搜档网
当前位置:搜档网 › VASP计算能带

VASP计算能带

VASP计算能带
VASP计算能带

VASP计算能带

量子化学网版权所有

https://www.sodocs.net/doc/793703277.html,/Experience/CommonSoftwares/VASP/Electroni cCalc/200602/1043.html

VASP Version : 4.6

在此文中,我将用硅晶体作为实例,来说明如何用VASP4.6来计算固体的能带结构。首先我们要了解晶体硅的结构,它是两个嵌套在一起的FCC布拉菲晶格,相对的位置为(a/4,a/4,a/4), 其中a=5.4A是大的正方晶格的晶格常数。在计算中,我们采用FCC的原胞,每个原胞里有两个硅原子。

VASP计算需要以下的四个文件:INCAR(控制参数), KPOINTS(倒空间撒点), POSCAR (原子坐标), POTCAR(赝势文件)

为了计算能带结构,我们首先要进行一次自洽计算,得到体系正确的基态电子密度。然后固定此电荷分布,对于选定的特殊的K点进一步进行非自洽的能带计算。有了需要的K点的能量本征值,也就得到了我们所需要的能带。

步骤一.—自洽计算产生正确的基态电子密度:

以下是用到的各个文件样本:

INCAR 文件:

SYSTEM = Si

Startparameter for this run:

NWRITE = 2; LPETIM=F write-flag & timer

PREC = medium medium, high low

ISTART = 0 job : 0-new 1-cont 2-samecut

ICHARG = 2 charge: 1-file 2-atom 10-const

ISPIN = 1 spin polarized calculation?

Electronic Relaxation 1

NELM = 90; NELMIN= 8; NELMDL= 10 # of ELM steps

EDIFF = 0.1E-03 stopping-criterion for ELM

LREAL = .FALSE. real-space projection

Ionic relaxation

EDIFFG = 0.1E-02 stopping-criterion for IOM

NSW = 0 number of steps for IOM

IBRION = 2 ionic relax: 0-MD 1-quasi-New 2-CG

ISIF = 2 stress and relaxation

POTIM = 0.10 time-step for ionic-motion

TEIN = 0.0 initial temperature

TEBEG = 0.0; TEEND = 0.0 temperature during run

DOS related values:

ISMEAR = 0 ; SIGMA = 0.10 broadening in eV -4-tet -1-fermi 0-gaus Electronic relaxation 2 (details)

Write flags

LWAVE = T write WAVECAR

LCHARG = T write CHGCAR

VASP给INCAR文件中的很多参数都设置了默认值,所以如果你对参数不熟悉,可以直接用默认的参数值。比如在这个例子中,下面的比较简单的INCAR 文件也可以完成任务: SYSTEM = Si

Startparameter for this run:

PREC = medium medium, high low

ISTART = 0 job : 0-new 1-cont 2-samecut

ICHARG = 2 charge: 1-file 2-atom 10-const

EDIFF = 0.1E-03 stopping-criterion for ELM

NSW = 0 number of steps for IOM

IBRION = 2 ionic relax: 0-MD 1-quasi-New 2-CG

ISIF = 2 stress and relaxation

KPOINT文件:

我们采用自动的Monkhorst-Pack K点撒取方式。对于类似于硅晶体的半导体材料,通常

4x4x4 的K点网格就够了。

Monkhorst Pack

Monkhorst Pack

4 4 4

0 0 0

POSCAR文件:

我们采用FCC原胞,所以每个原胞包含两个硅原子

Si

5.38936

0.5 0.5 0.0

0.0 0.5 0.5

0.5 0.0 0.5

2

Cartesian

0.0000000000000 0.00000000000 0.0000000000000

0.2500000000000 0.25000000000 0.2500000000000

POTCAR文件

不需要进行任何改动,只需将POTCAR文件从正确的赝势库里拷贝过来就行了。

运行VASP进行完这一步的计算后,我们应该得到了自洽的电荷分布-CHGCAR文件。为了得到能带结构,我们需要对指定的K点进行非自洽的计算,然后将信息汇总,得到E-K的能带关系。

步骤二.—在固定电子密度的情况下,得到选取K点的能量本征值。

我们需要修改一下INCAR文件中的部分参数

ICHARG = 11 charge: 1-file 2-atom 10-const

ICHARG=11 表示从CHGCAR中读入电荷分布,并且在计算中保持不变。

我们还需要更改KPOINT文件,来指定我们感兴趣的某些高对称性的K点。在VASP4.6中,这个可以通过Line mode来轻易实现.

k-points along high symmetry lines

10 ! 10 intersections

Line-mode

rec

0 0 0 ! gamma

0.5 0.5 0 ! X

0.0 0.0 0 ! gamma

0.5 0.5 0.5 ! L

通过指定Line-mode,VASP会自动在起点和终点之间插入指定的K点数,比如上面的文件就是指定VASP计算沿着Gamma点到X点,以及Gamma点到L点的K点,每个方向上各取10个K点。下图是硅晶体的第一布里渊区,标出了一些高对称性点。

