搜档网
当前位置:搜档网 › 汽车制动系统工作原理详解

汽车制动系统工作原理详解

汽车制动系统工作原理详解
汽车制动系统工作原理详解

汽车制动系统工作原理详解

众所周知,当我们踩下制动踏板时,汽车会减速直到停车。但这个工作是怎么样完成的?你腿部的力量是怎么样传递到车轮的?这个力量是怎么样被扩大以至能让一台笨重的汽车停下来?

首先我们把制动系统分成6部分,从踏板到车轮依次解释每部分的工作原理,在了解汽车制动原理之前我们先了解一些基本理论,附加部分包括制动系统的基本操作方式。

基本的制动原理

当你踩下制动踏板时,机构会通过液压把你脚上的力量传递给车轮。但实际上要想让车停下来必须要一个很大的力量,这要比人腿的力量大很多。所以制动系统必须能够放大腿部的力量,要做到这一点有两个办法:

1、杠杆作用

2、利用帕斯卡定律,用液力放大

制动系统把力量传递给车轮,给车轮一个摩擦力,然后车轮也相应的给地面一个摩擦力。在我们讨论制动系统构成原理之前,让我们了解三个原理:

杠杆作用、液压作用、摩擦力作用

杠杆作用

制动踏板能够利用杠杆作用放大人腿部的力量,然后把这个力量传递给液压系统。

如上图,在杠杆的左边施加一个力F,杠杆左边的长度(2X)是右边(X)的两倍。因此在杠杆右端可以得到左端两倍的力2F,但是它的行程Y只有左端行程2Y的一半。

液压系统

其实任何液压系统背后的基本原理都很简单:作用在一点的力被不能压缩的液体传递到另一点,这种液体通常是油。绝大多数制动系统也在此中放大制动力量。下图是最简单的液压系统:

如图:两个活塞(红色)装在充满油(蓝色)的玻璃圆桶中,之间由一个充满油的导管连接,如果你施一个向下的力给其中一个活塞(图中左边的活塞)那么这个力可以通过管道内的液压油传送到第二个活塞。由于油不能被压缩,所以这种方式传递力矩的效率非常高,几乎100%的力传递给了第二个活塞。液压传力系统最大的好处就是可以以任何长度,或者曲折成

各种形状绕过其他部件来连接两个圆桶型的液压缸。还有一个好处就是液压管可以分支,这样一个主缸可以被分成多个副缸,如图所示:

使用液压系统的另外一个好处就是能使力量成倍的增加。在液压系统中你需要做的只是改变一个活塞和液压缸的尺寸,如下图:

上图表示的就是力的加倍放大,力放大的倍数要以活塞的直径来定。左边的活塞直径为2寸(注:相当于5.08cm),右边的活塞直径为6寸(相当于15.24cm)。因为圆的面积等于Pi * r2,所以左边的活塞面积为3.14平方厘米,右边的活塞面积为28.26平方厘米。右边的活塞面积比左边的大9倍。这就意味着给左边的活塞施加任何一个力,右边的活塞就会产生一个比左边大9倍的力。因此当你给左边的活塞施加一个100磅的向下的力时,右边的活塞就

会产生一个900磅的向上的力。唯一的不足就是当左边的活塞向下运动9寸时,右边的活塞只能向上运动1寸。

摩擦力

摩擦力是一个物体在另一个物体上滑动的相互阻力,参照下图。两个物体的接触面都是用相同材料做成的但其中一个较另一个重,所以不难看出哪一边较难推动。

要了解其中的原因,我们可以分析下面的例子:

即使用肉眼看起来接触面很平滑,但在显微镜下他们确是相当粗糙的。当你把物体平放在桌面上时,物体和桌面之间的小锯齿会结合在一起,而他们其中有一些合适的锯齿会相互咬合,如果给他的压力越大,那么咬合的锯齿就越多,其阻力也越大,所以重的物体就更难推动。

不同的材料表面,有不同的锯齿结构;举例来说:橡皮与橡皮之间就比钢与钢之间更难滑动。材料的类型决定了摩擦系数。所以摩擦力与物体接触面上的正压力成正比。例如:如果摩擦系数为0.1,一个物体重100磅,另一个物体重400磅,那么如果要推动他们就必须给100磅的物体施加一个10磅的力,给400磅的物体施加一个40磅的力才能克服摩擦力前进。物体越重则需要克服更大的摩擦力。这个原理就跟制动抓紧装置相似,如果给制动碟的压力越大那么车辆获得的制动力就越大。

简单制动系统模型

当踩下制动踏板时,在踏板处通过杠杆原理把制动力放大了3倍,再通过液压机构驱动活塞把制动力又放大了3被。放大以后的制动力推动活塞移动,活塞推动蹄片带动刹车卡钳紧紧的夹住制动碟,由蹄片与制动碟产生的强大摩擦力,让车减速。这就是简单的制动模型。通过它我们就可以理解制动系统的基本原理了。

ABS防抱死制动系统解析(图)

汽车的制动性能是汽车的主要性能之一,重大交通事故往往与制动距离过长、紧急制动时发生侧滑等情况有关,所以汽车的制动性能是汽车安全行驶的重要保

障。目前ABS防抱死制动系统已被广泛运用于汽车上。什么是ABS?了解它的优

点和局限有助于行车更安全。

ABS的原理

ABS是防抱死制动系统的英文缩写,英文的全称是Anti-lock Braking System,或者是Anti-Skid Braking System。该系统在制动过程中可自动调节车

轮制动力,防止车轮抱死以取得最佳制动效果。

一辆汽车制动性能的好坏,主要从以下三方面进行评价:1、制动效能,即制动距离与制动减速度;2、制动效能的恒定性,即抗热或水衰退性能;3、制动时汽车的方向稳定性,即制动时汽车不发生跑偏、侧滑以及失去转向能力的性能。

通常,汽车在制动过程中存在着两种阻力:一种阻力是制动器摩擦片与制动鼓或制动盘之间产生的摩擦阻力,这种阻力称为制动系统的阻力,由于它提供制动时的制动力,因此也称为制动系制动力;另一种阻力是轮胎与道路表面之间产生的摩擦阻力,也称为轮胎——道路附着力。如果制动系制动力小于轮胎—道路附着力,则汽车制动时会保持稳定状态,反之,如果制动系制动力大于轮胎——道路附着力,则汽车制动时会出现车轮抱死和滑移。如果前轮抱死,汽车基本上沿直线向前行驶,汽车处于稳定状态,但汽车失去转向控制能力,这样驾驶员制动过程中躲避障碍物、行人以及在弯道上所应采取的必要的转向操纵控制等就无法实现。如果后轮抱死,汽车的制动稳定性变差,在很小的侧向干扰力下,汽车就会发生甩尾,甚至调头等危险现象。尤其是在某些恶劣路况下,诸如路面湿滑或有冰雪,车轮抱死将难以保证汽车的行车安全。另外,由于制动时车轮抱死,从而导致局部急剧摩擦,将会大大降低轮胎的使用寿命。

