搜档网
当前位置:搜档网 › MTK手机基带工作原理-新版.pdf

MTK手机基带工作原理-新版.pdf

手机充电器原理分解和图

USB用电池充电器电路图 如图是USB用电池充电器电路。它是在5.25V/500mA最大额定功率时,使用通用串联总线(USB)以最大电流对锤离子充电的电路。电路中,LM3622为锤离子电池充电控制器。设计的充电电路使USB具有最大功率工作的能力,为了满足USB的技术指标,在正常工作情况下,最大功率工作能力从总线中取出的电流不能大于5OOmA。通过限流电阻R1将其最大充电电流设定为400mA,而剩下的100mA电流供给充电器控制电路等。在系统启动期间,LM3525电源开关使电池充电器与总线保持隔离状态,充电电流不会超过总线提供的最大电流。 在总线输出口经过适当的计算后,USB控制信号将USB电源通过LM3525与充电电路连接起来。在开关通/断工作时,LM3525具有过电流与欠电压防止功能。在设计充电电路时,应认真考虑总线电源与充电电路之间的电压降,因此,VT1和VD1要选用低电压降的器件,使输入电压较低时电路也能有效地对电池进行充电。在优选元件的情况下 LM3525输入与电池正极之目的电压降的典型值为53OmV,或对电池的充电电流大于400mA。最佳充电时间为从以最大电流对电池开始充电直到电池达到满充电电压为止。 对于4.2V锤离子电池,要求充电电路的输入电压典型值为4.7V。USB规格规定的最小输出电压为4.75V,但USB电缆和接线电阻上电压降为35OmV,因此,在最坏情况下,充电电路的输入电压低至4.4V,而在USB规格中充电电路仍然有效。要说清楚的是,要防止USB电压规格下限的系统对电池进行慢充电,或防止对满度电池充电。4.2V电池的最佳充电电压是充电电路的输入电压,其典型值为4.7V。当电路的输入电压低到4.6V以及电池电压接近满充电4.2V时,VT1和VD1的电压降使电路不能有效地提供充电电流。 在VT1和VD1的电压降仅为400mV时,电路为电池提供的充电电流不大于2OOmA。在低输入情况下,充电电流降为50%对电池恒压充电。当输人电压低到4.5V时,电池不能满充电到4.2V。在设计USB电源时,要采用低阻抗电缆和低电阻接线,使充电电路的输入电压足够高,确保不会出现慢充电或不完全充电的情况。

射频电路的设计原理及应用

射频电路的设计原理及应用 普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。其主要负责接收信号解调;发射信息调制。早期手机通过超外差变频(手机有一级、二级混频和一 本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成 在中频内部。 射频电路方框图 一、接收电路的结构和工作原理 接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。 1、该电路掌握重点 (1)、接收电路结构。 (2)、各元件的功能与作用。 (3)、接收信号流程。 2、电路分析 (1)、电路结构。 接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。 接收电路方框图

(2)、各元件的功能与作用。 1)、手机天线: 结构:(如下图)由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。 作用: a)、接收时把基站发送来电磁波转为微弱交流电流信号。 b)、发射时把功放放大后的交流电流转化为电磁波信号。 2)、天线开关: 结构:(如下图)手机天线开关(合路器、双工滤波器)由四个电子开关构成。 图一、图二 作用:其主要作用有两个: a)、完成接收和发射切换; b)、 完成900M/1800M信号接收切换。 逻辑电路根据手机工作状态分别送出控制信号(GSM-RX-EN;DCS- RX-EN;GSM-TX-EN;DCS- TX-EN),令各自通路导通,使接收和发射信号各走其道,互不干扰。 由于手机工作时接收和发射不能同时在一个时隙工作(即接收时不发射,发射时不接收)。因此后期新型手机把接收通路的两开关去掉,只留两个发射转换开关;接收切换任务交由高放管完成。 3)、滤波器: 结构:手机中有高频滤波器、中频滤波器。 作用:其主要作用:滤除其他无用信号,得到纯正接收信号。后期新型手机都为零中频手机;因此,手机中再没有中频滤波器。 4)、高放管(高频放大管、低噪声放大器): 结构:手机中高放管有两个:900M高放管、1800M高放管。都是三极管共发射极放大电路;后期新型手机把高放管集成在中频内部。

