搜档网
当前位置:搜档网 › 图论第三章

图论第三章

图论第三章
图论第三章

离散数学第八章一些特殊的图知识点总结

图论部分 第八章、一些特殊的图 8.1 二部图 二部图:定义设无向图G=, 若能将V 划分成V1 和V2 (V1?V2=V, V1?V2=?), 使得G中的每条边的两个端 点都一个属于V1, 另一个属于V2, 则称G为二部图, 记为, 称V1和V2为互补顶点子集. 完全二部图:又若G是简单图, 且V1中每个顶点都与V2中每个顶点相邻, 则称G为完全二部图, 记为K r,s, 其中r=|V1|, s=|V2|. 注意: n 阶零图为二部图. 匹配:设G=, 匹配(边独立集): 任2条边均不相邻的边子集 极大匹配: 添加任一条边后都不再是匹配的匹配 最大匹配: 边数最多的匹配 匹配数: 最大匹配中的边数, 记为β1 例下述3个图的匹配数依次为3, 3, 4.

设M为G中一个匹配 v i与v j被M匹配: (v i,v j)∈M v为M饱和点: M中有边与v关联 v为M非饱和点: M中没有边与v关联 M为完美匹配: G的每个顶点都是M饱和点 定理(Hall定理) 设二部图G=中,|V1|≤|V2|. G中存 在从V1到V2的完备匹配当且仅当V1中任意k 个顶点至少与V2中的k个顶点相邻(k=1,2,…,|V1|). 由Hall定理不难证明, 上一页图(2)没有完备匹配. 定理设二部图G=中, 如果存在t≥1, 使得V1中每个顶点至少关联t 条边, 而V2中每个顶点至多关联t条边,则G 中存在V1到V2的完备匹配.

Hall定理中的条件称为“相异性条件”, 第二个定理中的条件称为t 条件. 满足t 条件的二部图一定满足相异性条件. 8.2 欧拉图 欧拉通路: 图中行遍所有顶点且恰好经过每条边一次的通路. 欧拉回路: 图中行遍所有顶点且恰好经过每条边一次的回路. 欧拉图: 有欧拉回路的图. 半欧拉图: 有欧拉通路而无欧拉回路的图. 几点说明: 上述定义对无向图和有向图都适用. 规定平凡图为欧拉图. 欧拉通路是简单通路, 欧拉回路是简单回路. 环不影响图的欧拉性.

图论与抽象代数复习

2013-2014二学期图论与抽象代数复习 第一部分 1.第三篇总复习题1,2,3题 2.第四篇总复习题1,4,6题 3.习题9 9.1题 4. *运算如下表所示,哪个能使({a,b},*)成为单元半群?() 5. Q 是有理集,(Q,*)(其中*为普通乘法)不能构成()。 A.群B.单元半群C.半群D.交换半群 6.设Z 是整数集,+,·分别是普通加法和乘法,则(Z,+,·)是()。 A.域B.整环和域C.整环D.含零因子环 7. 在代数系统中,整环和域的关系为()。 A.整环一定是域B.域不一定是整环 C.域一定是整环D.域一定不是整环 8. 设D =< V,E >为有向图,V = {a, b, c, d, e, f },E = {( a,b),(b,c),(a, d), ( d, e),(f, e)}是()。A.强连通图B.单向连通图C.弱连通图D.不连通图 9. 在有n 个结点的连通图中,其边数()。 A.最多有n?1 条B.至少有n?1 条 C.最多有n 条D.至少有n 条 10设G = (n,m)为无向简单图,可构成邻接矩阵的数目为()。 A.n! B.m! C.D. 11. 欧拉回路是()。 A.通路B.简单回路 C.既是基本回路也是简单回路D.既非基本回路也非简单回路 12. 哈密尔顿回路是()。 A.通路B.简单回路 C.既是基本回路也是简单回路D.既非基本回路也非简单回路 13. 下面哪一种图不一定是树?() A.无回路的连通图B.有n 个结点n ?1条边的连通图 C.每对结点间都有通路的图D.连通但删去一条边则不连通的图 下述偏序集(见下图)中能构成格的是() 下述偏序集中哪一个不构成格?()

图论讲义第7章-平面图

第七章 平面图 §7.1 平面图的概念 定义7.1.1 如果图G 能画在曲面S 上,使得任意两边互不交叉,则称G 可嵌入曲面S 。若图G 可嵌入平面,则称G 是可平面图或平面图,画出的无交叉边的图形称为图G 的平面嵌入。 例如,下面是三个平面图及其平面嵌入。 根据定义,下列定理是显然的。 定理7.1.1 若图G 是平面图,则G 的任何子图都是平面图。 定理7.1.2 若图G 是非平面图,则G 的任何母图都是非平面图。 定理7.1.3 若图G 是平面图, 则在G 中添加重边或环边后所得之图仍是平面图。 注:由以上定理知 (1) K n ( n ≤4 ) 和 K 1,n (n ≥ 1)及其所有子图都是平面图。 (2) 环边和重边不影响图的平面性。故以下讨论平面性时总假定图G 是简单图。 定义7.1.2 设图G 是平面图 (已平面嵌入),G 的边将平面划分出的若干区域都称为图G 的面。其中面积无限的面称为无限面或外部面,面积有限的面称为有限面或内部面。包围一个面的所有边称为该面的边界。一个面边界上的边数称为该面的次数 (割边按两次计),面R 的次数记为deg (R )。 定理7.1.4 平面图G 中所有面的次数之和等于G 的边数的两倍,即 其中R 1, R 2, … , R r 是G 的所有面。 证明: 对G 的任何一条边e ,若e 是两个面 R i 和 R j 的公共边界,则在计算R i 和 R j 的次数时,e 各提供了1;若e 只是某一个面的边界,则在计算该面的次数时,e 提供了2。可见每条边在计算总次数时,都提供2。因而结论成立。 1 deg()2().r i i R G ε==∑