ABS通过控制作用于车轮制动分泵上的制动管路压力,使汽车在紧急刹车时车轮不会抱死,这样就能使汽车在紧急制动时仍能保持较好的方向稳定性。在没有装备ABS的汽车上,如果在雪地上刹车,汽车很容易失去方向稳定性;同时驾驶员如果想停车,必须使用液压调节器(又称执行器)。反之,如果汽车上装备有ABS,则ABS能自动向液压调节器发出控制指令,因而能更迅速、准确而有效地控制制动。

ABS的优点和局限

ABS的功能是通过调节、控制制动管路压力,避免车轮在制动过程中抱死而滑移,使其处于滑移率15%—25%的边滚边滑的运动状态。其优点如下:1、改善汽车制动时的横向稳定性;2、改善汽车制动时的方向操纵性;3、改善制动效能;

4、减少轮胎的局部过度磨损;

5、使用方便,工作可靠。

同时我们应该了解,ABS系统本身也有局限性。在两种情况下,ABS系统不能提供最短的制动距离。一种是在平滑的干路上,由有经验的驾驶员直接进行制动。另一种情况是在松散的砾石路面、松土路面或积雪很深的路面上制动。另外,通常在干路面上,最新的ABS系统能将滑移率控制在5%—20%的范围内,但并不是所有的ABS都以相同的速率或相同的程度来进行制动(或放弃制动)。

不管一个ABS系统多么完善,它仍然摆脱不了一定的物理规律。尽管四轮防抱制动系统能使汽车在尽可能短的距离内进行制动,但如果制动进行得太迟,使之在与障碍物碰撞前不能完全停下来,仍不能阻止事故的发生。但是,由于四轮防抱死制动系统保留着控制转向的能力,因此,在制动过程中有可能绕过障碍物,避免可能发生的事故。ABS系统不能违背物理规律的另一种情况是当汽车在弯道上行驶时,其速度超过了物理学上所允许的速度,在这种情况下,即使ABS系统也不能阻止汽车在离心力作用下离开弯道。但是,ABS系统能使汽车在此过程中降低车速和实现可靠的转向,这样就减轻了可能发生碰撞的危险性。另外还要考虑的是道路表面情况。没有装备ABS系统的汽车在湿滑路面或有冰雪的路面上制动时,制动距离较长,而且不能猛烈转向;在装备ABS系统的汽车上也是如此,因为尽管ABS能提供附加的制动控制和转向控制,但它不能解决这样一个客观的物理事实,那就是在较滑的路面上,可利用的牵引力很小。

汽车《发动机电控供油系统》知识要点

汽车发动机构造与维修 第五章汽油喷射式供给系 汽油机燃料供给方式有化油器式和喷射式两种,它们的任务都是根据进气量配制相应空燃比和数量的可燃混合气进入气缸,以满足发动机不同工况的要求。 一、喷射式汽油供给系统与化油器式汽泊供给系统相比较,有如下优点: 1.能提高发动机的最大功率 2.耗油量低,经济性能 3.减小了排放污染 4.改善了发动机的低温起动性。 5.怠速平稳,工况过渡圆滑,工作可靠,灵敏度高 二、燃曲喷射系统的分类 1.按喷射装置的控制方式分类 1)机械控制式燃油喷射系统 2)机电混合控制式燃油喷射系统 3)电子控制式燃油喷射系统 2.按燃油喷射位置分类 1)缸内喷射 缸内喷射是指将汽油直接喷人气缸内。缸内喷射需要较高的喷射压力(3Mpa-4MPa). 2)缸外喷射 缸外喷射是指将汽油喷在进气管道相应部位,缸外喷射采用低压. 3.按喷油器安装部位分类 缸外喷射按喷油器安装部位又可分为单点喷射(SPl)和多点喷射(MPl)。 1)单点喷射 2)多点喷射 多点喷射是赘每缸进气门前分别设置一喷油器,实行各缸分别供油。 4.按燃油喷射方式分类 按汽油喷射方式不同可分为连续喷射和间歇喷射。 1)连续喷射 2)间歇喷射 顺序喷射:各缸喷油器按发动机的工作顺序,在各缸排气行程上止点前某一曲轴转角顺序轮流喷射,发动机每转两转,各缸喷油器各喷一次油。 分组喷射:所有气缸的喷油g2分成几组交替喷油,发动机ECU分路控制每组喷油器,同一组中的喷油罪同时喷油。 同时喷射:所有气缸的喷油器同时开启同时关闭,发动机ECU用一个喷油器指令控制所有喷油器同时动作。 5.按空气量的检测方式分类 电控汽油喷射系统按对空气量的检测方式不同可分为歧管压力计量式(D型)和空气流量计量式(L型)。 1)D型电控汽油喷射系统 该系统通过进气歧管绝对压力传感器检测进气歧管绝对压力来测量发动机吸人的空气量. 2)L型电控汽油喷射系统 该系统通过各种空气流量计检测空气流量来测量发动机吸人的空气量,实行对空燃比的精确控制。 三. 电控汽油喷射系统的组成和工作原理

汽车发动机点火系统原理及故障分析

河南职业技术学院 毕业设计(论文) 题目汽车发动机点火系统原理及故障分析 系(分院)汽车工程系 学生姓名彭超 学号07183160 专业名称汽车电子技术 指导教师王贤高 2010 年 3 月20 日

河南职业技术学院汽车工程系(分院)毕业设计(论文)任务书

毕业设计(论文)指导教师评阅意见表

汽车发动机点火系统原理及故障分析 彭超 摘要:点火系统在发动机上由于工作环境相对于其它系统很恶劣,所以其状态的好坏直接决定着发动机的性能。本文较为详细的介绍了各种点火系统的组成结构、工作原理和控制内容,并针对常见的点火系统故障作了简要分析。 关键词:点火系统点火正时故障分析 汽油发动机正常工作的三要素:良好的空气----燃油混合气,很高的压缩压力,正确的点火正时及强烈的火花,去点燃空气----燃油混合气,从而实现发动机工作。 一、发动机点火系统必备的条件及组成结构 (一)、点火系统必备的条件 1、强烈电火花 在点火系统中产生的强烈电火花应产生于火花塞电极之间,以便于点燃空气---燃油混合气。因为空气存在空气电阻,这个电阻随空气高度压缩时而增大,所以点火系统必须能产生几万伏的高电压以保证产生强烈火花去点燃空气----燃油混合气。 2、正确的点火正时 点火系统必须始终根据发动机的转速和载荷和变化提供正确的点火正时。 3、持久的耐用性 点火系统必须具备足够的可靠性以经得住发动机产生的振动和高温。 (二)、点火系统的组成:如图-1;直接点火系统组成:如图-2 1、直接点火系统元件构成: (1)曲轴位置传感器:(NE)探测曲轴角度位置(发动机转速)。 (2)凸轮轴位置传感器:(G)辨认气缸和行程,并探测凸轮轴正时。 (3)节气门位置传感器:(VTA)探测节气门的开启角。 (4)空气流量计:(VG/PIM)探测进气量。 (5)水温传感器:(THW)探测发动机冷却液温度。 (6)带点火器的点火线圈:在最佳正时时,接通和切断初级线圈电流。向发动机ECU发送IGF信号。

