搜档网
当前位置:搜档网 › 金发碳纤维公司连续纤维增强热塑复合材料介绍

金发碳纤维公司连续纤维增强热塑复合材料介绍

碳碳复合材料概述

碳/碳复合材料概述 摘要本文介绍了碳碳复合材料的发展、工艺、特性以及应用。 关键词碳碳复合材料制备工艺性能应用 1前言 C/C复合材料是指以碳纤维或各种碳织物增强,或石墨化的树脂碳以及化学气相沉积(CVD)所形成的复合材料。碳/碳复合材料在高温热处理之后碳元素含量高于99%, 故该材料具有密度低,耐高温, 抗腐蚀, 热冲击性能好, 耐酸、碱、盐,耐摩擦磨损等一系列优异性能。此外, 碳/碳复合材料的室温强度可以保持到2500℃, 对热应力不敏感, 抗烧蚀性能好。故该复合材料具有出色的机械特性, 既可作为结构材料承载重荷, 又可作为功能材料发挥作用, 适于各种高温用途使用[1]。因而它广泛地应用于航天、航空、核能、化工、医用等各个领域。 2碳碳复合材料的发展 碳碳复合材料是高技术新材料,自1958年碳碳复合材料问世以来,经历了四个阶段: 60年代——碳碳工艺基础研究阶段,以化学气相沉积工艺和液相浸渍工艺的出现为代表; 70年代——烧蚀碳碳应用开发阶段,以碳碳飞机刹车片和碳碳导弹端头帽的应用为代表; 80年代——碳碳热结构应用开发阶段,以航天飞机抗氧化碳碳鼻锥帽和机翼前缘的应用为代表; 90年代——碳碳新工艺开发和民用应用阶段,致力于降低成本,在高性能燃气涡轮发动机航天器和高温炉发热体等领域的应用。 由于碳碳具有高比强度、高比刚度、高温下保持高强度,良好的烧蚀性能、摩擦性能和良好抗热震性能以及复合材料的可设计性,得到了越来越广泛的应用。当今,碳碳复合材料在四大类复合材料中就其研究与应用水平来说,仅次于树脂基复合材料,优先于金属基复合材料和陶瓷基复合材料,已走向工程应用阶段。从技术发展看,碳碳复合材料已经从最初阶段的两向碳碳复合材料发展为三向、四向等多维碳碳复合材料;从单纯抗烧蚀碳碳复合材料发展为抗烧蚀—抗侵蚀和抗烧蚀—抗侵蚀—稳定外形碳碳复合材料;从但功能材料发展为多功能材料。目前碳碳复合材料面对的最主要问题是抗氧化问题[2]。 3碳碳复合材料的制备加工工 艺[3] C/ C 复合材料的制备工艺: 碳 纤维的选择→胚体的预制成型→胚体 的致密化处理→碳碳复合材料的高温 热处理(如图[4]) 3.1碳纤维的选择 CF 的选择可以改变碳碳复合材 料的力学和热力学性能。纤维的选择 主要依赖于成本、织物结构、性能及 纤维的工艺稳定性。 常用CF 有三种, 即人造丝CF, 聚丙烯腈( PAN ) CF 和沥青CF。 3.2坯体的预制成型 坯体的成型是指按产品的形状和性能要求先把CF 预先成型为所需结构形状的毛坯, 以便进一步进行C/ C 复合材料的致密化处理工艺。

热固性复合材料与热塑性复合材料

热固性复合材料与热塑性复合材料 1热固性树脂基复合材料 热固性树脂基复合材料是应用十分广泛的复合型材料,这种材料是经过复合而成,在多高科技产品中都得到了广泛的应用与研究,例如在大型客运机的应用中,其不仅减轻了重量,并且还优化了飞机的性能,减轻了飞机在飞行过程中的阻碍,热固性树脂具有非常优异的开发潜能,其应用领域也会在其改性后得到更大的发展。 典型的热固性树脂复合材料分为以下几种: (1)酚醛树脂复合材料:随着对阻燃材料的强烈需求,美国西化学公司,道化学公司等一系列大型化学公司都先后研制成功了新一代的酚醛树脂复合材料。其具有优异的阻燃、低发烟、低毒雾性能和更加优异的热机械物理性能。在制备这种具有阻燃效果的材料上,研究人员重新设计思路,在加入不饱和键等其他基团条件下,提高了反应速度,减少了挥发组分。使酚醛树脂复合材料在其应用领域得到大力发展。 (2)环氧树脂复合材料:由于环氧树脂本身的弱点,研究人员对其进行了两面的改性研究,一面是改善湿热性能提高其使用温度;另一面则是提高韧性,进而提高复合材料的损伤容限。含有环氧树脂所制备的复