作如上修改后,我们再次运行VASP,然后我们就可以从OUTCAR文件或者EIGENVAL文件

里得到需要的每个K点的能级信息。

比如说EIGENVAL文件会有类似以下的输出

0.5555556E-01 0.5555556E-01 0.0000000E+00 0.5000000E-01

1 -6.8356

2 4.8911

3 5.0077

4 5.0079

5 7.6438

6 8.0693

7 8.0694

8 9.0057

第一行就是K点的倒空间的坐标,接下来的8行告诉我们在那个K点上的8个能级。你可以通过EXCEL或者ORIGIN之类的画图软件可视化结果。由于现在手头上已经有了每个K点的能级信息,则将这些K点的能级连接起来就是你所需要的能带图了。下图是用以上步骤算得的硅的能带图。我们可以看到硅并非是直接能隙的材料。同时,由于我们用了LDA,所以硅的能隙和实验相比大大被低估了(实验为1.12eV,计算值~0.6eV)。

如何用VASP计算单个原子的能量和能级

氢原子的能量为-13.6eV在这一节中,我们用V ASP计算H原子的能量。 对于原子计算,我们可以采用如下的INCAR文件 PREC=ACCURATE NELMDL = 5 make five delays till charge mixing ISMEAR = 0; SIGMA=0.05 use smearing method 采用如下的KPOINTS文件。由于增加K点的数目只能改进描述原子间的相互作用,而在单原子计算中并不需要。所以我们只需要一个K点。 Monkhorst Pack Monkhorst Pack 1 1 1 0 0 0 采用如下的POSCAR文件 atom 1 15.00000 .00000 .00000 .00000 15.00000 .00000 .00000 .00000 15.00000 1 cart 0 0 0 采用标准的H的POTCAR 得到结果如下: k-point 1 : 0.0000 0.0000 0.0000 band No. band energies occupation 1 -6.3145 1.00000 2 -0.0527 0.00000 3 0.4829 0.00000 4 0.4829 0.00000 我们可以看到,电子的能级不为-13.6eV。 Free energy of the ion-electron system (eV) ---------------------------------------------------

alpha Z PSCENC = 0.00060791 Ewald energy TEWEN = -1.36188267 -1/2 Hartree DENC = -6.27429270 -V(xc)+E(xc) XCENC = 1.90099128 PAW double counting = 0.00000000 0.00000000 entropy T*S EENTRO = -0.02820948 eigenvalues EBANDS = -6.31447362 atomic energy EATOM = 12.04670449 --------------------------------------------------- free energy TOTEN = -0.03055478 eV energy without entropy = -0.00234530 energy(sigma->0) = -0.01645004 我们可以看到TOTEN-EA TOM也不等于-13.6eV。 在上面的计算中有个问题,就是H原子有spin,而在上面的计算中我们并没有考虑到spin。所以如果我们改用LSDA近似,在INCAR中用ISPIN=2的tag,则得到如下结果: k-point 1 : 0.0000 0.0000 0.0000 band No. band energies occupation 1 -7.2736 1.00000 2 -0.1229 0.00000 3 0.4562 0.00000 4 0.4562 0.00000 5 0.4562 0.00000 spin component 2 k-point 1 : 0.0000 0.0000 0.0000 band No. band energies occupation 1 -2.4140 0.00000 2 -0.0701 0.00000 3 0.5179 0.00000 4 0.5179 0.00000 5 0.5179 0.00000 Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 0.00060791 Ewald energy TEWEN = -1.36188267 -1/2 Hartree DENC = -6.68322940 -V(xc)+E(xc) XCENC = 2.38615430 PAW double counting = 0.00000000 0.00000000

vasp计算参数设置

软件主要功能: 采用周期性边界条件(或超原胞模型)处理原子、分子、团簇、纳米线(或管)、薄膜、晶体、准晶和无定性材料,以及表面体系和固体 l 计算材料的结构参数(键长、键角、晶格常数、原子位置等)和构型 l 计算材料的状态方程和力学性质(体弹性模量和弹性常数) l 计算材料的电子结构(能级、电荷密度分布、能带、电子态密度和ELF) l 计算材料的光学性质 l 计算材料的磁学性质 l 计算材料的晶格动力学性质(声子谱等) l 表面体系的模拟(重构、表面态和STM模拟) l 从头分子动力学模拟 l 计算材料的激发态(GW准粒子修正) 计算主要的四个参数文件:INCAR ,POSCAR,POTCAR ,KPOINTS,下面简要介绍,详细权威的请参照手册 INCAR文件: 该文件控制VASP进行何种性质的计算,并设置了计算方法中一些重要的参数,这些参数主要包括以下几类: l 对所计算的体系进行注释:SYSTEM l 定义如何输入或构造初始的电荷密度和波函数:ISTART,ICHARG,INIWA V l 定义电子的优化 –平面波切断动能和缀加电荷时的切断值:ENCUT,ENAUG –电子部分优化的方法:ALGO,IALGO,LDIAG –电荷密度混合的方法:IMIX,AMIX,AMIN,BMIX,AMIX_MAG,BMIX_MAG,WC,INIMIX,MIXPRE,MAXMIX –自洽迭代步数和收敛标准:NELM,NELMIN,NELMDL,EDIFF l 定义离子或原子的优化 –原子位置优化的方法、移动的步长和步数:IBRION,NFREE,POTIM,NSW –分子动力学相关参数:SMASS,TEBEG,TEEND,POMASS,NBLOCK,KBLOCK,PSTRESS –离子弛豫收敛标准:EDIFFG l 定义态密度积分的方法和参数 –smearing方法和参数:ISMEAR,SIGMA –计算态密度时能量范围和点数:EMIN,EMAX,NEDOS –计算分波态密度的参数:RWIGS,LORBIT l 其它 –计算精度控制:PREC –磁性计算:ISPIN,MAGMOM,NUPDOWN –交换关联函数:GGA,VOSKOWN –计算ELF和总的局域势:LELF,LVTOT –结构优化参数:ISIF –等等。 主要参数说明如下: ? SYSTEM:该输入文件所要执行的任务的名字。取值:字符串,缺省值:SYSTEM