手机电路原理,通俗易懂

第二部分原理篇 第一章手机的功能电路 ETACS、GSM蜂窝手机是一个工作在双工状态下的收发信机。一部移动电话包括无线接收机(Receiver)、发射机(Transmitter)、控制模块(Controller)及人机界面部分(Interface)和电源(Power Supply)。 数字手机从电路可分为,射频与逻辑音频电路两大部分。其中射频电路包含从天线到接收机的解调输出,与发射的I/Q调制到功率放大器输出的电路;逻辑音频包含从接收解调到,接收音频输出、发射话音拾取(送话器电路)到发射I/Q调制器及逻辑电路部分的中央处理单元、数字语音处理及各种存储器电路等。见图1-1所示 从印刷电路板的结构一般分为:逻辑系统、射频系统、电源系统,3个部分。在手机中,这3个部分相互配合,在逻辑控制系统统一指挥下,完成手机的各项功能。 图1-1手机的结构框图 注:双频手机的电路通常是增加一些DCS1800的电路,但其中相当一部分电路是DCS 与GSM通道公用的。 第二章射频系统 射频系统由射频接收和射频发射两部分组成。射频接收电路完成接收信号的滤波、信号放大、解调等功能;射频发射电路主要完成语音基带信号的调制、变频、功率放大等功能。手机要得到GSM系统的服务,首先必须有信号强度指示,能够进入GSM网络。手机电路中不管是射频接收系统还是射频发射系统出现故障,都能导致手机不能进入GSM网络。 对于目前市场上爱立信、三星系列的手机,当射频接收系统没有故障但射频发射系统有故障时,手机有信号强度值指示但不能入网;对于摩托罗拉、诺基亚等其他系列的手机,不管哪一部分有故障均不能入网,也没有信号强度值指示。当用手动搜索网络的方式搜索网络时,如能搜索到网络,说明射频接收部分是正常的;如果不能搜索到网络,首先可以确定射频接收部分有故障。 而射频电路则包含接收机射频处理、发射机射频处理和频率合成单元。 第一节接收机的电路结构 移动通信设备常采用超外差变频接收机,这是因为天线感应接收到的信号十分微弱,而鉴频器要求的输人信号电平较高,且需稳定。放大器的总增益一般需在120dB以上,这么大的放大量,要用多级调谐放大器且要稳定,实际上是很难办得到的,另外高频选频放大器的通带宽度太宽,当频率改变时,多级放大器的所有调谐回路必须跟着改变,而且要做到统一调谐,

手机充电器原理与维修

手机通用充电器及诺基亚手机充电器原理与维修 图片: 这是一种脉宽调制型充电电路,220V交流电压经R1限流,D1~D4桥式整流,C1滤波得到300V 左右的直流电压,此电压经主绕组L1给开关管V1集电极供电,经R4给V1偏置。刚加电压时V1开始导通,L1产生感生电动势,反馈绕组L2的感生电动势经反馈回路C4、R6加到开关管V1的基极,构成正反馈,从而使V1迅速进入饱和导通状态。此时V1的发射极电流很大,电阻R2上压降很大,此电压经R3 加到控制管V2的基极,使其导通,V1基极电压降低,集电极电流减小,L2感生与前反向的负电压经C4、R6加到V1基极,使开关管V1迅速进入截止状态。就这样,开关管不断导通截止,变压器B次级绕组L3就可获得脉冲电压。改变R6、C4的值可改变脉冲宽度从而达到调节充电电流的目的。不充电时,无负载,没有电流经过R20,V6截止,变色发光二极管D8不亮。当接上负载时,绕组L3的电压经D13、D15整流,C7滤波给负载供电,R20产生左负右正的电压,使V6导通,发光管D8导通发红光,