《汽车电控系统检测》任务工作单

任务工单教学项目发动机电控系统检测 实施任务任务1:电控燃油喷射系统认识;任务2:空气供给系统检测;任务3:燃油供给系统检测;任务4:发动机辅助系统检测;任务5:发动机数据流的读取与分析 班级组别成员 二、发动机要能够良好的工作,必须满足哪几个基本条件? 三、写出 下列各 标号所 代表的 元件名 称,并画 出燃油 流动方向。 A: B: C: D: E: F: G: H: I:

图示的电控发动机是型发动机,因为。 四、对照实物,在图中标出下列发动机进气系统各主要元件位置。 ①进气歧管绝对压力传感器②空气滤清器③节气门体④怠速控制阀 五、标出右图中燃油压力调节器各部位名称: 1、 2、 3、 4、 5、 6、 7、 8、 燃油压力调节器的工作原理是:发动机工作时,燃油压力调节器膜片上方承受的压力为弹簧压力和的压力之和,膜片下方承受的压力为压力,当压力相等时,膜片处于平衡位置不动。当进气管内气体压力下降时,膜片向上移动,回油阀开度增大,回油量增多,使输油管内燃油压力也下降;反之,进气管内气体压力升高时,燃油的压力也升高。油压调节器的作用: 六、查找资料 ☆小组讨论:燃油压力调节器一旦损坏可能出现什么故障现象? 七、下面两图分别是顺序喷射和分组喷射的喷油器控制电路示意图,请你完成它。(注意喷油器的喷射顺序) 在各类喷油器中,按照安装位置的不同分为喷油器和喷油器。MPI 喷射系统中,喷油器一般安装在并指向。在某些车辆中,为了改善低温启动性能还增设有喷油器。按喷口形状不同。可分为喷油器和喷油器。按电阻值不同,可分为喷油器和

喷油器。其中,喷油器不能直接接蓄电池电源电压;必须串联8~10Ω的电阻,否则可能因电流过大而烧坏喷油器。 八、检测喷油器的电阻: ①拆卸前以避免拆卸插头时由于自感放电而烧毁ECU。 ②检测结果:结论: 九、下图是大众车系的燃油油泵控制电路图 图中,当发动机电门由OFF打到ON时,一般燃油泵继电器将,其作用是。 十、检测燃油压力: 小组讨论:如果检测到油压为0,如何进一步寻找故障原因? 十一、动态测量进气歧管绝对压力传感器。 十二、图中节气门位置传感器各接脚分别是什么? 在燃油喷射控制系统中,节气门位置传感器的作用是:

汽车各部件工作原理图解

汽车各部件工作原理(图解)

————————————————————————————————作者: ————————————————————————————————日期:

汽车各部位工作原理(图示) ? 差速器具有三种功能: 使发动机动力指向车轮?相当于车辆上的最终传动减速器,在变速器撞击车轮之前最后一次降低其旋转速度 在以不同的速度旋转期间向车轮传输动力(这是将它称为差速器的原因) 本文将介绍汽车需要差速器的原因,以及差速器的作用和缺点。我们还将介绍几种防滑差速器,也称为限滑差速器。为什么需要差速器?车轮旋转的速度是不同的,尤其是转弯时。在以下动画中可以看到转弯时每个车轮行驶不同的距离,并且内侧车轮比外侧车轮行驶的距离短。由于速度等于行驶的路程除以通过这段路程所花费的时间,因此行进路程较短的车轮行驶的速度就较低。同时请注意,前轮与后轮的行驶距离也不同。对于汽车上的非驱动轮(后轮驱动汽车的前轮或前轮驱动汽车的后轮),这并不是问题。因为在前轮和后轮之间没有连接,所以它们独立旋转。但是驱动轮被连接到一起,以便单个发动机和变速器可以同时使两个车轮转动。如果汽车没有差速器,车轮必须锁止在一起,以便以相同的速度旋转。这样汽车将不便于转弯——为了使汽车能够转弯,一个轮胎必须滑动。对于现代轮胎和混凝土路面,轮胎需要很大的动力才会滑动。此动力必须由轴从一个车轮传输到另一个车轮,这会在轴组件上形成很大的压力。什么是差速器?差速器是将发动机扭矩按两个方向分开的设备,可允许每次输出的扭矩以不同的速度旋转。

现在在所有汽车或卡车上都配备差速器,一些全轮驱动车辆上(全时四轮驱动)也配备差速器。这些全轮驱动车辆的每组驱动轮之间都需要一个差速器,并且在前轮和后轮之间也需要一个,因为在转弯时前轮行驶的距离与后轮不同。

汽车启动系工作原理

汽车启动系统 学习目标: 1. 掌握启动机的组成和结构; 2. 掌握几种单向离合器的构造和工作过程; 3. 掌握电磁控制装置的构造及工作原理; 4. 通过对启动机的工作原理、特性、结构组成及控制装置工作过程的了解能够对启动系的一些典型的故障进行检测并排除 学习方法 从了解启动机的启动性能、工作原理和特性岀发,掌握启动机的组成和结构特点并详细掌握几种单向离合 器的构造、工作原理和电磁控制装置的构造与工作原理。并通过以上系统的学习,对启动系的组成和结构 特点有一个全面的认识,再通过对典型车辆启动系的认识做到能够对启动系的一些典型故障进行诊断和排除。 学习内容 1. 启动系统的功用和类型与基本组成; 2. 启动机的结构; 3. 汽车启动系统电路分析; 4. 启动机的正确使用与故障诊断; 5. 启动系统常见故障的诊断与排除; 一、启动系统的基本组成和作用 现代汽车发动机以电动机作为启动动力。启动系统的基本组成如图3—1所示,由蓄电池、点火开关、启 动继电器、启动机等组成。启动系统的功用是通过启动机将蓄电池的电能转换成机械能,启动发动机运转 1. 启动开关接通启动机电磁开关电路,以使电磁开关通电工作。汽油发动机的启动开关与点火开关组合在一起。 2. 启动继电器由启动继电器触点(常开型)控制启动机电磁开关电路的通断,启动开关只是控制启动继电器线圈电路,从而保护了启动开关,有单联型(保护启动开关)和复合型(既保护启动开关又保护启动机)。 二、启动机的类型

