搜档网
当前位置:搜档网 › 锐角三角函数的技巧及练习题附答案

锐角三角函数的技巧及练习题附答案

锐角三角函数的技巧及练习题附答案
锐角三角函数的技巧及练习题附答案

锐角三角函数的技巧及练习题附答案

一、选择题

1.如图,ABC ?是一张顶角是120?的三角形纸片,,6AB AC BC ==现将ABC ?折叠,使点B 与点A 重合,折痕DE ,则DE 的长为( )

A .1

B .2

C .2

D .3

【答案】A

【解析】

【分析】 作AH ⊥BC 于H ,根据等腰三角形的性质求出BH ,根据翻折变换的性质求出BD ,根据正切的定义解答即可. 【详解】

解:作AH ⊥BC 于H ,

∵AB=AC ,AH ⊥BC ,

BH=12

BC=3, ∵∠BAC=120°,AB=AC ,

∴∠B=30°,

∴AB=30BH cos ?3 由翻折变换的性质可知,3

∴DE=BD ?tan30°=1,

故选:A .

【点睛】

此题考查翻折变换的性质、勾股定理的应用,解题关键在于掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.

2.菱形ABCD 的周长为20cm,DE ⊥AB,垂足为E,sinA=35

,则下列结论正确的个数有( ) ①DE=3cm; ②BE=1cm; ③菱形的面积为15cm 210cm .

A .1个

B .2个

C .3个

D .4个 【答案】C

【解析】

【分析】

根据菱形的性质及已知对各个选项进行分析,从而得到答案

【详解】

∵菱形ABCD 的周长为20cm

∴AD=5cm

∵sinA=35

∴DE=3cm (①正确)

∴AE=4cm

∵AB=5cm

∴BE=5﹣4=1cm (②正确)

∴菱形的面积=AB×DE=5×3=15cm 2(③正确)

∵DE=3cm,BE=1cm

∴BD=10cm (④不正确)

所以正确的有三个.

故选C .

【点睛】

本题考查了菱形的性质及锐角三角函数的定义,熟练掌握性质是解题的关键

3.在课外实践中,小明为了测量江中信号塔A 离河边的距离AB ,采取了如下措施:如图在江边D 处,测得信号塔A 的俯角为40?,若55DE =米,DE CE ⊥,36CE =米,CE 平行于AB ,BC 的坡度为1:0.75i =,坡长140BC =米,则AB 的长为( )(精确到0.1米,参考数据:sin 400.64?≈,cos400.77?≈,tan 400.84?≈)

A .78.6米

B .78.7米

C .78.8米

D .78.9米

【答案】C

【解析】

【分析】 如下图,先在Rt △CBF 中求得BF 、CF 的长,再利用Rt △ADG 求AG 的长,进而得到AB 的长

【详解】

如下图,过点C 作AB 的垂线,交AB 延长线于点F ,延长DE 交AB 延长线于点G

∵BC 的坡度为1:0.75

∴设CF 为xm ,则BF 为0.75xm

∵BC=140m

∴在Rt △BCF 中,()2220.75140x x +=,解得:x=112

∴CF=112m ,BF=84m

∵DE ⊥CE ,CE ∥AB ,∴DG ⊥AB ,∴△ADG 是直角三角形

∵DE=55m ,CE=FG=36m

∴DG=167m ,BG=120m

设AB=ym

∵∠DAB=40°

∴tan40°=1670.84120

DG AG y ==+ 解得:y=78.8

故选:C

【点睛】

本题是三角函数的考查,注意题干中的坡度指的是斜边与水平面夹角的正弦值.

4.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为( )

A .π

B .2π

C .3π

D .31)π

【答案】C

【解析】

【分析】 3

为2,据此即可得出表面积.

【详解】

解:由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3的正三角形.

∴正三角形的边长

3

2 sin60

==

?

∴圆锥的底面圆半径是1,母线长是2,∴底面周长为2π

∴侧面积为1

222

2

ππ

??=,∵底面积为2r

ππ

=,

∴全面积是3π.

故选:C.

【点睛】

本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.

5.如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于()

A.3

5

B.

4

5

C.

3

4

D.

4

3

【答案】C

【解析】

试题分析:如答图,过点O作OD⊥BC,垂足为D,连接OB,OC,∵OB=5,OD=3,∴根据勾股定理得BD=4.

∵∠A=1

2

∠BOC,∴∠A=∠BOD.

∴tanA=tan∠BOD=

4

3 BD

OD

=.

故选D.

考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义.

6.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()

A.2+3B.23C.3+3D.33

【答案】A

【解析】

【分析】

【详解】

设AC=x,在Rt△ABC中,∠ABC=30°,即可得AB=2x,BC=3x,

所以BD=BA=2x,即可得CD=3x+2x=(3+2)x,

在Rt△ACD中,tan∠DAC=

(32)

32 CD x

AC

+

==+,

故选A.

7.为了方便行人推车过某天桥,市政府在10m高的天桥一侧修建了40m长的斜道(如图所示),我们可以借助科学计算器求这条斜道倾斜角的度数,具体按键顺序是( )

A.

B.

C.

D.