指示开始充电,随着充电的进行,充电电流越来越小,当充满电时,流过R20的电流变小,其上压降变小,V6 导通程度降低,流过D8电流变小,发绿光,表示充满电。其常见故障为开关管因功率过载而损坏和限流电阻R1损坏。 图1为一款诺基亚手机通用充电器实绘电路。AC220V电压经D3半波整流、C1滤波后得到约+300V电压,一路经开关变压器T初级绕组L1加到开关管Q2 c极,另一路经启动电阻R3加到Q2 b极,Q2进入微导通状态,L1中产生上正下负的感应电动势,则L2中产生上负下正的感应电动势。L2中的感应电动势经R8、C2正反馈至Q2 b极,Q2迅速进入饱和状态。在Q2饱和期间,由于L1中电流近似线性增加,则L2中产生稳定的感应电动势。此电动势经R8、R6、Q2的b-e结给C2 充电,随着C2的充电,Q2 b极电压逐渐下降,当下降至某值时,Q2退出饱和状态,流过L1中的电流减小,L1、L2中感应电动势极性反转,在R8、C2的正反馈作用下,Q2迅速由饱和状态退至截止状态。这时,+300V 电压经R3、R8、L2、R16对C2反向充电,C2右端电位逐渐上升,当升

手机基带双处理器概念:数位讯号处理器+应用处理器

-.背景说明 早期手机的功能较为阳春,主要提供语音通话及文字短讯的传送,当时的基频零组件也较为单纯,主要含括有类比基频(Analog Baseband)、数位基频(Digital Baseband)、记忆体(Memory)、功率管理(Power Management)四大部分。但随着手机应用不断的扩充下,基频零组件数目也越来越多,多媒体处理器(Multimedia Coprocessor)提供和弦铃声、CMOS/CCD感光元件(CMOS/CCD Sensor)及影像处理器(Image Processor)提供照相功能等,手机基频零组件元件数随着手机应用功能扩充也不断的增加。 手机基频零组件数目,随着应用的扩充而不断增加,应用处理器的出现,形成手机基频双处理器的概念,此概念让数位讯号处理器负责语音讯号的处理,应用处理器负责影音应用的处理。 二、基频新架构:应用处理器概念 由于手机上影音功能不断的扩充,在影像方面,彩色萤幕的色阶越来越高,由早期的4096色阶到现在的262k色阶(实际为262,144色阶);在相机模组上,由早期搭载11万画素的CMOS/CCD相机模组,到现在百万画素以上的CMOS/CCD相机模组。而音乐方面,手机铃声的发展上,由16和弦、32和弦到64和弦,还能将录音的内容当作铃声,再来则是转为音乐的播放,支援MIDI、MP3形式的播放,还有强调立体声的喇叭。除了上述的影音功能,还有许多无线传输与应用,如:蓝芽传输、Wi-Fi、GPS及FM收音机纷纷加在手机上。 表一手机多媒体功能规格的演进 资料来源:工研院IEK(2005.02) 这些影音加在手机上,大量资料讯号的处理势必增加在基频上,在这样的趋势下,手机基频不但要处理既有的语音讯号,还要加入大量的资料讯号,对于原先的数位讯号处理器来说,无疑是一大负担。在影音发展的初期,简单的影音传送,资料的处理还是落在数位讯号处理器上,但随着影音规格不断提升,处理和弦铃声相关,必须多一颗和弦铃声IC(Melody IC),处理照相功能相关,必须再多一颗影像处理器(Image Processor),基频的零组件越加越多,所占的面积也越来越大。 为了整合这些影音元件,应用处理器(Application Processor;AP)的概念因应而生,让手机基本的语音讯号处理由原先的数位讯号处理器负责,而影音方面的资料处理就交由应用处理器负责。