用vasp计算硅的能带结构

用vasp计算硅的能带结构 在最此次仿真之前,因为从未用过vasp软件,所以必须得学习此软件及一些能带的知识。vasp是使用赝势和平面波基组,进行从头量子力学分子动力学计算的软件包。用vasp计算硅的能带结构首先要了解晶体硅的结构,它是两个嵌套在一起的FCC布拉菲晶格,相对的位置为 (a/4,a/4,a/4), 其中a=5.4A是大的正方晶格的晶格常数。在计算中,我们采用FCC的原胞,每个原胞里有两个硅原子。 VASP计算需要以下的四个文件:INCAR(控制参数), KPOINTS(倒空间撒点), POSCAR(原子坐标), POTCAR(赝势文件) 为了计算能带结构,我们首先要进行一次自洽计算,得到体系正确的基态电子密度。然后固定此电荷分布,对于选定的特殊的K点进一步进行非自洽的能带计算。有了需要的K点的能量本征值,也就得到了我们所需要的能带。 步骤一.—自洽计算产生正确的基态电子密度: 以下是用到的各个文件样本: INCAR 文件: SYSTEM = Si Startparameter for this run: NWRITE = 2; LPETIM=F write-flag & timer PREC = medium medium, high low ISTART = 0 job : 0-new 1-cont 2-samecut ICHARG = 2 charge: 1-file 2-atom 10-const ISPIN = 1 spin polarized calculation? Electronic Relaxation 1 NELM = 90; NELMIN= 8; NELMDL= 10 # of ELM steps EDIFF = 0.1E-03 stopping-criterion for ELM LREAL = .FALSE. real-space projection Ionic relaxation EDIFFG = 0.1E-02 stopping-criterion for IOM NSW = 0 number of steps for IOM IBRION = 2 ionic relax: 0-MD 1-quasi-New 2-CG ISIF = 2 stress and relaxation POTIM = 0.10 time-step for ionic-motion TEIN = 0.0 initial temperature TEBEG = 0.0; TEEND = 0.0 temperature during run

VASP几个计算实例

用VASP计算H原子的能量 氢原子的能量为。在这一节中,我们用VASP计算H原子的能量。对于原子计算,我们可以采用如下的INCAR文件 PREC=ACCURATE NELMDL=5make five delays till charge mixing ISMEAR=0;SIGMA=0.05use smearing method 采用如下的KPOINTS文件。由于增加K点的数目只能改进描述原子间的相互作用,而在单原子计算中并不需要。所以我们只需要一个K点。 Monkhorst Pack0Monkhorst Pack 111 000 采用如下的POSCAR文件 atom1 15.00000.00000.00000 .0000015.00000.00000 .00000.0000015.00000 1 cart 000 采用标准的H的POTCAR 得到结果如下: k-point1:0.00000.00000.0000 band No.band energies occupation 1-6.3145 1.00000 2-0.05270.00000 30.48290.00000 40.48290.00000 我们可以看到,电子的能级不为。 Free energy of the ion-electron system(eV) --------------------------------------------------- alpha Z PSCENC=0.00060791 Ewald energy TEWEN=-1.36188267 -1/2Hartree DENC=-6.27429270 -V(xc)+E(xc)XCENC= 1.90099128 PAW double counting=0.000000000.00000000 entropy T*S EENTRO=-0.02820948 eigenvalues EBANDS=-6.31447362 atomic energy EATOM=12.04670449 ---------------------------------------------------

