力容器焊接规程 GB985.1- 气焊、焊条电弧焊及气体保护焊和高能束焊的推荐

旋风分离器

旋风分离器 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

过去(04-05年间)我们曾经对国内的几家锅炉厂做过调研(济南、上海、杭州),重点考察旋风分离器技术,回厂后对几种分离器做过比较,今天得知您们想了解这方面情况,特介绍如下: 几种旋风分离器性能比较 项目高温绝热旋风分离器高温汽冷旋风分离器高温水冷旋风分离器结构结构简单,金属外壳内衬耐火防磨材料,外敷保温材料。结构较复杂,壳体由汽(水)冷管子弯制、手工焊装而成,壳外敷保温、壳内衬25mm 厚耐磨料。壳体采用膜式壁制作,紧贴炉膛布置,为方型水冷。 适应煤种适应于烟煤,另可掺烧优质褐煤或炉渣。适应各种煤种,包括矸石。煤种适应性差。 可维修性砌筑要求较高,壳体维修容易。更换管子难,恢复耐磨层也有一定难度。汽(水)冷旋风分离器 事故几率低汽水系统,事故频率高。 热惰性大旋风分离器筒体部分小,料褪部分大。 冷却效果无,可降50℃ 运行控制汽(水)系统简单起停炉凝结水不易带出,造成积盐、腐蚀。 后燃结焦烧无烟煤易出现后燃结焦。不易出现。不易出现。 分离效果在符合粒径要求的条件下可达99.5% 在符合粒径要求的条件下可达99.5% 飞灰含碳较低较低较高 起炉时间 7小时 3小时 3小时 造价低高较高 选择循环流化床锅炉不可避免地会提到效率和防磨问题。 高效的旋风分离器是提高锅炉运行效率的基础保证(虽然有电除尘灰返料等手段,但非主流)。“哪一种更适合于化工生产用锅炉” 你能稳定采购到什么样的煤种(必须满足企业的运行成本控制要求)你的用气制度怎样旋风分离器当然是锅炉选型的重要依据,但其也只是锅炉的一个部件。煤耗的高低和使用燃煤的关系很大,旋风分离器没有绝对的好,只有适合自己的。建议楼主综合考虑。 PS:锅炉项目投资很大,原煤参数必须要给锅炉厂家提供准确,尽可能满足今后使用供煤的需要。(前年对几家锅炉厂家进行过考察,收集到一些信息。结合其他渠道收集整理的资料如下) 目前我国循环流化床锅炉使用的高效分离器主要有三种: 1、上排气高温旋风分离器(有绝热式和汽冷式)。PS:水冷式的川锅也在做,俗

相关主题