合材料己经大力应用到机翼、机身等大型主承力构件上。 (3)双马来酞亚胺树脂复合材料:在双马来酞亚胺树脂复合材料中,由于双马来酞亚胺树脂具有流动性和可模塑性,良好的耐高温、耐辐射、耐湿热、吸湿率低和热膨胀系数小等优异性能,所以这种树脂则会广泛运用在绝缘材料、航空航天结构材料、耐磨材料等各个领域中。(4)聚酰亚胺复合材料:聚酰亚胺复合材料具有高比强度,比模量以及优异的热氧化稳定性。其在航空发动机上得到了广泛应用,主要可明显减轻发动机重量,提高发动机推重比。所以在航天航空领域得到了大力的发展和运用。 2热塑性树脂基复合材料 热塑性树脂基复合材料:其自身中的基体是热塑性树脂,该类复合材料是由热塑性树脂基体、增强相以及一些助剂组成。在热塑性复合材料中最典型和最常见的热塑性树脂有聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚酰胺、聚酯树脂、聚碳酸树脂、聚甲醛树脂、聚醚酮类、热塑性聚酰亚胺、聚苯硫醚、聚飒等。 而热塑性树脂复合材料具有很多的特点,以下概述了一些热塑性树脂复合材料的特点。

碳纤维材料的性能

碳纤维材料的性能及应用 摘要:介绍了碳纤维及其增强复合材料,详细介绍了碳纤维复合材料的分类和特性,着重阐述了碳纤维及其复合材料在高新技术领域和能源、体育器材等民 用领域的应用,并对未来碳纤维复合材料的发展趋势进行了分析。 关键词:碳纤维性能应用 0引言 碳纤维复合材料具有轻质、高强度、高刚度、优良的减振性、耐疲劳和耐腐蚀等优异性能。以高性能碳纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化材料,不仅在国防战略武器建设中具有不可替代性,在绿色能源建设、节约能源技术发展和促进能源多样化过程中也将发挥极其重要的作用。若将先进碳纤维复合材料在国防领域的应用水平和规模视作国家安全的重要保证,则碳纤维复合材料在交通运输、风力发电、石油开采、电力输送等领域的应用将与有效减少温室气体排放、解决全球气候变暖等环境问题密切相关。随着对碳纤维复合材料认识的不断深化,以及制造技术水平的不断提升,碳纤维复合材料在相关领域的应用研究与装备不断取得进展,借鉴国际先进的碳纤维复合材料应用经验,牵引高性能碳纤维及其复合材料的国产化步伐,对于改变经济结构、节能减排具有重要的战略意义。 1碳纤维材料 1.1何为碳纤维材料 碳纤维是一种含碳量在9 2% 以上的新型高性能纤维材料, 具有重量轻、高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、导电、导热和远红外辐射等多种优异性能, 不仅是21 世纪新材料领域的高科技产品, 更是国家重要的战略性基础材料, 政治、经济和军事意义十分重大。碳纤维分为聚丙烯睛基、沥青基和粘胶基 3种, 其中90 % 为聚丙烯睛基碳纤维。聚丙烯睛基碳纤维的生产过程主要包括原丝生产和原丝碳化两部分。用碳纤维与树脂、金属、陶瓷、玻璃等基体制成的复合材料, 广泛应用于航空航天领域体育休闲领域以及汽车制造、新型建材、