【答案】A

【解析】

【分析】

先利用正弦的定义得到sinA=0.25,然后利用计算器求锐角∠A.

【详解】

解:因为AC=40,BC=10,sin∠A=BC AC

所以sin∠A=0.25.

所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为

故选:A .

点睛:

本题考查了计算器-三角函数:正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.

8.如图,四边形ABCD 内接于O e ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点

E ,连接AC 交DE 于点

F .若3sin 5

CAB ∠=,5DF =,则AB 的长为( )

A .10

B .12

C .16

D .20

【答案】D

【解析】

【分析】 连接BD ,如图,先利用圆周角定理证明ADE DAC ∠=∠得到5FD FA ==,再根据正弦的定义计算出3EF =,则4AE =,8DE =,接着证明ADE DBE ??∽,利用相似比得到16BE =,所以20AB =.

【详解】

解:连接BD ,如图,

AB Q 为直径,

90ADB ACB ∴∠=∠=?,

AD CD =Q ,

DAC DCA ∴∠=∠,

而DCA ABD ∠=∠,

DAC ABD ∴∠=∠,

DE AB ∵⊥,

90ABD BDE ∴∠+∠=?,

而90ADE BDE ∠+∠=?,

ABD ADE ∴∠=∠,

ADE DAC ∴∠=∠,

5FD FA ∴==,

在Rt AEF ?中,3sin 5EF CAB AF ∠=

=Q , 3EF ∴=, 22534AE ∴=-=,538DE =+=,

ADE DBE ∠=∠Q ,AED BED ∠=∠,

ADE DBE ∴??∽,

::DE BE AE DE ∴=,即8:4:8BE =,

16BE ∴=,

41620AB ∴=+=.

故选:D .

【点睛】

本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90?的圆周角所对的弦是直径.也考查了解直角三角形.

9.在半径为1的O e 中,弦AB 、AC 的长度分别是3,2,则BAC ∠为( )度. A .75

B .15或30

C .75或15

D .15或45

【答案】C

【解析】

【分析】

根据题意画出草图,因为C 点位置待定,所以分情况讨论求解.

【详解】

利用垂径定理可知:AD=32AE =, .

sin ∠AOD=

32,∴∠AOD=60°; sin ∠AOE=22

,∴∠AOE=45°; ∴∠BAC=75°.

当两弦共弧的时候就是15°.

故选:C .

此题考查垂径定理,特殊三角函数的值,解题关键在于画出图形.

10.如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于()

A.100sin35°米B.100sin55°米C.100tan35°米D.100tan55°米

【答案】C

【解析】

【分析】

根据正切函数可求小河宽PA的长度.

【详解】

∵PA⊥PB,PC=100米,∠PCA=35°,

∴小河宽PA=PCtan∠PCA=100tan35°米.

故选:C.

【点睛】

此题考查解直角三角形的应用,解题关键在于掌握解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.

11.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()

A.2 B3C2D.1 2

【答案】B

【解析】

【分析】

连接OA,由圆周角定理可求出∠AOC=60°,再根据∠AOC的正切即可求出PA的值.

连接OA,

∵∠ABC=30°,

∴∠AOC=60°,

∵PA是圆的切线,∴∠PAO=90°,

∵tan∠AOC =PA OA

,

∴PA= tan60°×1=3.

故选B.

【点睛】

本题考查了圆周角定理、切线的性质及锐角三角函数的知识,根据圆周角定理可求出∠AOC=60°是解答本题的关键.

12.如图,△ABC的外接圆是⊙O,半径AO=5,sinB=2

5

,则线段AC的长为()

A.1 B.2 C.4 D.5

【答案】C

【解析】

【分析】

首先连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,又由

⊙O的半径是5,sinB=2

5

,即可求得答案.

【详解】

解:连接CO并延长交⊙O于点D,连接AD,

由CD 是⊙O 的直径,可得∠CAD=90°,

∵∠B 和∠D 所对的弧都为弧AC ,

∴∠B=∠D ,即sinB=sinD=25, ∵半径AO=5,

∴CD=10,

∴2sin 105

AC AC D CD =

==, ∴AC=4,

故选:C.

【点睛】

本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.

13.如图,在矩形ABCD 中,4,AB DE AC =⊥,垂足为E ,设ADE α∠=,且3cos 5

α=,则AC 的长为( )

A .3

B .163

C .203

D .165

【答案】C

【解析】

【分析】 根据同角的余角相等求出∠ADE=∠ACD ,再根据两直线平行,内错角相等可得∠BAC=∠ACD ,然后求出AC .

【详解】

解:∵DE ⊥AC ,

∴∠ADE+∠CAD=90°,

∵∠ACD+∠CAD=90°,

∴∠ACD=∠ADE=α,

∵矩形ABCD的对边AB∥CD,∴∠BAC=∠ACD,

∵cosα=3

5

3

5

AB

AC

∴=,

∴AC=520

4

33

?=.

故选:C.

【点睛】

本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC是解题的关键.