图论习题答案1

图论习题课作业1,3,6,8,10 By jgy

?作业1:第一章:1,2,4,12,20,29,35 ?作业3:第二章:14,28,30第三章:1,5,7,8?作业6:第五章:18,33 ?作业8:第六章:6,12,17 ?作业10:第七章10 第八章5,6,8

作业1 |E(G)|,2|E(G)|2G υυ?? ≤ ??? ?? ??? 1.1 举出两个可以化成图论模型的实际问题略 1.2 证明其中是单图 证明:(思路)根据单图无环无重边的特点,所以 最大的情形为任意两个顶点间有一条边相连,即极 端情况为。

?1.20证明每顶皆二次的连通图是圈 ?证明:(思路)易证每顶皆二次的连通图中有圈。设图中最大圈为H,假设除H外还有其他顶点集U,任取u k,因为连通,u k 与H中任意顶均有一条道路,存在H中一顶h j与u k相邻,则h j为三次。 ?1.29 证明二分图的子图是二分图 ?方法一: ?定理1.2 图G是二分图当且仅当G中无奇圈 ?反证:设二分图为G,子图为S,假设S非二分图,由定理1.2知S中有 奇圈,则G中有奇圈,这与G是二分图矛盾。 ?方法二: ?(思路)定义:V(G) = X U Y, X n Y=空, 且X中任二顶不相邻,且Y中任二 顶不相邻。

?证明: ?(a)第一个序列考虑度数7,第二个序列考虑6,6,2 ?(b)将顶点v分成两部分v’和v’’ ?v’ = {v|v= vi , 1≤ i≤ k}, ?v’’ = {v|v= vi , k< I ≤ n} ?以v’点为顶的原图的导出子图度数之和小于 ?然后考虑剩下的点贡献给这k个点的度数之和最大可能为

图论教案

第六章图论(Graph Theory) ◎知识目标:掌握图的方法与原理;图的基本概念;最小树、最短路、最大流的概念、计算与应用;了解中国邮路问题与解法。 ◎能力目标:通过学习,使学生掌握图的方法与原理,提高分析问题和解决问题的能力。 ◎本章重点:最小树、最短路、最大流的计算与应用 ◎本章难点:最短路的应用、最大流的计算 引例:哥尼斯堡七桥问题 18世纪著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。 有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是哥尼斯堡七桥问题。L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。 当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Preg el的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。 Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。 后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最後回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。 七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成. 欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。 接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!

第六章 图论

第六章图论 §8.1 图论发展史 第一阶段:瑞士数学家欧拉(E. Euler)在1736年发表了一篇题为“依据几何位置的解题方法”的论文,有效地解决了哥尼斯城堡“七桥难题”,从此开创了图论的历史新纪元;所谓“七桥难题”是指:18世纪的哥尼斯堡城中流过一条河,河上有七座桥连接着河的两岸和河中的两个小岛,如图8-1所示:一个游者怎样才能一次连续走过这七座桥而每座桥只走一次,回到原出发点;没有人想出这种走法,又无法说明走法不存在。欧拉将这个问题归结为如图8-2 所示的问题。他用A,B,C,D四点表示河的两岸和小岛,用两点间的连线表示桥。七桥问题变为:从A,B,C,D任意点出发,能否通过每条边一次且仅一次,再回到原点?欧拉证明了这样的走法不存在,并给出了这类问题的一般结论。 图8-1 图8-2 第二阶段:1847年,数学家基尔霍夫(Kirchhoff)运用图论解决了电路理论中的求解联立方程的问题,他引入了“树”的概念,可惜由于他的思想超出了时代的发展而长期未被重视;到1857年,英国数学家凯莱(Cayley)又从化学的角度进一步扩展了“树”的概念,从此图论又有了新的发展。 第三阶段:1857年,英国数学家哈密尔顿(Hamilton)发明了一种游戏,他用一个实心正12面体象征地球,正12面体的20个顶点分别表示世界上20座名城,要求游戏者从任一城市出发,寻找一条可经由每个城市一次且仅一次再回到原出发点的路,这就是“环球旅行”问题。要在图中找一条经过每个点一次且仅一次的路,能成为哈密尔顿回路。 第四个阶段:20世纪以后,随着计算机的不断发展,图论也有了突飞猛进的进展,广泛应用于各科领域:如物理、化学、信息论,博弈论,计算机网络,等等;目前图论已经发展成完整的一个数学分支,并且越来越多的数学爱好者倾向于研究图论。

相关主题