热塑性树脂复合材料应用

摘要:热塑性复合材料因具有韧性、耐蚀性和抗疲劳性高,成形工艺简单、周期短,材料利用率高,预浸料存放环境与时间无限制等优异性能而得到快速发展,并逐渐进入航空制造领域。尤其是近年来,在欧盟以及空客、福克航宇等航空制造企业的强力推动下,热塑性复合材料在民机上频频崭露头角,在一些部件上成为热固性复合材料的有力竞争对手。热塑性复合材料如果想继续扩大在民机上的应用,必须进入机体主承力构件,然而,热塑性应用于主承力构件还三个挑战,即原材料成本高,铺放工艺缓慢,以及预浸料粘性问题。 关键词:热塑性复合材料碳纤维机体内饰主承力结构 热塑性复合材料是以玻璃纤维、碳纤维、芳烃纤维及其它材料增强各种热塑性树脂所形成的复合材料,因具有韧性、耐蚀性和抗疲劳性高,成形工艺简单、周期短,材料利用率高,预浸料存放环境与时间无限制等优异性能而得到快速发展,并逐渐进入航空制造领域。尤其是近年来,在欧盟以及空客、福克航宇等航空制造企业的强力推动下,热塑性复合材料在民机上频频崭露头角,在一些部件上成为热固性复合材料的有力竞争对手。 1 热塑性复合材料的民机应用潜质 以聚苯硫醚(PPS),聚醚酰亚胺(PEI),聚醚醚酮(PEEK)和聚醚酮酮(PEKK)为基体的先进增强热塑性复合材料(TPC),具备高刚度、低加工成本和重新加工能力,拥有良好的阻燃、低烟和无毒(FST)性能,固化周期可以以分钟记,且其成形过程是天生的非热压罐工艺。这些固有属性使其成为轻质、低成本航空结构的理想材料。为西科斯基公司直升机提供大型热塑性复合材料地板的纤维锻造公司提供了如下一组数据:热塑性复合材料比钢轻60%,硬度是其6倍;比铝轻30%;比热固性复合材料强韧2倍;比注射模塑塑料硬5倍;在生产中比板材少60%碎屑。 上述性能特点和数据对比表明,热塑性复合材料是一种天生的航空结构材料,并且在民机应用上拥有巨大的潜质,甚至可能在未来为航空复合材料制造带来一场热塑性革命。 2 热塑性复合材料在民机上的典型应用 目前,热塑性复合材料(TPC)在民机上的应用主要体现在机体结构件和内饰件上,这其中,碳纤维增强PPS的TPC占大多数。 2.1 机体结构件 机体结构件中,TPC主要应用在地板、前缘、控制面和尾翼零件上,这些零件都是外形比较简单的次承力构件。空客A380客机、空客A350客机、湾流G650公务机和阿古斯塔·韦斯特兰AW169直升机都是热塑性机体结构件的应用大户。 空客A380客机上最重要的热塑性复合材料结构件是玻璃纤维/PPS材料的机翼固定前缘。每个机翼有8个固定前缘构件,其中热塑性材料占到了整个用料的三分之二。在固定前缘蒙皮的纤维铺放中,制造商福克航空结构公司选择了先进的超声点焊作为铺放设备的加热系统。

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

碳纤维及其复合材料产业现状及发展趋势

国内外碳纤维及其复合材料产业现状及发展趋势 自上世纪60年代碳纤维首次商业化以来,产业规模不断扩大,产品品质不断提高,2014年全球碳纤维产能(365天连续生产12K/24K 碳纤维丝束计算)已达到12.6万吨。尽管碳纤维与传统的玻璃纤维在价格上仍不能相比,但高性能碳纤维以其高比强度、高模量、可设计、防腐蚀和抗疲劳等突出特点,具有玻璃纤维所不能比拟的优势,已成为发展先进武器装备的关键材料,并在航空航天、国防军工、风能产业、土木工程、体育休闲等领域得到了广泛应用。 当前,国际复合材料产业呈现蓬勃发展态势,据估计,未来5年,先进复合材料将以每年5%的增速发展,而随着民用航空、汽车工业等领域的快速发展,全球高性能碳纤维需求量的年增幅可达10%,亚太地区将会有更高的增长率,即碳纤维及其复合材料产业将面临前所未有的发展空间和机遇。 因此,在目前碳纤维产业快速发展的关键时期,我们更应该认清国际碳纤维产业的发展形势、对照国外先进企业找差距找问题,通过理性思考寻求解决途径,适时把握发展机遇,落实行动、注重实效,努力推进国内碳纤维及其复合材料产业的健康快速发展。 1、国外碳纤维产业现状及发展趋势 1)产业方面 根据前躯体原料的不同,碳纤维可分为聚丙烯腈(PAN)基、沥青基和粘胶基碳纤维等。由于粘胶基碳纤维在制备过程中会释放出毒

性物质二硫化碳,且工艺流程长、生产成本高、整体性能不高,因此目前,国际碳纤维产业领域,前两种碳纤维获得了更大规模的生产和应用。其中,PAN基碳纤维又占据绝对优势,国际市场占有率超过90%。PAN基碳纤维的九大生产商包括:日本东丽、东邦、三菱丽阳、美国赫氏(Hexcel)、氰特(Cytec)、卓尔泰克(Zoltek,已被东丽收购)、台塑、土耳其阿克萨(AKSA)和德国西格里(SGL)。沥青基碳纤维的生产和应用居其次,主要生产企业三家,分别是Cytec、三菱塑料和日本碳素纤维。 PAN基碳纤维分为小丝束(1-24K)和大丝束(36K及以上)两类。全球小丝束碳纤维市场主要被日本东丽、东邦、三菱丽阳三家公司所垄断,而来自中国、土耳其和韩国的企业,正不断扩充小丝束的全球产能,同时也降低了三家日本公司的市场份额。 大丝束碳纤维生产商主要有Zoltek、SGL和三菱丽阳三家。另外,中国国企蓝星集团英国分公司拥有大丝束碳纤维原丝的供应能力,Cytec于2014年与德国腈纶企业合作开展低成本大丝束碳纤维的研制开发。预计在未来10年中,其它制造商也会陆续加入大丝束碳纤维生产领域。 为满足高速发展的航空航天与汽车市场对碳纤维的需要,几乎所有的碳纤维巨头都宣布了扩产计划。例如,日本东丽拥有以日本本土为核心的日美法韩4个生产基地,目前已形成11000~12000吨/年的T700S和4500吨/年的T800碳纤维生产能力,并宣布PAN基碳纤维的总产能于2015年达到27100吨,2020年扩大至50000吨。另外,Hexcel