14.如图,在平面直角坐标系中,四边形ABCD是菱形,点B的坐标是(0,4),点D的坐标是(83,4),点M和点N是两个动点,其中点M从点B出发,沿BA以每秒2个单位长度的速度做匀速运动,到点A后停止,同时点N从点B出发,沿折线BC→CD以每秒4个单位长度的速度做匀速运动,如果其中一个点停止运动,则另一点也停止运动,设M,N两点的运动时间为x,△BMN的面积为y,下列图象中能表示y与x的函数关系的图象大致是()

A.B.C.D.

【答案】D

【解析】

【分析】

根据两个点的运动变化,写出点N在BC上运动时△BMN的面积,再写出当点N在CD上运动时△BMN的面积,即可得出本题的答案;

【详解】

解:当0

连接BD ,AC ,交于点O′,连接NM ,过点C 作CP ⊥AB 垂足为点P ,

∴∠CPB=90°,

∵四边形ABCD 是菱形,其中点B 的坐标是(0,4),点D 的坐标是3,4), ∴BO ′3,CO′=4,

∴228O B O C +'=',

∵AC=8,

∴△ABC 是等边三角形,

∴∠ABC=60°,

∴CP=BC×sin60°=8×

323,BP=4, BN=4x ,BM=2x , 242BM x x BP ==,2

BN x BC =, ∴=BM BN BP BC

, 又∵∠NBM=∠CBP ,

∴△NBM ∽△CBP ,

∴∠NMB=∠CPB=90°, ∴114438322

CBP S BP CP =??=??=V ; ∴2NBM CBP S BN S BC ??= ???

V V , 即y=22

283=232NBM CBP BN x S S x BC ????=?= ? ?????V V , 当2

∵四边形ABCD 是菱形,

∴AB ∥CD ,

∴NE=CP=43, BM=2x ,

∴y=

11=2434322

BM NE x x ??=g g ; 故选D.

【点睛】 本题主要考查了动点问题的函数图象,掌握动点问题的函数图象是解题的关键.

15.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得60BAC ∠=?,70DAC ∠=?,则竹竿AB 与AD 的长度之比为( ).

A .2sin70?

B .2cos70?

C .2tan70?

D .2tan 70?

【答案】B

【解析】

【分析】 直接利用锐角三角函数关系分别表示出AB ,AD 的长,即可得出答案.

【详解】

解:∵∠BAC=60°,∠DAC=70°,

∴cos60°=

12

AC AB =, 则AB=2AC , ∴cos70°=AC AD

∴AC=AD ?cos70°, AD=cos70AC ?,

∴2cos70AC AC AB AD

=?

=2cos70°. 故选:B .

【点睛】 此题主要考查了解直角三角形的应用,正确表示出各边长是解题关键.

16.如图,在ABC V 中,//,,30DE BC AF BC ADE ⊥∠=?,2,33,DE BC BF ==则DF 的长为()

A .4

B .23

C .33

D .3

【答案】D

【解析】

【分析】 先利用相似三角形的相似比证明点D 是AB 的中点,再解直角三角形求得AB ,最后利用直角三角形斜边中线性质求出DF .

【详解】

解:∵//DE BC ,

∴ADE ~ABC V V ,

∵2DE BC =,

∴点D 是AB 的中点,

∵,30AF BC ADE ⊥∠=?,33BF =

∴∠B =30°,

∴AB 6cos30BF =

=?

, ∴DF=3,

故选:D .

【点睛】 此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练

掌握性质的运用是解题关键.

17.如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,且BE∥AC,CE∥DB,连接DE,则tan∠EDC=()

A.1

4

B.

1

6

C.

2

6

D.

3

10

【答案】B

【解析】

【分析】

过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.根据邻边相等的平

行四边形是菱形即可判断四边形OBEC是菱形,则OE与BC垂直平分,易得EF=1

2 x,

CF=x.再由锐角三角函数定义作答即可.

【详解】

解:∵矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,

∴BC=AD,

设AB=2x,则BC=x.

如图,过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.∵BE∥AC,CE∥BD,

∴四边形BOCE是平行四边形,

∵四边形ABCD是矩形,

∴OB=OC,

∴四边形BOCE是菱形.

∴OE与BC垂直平分,

∴EF=1

2

AD=

1

2

x,OE∥AB,

∴四边形AOEB是平行四边形,∴OE=AB=2x,

∴CF=1

2

OE=x.

∴tan∠EDC=EF

DF

1

2

2

x

x x

1

6

故选:B.

【点睛】

本题考查矩形的性质、平行四边形的判定与性质、菱形的判定与性质以及解直角三角形,解题的关键是熟练掌握矩形的性质和菱形的判定与性质,属于中考常考题型.

18.如图,正方形ABCD的边长为4,点E、F分别在AB、BC上,且AE=BF=1,CE、DF交

于点O,下列结论:①∠DOC=90°,②OC=OE,③CE=DF,④tan∠

OCD=4

3

,⑤S△DOC=S四

边形EOFB

中,正确的有()

A.1个B.2个C.3个D.4个

【答案】D

【解析】

分析:由正方形ABCD的边长为4,AE=BF=1,利用SAS易证得△EBC≌△FCD,然后全等三角形的对应角相等,易证得①∠DOC=90°正确,③CE=D F正确;②由线段垂直平分线的性质与正方形的性质,可得②错误;易证得∠OCD=∠DFC,即可求得④正确;由①易证得⑤正确.