手机充电器电路原理图分析

专门找了几个例子,让大家看看。自己也一边学习。 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,

基带电路原理图

FLASH电路 FLASH信号作用描述 数据总线:ED0-ED15,共16根数据线,用于传输数据。 地址总线:EA00-EA23,共24根地址线,用于存储单元寻址。控制总线: ERD:写控制信号; EWR:读控制信号; /WATCHODG:复位信号,用于FLASH的软件复位; /CE_F1、/CE_F2:FLASH存储区域选择信号; /ECS1_PSRAM:PSRAM片选信号; /ELB、/EUB:PSRAM存取区域选择信号; 电源供电信号:VMEM。

照相电路

主屏LCD显示电路 SIM卡电路

马达电路 PWM2_VIB_EN经过PMIC转换后变成马达的驱动信号VIB_DRV,R409为限流电阻,马达可以和键盘灯通过调整限流电阻R或者调整

占空比调整背光亮度一样调整马达的震感。马达电路上的二极管 D403是由于马达为线圈,运作时会产生反向电动势,若无二极管反 向电动势无法消耗,会影响马达的寿命,二极管可以在马达停震后 把反向电动势消耗掉而保护线圈。 MIC电路 MICBIASP和MICBIASN为MIC电路的正负两路偏置电压,一般为2.4V-2.7V左右的电压。C204,C205主要为滤除射 频信号的干扰。如果有GSM900MHZ的干扰则使用33PF的 电容,如果有DCS1800MHZ的干扰可以使用12PF的电容,如果有WIFI 2.4GHZ的干扰则使用8.2PF的电容。C206主 要是抑制共模信号。C201,C202为100NF电容,主要作用 为隔直通交,防止直流电使PA饱和,产生信号偏移,主要 滤除100HZ一下的电流。B201,B202为磁珠,主要滤除 高频部分的干扰。MIC偏置电流流向为从MICBIASP----

手机基带设计小结2017

BB设计小结 一.基带芯片: 基带芯片可以分为数字和模拟两部分。 1.数字部分的设计要点概括如下: 1)注意所连接信号的电平电压值,这个电压值与芯片上其对应模块的供电电压相同,可以根据SPEC查出工作电压要求。当两个器件之间连接出现信号电平不匹配的问题时(比如一个芯片为2.8V,另一个为1.8V),可考虑在其间添加电平转换芯片。 2)知道常用的总线通信种类和连接方法,比如IIC、USB、SPI、UART、并口等,这些总线的连接方法和时序关系在所用芯片的SPEC中都会有详细的讲述。设计时需要特别注意。 3)BB电路数字部分使用最多的就是GPIO,设计前需要特别关注下GPIO的特性,比如是否带有内部上下拉电阻,输入输出口的状态等等。GPIO口常用作芯片的使能信号,如果使能信号为低电平有效,则一般选用内部带下拉的GPIO。 2.模拟部分的设计要点: 基带中常见的模拟信号有音频、ADC采样等。与数字电路用高低电平表征信号不同,模拟信号是连续的变化的,其对噪声很敏感,特别是在模拟信号本身较弱的情况下,轻微的噪声都会改变其信号的特征,所以在电子学中有信噪比这一指标,就是针对模拟信号而言的。在手机设计中要特别注意模拟信号的保护。 二.电源: 手机上电源部分一般有如下几个部分:CHARGER IC、LDO、DC-DC、CHARGE PUMP,其工作原理这里就不讲解了。设计时需要注意的一些事项: 1.当输入电压和输出电压值相差较大,且工作电流很大时,LDO的效率很低,选用LDO 不是一个很好的选择,这是可以考虑选用降压的DC-DC. 2.DC-DC需要外接电感,电感的充放电容易引入电磁干扰,一般选用带有磁屏蔽的电感。 3.保证电源输出电压“干净”,在电源输出网络上增加滤波电容 4.注意在芯片的电压引脚添加去耦电容,这个值一般为0.1uF、1uF,在一些供电电流比较大的电压接口,还需要添加2.2uF以上的大电容,作为电量的暂时储备。 5.慎用PWM控制方式,LCD背光驱动芯片的控制偏向使用数字脉冲调光方式。 三.各模块设计: 1.LCD接口: 常见的LCD接口有如下几种: 并口:8080并口(有WR,RD);事例D2000 6800并口(有RW,E);这种不太常见 串口:SPI; I2C;这两种方式的通信速率比较低,一般用于低端LCD上,事例D900。 RGB接口:SPI用于指令传输,RGB用于数据传输,VSYNC,HSYNC,DOTCLK,ENABLE为数据传输的同步信号。事例NEO。 LCD有两个电源接口,模拟电源VCC和接口/数字电源IOVCC, VCC用于LCD显示电路供电,电压值一般比较固定(否则显示不正常,升压电路工作异常),IOVCC为数字部分供电电压,其值需要根据所选平台的LCD接口电压来定。 LCD设计时需要根据其内部背光LED的连接方式选用合适的背光驱动, LED为串联方式,