碳纤维复合材料

碳纤维复合材料 碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料。 碳复合材料的特性主要表现在力学性能、热物理性能和热烧蚀性能三个方面。 (1)密度低(1.7g/cm3左右)在承受高温的结构中,它是最轻的材料;高温的强度好,在2200oC时可保留室温强度;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强度和弹性模量高于一般的碳素材料,纤维取向明显影响材料的强度,在受力时其应力-应变曲线呈现"假塑性效应"即在施加载荷初期呈线性关系,后来变成双线性关系,卸载后再加载,曲线仍为线性并可达到原来的载荷水平。 (2)热膨胀系数小,比热容高,能储存大量的热能,导热率低,抗热冲击和热摩擦的性能优异。 (3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由于热化学和机械过程中引起的固体材料表面损失的现象,通过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部, C-C材料是一种升华-辐射型材料。 复合原理它以碳纤维或碳纤维织物为增强体,以碳或石墨化的树脂作为基体。 复合以后的这种材料在高温下的强度好,高温形态稳定,升华温度高,烧蚀凹陷性,平行于增强方向具有高强度和高刚性,能抗裂纹传播,可减震,抗辐射。 碳纤维增强尼龙的特色 碳纤维具有质轻、拉伸强度高、耐磨损、耐腐蚀、抗蠕变、导电、传热等特色,与玻璃纤维比较,模量高3?5倍,因而是一种取得高刚性和高强度尼龙资料的优秀增强资料。碳纤维复合资料可分为长(接连)纤维增强和短纤维增强两大类。纤维长度可从300~400m 到几个毫米不等。曩昔10年中,大家在改善不一样品种的碳纤维复合资料加工办法和功能方面投入了许多的研讨。从预浸树脂到模塑法加工,从短纤维掺混塑料注射加工到层压成型,在碳纤维复合资料及制品制造方面积累了许多成功的经历。当前普遍认为,长(接连)纤维有高强、高韧方面的优越性,短切纤维有加工性好的特色。因而,长碳纤维复合资料在加工上完善成型技术、短碳纤维复合资料进一步进步力学功能是碳纤维复合资料开展的方向。 依据碳纤维长度、外表处理方式及用量的不一样,还能够制备归纳功能优秀、导电功能各异的导电资料,如抗静电资料、电磁屏蔽资料、面状发热体资料、电极资料等。碳纤维增

《碳纤维复合材料》阅读练习及答案

阅读文章,回答问题。 碳纤维复合材料 ①2018年11月6日,两年一度的珠海航展上,中俄合作研制的280座远程宽体客机CR929,以1:1的展示样机首次亮相国际航展。在这款最新一代的大型飞机上,复合材料的使用比例有望..超过50%。同样,在去年5月5日首飞的C919大客机上,使用的复合材料占到飞机结构重量的12%。这里的复合材料,主要就是碳纤维复合材料。 ②碳纤维是火箭、卫星、导弹、战斗机和舰船等尖端武器装备必 不可少的战略基础材料。它不存在腐蚀生锈的问题。由于使用碳纤维材料可以大幅降低结构重量,因而可显著提高燃料效率。采用碳纤维与塑料制成的复合材料制造的卫星、火箭等宇宙飞行器,噪音小,质 量小,动力消耗少,可节约大量燃料。 ③碳纤维还是让大型民用飞机、汽车、高速列车等现代交通工具 实现“轻量化”的完美材料。航空应用中对碳纤维的需求正在不断增多,新一代大型民用客机空客A380和波音787使用了约为50%的碳纤维复合材料。这使飞机机体的结构重量减轻了20%,比同类飞机可节省20%的燃油,从而大幅降低了运行成本、减少二氧化碳排放。碳 纤维作为汽车材料,最大的优点是质量轻、强度大。它的重量仅相当 于钢材的20%到30%,硬度却是钢材的10倍以上。所以汽车制造采用碳纤维材料可以使汽车的轻量化取得突破性进展,并带来节省能源的社会效益。 ④随着航空航天、汽车轻量化、风电、轨道交通等行业领域对碳