详解:∵正方形ABCD的边长为4,∴BC=CD=4,∠B=∠DCF=90°.

∵AE=BF=1,∴BE=CF=4﹣1=3.

在△EBC和△FCD中,

BC CD

B DCF

BE CF

=

?

?

∠=∠

?

?=

?

∴△EBC≌△FCD(SAS),∴∠CFD=∠BEC,CE=DF,故③正确,

∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°;故①正确;

连接DE,如图所示,若OC=OE.

∵DF⊥EC,∴CD=DE.

∵CD=AD<DE(矛盾),故②错误;

∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴tan∠OCD=tan∠

DFC=DC

FC

=

4

3

,故④正确;

∵△EBC≌△FCD,∴S△EBC=S△FCD,∴S△EBC﹣S△FOC=S△FCD﹣S△FOC,即S△ODC=S四边形BEOF.故⑤正确;

故正确的有:①③④⑤.

故选D .

点睛:本题考查了正方形的性质、全等三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题综合性较强,难度适中,注意掌握数形结合思想与转化思想的应用.

19.如图,在边长为8的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是 ( )

A .183π-

B .183π

C .32316π

D .1839π-

【答案】C

【解析】

【分析】 由菱形的性质得出AD=AB=8,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.

【详解】

解:∵四边形ABCD 是菱形,∠DAB=60°,

∴AD=AB=8,∠ADC=180°-60°=120°,

∵DF 是菱形的高,

∴DF ⊥AB ,

∴DF=AD ?sin60°=383= ∴图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积 =2

120(43)84332316ππ??=. 故选:C.

【点睛】

本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.

20.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且AB=BD,则tan D的值为()

A.3B.33C.23D.23

【答案】D

【解析】

【分析】

设AC=m,解直角三角形求出AB,BC,BD即可解决问题.

【详解】

设AC=m,

在Rt△ABC中,∵∠C=90°,∠ABC=30°,

∴AB=2AC=2m,BC33,

∴BD=AB=2m,DC=3,

∴tan∠ADC=AC

CD23

m m

+

=23

故选:D.

【点睛】

本题考查解直角三角形,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

最新锐角三角函数练习题及答案

锐角三角函数 1.把Rt △ABC 各边的长度都扩大3倍得Rt △A ′B ′C ′,那么锐角A ,A ′的余弦值的关系为( ) A .cosA=cosA ′ B .cosA=3cosA ′ C .3cosA=cosA ′ D .不能确定 2.如图1,已知P 是射线OB 上的任意一点,PM ⊥OA 于M ,且PM :OM=3:4,则cos α的值等于( ) A .34 B .43 C .45 D .35 图1 图2 图3 图4 图5 3.在△ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,则下列各项中正确的是( ) A .a=c ·sin B B .a=c ·cosB C .a=c ·tanB D .以上均不正确 4.在Rt △ABC 中,∠C=90°,cosA=23 ,则tanB 等于( ) A .35 B C .25 D 5.在Rt △ABC 中,∠C=90°,AC=5,AB=13,则sinA=______,cosA=______,?tanA=_______. 6.如图2,在△ABC 中,∠C=90°,BC :AC=1:2,则sinA=_______,cosA=______,tanB=______. 7.如图3,在Rt △ABC 中,∠C=90°,b=20,,则∠B 的度数为_______. 8.如图4,在△CDE 中,∠E=90°,DE=6,CD=10,求∠D 的三个三角函数值. 9.已知:α是锐角,tan α=724 ,则sin α=_____,cos α=_______. 10.在Rt △ABC 中,两边的长分别为3和4,求最小角的正弦值为 10.如图5,角α的顶点在直角坐标系的原点,一边在x 轴上,?另一边经过点P (2,,求角α的三个三角函数值. 12.如图,在△ABC 中,∠ABC=90°,BD ⊥AC 于D ,∠CBD=α,AB=3,?BC=4,?求sin α,cos α, tan α的值.

锐角三角函数应用题完美手册

锐角三角函数基础练习 一、选择题。 1.90,5,4,sin Rt ABC C c a A ?∠===在中,则的值为( ). A.35 B.45 C.34 D.43 2.12 90,tan ,5 ABC A ABC ?∠= ?的周长是60cm,若C=则的面积是( ). A.230cm B.260cm C. 2 120cm D. 2 240cm 3、在Rt △ABC 中,∠C=900 ,BC=4,sinA=54 ,则AC=( ) 、 A 、3 B 、4 C 、5 D 、6 4、若cosA=31,则A A A A tan 2sin 4tan sin 3+-=( ) A 、74 B 、31 C 、21 D 、0 5、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( ) A 、1:1:2 B 、1:1:2 C 、1:1:3 D 、1:1:22 6、在Rt △ABC 中,∠C=900 ,则下列式子成立的是( ) A 、sinA=sin B B 、sinA=cosB C 、tanA=tanB D 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( ) $