1. 按驱动齿轮啮合方式 (1)惯性啮合式 启动时,依靠驱动齿轮自身旋转的惯性与飞轮齿环啮合。惯性啮合方式结构简单,但工作可靠性较差,现很少采用。 (2)电枢移动式 靠磁极产生的电磁力使电枢作轴向移动,带动固定在电枢轴上的驱动齿轮与飞轮齿环啮合。电枢移动式启动机其结构较为复杂,在欧洲国家生产的柴油车上使用较多。 (3)磁极移动式 靠磁极产生的磁力使其中的活动铁心移动,带动驱动齿轮与飞轮齿环啮合。磁极移动式启动机其磁极的结构较为复杂,目前采用此种结构形式的启动机已不多见。 (4)齿轮移动式 靠电磁开关推动电枢轴孔内的啮合杆而使驱动齿轮与飞轮齿环啮合。齿轮移动式其结构也比较复杂,采用此种结构的一般为大功率的启动机。 (5)强制啮合式 靠电磁力通过拨叉或直接推动驱动齿轮作轴向移动与飞轮齿环啮合。强制啮合式启动机工作可靠、结构也不复杂,因而使用最为广泛。 2. 按传动机构结构 (1)非减速启动机 启动机与驱动齿轮之间直接通过单向离合器传动。一直以来,汽车上使用的启动机其传动机构均为这种机 构。 (2)减速启动机 在启动机与驱动齿轮之间增设了一组减速齿轮。减速启动机具有结构尺寸小、重量轻、启动可靠等优点,在一些轿车上应用日渐增多。 学习内容启动机的组成直流电动机的结构传动机构电磁开关 一、启动机的组成 启动机一般由直流电动机、传动机构和电磁操纵机构三部分组成,如图3 —2所示,其各部分功用: 直流电动机:产生电磁转矩。

汽车ABS工作原理

汽车ABS工作原理 王登伟原创 | 2009-11-9 22:54 | 投票 关键字: wdw 汽车ABS是由控制装置,电磁阀,传感器;总成线束;齿圈;BS警示灯等组成,在不同的ABS 系统中,制动压力调节装置的结构形式和工作原理往往不同,电子控制装置的内部结构和控制逻辑也可能ABS通常都由车轮转速传感器、制动压力调节装置、电子不尽相同。 在常见的ABS系统中,每个车轮上各安装一个转速传感器,将有关各车轮转速的信号输入电子控制装置。电子控制装置根据各车轮转速传感器输入的信号对各个车轮的运动状态进行监测和判定,并形成相应的控制指令。制动压力调节装置主要由调压电磁阀组成,电动泵组成和储液器等组成一个独立的整体,通过制动管路与制动主缸和各制动轮缸相连。制动压力调节装置受电子控制装置的控制,对各制动轮缸的制动压力进行调节。 ABS的工作过程可以分为常规制动,制动压力保持制动压力减小和制动压力增大等阶段。在常规制动阶段,ABS并不介入制动压力控制,调压电磁阀总成中的各进液电磁阀均不通电而处于开启状态,各出液电磁阀均不通电而处于关闭状态,电动泵也不通电运转,制动主缸至各制动轮缸的制动管路均处于沟通状态,而各制动轮缸至储液器的制动管路均处于封闭状态,各制动轮缸的制动压力将随制动主缸的输出压力而变化,此时的制动过程与常规制动系统的制动过程完全相同。

在制动过程中,电子控制装置根据车轮转速传感器输入的车轮转速信号判定有车轮趋于抱死时,ABS就进入防抱制动压力调节过程。例如,电子控制装置判定右前轮趋于抱死时,电子控制装置就使控制右前轮刮动压力的进液电磁阀通电,使右前进液电磁阀转入关闭状态,制动主缸输出的制动液不再进入右前制动轮缸,此时,右前出液电磁阀仍末通电而处于关闭状态,右前制动轮缸中的制动液也不会流出,右前制动轮缸的刮动压力就保持一定,而其它末趋于抱死车轮的制动压力仍会随制动主缸输出压力的增大而增大;如果在右前制动轮缸的制动压力保持一定时,电子控制装置判定右前轮仍然趋于抱死,电子控制装置又使右前出液电磁阀也通电而转入开启状态,右前制动轮缸中的部分制动波就会经过处于开启状态的出液电磁阀流回储液器,使右前制动轮缸的制动压力迅速减小右前轮的抱死趋势将开始消除,随着右前制动轮缸制动压力的减小,右前轮会在汽车惯性力的作用下逐渐加速;当电子控制装置根据车轮转速传感器输入的信号判定右前轮的抱死趋势已经完全消除时,电子控制装置就使右前进液电磁阀和出液电磁阀都断电,使进液电磁阀转入开启状态,使出液电磁阀转入关闭状态,同时也使电动泵通电运转,向制动轮缸泵输送制动液,由制动主缸输出的制动液经电磁阀进入右前制动轮缸, 使右前制动轮缸的制动压力迅速增大,右前轮又开抬减速转动。

汽车启动系工作原理

汽车启动系工作原理标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

汽车启动系统 学习目标: 1.掌握启动机的组成和结构; 2.掌握几种单向离合器的构造和工作过程; 3.掌握电磁控制装置的构造及工作原理; 4.通过对启动机的工作原理、特性、结构组成及控制装置工作过程的了解能够对启动系的一些典型的故障进行检测并排除 学习方法 从了解启动机的启动性能、工作原理和特性出发,掌握启动机的组成和结构特点并详细掌握几种单向离合器的构造、工作原理和电磁控制装置的构造与工作原理。并通过以上系统的学习,对启动系的组成和结构特点有一个全面的认识,再通过对典型车辆启动系的认识做到能够对启动系的一些典型故障进行诊断和排除。 学习内容 1.启动系统的功用和类型与基本组成; 2. 启动机的结构; 3. 汽车启动系统电路分析; 4. 启动机的正确使用与故障诊断; 5. 启动系统常见故障的诊断与排除; 学习内容启动系统的基本组成和功用启动机的类型 一、启动系统的基本组成和作用

现代汽车发动机以电动机作为启动动力。启动系统的基本组成如图3—1所示,由蓄电池、点火开关、启动继电器、启动机等组成。启动系统的功用是通过启动机将蓄电池的电能转换成机械能,启动发动机运转。 1.启动开关接通启动机电磁开关电路,以使电磁开关通电工作。汽油发动机的启动开关与点火开关组合在一起。 2.启动继电器由启动继电器触点(常开型)控制启动机电磁开关电路的通断,启动开关只是控制启动继电器线圈电路,从而保护了启动开关,有单联型(保护启动开关)和复合型(既保护启动开关又保护启动机)。 二、启动机的类型 1.按驱动齿轮啮合方式 (1)惯性啮合式 启动时,依靠驱动齿轮自身旋转的惯性与飞轮齿环啮合。惯性啮合方式结构简单,但工作可靠性较差,现很少采用。 (2)电枢移动式 靠磁极产生的电磁力使电枢作轴向移动,带动固定在电枢轴上的驱动齿轮与飞轮齿环啮合。电枢移动式启动机其结构较为复杂,在欧洲国家生产的柴油车上使用较多。 (3)磁极移动式 靠磁极产生的磁力使其中的活动铁心移动,带动驱动齿轮与飞轮齿环啮合。磁极移动式启动机其磁极的结构较为复杂,目前采用此种结构形式的启动机已不多见。 (4)齿轮移动式