纤维的需求爆发,碳纤维工业应用开始进入规模化生产。业内预测, 预计到2020年,全球碳纤维需求量将超过16万吨,到2025年,将超过33万吨。面对如此巨大而重要的市场,国内企业既要通过掌握 关键技术来实现碳纤维的稳定批量生产和大规模工程化应用,同时也要瞄准国产新一代碳纤维及其复合材料及早研发和布局,2016年2月15日,中国突破日本管制封锁研制出高性能碳纤维。2018年2月,中国完全自主研发出第一条百吨级T1000碳纤维生产线,这标志着我国已经牢牢站稳全球高端碳纤维市场的一席之地。 101.阅读选文第①段和第③段,回答问题。 (1)选文第①段加点词“有望”能删去?请说出理由。 (2)选文第③段画线句运用了哪些说明方法?有何作用? 102.随着科学技术的发展,请你设想一下生活中将会有哪些碳纤维 复合材料的产品。 【答案】 101.(1)不能删去,“有望”是有希望的意思,说明“在这款最新 一代的大型飞机上,复合材料的使用比例”未来有希望超过“50%”,该词体现了说明文语言的准确性和科学性。 (2)列数字、作比较,具体准确地说明了碳纤维作为汽车材料,最 大的优点是质量轻、强度大。 102.碳纤维复合材料制成的羽毛球拍、登山器械等体育休闲用品; 汽车、地铁等交通工具;以及碳纤维复合材料制成的衣服、家具等日

热塑性碳纤维复合材料成型工艺研究

热塑性碳纤维复合材料成型工艺研究 碳纤维质量比金属轻,但是强度却高于钢铁,并且耐腐蚀,在非氧化环境下耐超高温,膨胀系数小且 具有各向异性,但是传统使用碳纤维除了用作隔热保温材料之外,一般是不会单独使用的,多是会作为增 强材料加入到金属、瓷器、树脂等材料中作为复合材料使用。碳纤维复合材料具有碳材料的固有本性特征,同时又兼具纺织纤维的柔软可加工性,是一种力学性能优异的新一代增强纤维,可用作人工韧带、飞机结 构材料、火箭外壳、工业等等领域,市场需求巨大。 热塑性碳纤维复合材料是铝镁合金、钢铁等金属的理想替代材料,但是在基于国外技术封锁等原因,热塑性碳纤维复合材料在国内的发展时间并不是很长,国内的热塑性碳纤维复合材料发展缓慢。苏州挪恩 复合材料有限公司专注碳纤维相关技术的研究,在热塑性碳纤维增强PEEK复合材料、热塑性碳纤维增强PPS复合材料、热塑性碳纤维增强PEI复合材料、热塑性碳纤维增强PC复合材料方面苦心孤诣,与日本美国等知名企业的合作,也让挪恩拥有了成熟的产品生产经验。 现在国内的热塑性碳纤维复合材料成型工艺主要是由热固性树脂基复合材料和金属成型技术移植而来。按照设备的不同可以分为纤维缠绕成型、真空袋成型、模压成型、热压罐成型、双膜成型等等方法,其中 纤维成型缠绕型、真空袋成型、模压成型、双膜成型是目前用的较多的热塑性碳纤维复合材料成型方法。 1、纤维缠绕成型 纤维缠绕成型工艺是指浸过树脂的连续纤维按照一定的规律缠绕在芯模上,继而经过固化、脱模而得 的碳纤维复合材料制品。根据纤维缠绕成型时树脂基体的物理化学状态不同,也可分为干法缠绕、半干法 缠绕和湿法缠绕三种。干法缠绕工艺最大的特点是生产效率比较高,制作环境卫生环境好,但是相应的干 法缠绕设备较贵,投资较大;半干法缠绕是利用纤维浸胶后至缠绕芯模的途中,多加了一套烘干设备,省 却了预浸胶的工序;湿法缠绕则是将纤维浸胶后直接缠绕在芯模上,在成本方面比干法缠绕可以降低约35%,纤维排列平行度也会更好,但是操作环境差、树脂浪费也是湿法缠绕的明显缺点。 2、真空袋成型 真空袋成型是将预浸料铺放在模具中,利用真空袋和密封胶将真空袋抽至真空状态,将模具加热,预 浸料即可在高温和大气压的作用下成型。 3、模压成型 将预浸料裁剪至合适的大小铺设在模具中升温加热,等温度升至可成型温度后,再在压机台面上加压,待温度降温后就可脱模取出。此时需要注意压机表面必须拥有较高的平行度和平整度,否则很容易导致产 品发生翘曲。 4、双膜成型 双膜成型是将裁剪后的预浸料放置于两层可变形的金属膜或树脂膜之间,在膜的四周做好密封,成型 的过程中需要将温度调至成型温度并施加一定的成型压力,最后冷却定型,需要注意的是,在双膜成型的 过程中需要处于密封环境中进行。