VASP计算前的各种测试

BatchDoc Word文档批量处理工具 (计算前的)验证 一、检验赝势的好坏: (一)方法:对单个原子进行计算; (二)要求:1、对称性和自旋极化均采用默认值; 2、ENCUT要足够大; 3、原胞的大小要足够大,一般设置为15 ?足矣,对某些元素还可以取得更小一些。 (三)以计算单个Fe原子为例: 1、INCAR文件: SYSTEM = Fe atom ENCUT = 450.00 eV NELMDL = 5 ! make five delays till charge mixing,详细意义见注释一 ISMEAR = 0 SIGMA=0.1 2、POSCAR文件: atom 15.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1 Direct 0 0 0 3、KPOINTS文件:(详细解释见注释二。) Automatic Gamma 1 1 1 0 0 0 4、POTCAR文件:(略) 注释一:关键词“NELMDL”: A)此关键词的用途:指定计算开始时电子非自洽迭代的步数(即

NELMDL gives the number of non-selfconsistent steps at the beginning), 文档批量处理工具BatchDoc Word 文档批量处理工具BatchDoc Word densitycharge fastermake calculations 。目的是“非自洽”指的是保持“非自Charge density is used to set up the Hamiltonian, 所以不变,由于洽”也指保持初始的哈密顿量不变。: B)默认值(default value)(时) 当ISTART=0, INIWANELMDL = -5 V=1, and IALGO=8 ) ISTART=0, INIWA V=1, and IALGO=48( NELMDL = -12 时当 ) 其他情况下NELMDL = 0 ( NELMDL might be positive or negative. ionic each applied means A positive number that after a delay is (movement -- in general not a convenient option. )在每次核运动之后(只在A negative value results in a delay only for the start-configuration. 第一步核运动之前)NELMDL”为什么可以减少计算所需的时间?C)关键词“ the the is Charge density used Hamiltonian, to set then up wavefunctions are optimized iteratively so that they get closer to the exact a optimized wavefunctions wavefunctions of Hamiltonian. this From the old with density charge is calculated, the which is then mixed new Manual P105input-charge density. A brief flowchart is given below.(参自页) 是比较离谱的,在前一般情况下,the initial guessed wavefunctions 不变、保持初始的density次非自洽迭代过程中保持NELMDLcharge

用VASP进行Partial Charge分析实例

用VASP进行Partial Charge分析实例 VASP Version : 4.6 在这篇文章中,我将首先介绍Partial Charge的概念,以及如何用VASP具体的计算Partial Charge。首先,所谓的Partial Charge是针对与Total Charge来说的,指的是某个能量范围、某个K点或者某个特定的态所对应的电荷密度。在文献中最常见的是价带顶部,导带底部,表面态或者局域态所对应的Partial Charge。通过分析这些态所对应的Partial Charge,可以得到体系的一些性质,比如局域态具体的是局域在哪个原子上等。我将通过具体的例子说明如何用VASP进行Partial Charge Analysis。 进行Partial Charge Analysis的第一步是进行自洽的计算,得到体系的电子结构。这一步的计算采用通常的INCAR和KPOINTS文件。在自洽计算结束后,我们需要保存WAVECAR文件。(通过在INCAR文件中设置LWAVE=TRUE实现)在这个例子中,假设我们需要计算一个硅纳米线的导带和价带的Partial Charge。硅纳米线的结构如下: 第二步是画出能带结构,以决定你需要画哪条能带的那个K点的态所对应的Partial Charge。关于具体如何用VASP画能带,请参见用VASP4.6计算晶体硅能带实例一文。我们得到硅纳米线的能带结构如下: 画能带时有些小技巧。你可以用一些支持列模块的编辑器,如UltraEdit,将OUTCAR里的各个K点所对应的本征值粘贴到Origin中。这一步完成后,在Origin中做一个矩阵转置,然后将K点坐标贴到第一列,并将其设为X坐标。如此画出来的基本上就是能带图了。在Origin 中可以通过设置纵轴范围来更加清楚的区分费米能级附近的各条能带。如上的硅纳米线所对应的能带结构图如下: 决定画哪条能带,或者那些感兴趣的K点之后,有如下几种方法计算不同的Partial Charge。如果你希望计算价带顶端的Partial Charge,则需要首先通过能带结构图确定价带的能带标号。需要注意,进行Partial Charge分析必须要保留有自洽计算的WAVECAR才可以。 第一种Partial Charge分析的INCAR ISTART = 1 job : 0-new 1-cont 2-samecut ICHARG = 1 charge: 1-file 2-atom 10-const LPARD=.TRUE. IBAND= 20 21 22 23 KPUSE= 1 2 3 4 LSEPB=.TRUE. LSEPK=.TRUE. 这样的INCAR给出的是指定能带,指定K点所对应的Partial Charge。分析导带、价带等的Partial Charge特性,通常采用的都是这种模式。 第二种Partial Charge分析的INCAR ISTART = 1 job : 0-new 1-cont 2-samecut ICHARG = 1 charge: 1-file 2-atom 10-const LPARD=.TRUE. EINT = -10.3 -5.1 LSEPB=.FALSE. LSEPK=.FALSE. 这样的INCAR给出的是在能量之间的Partial Charge。这种模式适合于分析某个能量区间内的波函数的性质。 第三种Partial Charge分析的INCAR ISTART = 1 job : 0-new 1-cont 2-samecut