汽车发动机点火系统的研究现状及发展方向

汽车发动机点火系统的研究现状及发展方向 摘要:本文介绍了汽油发动机点火系统的基本工作原理。在此基础上,综述了现代电子点火系统,尤其是点火能量及点火控制系统研究的现状、发展趋势。随着发动机向高转速、稀混合气方向发展,普通电子点火系统已不能满足要求,高能微机控制点火系统将成为今后点火系统的发展方向。 关键词:点火系统;电子点火;发展趋势; 点火系统是汽油发动机重要的组成部分,对发动机的性能有着决定性的 影响。它的的基本装置包含了电源、点火系统(电瓶)、点火触发装置、点 火正时控制装置、高压产生器(高压线圈)、高压电分配装置(分电盘)、高 压导线及火花塞。现代的点火提前装置则已改由引擎管理电脑所控制,电脑 收集引擎转速、进气歧管压力或空气流量、节气门位置、电瓶电压、水温、 爆震等讯号,算出最佳点火正时提前角度,再发出点火讯号,达到控制点火 正时的目的。随着汽车工业的不断发展,汽车电子化程度不断提高,汽车的 点火系统已由传统的蓄电池点火系统发展到国内外广泛采用的电子点火系 统,电子点火系统又称为半导体点火系统或晶体管点火系统,越来越多的汽 车厂家将电子技术应用到了汽车上它的作用是在适当的时刻点燃被压缩的 混合气件并使其燃烧,点火系统的性能良好与否对发动机的功率、油耗和排 气污染等影响很大.随着世界汽车工业的发展,汽车点火系统经历了由传统 点火系统到电子点火系统再到计算机控制的点火系统三个阶段. 最早应用于汽车的是传统点火系,采用机械触点控制初级电流,当触点闭合时,点火线圈初级电路接通,储存能量;当触点打开时,点火线圈初级电路断开,在次级线圈中产生高电压,并经分电器加于火花塞,击穿火花塞,产生电火花点燃混合气。其优点是结构简单、更换方便。缺点是初级电流受机械触点允许电流限制不能过大,点火能量低;闭合角不能调整;次级电压上升速率较慢,在火花塞积炭时形成漏电流,次级电压下降;机械触点易烧蚀,凸轮易磨损,工作不可靠;机械调整装置调节点火提前角,反应速度慢,控制精度低。目前,传统的点火系已经淘汰。 国内汽油发动机车点火系统中,电子点火系统已占有较大比例,传统点火系统已处于淘汰的状况。当前我国点火系统发展很快,电子点火系统已在微型车及普通型轿车中普及,中、高档轿车已开始采用计算机控制.计算式控制的点火系统中高压配电方式是由有分电器式向无分电器式发展在电子点火系统中,原有的凸轮驱动被脉冲发生器所取代,靠磁变化(无触点)产生电流及电压脉冲,并通过

汽车启动电机的结构与工作原理

汽车起动机的结构与工作原理 前言在工作过程中就曾接触到汽车起动机,了解车辆对发动机起动机的工作要求,但是对汽车起动机的结构和工作原理并不清楚,借谭老师布置作业的这个机会,最近比较系统的查阅了汽车起动机的相关课件和参考书,了解了汽车起动机的结构及工作原理。汽车起动机由直流电机、传动装置和控制装置组成,直流电机没有特殊之处,比较容易理解,传动装置和控制装置结构较为特殊,本文重点整理了所查阅的汽车起动机的传动装置和控制装置的相关资料。 要使发动机由静止状态过渡到工作状态,必须用外力转动发动机的曲轴,使气缸内吸入(或形成)可燃混合气并燃烧膨胀,工作循环才能自动进行。汽车发动机常用的起动方式是用电动机作为机械动力,当将电动机轴上的齿轮与发动机飞轮周缘的齿圈啮合时,动力就传到飞轮和曲轴,使之旋转。电动机本身又用蓄电池作为能源。目前绝大多数汽车发动机都采用电动机起动。 起动机一般由直流电动机、传动机构、控制装置三部分组成。 图1 起动机 1.直流电动机 直流电动机在直流电压的作用下,产生旋转力矩。直流电动机主要由电枢、磁极、电刷、电刷架及壳体等部件组成。 1.1 电枢 电枢是直流电动机的转子部分,用来将电能转变为机械能,即在起动机通电时,与磁场相互作用而产生电磁转矩。

1.2 磁极 磁极是直流电动机的定子部分,用来产生电动机运转所必须的磁场,它由磁极铁心、安装在铁心上的励磁绕组及机壳组成。 1.3 电刷与电刷架 电刷用铜和石墨粉压制而成,一般含铜80%~90%,石墨10%~20%,以减小电刷电阻并增加其耐磨性。一般起动机电刷个数等于磁极个数,也有的大功率起动机电刷个数等于磁极个数的2倍,以便减小电刷上的电流密度。 2.传动装置 普通起动机传动装置中的主要组成部件是单向离合器,单向离合器的作用是起动时将电枢的电磁转矩传递给发动机飞轮,而在发动机起动后,就立即打滑,以防止发动机飞轮带动起动机电枢高速旋转而损坏起动机。起动机单向离合器常见的有滚柱式、摩擦片式、扭簧式等几种形式。 2.1滚柱式单向离合器 (1)结构特点 滚柱式单向离合器的外壳2与驱动齿轮1连为一体,外壳和十字块3装配后形成四个楔形槽,槽中有四个滚柱,滚柱的直径大于槽窄端又小于槽宽端,弹簧将滚柱推向槽窄端,使得滚柱与十字块及外壳表面有较小的摩擦力。十字块与传动套筒8刚性连接,传动套筒安装在电枢轴花键部位,使单向离合器总成可作轴向移动和随轴转动。 图2 滚柱式单向离合器 (2)工作原理 起动时,电枢轴通过花键带动传动套筒而使十字块转动,十字块相对于外壳作顺时针转动,使滚柱在小摩擦力的作用下滚向槽窄端而被卡紧,外壳即随十字块一起转动,电动机的电磁转矩便通过单向离合器传递给了驱动齿轮。发动机一旦发动,发动机飞轮

汽车刹车制动系统工作原理图解

汽车刹车制动系统工作原理图解 想必不需要多问,大家都知道在行车过程中,汽车制动功能是非常重要的,因为刹车制动直接关系到车主的生命财产安全,如果知道不好,那是极度危险的,学习了解汽车制动工作原理,有利于在今后的开车过程中熟练掌握刹车技能,在日常汽车维护中也能自己修理刹车制动部件。随着酒后代驾、商务代驾、婚庆代驾等代驾行业的兴起,标志着中国交通社会文明程度的不断提升。当然,对代驾司机提出了更多的驾驶技能要求,不仅要会驾驶各种品牌的汽车,更要懂得在紧急情况下如何处理应急问题,因此第一代驾为广大司机整理了全面的汽车刹车制动系统工作原理图解知识。 实际刹车与工作原理图解

●制动系统的组成 作为制动系统,作用当然就是让行驶中的汽车按我们的意愿进行减速甚至停车。工作原理就是将汽车的动能通过摩擦转换成热能。汽车制动系统主要由供能装置、控制装置、