A . sinB=23 B .cosB=23 C .tanB=23 D .tanB=3 2 8.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( ) A .(32,12) B .(-32,12) C .(-32,-12) D .(-12,-3 2) 9.sin AOB AOB ∠∠正方形网络中,如图1放置,则等于 ( ). A. 55 B. 255 C. 12 D. 2 10、△如图,A .B .C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC ′B ′,则tanB ′的值为( ) A . B . C . D . 11、如图,在Rt △ABC 中,△ACB=90°,CD 是AB 边上的中线,若BC=6,AC=8,则tan △ACD 的值为( ) A . B . C . D . 12.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.?某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,?若这位同学的目高1.6米,则旗杆的高度约为( ) A .6.9米 B .8.5米 C .10.3米 D .12.0米 ( : A O B

锐角三角函数经典总结

锐角三角函数与特殊角专题训练 【基础知识精讲】 一、 正弦与余弦: 1、 在ABC ?中,C ∠为直角,我们把锐角A 的对边与斜边的比叫做A ∠的正弦,记 作A sin , 锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos . 斜边 的邻边 斜边 的对边 A A A A ∠= ? ∠= cos sin . 若把A ∠的对边BC 记作a ,邻边AC 记作b ,斜边AB 记作c , 则c a A = sin ,c b A =cos 。 2、当A ∠为锐角时, 1sin 0<

陕西省中考数学解答专项锐角三角函数的实际应用题库(1)

锐角三角函数的实际应用 1. 如图为放置在水平桌面上的台灯的平面示意图,灯臂AO 长为40 cm ,与水平面所形成的夹角∠OAM 为75°,由光源O 射出的边缘光线OC 、OB 与水平面所形成的夹角∠OCA 、∠OBA 分别为90°和30°,求该台灯照亮水平面的宽度BC .(结果精确到 1 cm ,参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,3≈1.73). 第1题图 解:∵tan∠OBC =tan30°= 33OC BC ,∴OC =3 3 BC , ∵sin∠OAC =sin75°= OC OA ≈0.97, ∴3340 BC ≈0.97, ∴BC ≈67(cm). 答:该台灯照亮水平面的宽度BC 约为67 cm. 2. 某种三角形台历放置在水平桌面上,其左视图如图②所示,点O 是台历支架OA ,OB 的交点,同时又是台历顶端连接日历的螺旋线圈所在圆的圆心,现测得OA =OB =14 cm ,CA =CB =4 cm ,∠ACB =120°,台历顶端螺旋连接线圈所在圆的半径为0.6 cm.求点O 到直线AB 的距离.(结果保留根号 ) 第2题图 解:如解图,连接AB 、OC ,并延长OC 交AB 于点D ,

第2题解图 ∵OA =OB ,AC =BC , ∴OC 垂直平分AB ,即AD =BD ,∠CDA =90°, 又∠ACB =120°,∠ACD =60°, ∴在Rt△ACD 中,sin∠ACD =AD AC , ∴AD =AC ·sin60°=4× 3 2 =23cm , ∵在Rt△AOD 中,AD =2 3 cm ,AO =14 cm , ∴OD =AO 2 -AD 2 =142 -(23)2 =246 cm , ∴点O 到直线AB 的距离为246 cm. 3. 如图①是一台仰卧起坐健身器,它主要由支架、坐垫、靠背和档位调节器组成,靠背的角度α可以用档位调节器调节,将图①仰卧起坐板的主体部分抽象成图②,已知OA =OD =81 cm ,OC =43 cm ,∠C =90°,∠A =20°.求BC 的长和点O 到地面的距离.(结果保留整数)(参考数据:sin20°≈0.3420,cos20°≈0.9397,tan20°≈0.3640;sin80°≈0.9848,cos80°≈0.1736,tan80°≈5.6713) 第3题图 解:根据题意可知AC =OA +OC =81+43=124 (cm), 在Rt△ABC 中,tan A =BC AC , ∴BC =AC ·tan A ≈124×0.3640≈45(cm), 如解图,过点O 作OE ⊥AB 于点E ,

初三锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 【特别提醒:1、sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关 2、取值范围 】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边)(sin = A =______, 斜边)(sin = B =______; ②斜边 ) (cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值

1.已知Rt △ABC 中,,12,43 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: (西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为 A . 55 B .255 C .12 D .2 (房山)5.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

锐角三角函数应用题

锐角三角函数应用 1.(2015青岛)小明在热气球A 上看到正前方横跨河流两岸的大桥BC ,并测得B ,C 两点的俯角分别为45°和35°,已知大桥BC 与地面在同一水平面上,其长度为100m 。请求出热气球离地面的高度。 (结果保留整数,参考数据:12 735sin ≈?, 6535cos ≈?,10735tan ≈? 2.

3.(2014东营)热气球的探测器显示,从热气球底部A处看一栋高楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球A处与高楼的水平距离为120m,这栋高楼有多高(≈1.732,结果保留小数点后一位) 4.(2014?枣庄)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向想内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为30cm. (1)求B点到OP的距离; (2)求滑动支架的长. (结果精确到1cm.参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)

5.(2015济宁)在一个三角形中,各边和它所对角的正弦的比相等.即 sin sin sin a b c A B C ==.利用上述结论可以求解如下题目.如: 在ABC ?中,若45A ∠=,30B ∠=,6a =,求b . 解:在ABC ?中,sin sin a b A B = 16sin 6sin 30sin sin 45a B b A ?∴==== 问题解决: 如图,甲船以每小时海里的速度向正北方航行,当甲船位于1A 处时,乙船位于甲船的北偏西105方向的1B 处,且乙船从1B 处按北偏东 15方向匀速直线航行,当甲船航行20分钟到达2A 处时,乙船航行到 甲船的北偏西120 方向的2B 处,此时两船相距. (1) 判断122A A B ?的形状,并给出证明 . (2) 乙船每小时航行多少海里?