刷基带教程

如果你以前从未刷过基带则按照教程刷个完全的。如果你以前刷过基带并且成功的将APK空间增加到272M 那就再刷更新基带时,不需要完全刷,可以直接跳到下面的“ 三,独立刷基带”(在教程最后面有) 说明: 此为4GS 高配版的线刷官方ROM,本人将他默认的APK空间由170M调整增加到272M,可以安装更多的程序到手机。 原厂官方安卓原生UI基带12月10日更新 被刷成了砖的机子可以用此工具和方法救活,此线刷是需要将手机关机。 【注意】:刷此底包基带会调整你的手机分区,修改到底层ROM芯片底层数据。请慎重刷机! 本ROM是经由ROM小组反复刷机至少二十多次以上后未引起任何不良或意外发生后才对外公布。 原则上这是救砖工具,也就是说刷成砖后可以用此工具救活,但并不能保证百分百能救,RP差什么都有可能发生。本人对由RP差或其它原因造成的任何风险概不承担任何责任。 此包的特点:

1,用户安装APK程序分区会由原厂默认的170M增加到272M(可以安装更多的APK程序) 2,之前刷苹果开机LOGO出现花屏的刷此底包后可以修复正常 3,此基带包已经集成1124版ROM,已经ROOT。已经集成中文REC。苹果开机LOGO。一次成型。 4,GPS不正常并且不能定位的可以刷此包修复GPS,即可正常定位。 5,此包刷成功后不用再反复刷,刷一次即可管用终身。 一,【安装驱动】:(这个是重点也是难点请有耐心,此操作时请速度放快,因为过几秒后此设备自动消失) 以下以WINXP 操作系统为例,其它操作系统请根据自己实际情况安装,安装方法大同小异,或许图会不一样,但意思差不多 1,先解压基带ROM包到任意电脑任意目录下。然后分别运行 "谷蜂4GS基带11.24\相关驱动 \ComPortDriver\InstallDriver.exe" 和 "谷蜂4GS基带11.24\相关驱动\ModemPortDriver\ModemInstaller.exe" 后关闭 2,然后请先将电脑的喇叭打开,手机插上随机自带的白色数据线连接到电脑,然后在桌面上的“我的电脑”上点右键,然后选择“管理”-----》“设备管理器” 不要关闭设备管理器以后俺们需要用到。 3,手机关机,此时电脑会听到“嘟........”一声,同时电脑会提示发现新硬件,然后按照电脑提示点安装驱动。如下图: (有时电脑不提示找到新硬件,会在一二秒后消失,不要急,重新桶一下耳机,在电脑嘟一声后,立即快速的在设备管理器中可以看到那个没装好驱动的新硬件然后立即点更新驱动,再按照下面的教程来)