传动装置和制动器等部分组成,常见的制动器主要有鼓式制动器和盘式制动器。 ●鼓式制动器 鼓式制动器主要包括制动轮缸、制动蹄、制动鼓、摩擦片、回位弹簧等部分。主要是通过液压装置是摩擦片与岁车轮转动的制动鼓内侧面发生摩擦,从而起到制动的效果。 在踩下刹车踏板时,推动刹车总泵的活塞运动,进而在油路中产生压力,制动液将压力传递到车轮的制动分泵推动活塞,活塞推动制动蹄向外运动,进而使得摩擦片与刹车鼓发生摩擦,从而产生制动力。 从结构中可以看出,鼓式制动器是工作在一个相对封闭的环境,制动过程中产生的热量不易散出,频繁制动影响制动效果。不过鼓式制动器可提供很高的制动力,广泛应用于重型车上。 ●盘式制动器 盘式制动器也叫碟式制动器,主要由制动盘、制动钳、摩擦片、分泵、油管等部分构成。盘式制动器通过液压系统把压力施加到制动钳上,使制动摩擦片与随车轮转动的制动盘发生摩擦,从而达到制动的目的。 与封闭式的鼓式制动器不同的是,盘式制动器是敞开式的。制动过程中产生的热量可以很快散去,拥有很好的制动效能,现在已广泛应用于轿车上。

电控系统工作原理

电控系统工作原理 一、电控系统工作原理 随着科技进步和电子工业的发展,国产轿车采用电子控制燃油喷射系统的比率逐年增加,早在2000年,一汽—大众就宣布停止化油器式发动机的生产,产品全部采用电子控制燃油喷射系统。最早研究和开发汽油喷射式发动机的是德国博世(Bosch)公司,汽油喷射技术首先应用于飞机发动机,随着对汽车节能降耗、降低排放和提高舒适性、增加动力性的要求,这一技术被应用于汽车发动机上。目前,博世公司在这一领域的技术和产品仍处于世界领先地位。捷达王轿车就采用了博世公司最新开发的Motronic M3.8.2发动机电控管理系统,并根据中国的国情做了改进和匹配。Motronic M3.8.2发动机电控管理系统为电子控制多点燃油顺序喷射系统,闭环控制,其突出特点是喷油量及点火时刻综合控制。该系统由电子控制单元、传感器、执行器等组成,传感器为燃油喷射系统和点火系统所共用。 1.Motronic M3.8.2发动机电控管理系统的组成及工作原理 Motronic M3.8.2电控系统由电控单元(即ECU,俗称电脑)、发动机转速传感器(也称曲轴位置传感器)、空气流量传感器、节流阀体、进气温度传感器、冷却液温度传感器(发动机水温传感器)、k传感器(即氧传感器)、爆震传感器、相位传感器(也称凸轮轴位置传感器或霍尔传感器)、双点火线圈、油压调节器和喷油器等组成。 驾驶员通过节气门(俗称油门)控制发动机进气量,控制单元通过节气门位置传感器得知节气门开度,再综合发动机转速、空气流量、进气温度、λ探测值等各传感器及电子开关提供的信息,经分析、计算,确定出最佳喷油量和点火时刻,向喷油器和点火线圈发出喷油和点火指令。发动机转速和空气流量信号是ECU计算基本喷油量的主信号,ECU再根据进气温度传感器、冷却液温度传感器、A传感器、爆震传感器和节气门位置等信号对喷油量进行必要的修正,确定出实际喷油量,然后根据转速传感器得到的曲轴位置信号和相位传感器检测到的1缸压缩上止点信号,适时地向喷油器和点火线圈发出动作指令。 发动机工作可分为如下工况: (1)起动工况 发动机被起动机带动运转,当转速低于某值时,ECU识别出发动机处于起动工况,根据转速传感器、凸轮轴位置传感器、节流阀位置传感器、冷却液温度传感器、进气温度传感器等提供的信号,以及ECU中存储的最佳控制参数,计算出起动喷油量、点火角度和怠速直流电机的位置,并驱动喷油器和点火动力组件动作,使节气门处于起动位置,保证发动机顺利起动。发动机起动后,当转速超过某值时,则起动工况结束。捷达王轿车起动时,司机无需踏油门踏板、节气门会自动处于最佳起动位置。 (2)怠速工况 发动机起动后,怠速运转时,节流阀体内的怠速开关触点闭合,ECU根据此信号得知发动机处于怠速工况,同时根据冷却液温度传感器信号计算出目标转速(存储在ECU中的理论转速,温度越低,理论转速越高,以保证发动机在低温时稳定运转并快速暖机),并与实际转速进行比较,根据转速差的正负和大小,使节气门处于目标位置,以保证发动机怠速转速达到目标值。KCU同时还通过改变点火提前角来稳定发动机怠速。捷达王发动机热车后怠速转速理论值设置为840r/mjn,怠速点火提前角设置为上止点前12°,这些值存储在ECU中,人工不能调整。 (3)运行工况 运行工况又包括部分负荷、全负荷、加减速过渡及被拖动等工况。ECU根据转

汽车两大机构和五大系统及工作原理汇总

1、对照实物总体介绍讲解发动机两大机构和发动机的工作原理; 总的来说,目前发动机由两大机构、五大系统组成 一、曲柄连杆机构 曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。 二、配气机构 配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。进、排气门的开闭由凸轮轴控制。凸轮轴由曲轴通过齿形带或齿轮或链条驱动。进、排气门和凸轮轴以及其他一些零件共同组成配气机构 三、燃料供给系 汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去; 四、润滑系 润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。 五、冷却系 冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷发动机的冷却系通常由冷却水套、水泵、风扇、水箱、节温器等组成。 六、点火系 在汽油机中,气缸内的可燃混合气是靠电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。能够按时在火花塞电极间产生电火花的全部设备称为点火

系,点火系通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。 火花塞有一个中心电极和一个侧电极,两电极之间是绝缘的。当在火花塞两电极间加上直流电压并且电压升高到一定值时,火花塞两电极之间的间隙就会被击穿而产生电火花,能够在火花塞两电极间产生电火花所需要的最低电压称为击穿电压;能够在火花塞两电极间产生电火花的全部设备称为发动机点火系。 七、起动系 理解这个并不难,要使发动机由静止状态过渡到工作状态,必须先用外力转动发动机的曲轴,使活塞作往复运动,气缸内的可燃混合气燃烧膨胀作功,推动活塞向下运动使曲轴旋转,发动机才能自行运转,工作循环才能自动进行。因此,曲轴在外力作用下开始转动到发动机开始自动地怠速运转的全过程,称为发动机的起动。完成起动过程所需的装置,称为发动机的起动系统。 发动机的基本工作原理 我们以单缸汽油发动机为例,讲解一下汽油机的工作原理。 气缸内装有活塞,活塞通过活塞销、连杆与曲轴相连接。活塞在气缸内做往复运动,通过连杆推动曲轴转动。为了吸入新鲜气体和排出废气,设有进气门和排气门。 活塞顶离曲轴中心最远处,即活塞最高位置,称为上止点。活塞顶部离曲轴中心最近处,即活塞最低位置,称为下止点。上、下止点间的距离称为活塞行程,曲轴与连杆下端的连接中心至曲轴中心的距离称为曲轴半径。活塞每走一个行程相应于曲轴转角180°。对于气缸中心线通过曲轴中心线的发动机,活塞行程等于曲柄半径的两倍。 活塞从上止点到下止点所扫过的容积称为发动机的工作容积或发动机排量,用符号VL 表示。 四冲程发动机的工作循环包括四个活塞行程,既进气行程、压缩行程、膨胀行程(作功行程)和排气行程。 进气行程 化油器式汽油机将空气与燃料先在气缸外部的化油器中进行混合,然后再吸入气缸。进气行程中,进气门打开,排气门关闭。随着活塞从上止点向下止点移动,活塞上方的气缸容积增大,从而气缸内的压力降低到大气压力以下,即在气缸内造成真空吸力。这样,可燃混