碳纤维增强复合材料概述(精编文档).doc

【最新整理,下载后即可编辑】 碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之

间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、氧等元素得以排出,成为一种接近纯碳的材料,含碳量一般都在90%以上,而本身质量却大为减轻;由于碳化过程中对纤维进行了沿轴向的预拉伸处理,使得分子沿轴向进行取向排列,因而碳纤维轴向拉伸强度大大提高,成为一种轻质、高强度、高模量、化学性能稳定的高性能纤维材料。用碳纤维和高性能的树脂基体复合而成的先进树脂基复合材料是目前用得最多,也是最重要的一种结构复合材料。此外,用天然纤维、玻璃纤维和玄武岩纤维作增强体的树脂基复合材料也在快速发展。 碳纤维增强复合材料( CFRP) 是目前最先进的复合材料之一。它可以兼顾碳纤维和基体的性能而成为综合性能更为优异的工程结构材料和具有特殊性能的功能材料。它以其轻质高强、耐高温、抗腐蚀、热力学性能优良等特点广泛用作结构材料及耐

碳纤维复合材料在航空航天领域的应用

碳纤维复合材料在航空航天领域的应用林德春潘鼎高健陈尚开 (上海市复合材料学会)(东华大学)(连云港鹰游纺机集团公司) 碳纤维是纤维状的碳素材料,含碳量在90%以上。具有十分优异的力学性能,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性,纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。 可以明显看出,在航空航天领域碳纤维的用量有大幅度增加,2006年比2001年增长约40%,2008年增长约76%,2010年和2001年相比增长超过100%。 本文将介绍碳纤维增强树脂基复合材料(CFRP)在航空航天领域应用的新进展。 1 航空领域应用的新进展 T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的 为拉伸强度达到5.5GPa,断裂应变高出T300 碳纤维的30%的高强度中模量碳纤维T800H 纤维。 (1)军品 碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材。 美国在歼击机和战斗机上大量使用复合材料:F-22的结构重量系数为27.8%,先进复合材料的用量已达到25%以上,军用直升机用量达到50%以上。八十年代初美国生产的单人

热塑性复合材料成型工艺解析

热塑性复合材料成型工艺解析 热塑性复合材料是以玻璃纤维、碳纤维、芳纶纤维等增强各种热塑性树脂的总称,国外称FRTP(Fiber Rinforced Thermo Plastics)。由于热塑性树脂和增强材料种类不同,其生产工艺和制成的复合材料性能差别很大。 从生产工艺角度分析,塑性复合材料分为短纤维增强复合材料和连续纤维增强复合材料两大类:(1)短纤维增强复合材料①注射成型工艺;②挤出成型工艺;③离心成型工艺。(2)连续纤维增强及长纤维增强复合材料①预浸料模压成型;②片状模塑料冲压成型;③片状模塑料真空成型;④预浸纱缠绕成型;⑤拉挤成型。 热塑性复合材料的特殊性能如下: (1)密度小、强度高热塑性复合材料的密度为1.1~1.6g/cm3,仅为钢材的1/5~1/7,比热固性玻璃钢轻1/3~1/4。它能够以较小的单位质量获得更高的机械强度。一般来讲,不论是通用塑料还是工程塑料,用玻璃纤维增强后,都会获得较高的增强效果,提高强度应用档次。 (2)性能可设计性的自由度大热塑性复合材料的物理性能、化学性能、力学性能,都是通过合理选择原材料种类、配比、加工方法、纤维含量和铺层方式进行设计。由于热塑性复合材料的基体材料种类比热固性复合材料多很多,因此,其选材设计的自由度也就大得多。 (3)热性能一般塑料的使用温度为50~100℃,用玻璃纤维增强后,可提高到100℃以上。尼龙6的热变形温度为65℃,用30%玻纤增强后,热形温度可提高到190℃。聚醚醚酮树脂的耐热性达220℃,用30%玻纤增强后,使用温度可提高到310℃,这样高的耐热性,热固性复合材料是达不到的。热塑性复合材料的线膨胀系数比未增强的塑料低1/4~1/2,能够降低制品成型过程中的收缩率,提高制品尺寸精度。其导热系数为0.3~0.36W(㎡·K),与热固性复合材料相似。 4)耐化学腐蚀性复合材料的耐化学腐蚀性,主要由基体材料的性能决定,热塑性树脂的种类很多,每种树脂都有自己的防腐特点,因此,可以根据复合材料的使用环境和介质条件,对基体树脂进行优选,一般都能满足使用要求。热塑性复合材料的耐水性优于热固性复合材料。 (5)电性能一般热塑性复合材料都具有良好的介电性能,不反射无线电电波,透过微波性能良好等。由于热塑性复合材料的吸水率比热固性玻璃钢小,故其电性能优于后者。在热塑性复合材料中加入导电材料后,可改善其导电性能,防止产生静电。 (6)废料能回收利用热塑性复合材料可重复加工成型,废品和边角余料能回收利用,不会造成环境污染。 由于热塑性复合材料有很多优于热固性玻璃钢的特殊性能,应用领域十分广泛,从国外的应用情况分析,热塑性复合材料主要用于车辆制造工业、机电工业、化工防腐及建筑工程等方面。 1、注射成型工艺 注射成型是热塑性复合材料的主要生产方法,历史悠久,应用最广。其优点是:成型周期短,能耗最小,产品精度高,一次可成型开关复杂及带有嵌件的制品,一模能生产几个制品,生产效率高。缺点是不能生产纤维增强复合材料制品和对模具质量要求较高。根据目前的技术发展水平,注射成型的最大产品为5kg,最小到1g,这种方法主要用来生产各种机械零件,建筑制品,家电壳体,电器材料,车辆配件等。 2、挤出成型工艺 挤出成型是热塑性复合材料制品生产中应用较广的工艺之一。其主要特点是生产过程连续,生产效率高,设备简单,技术容易掌握等。挤出成型工艺主要用于生产管、棒、板及异型断面型等产品。增强塑料管玻纤增强门窗异型断面型材,在我国有很大市场。挤出成型复合材料制品的工艺流程如下:3、缠绕成型工艺 热塑性复合材料的缠绕成型工艺原理和缠绕机设备与热固性玻璃的一样,不同的是热塑性复合材料缠绕制品的增强材料不是玻纤粗纱,而是经过浸胶(热塑性树脂)的预浸纱。因此,需要在缠绕机上增加预浸纱预热装置和加热加压辊。缠绕成型时,先将预浸纱加热到软化点,再与芯模的接触点加