模电课程设计—手机充电器

郑州科技学院 《模拟电子技术》课程设计 题目手机充电器 学生姓名 x x x 专业班级电气工程及其自动化班 学号2012470xx 院(系)电气工程学院 指导教师 xx 完成时间 2014年月日

前言 随着科学技术的发展,手机逐渐成为人们交流的主要工具,在人类社会中扮演着重要的角色。但是也有不利的一方面,消费者每当更换一个手机就必须更换原配充电器,或者是原配充电器遗失或损坏后找不到与之相匹配的充电器,所以必须抛弃手机或者寻找原配充电器,但是花很多的钱。手机配件的不完善逐渐成为国产手机被消费者厌恶最多的问题之一,致使国内手机的销量下降。 在2003年,深圳市海陆通电子有限公司研发推出了历史上第一款通用型手机充电器——万能充,让海陆通公司始料不及的是,这个看似简单但外观独特的充电器却获得市场的热销。“第一次推出的几十万批量试单,三天内全部售完,完全出乎在我们的预料。”没有想不到只有做不到,至此万能充电器逐渐成为人们充手机的主要工具,方便快捷。 以前一个手机要对一个原装充电器,因为手机的更新换代速度很快,有的人半年就换一台手机,一个老百姓平均使用的充电器十个八个,对社会的有限资源是极大的浪费。但是万能充发明出来后,一个充电器基本可以满足全家人使用。所以说对节约社会资源,减少资源浪费做出了一定的贡献,在这个行业来说也是一个创新性的里程碑式的产品,有效地推动了充电器标准化的进程。一个小小充电器不仅改变了海陆通公司的命运,也改变了数以千万中国手机用户换手机一定要换充电器的束缚,给手机用户带来了极大的便利。

目录 1设计的目的 (1) 2设计的任务与要求 (1) 2.1设计的任务 (1) 2.2设计的要求 (1) 3设计方案与论证 (1) 3.1 设计的方案 (1) 3.2万能充的原理方框图 (2) 4设计原理及功能说明 (3) 4.1元器件的选用原理 (3) 4.2总体电路图 (5) 5单元电路 (7) 5.1变压器 (7) 5.2二极管 (8) 6硬件的安装与调试 (9) 6.1硬件的安装 (9) 6.2硬件的调试 (9) 7总结 (10) 参考文献 (10) 附录1:总体电路原理图 (11) 附录2:元器件清单 (11)

手机基本电路工作原理

第一章 第一节T18机型逻辑电路原理 T18是一款支持双卡单待,实现G网双号转换待机,可以自由选用号码拨打电话,电路采用MTK 6226方案平台。(图1) (图1) 由于T18是采用MTK方案,在电路上原理有很多是与前期MTK电路相似,在这里不再一一讲解,具体介绍一下双卡待机电路的原理。 1、双卡电路工作原理电路 T18的双卡待机是指由用户选择性进行手动进行切换两张不同的SIM卡,其与前期A280双卡双待不同的,T18只有一个射频一个基带电路,其双卡转换主要是由软件和SIM转换控制器来完成,具体电路见图2