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

《锐角三角函数》基础练习题

《锐角三角函数》A 姓名_____________ 1、在Rt △ABC 中,∠C =900,AB =13,BC =5,求A sin , A cos ,A tan , 2.在Rt △ABC 中,sin A =5 4 ,AB =10,则BC =______,cos B =_______. 3.在△ABC 中,∠C =90°,若cos A =2 1,则sin A =__________. 4. 已知在△ABC ,∠C =90°,且2BC =AC ,那么sin A =_______. 5、=???45cos 2 260sin 2 1 . 6、∠B 为锐角,且2cosB - 1=0,则∠B = . 7、等腰三角形中,腰长为5,底边长8,则底角的正切值是 . 8、如图,在距旗杆4米的A 处,用测角仪测得旗杆顶端C 的仰角为60,已知测角仪AB 的高为1.5米,则旗杆CE 的高等于 米. 三、选择题 9、在Rt △ABC 中,各边都扩大5倍,则角A 的三角函数值( ) A .不变 B .扩大5倍 C .缩小5倍 D .不能确定 10.在Rt △ABC 中,∠C = 90°,下列式子不一定成立的是( ) A .sinA = sin B B .cosA=sinB C .sinA=cosB D .∠A+∠B=90° 11. 在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是( ) A .c =sin a A B .c =cos a A C .c = a ·tanA D .c = tan a A 12、 45cos 45sin +的值等于( ) A. 2 B. 2 1 3+ C. 3 D. 1 D E 60

初中数学锐角三角函数的经典测试题及解析

初中数学锐角三角函数的经典测试题及解析一、选择题 1.如图,在扇形OAB中,120 AOB ∠=?,点P是弧 AB上的一个动点(不与点A、B重 合),C、D分别是弦AP,BP的中点.若33 CD=,则扇形AOB的面积为()A.12πB.2πC.4πD.24π 【答案】A 【解析】 【分析】 如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题. 【详解】 解:如图作OH⊥AB于H. ∵C、D分别是弦AP、BP的中点. ∴CD是△APB的中位线, ∴AB=2CD=63 ∵OH⊥AB, ∴BH=AH=33 ∵OA=OB,∠AOB=120°, ∴∠AOH=∠BOH=60°, 在Rt△AOH中,sin∠AOH= AH AO , ∴AO= 33 6 sin3 AH AOH == ∠, ∴扇形AOB的面积为: 2 1206 12 360 π π = g g ,

故选:A . 【点睛】 本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.如图,在ABC ?中,4AC =,60ABC ∠=?,45C ∠=?,AD BC ⊥,垂足为D ,ABC ∠的平分线交AD 于点E ,则AE 的长为( ) A 2 B 22 C 42 D 32 【答案】C 【解析】 【分析】 在Rt △ADC 中,利用等腰直角三角形的性质可求出AD 的长度,在Rt △ADB 中,由AD 的长度及∠ABD 的度数可求出BD 的长度,在Rt △EBD 中,由BD 的长度及∠EBD 的度数可求出DE 的长度,再利用AE=AD?DE 即可求出AE 的长度. 【详解】 ∵AD ⊥BC ∴∠ADC=∠ADB=90? 在Rt △ADC 中,AC=4,∠C=45? ∴AD=CD=22在Rt △ADB 中,AD=22ABD=60? ∴BD=33AD=263 . ∵BE 平分∠ABC , ∴∠EBD=30°. 在Rt △EBD 中,26,∠EBD=30° ∴DE=33BD=223 ∴AE=AD ?DE=222242 故选:C 【点睛】

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

锐角三角函数专项练习题

1 锐角三角函数专项练习题 在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):

) 正切的邻边的对边Atan??baA?tan0tan?A (∠A为锐角) 任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。 30°、45°、60°特殊角的三角函数值 三角函数 30° 45° 60° ?cos232221 ?tan33 1 3

基础练习 1.如图,在Rt△ABC中,∠C为直角,CD⊥AB于D,已知AC=3,AB=5,则tan∠BCD等于( ) A.43; B.34; C.53; D.54 2.Rt△ABC中,∠C为直角,AC=5,BC=12,那么下列∠A的四个三角函数中正确的是( ) A. sinA=135; B.cosA=1312; C. tanA=1213; D.tanB=125 )90cot(tanAA???)90tan(cotAA??? BAcottan? BAtancot?)90cos(sinAA???)90sin(cosAA??? BAcossin?BAsincos?A90B90??????????得由BA 对边 邻边斜边 A C B b a c A90B90??????????得由BA D C A B 2