vasp在计算磁性的实例和讨论

兄弟,问3个问题 1,vasp在计算磁性的时候,oszicar中得到的磁矩和outcar中得到各原子磁矩之和不一致,在投稿的是否曾碰到有审稿人质疑,对于这个不一致你们一般是怎么解释的了? 2,另外,磁性计算应该比较负责。你应该还使用别的程序计算过磁性,与vasp结果比较是否一致,对磁性计算采用的程序有什么推荐。 ps:由于曾使用vasp和dmol算过非周期体系磁性,结构对磁性影响非常大,因此使用这两个程序计算的磁性要一致很麻烦。还不敢确定到底是哪个程序可能不可靠。 3,如果采用vasp计算磁性,对采用的方法和设置有什么推荐。 1,OSZICAR中得到的磁矩是OUTCAR中最后一步得到的总磁矩是相等的。总磁矩和各原子的磁矩(RMT球内的磁矩)之和之差就是间隙区的磁矩。因为有间隙区存在,不一致是正常的。 2,如果算磁性,全电子的结果更精确,我的一些计算结果显示磁性原子对在最近邻的位置时,PAW与FPLAW给出的能量差不一致,在长程时符合的很好。虽然并没有改变定性结论。感觉PAW似乎不能很好地描述较强耦合。我试图在找出原因,主要使用exciting和vasp做比较。计算磁性推荐使用FP-LAPW, FP-LMTO, FPLO很吸引人(不过是商业的),后者是O(N)算法。 3,使用vasp计算磁性,注意不同的初始磁矩是否收敛为同一个磁矩。倒没有特别要注意的地方,个人认为。 归根结底,需要一个优秀的交换关联形式出现 VASP计算是否也是像计算DOS和能带一样要进行三步(结构优化,静态自洽计算,非自洽计算),然后看最后一步的出的磁矩呢? 一直想计算固体中某个原子的磁矩,根据OUTCAR的结果似乎不能分析,因为它里面总磁矩跟OSZICAR的值有一定的差别,据说是OUTCAR中只考虑WS半径内磁矩造成的。最近看到一个帖子说是可以用bader电荷分析方法分析原子磁矩。如法炮制之后发现给出的总磁矩与OSZICAR的结果符合的甚好,可是觉得没有根据,有谁知道这样做的依据吗,欢迎讨论! 设置ISPIN=2计算得到的态密度成为自旋态密度。 设置ISPIN=2就可以计算磁性,铁磁和反铁磁在MAG里设置。最后得到的DOS是分up和down的。 磁性计算 (2006-12-03 21:02) 标签: - 分类:Vasp ·磁性计算

如何用VASP计算晶格常数

我们用Pd金属作为例子。 Pd金属的实验上的晶格常数为3.89A。在这里,我们用V ASP计算它的晶格常数。 首先将Pd所对应的POTCAR文件拷贝到目录下。然后准备好INCAR和KPOINTS文件。POSCAR文件我们将通过一个tcsh的script来产生。 KPOINTS文件可以如下: Monkhorst Pack Monkhorst Pack 11 11 11 0 0 0 INCAR文件可以如下: SYSTEM = Pd bulk calculation Startparameter for this run: PREC = Accurate ISTART = 0 job : 0-new 1-cont 2-samecut ICHARG = 2 charge: 1-file 2-atom 10-const ISPIN = 1 spin polarized calculation? Electronic Relaxation 1 EDIFF = 0.1E-03 stopping-criterion for ELM LREAL = .FALSE. real-space projection Ionic relaxation EDIFFG = 0.1E-02 stopping-criterion for IOM NSW = 0 number of steps for IOM IBRION = 2 ionic relax: 0-MD 1-quasi-New 2-CG ISIF = 2 stress and relaxation POTIM = 0.10 time-step for ionic-motion TEIN = 0.0 initial temperature TEBEG = 0.0; TEEND = 0.0 temperature during run DOS related values: ISMEAR = 0 ; SIGMA = 0.05 gaussian smear Electronic relaxation 2 (details) Write flags LWA VE = F write WA VECAR LCHARG = F write CHGCAR 产生POSCAR和计算晶格常数的工作可以用以下的PBS script来完成。

VASP计算方法

V ASP计算方法总结1 静态计算 计算方法: IBRION = -1 NSW = 0 2 结构优化 计算方法: ①只进行离子弛豫 IBRION = 2 ISIF = 2 ②块体晶格参数优化 IBRION = 2 ISIF = 3 ③二维材料晶格参数优化

3 表面能 计算方法: 1) 块体晶体晶格参数优化;静态计算;得能量Eb 2) 优化的块体切slab ;静态计算;得Es1 3) 将slab 模型离子弛豫;静态计算;得Es2 4) γ = (Es1 – N *(Eb / n ))/ 2A + (Es2 – Es1)/ A 计算步骤: 4 功函数 计算方法: 1) 块体晶格参数优化;切slab 模型;离子弛豫 2) 修改INCAR (LVHAR = .TRUE.);静态计算 3) W = Ve - EF 表面能 1stru static 2slab 3optislab static