(图2) 其工作原理: 当手动切换时,控制中心会发出一个SIM-SWITCH的转换开关指令给到U505转换芯片,经内部的电子开关把VSIM与VSIM1、VSIM2,IO-SIM与SIMDA1、SIMDA2,CLK-SIM与SIMCLK1、SIMCLK2,RST-SIM与SIMRST1、SIMRST2进行转换连接,实现控制SIM卡的数据总线来控制SIM卡的正常工作。 2、充电电路 当外部充电器接到DC 插孔时,CHANGE电源分三路提供,第一路经R12、R14分压取得ADC3-VCH充电检测信号,第二路提供给U400的第1脚,第三路提供给U401经R413到电池正极。 其工作原理:当CPU检测到连接充电模式时候,CPU会输送CHG-CNTL控制信号给电源管理模块U400,电源管理模块从2# GATEDRV输出控制信号,控制充电控制管的导通,充电电压将通过R413限流给电池正极充电,同时CPU通过提供的ADC0-、ADC1+电量反馈信号,经电源管理模块U400(4#)ISENSE检测实现对充电过程进行监控,经U400(6#)CHRDET送到CPU,当检测充电完成后,CPU 将撤销U400(5#)CHG-CNT的控制信号,从而导致充电管U401截止,停止充电。关机充电和开机充电原理相同,只是在关机状态下,CPU未执行其它程序,使手 机仍处于关机状态。如图3

车载手机充电器原理

车载手机充电器? 简单的: 直接将车载12V电源经一片7805变成5V,再通过10十几个100K电阻分压,得到4.5~4.8伏的电压即可。 复杂的,12V通过LM317或者LM2596之类的芯片,稳压到4.7V ,并用一个电流检测模块,比如可用LM311之类的精密比较器,一旦电流减小,则通过电源芯片关断供电。但要注意,这些电源芯片大部分都是内部工作在开关模式,所以输出纹波比较大,注意要做好输出滤波。 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。而下方的1KΩ电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。右边的次级绕组就没有太多好说的了,经二极管RF93整流,220uF电容滤波后输出6V的电压。没找到二极管RF93的资料,估计是一个快速回复管,例如肖特基二极管等,因为开关电源的工作频率较高,所以需要工作频率的二极管。这里可以用常见的1N5816、1N5817等肖特基二极管代替。同样因为频率高的原因,变压器也必须使用高频开关变压器,铁心一般为高频铁氧体磁芯,具有高的电阻率,以减小涡流。 本文来自:我爱研发网(https://www.sodocs.net/doc/733454971.html,) 详细出处:https://www.sodocs.net/doc/733454971.html,/bbs/dispbbs.asp?boardID=56&ID=15346&page=1

智能手机基带处理器电路原理

智能手机基带处理器电路原理 在普通手机中,通常将MCU(Micro Control Unit,微控制电路)、DSP( (Digital Signal Processing,数字信号处理)、ASIC(Application Specific Integrated Circuit,专用集成电路)电路集成在一起,得到数字基带信号处理器;将射频接口电路、音频编译码电路及一些ADC(模拟至数字转换器)、DAC(数字至模拟转换器)电路集成在一起,得到模拟基带信号处理器。 在智能手机中,一般是将数字基带信号处理器和模拟基带信号处理器集成在一起,称为基带处理器。不论移动电话的基带电路如何变化,它都包MCU 电路(也称CPU 电路)、DSP电路、ASIC 电路、音频编译码电路、射频逻辑接口电路等最基本的电路。 我们可以这样理解智能手机的无线部分,我们将智能手机无线部分电路再分为两部分,一部分是射频电路,完成了信号从天线到基带信号的接收和发射处理;一部分是基带电路,完成了信号从基带信号到音频终端(听筒或送话器)的处理。这样看来,基带处理器的主要工作内容和认为就比较容易理解了。 以基带处理器电路PMB8875 为例,框图如图1所示。 图1 基带处理器电路PMB8875 框图 1、模拟基带电路

模拟基带信号处理器(ABB)又被称为话音基带信号转换器,包含手机中所有的ADC与DAC 变换器电路。 模拟基带信号处理器包含基带信号处理电路、话音基带信号处理电路(也称音频处理电路)、辅助变换器单元(也被称为辅助控制电路)。 (1)基带信号处理电路 基带信号处理电路将接收射频电路输出的接收机基带信号RXIQ 转换成数字接收基带信号,送到数字基带信号处理器DBB。 在发射方面,该电路将DBB 电路输出的数字发射基带信号转换成模拟的发射基带信号TXIQ,送到发射射频部分的IQ 调制器电路。 基带信号处理电路是用来处理接收、发射基带信号的,连接数字基带与射频电路——射频逻辑接口电路,在基带方面,通过基带串行接口连接到数字基带信号处理器;在射频方面,它通过分离或复合的IQ 信号接口连接到接收I/Q 解调与发射I/Q 调制电路。 接收基带信号处理框图如图2所示。 图2接收基带信号处理框图 发射基带信号处理框图如图3所示。 图3发射基带信号处理框图