碳纤维及其复合材料的发展和应用(精)

·开发与创新· Development and Applications of Carbon Fiber and Its Composites GAO Bo ,XU Zi-Li (Wuhan Textile University ,Wuhan Hubei 430073,China Abstract:This paper introduces performance and features of carbon fiber,briefly overviews the history,including both foreign and domestic.And analyses the properties and applications of carbon fiber composite material,emphasizes the related performance that carbon fiber adds to the metal matrix composites and points out its research prospects.Key words:carbon fiber ;composite ;metal matrix 0引言 碳纤维是含碳量高于90%的无机高分子纤维,是由有机母体纤维(聚丙烯睛、粘胶丝或沥青等采用高温分解法在1000~3000℃高温的惰性气体下碳化制成的。它是一种力学性能优异的新材料,比重不到钢的1/4,能像铜那样导电,比不锈钢还耐腐蚀,而其复合材料抗拉强度一般都在3500Mpa 以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa ,也高于钢。碳纤维按其原料可分为三类:聚丙烯腈基(PAN 碳纤维、石油沥青基碳纤维和人造丝碳纤维三类。其中聚丙烯腈基碳纤维用途最广,需求也最大[1]。 1碳纤维的发展史 1.1国外碳纤维的发展历史 20世纪50年代美国开始研究粘胶基碳纤维,1959 年生产出了粘胶基纤维Thormel-25,这是最早的碳纤维产品。同一年,日本发明了用聚丙烯腈基(PAN 原丝

碳纤维热塑性复合材料预浸料及制品可研报告

江苏泛达复合材料有限公司 年产2000吨碳纤维热塑性复合材料预浸料及制品项目 可行性研究报告 二○一一年八月

目录 第一章总论 (1) 1.1项目名称及承办单位 (1) 1.2可行性研究报告编制依据 (1) 1.3可行性研究报告的研究范围 (2) 1.4推荐方案与结论 (2) 第二章项目提出的背景与必要性 (12) 2.1企业概况 (12) 2.2项目提出的背景 (12) 第三章市场分析及预测 (19) 3.1原材料生产情况 (19) 3.2产品原材料价格走势 (20) 3.3市场需求影响因素分析 (21) 3.4供需平衡分析 (22) 3.5供给分析 (22) 3.6产品价格分析 (23) 3.7进出口状况 (24) 3.8销售渠道分析 (25) 3.9用户分析 (30) 第四章生产规模和产品方案 (32) 4.1生产规模 (32) 4.2产品方案 (32) 第五章项目选址与建设条件 (35) 5.1建设地址 (35) 5.2建设条件 (35) 5.3厂址评述 (42) 第六章工程技术方案 (43) 6.1设计原则 (43)