计算步骤: 5 吸附能 计算方法: 1) 块体和二维材料(D)晶格参数优化 2) 块体切slab ;构建slab 吸附模型 3) slab 吸附模型去slab ;二维材料离子弛豫;静态计算 4) slab 吸附模型去二维材料;slab 离子弛豫;静态计算 5) slab 吸附模型离子弛豫;静态计算 6) E abs = E metal-D – E metal – E D 计算步骤: 表面能 1stru static 2slab 3optislab static workfunction 吸附能 1stru static 2slab static 3slabD static

VASP计算实例

VASP计算实例目录 一、氢气分子H2键长的计算 3 1. 基本文件 3 2. 赝势类型的选择 3 3. 截断能ENCUT参数的选择 4 4. KPOINTS参数选择 5 5. 对晶格常数进行优化 6 二、 Si晶体晶格常数计算 8 1. 赝势类型选择 8 2. 截断能(ENCUT)参数的选定 9 3. KPOINTS参数的选定 11 4. SIGMA参数的选定 12 5. 晶格常数计算结果 13 三、 Si元素单原子能量计算 14 1. 由内聚能倒推单原子能量 14 2. 基本文件 15

3. 单原子能量计算 15 四、 Si的VASP力学常数计算 16 1. 计算所需文件 16 2. 计算与数据处理 17 3. 计算所用到的公式: 18 五、 SI晶体的电子结构 19 1. 采用VASP计算能带的步骤 19 2. 电荷分布计算结果 20 能带计算和结果 21 3. 态密度计算和结果 21 六、 Si晶体介电函数和光学性质的计算 22 1. 计算步骤 22 2. 用到的文件 23 3. 计算结果 26 七、 VASP的声子谱计算 29 1. 计算步骤 29 2. 基本文件 30

3. 声子谱、声子态密度计算和结果 33 4. 热学性质计算和结果 34 八、化合物 键长计算 35 1. 计算步骤 35 2. 基本文件 35 一、氢气分子H2键长的计算 1. 基本文件 准备基本文件INCAR、POTCAR、POSCAR、KPOINT以及脚本文件encut、k、optimize 2. 赝势类型的选择 输入文件如下其中参数要靠经验初选 INCAR: System = F2 ISTART = 0 ICHARG = 2

VASP计算能带

VASP计算能带 量子化学网版权所有 https://www.sodocs.net/doc/793703277.html,/Experience/CommonSoftwares/VASP/Electroni cCalc/200602/1043.html VASP Version : 4.6 在此文中,我将用硅晶体作为实例,来说明如何用VASP4.6来计算固体的能带结构。首先我们要了解晶体硅的结构,它是两个嵌套在一起的FCC布拉菲晶格,相对的位置为(a/4,a/4,a/4), 其中a=5.4A是大的正方晶格的晶格常数。在计算中,我们采用FCC的原胞,每个原胞里有两个硅原子。 VASP计算需要以下的四个文件:INCAR(控制参数), KPOINTS(倒空间撒点), POSCAR (原子坐标), POTCAR(赝势文件) 为了计算能带结构,我们首先要进行一次自洽计算,得到体系正确的基态电子密度。然后固定此电荷分布,对于选定的特殊的K点进一步进行非自洽的能带计算。有了需要的K点的能量本征值,也就得到了我们所需要的能带。 步骤一.—自洽计算产生正确的基态电子密度: 以下是用到的各个文件样本: INCAR 文件: SYSTEM = Si Startparameter for this run: NWRITE = 2; LPETIM=F write-flag & timer PREC = medium medium, high low ISTART = 0 job : 0-new 1-cont 2-samecut ICHARG = 2 charge: 1-file 2-atom 10-const ISPIN = 1 spin polarized calculation? Electronic Relaxation 1 NELM = 90; NELMIN= 8; NELMDL= 10 # of ELM steps EDIFF = 0.1E-03 stopping-criterion for ELM LREAL = .FALSE. real-space projection Ionic relaxation EDIFFG = 0.1E-02 stopping-criterion for IOM NSW = 0 number of steps for IOM IBRION = 2 ionic relax: 0-MD 1-quasi-New 2-CG ISIF = 2 stress and relaxation