3 ..在Rt△ABC中,∠C为直角,AC=4,BC=3,则sinA=(). A. 43; B. 34; C. 53; D. 54. 4 在Rt△ABC中,∠C为直角,sinA=22,则cosB的值是( ). A. 21; B. 23; C.1; D. 22. 5. 4sintan5????若为锐角,且,则为( ) 933425543ABCD. 6.在Rt△ABC中,∠C=90°,当已知∠A和a时,求c,应选择的关系式 是() A. c =sinaA B. c =cosaA C.c = a·tanA D. c = tan aA 7、??45cos45sin?的值等于() A.2 B. 213? C. 3 D. 1 8.在△ABC中,∠C=90°,BC=2,2sin3A?,则边AC的长是() A5 B.3 C43 D13 9.如图,两条宽度均为40m的公路相交成α角,那么这两条公路在相交处的公共部分(图 中阴影部分)的路面面积是() A.?sin1600(m2) B.?cos1600(m2) C.1600sinα(m2) D.1600cosα(m2) 10.如图,延长Rt△ABC斜边AB到D点,使BD=AB,连结CD,若tan∠BCD=31,则 tanA=()

锐角三角函数应用题专题

1、(09年湖北仙桃)如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点、C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28) 2、(09年湖南怀化)如图,小明从 A 地沿北偏东 30方向走1003m 到 B 地,再从B 地向正南方向走 200m 到C 地,此时小明离A 地 m . 3、(09年山东潍坊)如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米. A .25 B .253 C .10033 D .25253+ 4、(09年山东济南)九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作: (1)在放风筝的点 A 处安置测倾器,测得风筝C 的仰角60CBD =?∠; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米. 根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.1米,3 1.73≈) 5、(09年广东深圳、山东东营)如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米.试求旗杆BC 的高度. 6、(09年广东湛江)如图,某军港有一雷达站P ,军舰M 停泊在雷达站P 的南偏东60°方向36海里处,另一艘军舰N 位于军舰M 的正西方向,与雷达站P 相距182海里.求: (1)军舰N 在雷达站P 的什么方向?(2)两军舰M N 、的距离.(结果保留根号) 第6题图 N M P 北 A B C D 6米 52° 35° (第1题图) A D B E C 60° (第4题图) 第2题图 B C A D l 第3题图 A B C D 第5题图

锐角三角函数专项复习经典例题

1、平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90?得到线段PQ . (1)当10DPQ ∠=?时,求APB ∠的大小; (2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 2、如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41) 3、如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) B A P C D Q 备用图17 A B C D P Q

4、如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度. 5、一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米. 6、如图,某小区①号楼与?号楼隔河相望,李明家住在①号楼,他很想知道?号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算?号楼的高度CD. 7、某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°. (1)求甲楼的高度及彩旗的长度;(精确到0.01m) (2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m) (cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

完整版锐角三角函数练习题及答案.doc

锐角三角函数 1 .把 Rt △ABC 各边的长度都扩大 3 倍得 Rt △A′B′C′,那么锐角 A , A ′的余弦值的关系为() A .cosA=cosA ′B. cosA=3cosA ′C. 3cosA=cosA ′ D .不能确定 2 .如图 1 ,已知 P 是射线 OB 上的任意一点, PM ⊥ OA 于 M ,且 PM :OM= 3 : 4 ,则 cos α的值等于() A .3 B. 4 C. 4 D . 3 4 3 5 5 图 1 图 2 图 3 图 4 图 5 3 .在△ABC 中,∠C=90 °,∠A ,∠B,∠C 的对边分别是a, b , c,则下列各项中正确的是() A .a=c ·sin B B. a=c ·cosB C.a=c ·tanB D.以上均不正确 4 .在 Rt △ABC 中,∠C=90 °,cosA= 2 ,则 tanB 等于()3 A .3 B. 5 C. 2 5 D . 5 5 3 5 2 5 .在 Rt △ABC 中,∠C=90 °,AC=5 ,AB=13 ,则 sinA=______ , cosA=______ , ?tanA=_______ . 6 .如图 2 ,在△ABC 中,∠C=90 °,BC: AC=1 : 2 ,则 sinA=_______ ,cosA=______ , tanB=______ . 7 .如图 3 ,在 Rt △ABC 中,∠C=90 °,b=20 , c=20 2 ,则∠B 的度数为 _______. 8 .如图 4 ,在△CDE 中,∠E=90 °,DE=6 , CD=10 ,求∠D 的三个三角函数值. 9 7 .已知:α是锐角, tan α=,则sinα=_____,cosα=_______. 24 10 .在 Rt △ABC 中,两边的长分别为 3 和 4 ,求最小角的正弦值为 10 .如图 5 ,角α的顶点在直角坐标系的原点,一边在x 轴上, ?另一边经过点 P( 2 ,2 3),求角α的三个三角 函数值. 12 .如图,在△ ABC 中,∠ABC=90 °,BD ⊥ AC 于 D,∠CBD= α,AB=3 ,?BC=4 ,?求 sin α,cos α,tan α的值. 解直角三角形 一、填空题 3 1.已知 cosA=,且∠B=900-∠A,则sinB=__________. 2