大众汽车点火系统的检测与维修

专升本毕业设计(论文) 设计(论文)题目:上海大众汽车点火系统故障诊断与流 程分析 学院名称:机械工程学院 专业:汽车营销与售后技术服务 班级: 12秋浙农贸汽车 姓名:沈从飞学号 020********* 指导教师:黄永青职称副教授 定稿日期: 2014 年 9 月 28日

摘要 现代汽车电子控制技术是汽车技术和电子技术的相结合,是现代工业发展与高新技术发展的产物,汽车电子化程度的高低从某种程度上反映了汽车水平的高低。目前,电子技术的应用已经深入到汽车的所有系统,使汽车的技术性能、经济性和舒适性都有了很大提高,而电子点火系统的应用能更好的提高汽车的动力性、燃油经济性、降低废气排放。本文介绍了现代电子点火系统的发展历程、优点、分类、构造、工作原理,系统分析了电子点火系统的常见故障,并结合实际分析了典型故障产生的原因,并给出了具体的故障排除方法。 关键词:电子点火系统;故障诊断排除 II

The modern automobile electronic control technology is the combination of the automobile technology and the electronic technology development, is a product of modern industrial development and high technology, automotive electronicsdegree reflects the car level to some extent. At present, the application of electronic technology has been deep into all system of automobile, make vehicletechnical performance, economy and comfort have been greatly improved, andthe application of electronic ignition system can better improve the vehicle's power performance, fuel economy, lower emissions. This paper introduces the development process of modern electronic ignition system, the advantages,classification, structure, working principle, system analysis of common breakdown of electronic ignition system, and combined with the practical analysis of typical malfunctions of produce, and gives the specific troubleshooting metho III

制动系统的一般工作原理

制动系统的一般工作原理 制动系统的一般工作原理是,利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势。 可用一种简单的液压制动系统示意图来说明制动系统的工作原理。一个以内圆面为工作表面的金属制动 鼓固定在车轮轮毂上,随车轮一同旋转。在固定不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。制动蹄的外圆面上装有摩擦片。制动底板上还装有液压制动轮缸,用油管5与装在车架上的液压制动主缸相连通。主缸中的活塞3可由驾驶员通过制动踏板机构来操纵。 当驾驶员踏下制动踏板,使活塞压缩制动液时,轮缸活塞在液压的作用下将制动蹄片压向制动鼓,使制动鼓减小转动速度,或保持不动。 使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。摩擦材料分金属和非金属两类。前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。 在了解某款车型的刹车系统时,您可能经常会听到“前盘后鼓”或“前碟后鼓”这四个字,那么,它到底是什么意思呢?最近就有读者通过电子邮件询问有关汽车制动系统的问题,比如盘式制动器和鼓式制动器的区别,通风盘和实心盘的不同之处等等。 目前车市中很多发动机排量较小的中低档车型,其制动系统大多采用“前盘后鼓式”,即前轮采用盘式制动器,后轮采用鼓式制动器,比如常见的一汽大众捷达、长安铃木奥拓及羚羊、比亚迪福莱尔、东风悦达起亚千里马、上海通用赛欧等等。我们先来简单了解一下后轮经常采用的鼓式制动器。 实际应用差别很明显,盘刹比鼓刹好用。刹车鼓中的石棉材料会致癌。鼓刹与盘刹各有利弊。在刹车效果上,鼓刹与盘刹的相差并不大,因为刹车时,是轮胎和地面的摩擦力让车子逐渐停止下来的。如果车身小巧,车身重量轻,后轮采用鼓刹就足以使轮胎和地面产生足够的摩擦力了。如果后轮使用盘刹,ABS和EBD系统也会自动降低其刹车力度,以保证后轮不会失去抓地力出现打滑、抱死现象。 散热性上,盘刹要比鼓刹散热快,通风盘刹的散热效果更好;在灵敏度上,盘刹会

汽车空调制冷系统组成与工作原理教案-doc

复习旧课: 对上次课以提问的形式复习 1、影响蒸发的因素? 2、影响液化的因素? 新课引入: 主要以讲解方式 上一节我们讲了物质的基本状态参数,以及影响物质蒸发和液化的几个因素,这一节我们就来讲一下汽车空调中的常用制冷剂的种类特点以及制冷循环原理。 §1.1.4制冷剂 制冷剂是制冷循环当中传热的载体,通过状态变化吸收和放出热量,因此要求制冷剂在常温下很容易气化,加压后很容易液化,同时在状态变化时要尽可能多的吸收或放出热量(较大的气化或液化潜热)。同时制冷剂还应具备以下的性质: ·不易燃易爆; ·无毒; ·无腐蚀性; ·对环境无害。 制冷剂的英文名称为refrigerant,所以常用其头一个字母R来代表制冷剂,后面表示制冷剂名称,如R12、R22、R134a等。 过去常用的制冷剂是R12(又称为氟立昂), 这种制冷剂各方面的性能都很好,但是有一个致命的缺点,就是对大气环境的破坏,它能够破坏大气中的臭氧层,使太阳的紫外线直接照射到地球,对植物和动物造成伤害。我国目前已停止生产用R12作为制冷剂的汽车空调系统。