VASP计算AgGaS2能带及态密度及光学性质

VASP计算AgGaS2能带及态密度及光学性质 第一步:构型优化 1.准备四个输入文件 POSCAR INCAR POTCAR KPOINTS POSCAR: 从ms中导入AgGaS2结构,选择CASTEP,file,save,并保存成原包。这样,得到一隐藏文件.cell, 将它用编辑器打开,从中的到vasp所需的POSCAR信息,修改得到POSCAR。 AgGaS2 bulk 1.000000000000000 -2.7934999465942410 2.7934999465942370 5.2045001983642580 2.7934999465942370 -2.7934999465942390 5.2045001983642590 2.7934999465942380 2.7934999465942380 -5.2045001983642580 4 2 2 Direct 0.3750000000000000 0.4072000086307526 0.5322000086307526 0.8750000000000000 0.8427999913692474 0.4677999913692474 . . . . . . . . . . . . 2.POTCAR:用PBE-GGA的赝势,提取,Ag Ga O的赝势合并成一个赝势。(一般VASP有自带) 3.下面是INCAR SYSTEM = optimization of AgGaS2 LPLANE=.TRUE. NPAR= 8 Elecronic minimisation ISTART = 0 LREAL = .FALSE. PREC = Low EDIFF = 1e-4 EDIFFG = -0.03 IALGO = 48 NELMIN = 4 ISYM = 0 GGA = PBE ISPIN = 1 NBANDS = 120

用VASP4计算Si能带

V ASP Version : 4.6 在此文中,我将用硅晶体作为实例,来说明如何用V ASP4.6来计算固体的能带结构。首先我们要了解晶体硅的结构,它是两个嵌套在一起的FCC布拉菲晶格,相对的位置为(a/4,a/4,a/4), 其中a=5.4A是大的正方晶格的晶格常数。在计算中,我们采用FCC的原胞,每个原胞里有两个硅原子。 V ASP计算需要以下的四个文件:INCAR(控制参数), KPOINTS(倒空间撒点), POSCAR (原子坐标), POTCAR(赝势文件) 为了计算能带结构,我们首先要进行一次自洽计算,得到体系正确的基态电子密度。然后固定此电荷分布,对于选定的特殊的K点进一步进行非自洽的能带计算。有了需要的K点的能量本征值,也就得到了我们所需要的能带。 步骤一.—自洽计算产生正确的基态电子密度: 以下是用到的各个文件样本: INCAR 文件: SYSTEM = Si Startparameter for this run: NWRITE = 2; LPETIM=F write-flag & timer PREC = medium medium, high low ISTART = 0 job : 0-new 1-cont 2-samecut ICHARG = 2 charge: 1-file 2-atom 10-const ISPIN = 1 spin polarized calculation? Electronic Relaxation 1 NELM = 90; NELMIN= 8; NELMDL= 10 # of ELM steps EDIFF = 0.1E-03 stopping-criterion for ELM LREAL = .FALSE. real-space projection Ionic relaxation EDIFFG = 0.1E-02 stopping-criterion for IOM NSW = 0 number of steps for IOM IBRION = 2 ionic relax: 0-MD 1-quasi-New 2-CG ISIF = 2 stress and relaxation POTIM = 0.10 time-step for ionic-motion TEIN = 0.0 initial temperature TEBEG = 0.0; TEEND = 0.0 temperature during run DOS related values: ISMEAR = 0 ; SIGMA = 0.10 broadening in eV -4-tet -1-fermi 0-gaus Electronic relaxation 2 (details)

VASP画轨道分辨能带图

VASP能带计算 用VASP计算能带和用p4vasp画能带图: 在静态自洽计算的基础上再进行非自洽能带计算。 1、准备文件:INCAR、KPOINTS、POSCAR、POTCAR、CHG、CHGCAR、运行脚本(1)INCAR文件:设置参数,在静态计算的基础上,增加NBANDS(默认值为NELECT/2+NIONS/2,NELECT和NIONS分别为电子数和离子数,可以上一步静态自洽计算产生的OUTCAR文件中找到这两个参数,如grep ‘NIONS’ OUTCAR,和 grep "NELECT" OUTCAR。) 注意:非自洽计算能带时ICHARG= 11,金属用ISMEAR=1;半导体或绝缘体,用ISMEAR=0。而计算态密度时:ICHARG = 11,ISMEAR=-5。 (2)KPOINTS文件:使用Line-mode,给出高对称性k点之间的分割点数。(分割越密,则路径积分越准确,计算量也越大) k-points along high symmetry lines !注释行,无特别的意义 25 ! intersections,沿G-X特殊点之间产生25个k点 Line-mode ! 程序自动产生特殊k点间的k点 rec ! 各k点相对于倒格子基失来写的 0.0 0.0 0.0 ! Gamma 0.5 0.5 0.0 ! M 0.5 0.5 0.0 ! M 0.0 0.5 0.0 ! X 0.0 0.5 0.0 ! X 0.0 0.0 0.0 ! Gama 其中,设置高对称点的方法为:在MS中打开搭建的结构,点击菜单栏中Tools —>Brillouin Zone Path,点击create,如下图所示,红色实线就代表布里渊区积分路径,相应的高对称点坐标就为选项框中产生的点。