锐角三角函数应用题专项习题一

锐角三角函数应用题专项习题一 1、数学活动小组来到校园内一盏路灯下测量路灯高度,测角仪AB高度为1.5米, 测得仰角α为30°,点B到电灯杆底端N距离BN为10米,求路灯高度MN是多少米? (=1.414,=1.732,结果保留两位小数) 2、某中学九年级学生开展测量物体高度活动,他们要测量学校教学楼高 度.如图他们先在点C测得教学楼AB顶点A仰角为30°,然后向教学楼 前进60米到达点D,又测得点A仰角为45度.求出这幢教学楼高度. 3、东方山主峰海拔约为600米,主峰AB上建有一座电信信号发射架BC,现 在山脚P处测得峰顶仰角为α,发射架顶端仰角为β,其中tanα=tanβ=求发射架 高BC. 4、如图,小芸在自家楼房窗户A处,测量楼前一棵树CD的高.现测 得树顶C处俯角为45°,树底D处俯角为60°,楼底到大树距离BD为20米.请计算树 高度(精确到0.1米). 5、数学活动小组去测量太子灵踪塔高度,小华先在塔前平地上选择一点A, 用测角仪测出看塔顶(M)仰角α=35°,在A点和塔之间选择一点B,测出 看塔顶(M)仰角β=45°,然后用皮尺量出A、B两点距离为18.6m,自身 高度为1.6m.请计算出塔高度?(tan35°≈0.7,结果保留整数) 6、同学们去测量一座古塔CD高度.他们首先从A处安置测倾器,测得塔顶C仰角 ∠CFE=21°,然后往塔方向前进50米到达B处,此时测得仰角∠ CGE=37°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD高度.(参考数 据:sin37°≈ ,tan37°≈ ,sin21°≈ ,tan21°≈ ) 7、某旅游区有一个望天洞,D点是洞入口,游人从入口进洞游览后,可经山洞到达山顶出口凉亭A处观 看旅游区风景,最后坐缆车沿索道AB返回山脚下B处.在同一平面内,若测得斜坡 BD长为100米,坡角∠DBC=10°,在B处测得A仰角∠ABC=40°,在D处测得A 仰角∠ADF=85°,过D点作地面BE垂线,垂足为C.(1)求∠ADB度数;(2) 求索道AB长.(结果保留根号)

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 一、 化简或求值 例1 (1)已知tan 2cot 1αα-=,且α是锐角,的值。 (2)化简()()22 sin cos cos sin a b a b αααα++-。 分析 (1)由已知可以求出tan α1tan cot αα=?;(2)先把平方展开,再利用22sin cos 1αα+=化简。 解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得 tan 2α=或tan 1α=-。又α是锐角,∴tan 2α== tan cot αα-。由tan 2α=, 得1cot 2α==tan cot αα-=13222 -=。 (2)()()22sin cos cos sin a b a b αααα++-= 2222sin 2sin cos cos a ab b αααα+??++2222cos 2cos sin sin a ab b αααα-??+=()()222222sin cos sin cos a b αααα+++=22a b +。 说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα?=等。 二、已知三角函数值,求角 例2 在△ABC 中,若2 cos sin 02A B ?-+= ??(),A B ∠∠均为锐角,求C ∠的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。

锐角三角函数应用题练习

应用题练习 1.在高出地平面50米的小山上有一塔AB ,在地面D 测得塔顶A 和塔基B 的仰角分别为60°和45°,求塔高. 2.在宽为30米的街道东西两旁各有一楼房,从东楼底望西楼顶仰角为45°,从西楼顶望东楼顶,俯角为30°,求西楼高(精确到0.1米). 3.在溆浦县街道拓宽工程中,要伐掉一棵树AB ,在地面上事先划定以B 为圆心,半径与AB 等长的圆形危险区,现在某工人站在离B 点6米远的D 处,从C 点测得树的顶端A 点的仰角为60°,树的底部B 点的俯角为30°. 问:距离B 点16米远的保 护物是否在危险区内? ?60?30B D C A

A B A B E D C F 光线 4.为缓解“停车难”的问题,县国土局拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE .(精确到0.1m ) (下列数据提供参考:sin 20°=0.3420,cos 20°=0.9397,tan 20°=0.3640) 5.学校教学楼ED (高为13.8米)前有一棵大树AB (如图1). (1)某一时刻测得大树AB 、教学楼ED 在阳光下的投影长分别是BC =2.1米,DF =6.3米,求大树AB 的高度. (2)用皮尺、高为h 米的测角仪,请你设计另.一种.. 测量大树AB 高度的方案,要求: ①在图2上,画出你设计的测量方案示意图,并将应测数据标记在图上(长度用字母m 、n …表示,角度用希腊字母α、β …表示); ②根据你所画的示意图和标注的数据,计算大树AB 高度(用字母表示). 图1 图2

初三锐角三角函数知识点总结典型例题练习

三角函数专项复习 锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 6、正切的增减性: 当0°<α<90°时,tan α随α的增大而增大, A 90B 90∠-?=∠?=∠+∠得由B A 对 边 C

7、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 8、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做 坡度(坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东45°(东北方向) , 南偏东45°(东南方向), 南偏西45°(西南方向), 北偏西45°(西北方向)。 :i h l =h l α

相关主题