R12的替代品目前汽车上广泛采用的是。R134a在大气压下的沸腾点为-26.9℃,在98kPa的压力下沸腾点为-10.6℃(图6-18)。如果在常温常压的情况下,将其释放,R134a便会立即吸收热量开始沸腾并转化为气体,对R134a加压后,它也很容易转化为液体。R134a的特性见图6-19。该曲线上方为气态,下方为液态,如果要使R134a从气态转变为液态,可以将低温度,也可以提高压力,反之亦然。 注意:R12和R134a两种制冷剂不可以互换使用。 §1.1.5 冷冻润滑油 在空调制冷系统中有相对运动的部件,需要对其润滑。由于制冷系统中的工作条件比较特殊,所以需要专门的润滑油——冷冻润滑油。冷冻润滑油除了起到润滑作用以外,还可以起到冷却、密封和降低机械噪音的作用。在制冷系统中的润滑油还有一个特殊的要求,就是要与制冷剂相容,并且随着制冷剂一起循环。因此在冷冻润滑油的选用上,一定要注意正确选用冷冻润滑油的型号,切不可乱用,否则将造成严重后果。 §1.2汽车空调暖风系统 作用:供暖、除霜、调节温湿度 汽车空调暖风系统是一种将空气送入加热器(又称为热交换器),同时吸入某种热源的热量,以提高空气温度的装置。按使用热源的不同可分为发动机冷却液采暖系统、发动机废气采暖系统和独立热源式采暖系统。 1、发动机冷却液采暖系统采暖时,将送入加热器中的车外或车内空气,与升温后的发动机冷却液进行热交换,由电动鼓风机将升温的空气经出风口送入车内。冷却液通过热水阀流入加热器,散热后的冷却液再流回水泵参与循环。热水阀对通过加热器的水流量进行调节,而加热器则将冷却液的热量传给空气。鼓风机多为离心式叶片鼓风机,具有高、中、低三挡转速,可以调节换气强度,一般与空调制冷系统送风共用。这种采暖系统没有独立的

汽车发动机供油系统技术及原理详解

供油系统分为化油器和燃油喷射系统两种,但是就马力输出、燃油效率、废气污染等各方面来说,化油器比起燃油喷射系统可说是一无是处,所以我们可以说:化油器的时代已经过去,它已成为历史名词,无讨论的价值。所以,我们谈引擎供油系统就是单指燃油喷射系统。 喷油系统是由燃油输送系统、感应器系统、电脑控制系统所组成。它的工作原理简单来说就是利用汽油泵将汽油加压以後,从油箱送进高压油路,经过压力调整器的调节作用,使系统中的供油压力维持在2.0-2.5 ,也就是将送到喷油嘴的汽油压力保持在2.0-2.5。同时由各感应器将引擎的进气量及运转状态以电压讯号的形式传送到供油电脑 (ECU:Electronic Control Unit),ECU根据这些电压讯号加以分析,算出所需的喷油量,也就是算出喷油嘴的喷油时间,然後再将喷油讯号传送到喷油嘴的线圈,喷油嘴接受喷油讯号後,将喷油阀打开,汽油便喷到进汽门前方的进气岐管内,再随着进汽门的打开进入汽缸内。 喷射系统的分类 一、依喷射(喷油嘴)位置分类: 1、节气阀体喷射式又称为单点,只使用一或二支喷油嘴,装在节气阀上方,以较低的压力喷出汽油,汽油与流经节气阀的空气形成混合气後,必须先通过进气歧管再由进汽门进入汽缸。但是油气流经进气歧管时,部份油气会在歧管壁附着,并且会因进气歧管的形状、长度不同而造成各缸混合气分配不均。因为油气从节气阀到汽缸必然会有的时间延迟,因此引擎加速时的反应会较慢。

2、进气口喷射式又称为多点喷射,每缸的进汽门口之前各有一支喷油嘴,对准进汽门,以2~5 的高压将汽油喷出,而与进气歧管的空气一起进入汽缸,形成混合气。如此一来进入各汽缸油气的混合比得以平均。 二、依喷油方式分类: 1、连续喷射,又称机械喷射式,喷油嘴在引擎运转时不断的喷油,而喷油量的控制是经由改变供油压力来达成。 2、程序喷射式,使用电子式喷油嘴,需要喷油时将喷油嘴的线圈通电,使柱塞因为磁力的作用而往上提升,喷油嘴便可喷油。喷油量是由喷油时间的长短来控制,单位是微秒(ms)。由于机械喷射已经是过时的设计,因此目前市面上的车种几乎都采用效率及经济性较佳的程序式喷射。而单点喷射除了价格较低、结构简单外,也无任何可和多点喷射媲美之处,况且它还有许多和化油器相同的缺点(效率低、各缸油气分配不均),因此多点喷射(MPI)可说是现代喷射供油系统的主流。 三、依空气流量检测方式分类:进气量的检测方式分为直接和间接两大类,一种是以进气歧管绝对压力感应器(MAP Sensor:Manifold Absolute Pressure Sensor)测出的进气歧管压力和引擎转速间接计算求得。另一种则是以空气流量计直接测得。较常见的空气流量计有叁种:翼板式、热线式、卡鲁曼涡流式。目前市场上的ó种是以MAP及热线式空气流量计为大宗。 供油量的计算 供油量的多寡是以喷油嘴燃料喷射时间的长短来计算,供油电脑(ECU)根据空气流量、引擎转速、及各个感应器所提供的补偿讯号,利用原先设定的供油程式算出所需的供油时间,这个供油程式我们可以用图形的方式来表现。ECU所算出的燃料喷射时间是『基本喷射时间』、『补偿喷射时间』和『无效喷射时间』的

汽车刹车系统的工作原理简述

汽车刹车系统的工作原理 在汽车的性能测试环节中,加速和是最主要的两个测试项目,平时我们接触到一辆新车,往往问的第一个问题是这辆车有多快而不是这辆车好不好,但问题在于速度慢多数情况下不会有什么太大问题而不好很可能关系到生命安全,所以今天我们就来说说汽车的。 系统的原理是制造出巨大的摩擦力,将车辆的动能转化为热能。众所周知,能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。汽车在加速过程中把化学能转化成热能和动能,时系统又将汽车的动能转化成热能散发到空气中。一辆车从静止加速到时速100公里可能需要10秒钟,但从时速100公里到静止可能只需要XX秒而已,可见系统承受着巨大的负荷。从另一个角度来说,如果你想体验超级跑车的加速快感,用普通家用车也可以,只不过你需要反过来坐着并且是在急中体验到。

目前大部分小型车都采用液压制动,因为液体是不能被压缩的,能够几乎100%的传递动力,基本原理是驾驶员踩下踏板,向总泵中的油施加压力,液体将压力通过管路传递到每个车轮卡钳的上,驱动卡钳夹紧盘从而产生巨大摩擦力令车辆减速。 我们先从总泵说起,这个部件通常位于发动机舱防火墙靠近驾驶员的一侧,有些车的总泵“小得可怜”,甚至让人怀疑它是否能提供足够的力。其实完全不必为此担心,因为系统运用了“帕斯卡定律”。

帕斯卡定律的主要内容是: 根据静压力基本方程(p=p0+ρgh),盛放在密闭容器内的液体,其外加压强p0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。(来源:百度百科) 简单来说就是我们踩下制动踏板后施加到总泵液体上的压强等于盘处的液体压强,但因为压强等于单位面积的压力,所以只要增大的面积,施加的压力就会增大。例如下图这个实验,两个圆柱形,左侧直径是2英寸,右侧直径是6英寸,也就是左侧的3倍,那么如果给左侧施加一定量的力,那么右侧将产生一个9倍的力(面积是半径的平方乘以3.14),这也就是现在所有液压机构的理论基础,所以起重机可以通过液压系统举起数十吨的货物。

相关主题