6.2项目组成 (43) 6.3工艺技术及设备方案 (43) 6.4总图运输 (49) 6.5建筑工程 (53) 6.6给排水 (56) 6.7供电 (57) 6.8供热、通风与制冷 (60) 6.9通信 (61) 第七章原辅材料及燃料动力供应 (62) 7.1原辅材料供应 (62) 7.2燃料及动力供应 (62) 第八章环境保护 (64) 8.1编制依据与范围 (64) 8.2环境污染及环保措施 (65) 8.3环保机构设置 (66) 8.4绿化 (67) 8.5环境影响评价 (68) 第九章节能方案 (69) 9.1编制依据及设计规范 (69) 9.2项目能源消耗指标分析 (72) 9.3项目能源供应状况 (73) 9.4项目节能措施 (73) 9.5能耗指标及节能效果分析 (77) 9.6能源计量及仪表配备 (79) 9.8节能管理 (83) 9.9节能结论 (85) 第十章消防 (86) 10.1编制依据 (86) 10.2工程概述 (86) 10.3生产工艺特点及安全措施 (87) 10.4消防措施 (88)

碳纤维制备工艺简介资料

碳纤维制备工艺简介资料. 碳纤维制备工艺简介 碳纤维(Carbon Fibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。

一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。

虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30% 以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC 沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。 3,聚丙烯腈(PAN)基碳纤维 PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能,尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前应用领域最广,产量也最大的一种碳纤维。PAN基碳纤维生产的流程图如图1所示。

碳纤维及复合材料的种类、制备和应用

碳纤维及复合材料的种类、制备及应用 杨晨材研0906 (北京化工大学材料学院,100029) 摘要:本文主要陈述总结了复合材料及其碳纤维的种类、制备及应用方面的相关知识。 关键词:碳纤维;复合材料;种类;制备;应用 1.复合材料 复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。具有比强度高,比模量高,剪切强度和剪切模量高,高温性能高,耐热性高等特性广泛应用于各个领域。 1.1种类 复合材料按其性能高低可分为常用复合材料和先进复合材料;根据其用途可分为结构复合材料和功能复合材料;按照复合方式可分为宏观复合材料和微观复合材料。根据不同增强体形式可分为纤维复合材料、颗粒复合材料、片材复合材料和叠层复合材料。还有,可以根据基体材料的不同细分为:聚合物基复合材料、金属基复合材料和无机非金属基复合材料。本文主要以基体材料的细分方式介绍复合材料的制备及其应用。 其生产流程见图1.1。 图1.1 复合材料制品的生产流程图 1.2聚合物基复合材料 聚合物基复合材料是聚合物或俗称树脂作为基体与粒状、片状、纤维状填充组分作为增强体的复合材料。按基体的不同还可以分成热固性树脂基、热塑性树脂基和橡胶基。

1.2.1制备 其主要制备方法有:预浸料、手糊成型工艺、喷射成型、袋压成型、模压成型、纤维缠绕成型、拉挤成型、熔融流动成型、增强反应注射成型和树脂传递模塑。 1.2.2应用 聚合物基复合材料在建筑、化学、交通运输、机械电器、电子工业及医疗、国防、航天航空及火箭等领域都有广泛应用。如手糊成型制得的广播卫星抛物面天线、太阳能电池帆板;纤维缠绕成型可制得雷达罩、火箭发动机壳、压力容器;模压成型制得的整体浴室和汽车保险杠等等。 1.3金属基复合材料 金属基复合材料是以金属、合金和金属间化合物为基体,以无机纤维和金属间化合物等为增强体,通过浸渗、固结工艺制成的复合材料。根据其基体的种类可细分为轻金属基、高熔点金属基和金属间化合物基。 1.3.1制备 金属基复合材料的主要制备工艺方法有:固相法、液相法和原位复合法。固相法主要有粉末冶金、固态热压法、热等静压法;液态法主要有真空压力浸渍法、挤压铸造法;原位复合法主要包括共晶合金定向凝固、直接金属氧化物法、反应生成法。 1.3.2应用 金属基复合材料主要可应用于航天、航空、汽车、医疗、体育用品等领域。如航天飞机中段主机身的B/Al关键桁架、臂状支柱;齿轮;高尔夫球杆击球头及各种支架等等。 1.4无机非金属基复合材料 无机非金属复合材料主要有陶瓷基复合材料、水泥基复合材料和碳基复合材料。 1.4.1陶瓷基复合材料 陶瓷基复合材料是以陶瓷材料为基体,并以陶瓷、碳纤维和难熔金属的纤维、晶须、晶片和颗粒为增强体,通过适当的复合工艺所构成的复合材料。主要可细分为高温陶瓷基复合材料、玻璃基复合材料和玻璃陶瓷基复合材料。 其制备工艺主要有:粉末冶金法(颗粒)、浆体法(液体法)、热压烧结法、液态浸渍法、直接氧化法、溶胶-凝胶法、化学气相浸渍法(CVI)、先驱体转化和反应熔融浸渗(RMI)等。 陶瓷基复合材料可应用于切削工具方面及航空航天领域的研究。如刀具、滑动构件、发动机制件、能源构件等。法国已将长纤维增强炭化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。

相关主题