用VASP4.6计算晶体硅能带实例

VASP Version : 4.6 在此文中,我将用硅晶体作为实例,来说明如何用VASP4.6来计算固体的能带结构。首先我们要了解晶体硅的结构,它是两个嵌套在一起的FCC布拉菲晶格,相对的位置为 (a/4,a/4,a/4), 其中a=5.4A是大的正方晶格的晶格常数。在计算中,我们采用FCC的原胞,每个原胞里有两个硅原子。 VASP计算需要以下的四个文件:INCAR(控制参数), KPOINTS(倒空间撒点), POSCAR(原子坐标), POTCAR(赝势文件) 为了计算能带结构,我们首先要进行一次自洽计算,得到体系正确的基态电子密度。然后固定此电荷分布,对于选定的特殊的K点进一步进行非自洽的能带计算。有了需要的K点的能量本征值,也就得到了我们所需要的能带。 步骤一.—自洽计算产生正确的基态电子密度: 以下是用到的各个文件样本: INCAR 文件: SYSTEM = Si Startparameter for this run: NWRITE = 2; LPETIM=F write-flag & timer PREC = medium medium, high low ISTART = 0 job : 0-new 1-cont 2-samecut ICHARG = 2 charge: 1-file 2-atom 10-const ISPIN = 1 spin polarized calculation? Electronic Relaxation 1 NELM = 90; NELMIN= 8; NELMDL= 10 # of ELM steps EDIFF = 0.1E-03 stopping-criterion for ELM LREAL = .FALSE. real-space projection Ionic relaxation EDIFFG = 0.1E-02 stopping-criterion for IOM NSW = 0 number of steps for IOM IBRION = 2 ionic relax: 0-MD 1-quasi-New 2-CG ISIF = 2 stress and relaxation POTIM = 0.10 time-step for ionic-motion TEIN = 0.0 initial temperature TEBEG = 0.0; TEEND = 0.0 temperature during run DOS related values: ISMEAR = 0 ; SIGMA = 0.10 broadening in eV -4-tet -1-fermi 0-gaus Electronic relaxation 2 (details)

用VASP计算的方法

This paper is published as part of Faraday Discussions volume 140: Electrocatalysis - Theory and Experiment at the Interface Preface Preface Andrea E. Russell, Faraday Discuss., 2009 DOI:10.1039/b814058h Introductory Lecture Electrocatalysis: theory and experiment at the interface Marc T. M. Koper, Faraday Discuss., 2009 DOI:10.1039/b812859f Papers The role of anions in surface electrochemistry D. V. Tripkovic, D. Strmcnik, D. van der Vliet, V. Stamenkovic and N. M. Markovic, Faraday Discuss., 2009 DOI:10.1039/b803714k From ultra-high vacuum to the electrochemical interface: X-ray scattering studies of model electrocatalysts Christopher A. Lucas, Michael Cormack, Mark E. Gallagher, Alexander Brownrigg, Paul Thompson, Ben Fowler, Yvonne Gründer, Jerome Roy, Vojislav Stamenkovi? and Nenad M. Markovi?, Faraday Discuss., 2009 DOI:10.1039/b803523g Surface dynamics at well-defined single crystal microfacetted Pt(111) electrodes: in situ optical studies Iosif Fromondi and Daniel Scherson, Faraday Discuss., 2009 DOI:10.1039/b805040f Bridging the gap between nanoparticles and single crystal surfaces Payam Kaghazchi, Felice C. Simeone, Khaled A. Soliman, Ludwig A. Kibler and Timo Jacob, Faraday Discuss., 2009 DOI:10.1039/b802919a Nanoparticle catalysts with high energy surfaces and enhanced activity synthesized by electrochemical method Zhi-You Zhou, Na Tian, Zhi-Zhong Huang, De-Jun Chen and Shi-Gang Sun, Faraday Discussion General discussion Faraday Discuss., 2009, DOI:10.1039/b814699n Papers Differential reactivity of Cu(111) and Cu(100) during nitrate reduction in acid electrolyte Sang-Eun Bae and Andrew A. Gewirth, Faraday Discuss., 2009 DOI:10.1039/b803088j Molecular structure at electrode/electrolyte solution interfaces related to electrocatalysis Hidenori Noguchi, Tsubasa Okada and Kohei Uosaki, Faraday Discuss., 2009 DOI:10.1039/b803640c A comparative in situ195Pt electrochemical- NMR investigation of PtRu nanoparticles supported on diverse carbon nanomaterials Fatang Tan, Bingchen Du, Aaron L. Danberry, In-Su Park, Yung-Eun Sung and YuYe Tong, Faraday Discuss., 2009 DOI:10.1039/b803073a Spectroelectrochemical flow cell with temperature control for investigation of electrocatalytic systems with surface- enhanced Raman spectroscopy Bin Ren, Xiao-Bing Lian, Jian-Feng Li, Ping- Ping Fang, Qun-Ping Lai and Zhong-Qun Tian, Faraday Discuss., 2009 DOI:10.1039/b803366h Mesoscopic mass transport effects in electrocatalytic processes Y. E. Seidel, A. Schneider, Z. Jusys, B. Wickman, B. Kasemo and R. J. Behm, Faraday Discuss., 2009 DOI:10.1039/b806437g Discussion General discussion Faraday Discuss., 2009, DOI:10.1039/b814700k View Article Online / Journal Homepage / Table of Contents f

相关主题