手机各电路原理_射频电路_内容详细,不看后悔

本次培训内容:
手机各级电路原理及故障检修
1,基带电路
发话电路、受话电路、蜂鸣电路、耳机电路、 背光电路、马达电路、按键电路、充电电路、开 关机电路、摄像电路、蓝牙电路、FM电路、显示 电路、SIM卡电路、TF卡电路
2,射频电路
接收电路、发射电路

一、手机通用的接收与发射流程
天线:ANT 声表面滤波器:SAWfilter 低噪声放大器:LNA 功放:PA

手机通用的接收与发射流程
1、信号接收流程: 天线接收——天线匹配电路——双工器——滤波(声 表面滤波器SAWfilter)——放大(低噪声放大器 LNA)——RX_VCO混频(混频器Mixer)——放大 (可编程增益放大器PGA)——滤波——IQ解调(IQ 调制器)——(进入基带部分)GMSK解调——信道均 衡——解密——去交织——语音解码——滤波—— DAC——放大——话音输出。

手机通用的接收与发射流程
2、信号发射流程: 话音采集——放大——ADC——滤波——语音编
码——交织——加密——信道均衡——GMSK调制—— (进入射频部分)IQ调制(IQ调制器)——滤波—— 鉴相鉴频(鉴相鉴频器)——滤波——TX_VCO混频 (混频器Mixer)——功率放大(PA)——双工器—— 天线匹配电路——天线发射。

手机通用的接收与发射流程
3、射频电路原理框图:

二、射频电路的主要元件及工作原理
天线:ANT 声表面滤波器:SAWfilter 低噪声放大器:LNA 功放:PA

MIUI各机型更换基带教程合集

许多米粉喜欢通过更换基带使自己的手机信号更强,开发组最近组织了一次投票调查, 将各个机型优秀的基带版本上传至服务器供各位米粉们使用,同时我也写了相应的教程希望能帮助到大家。 首先我们要了解基带是什么,基带、基带信号、还有宽带传输各是什么。以下是我从百度百科找到的答案, 如果各位米粉觉得还有可推荐的资源请跟帖回复,教程中所用资源全部经过真实测试,请各位米粉放心使用。 手机基带 基带:Baseband 信源(信息源,也称发终端)发出的没有经过调制(进行频谱搬移和变换)的原始电信号所固有的频带(频率带宽),称为基本频带, 简称基带。基带和频带相对应,频带:对基带信号调制后所占用的频率带宽(一个信号所占有的从最低的频率到最高的频率之差) 基带信号(Baseband Signal) 信源(信息源,也称发终端)发出的没有经过调制(进行频谱搬移和变换)的原始电信号,其特点是频率较低,信号频谱从零频附近开始,具有低通形式。根据原始电信号的特征,基带信号可分为数字基带信号和模拟基带信号(相应地,信源也分为数字信源和模拟信源。)其由信源决定。说的通俗一点,基带信号就是发出的直接表达了要传输的信息的信号,比如我们说话的声波就是基带信号。(如果一个信号包含了频率达到无穷大的交流成份和可能的直流成份,则这个信号就是基带信号。) 由于在近距离范围内基带信号的衰减不大,从而信号内容不会发生变化。因此在传输距离较近时,计算机网络都采用基带传输方式。如从计算机到监视器、打印机等外设的信号就是基带传输的。大多数的局域网使用基带传输,如以太网、令牌环网。常见的网络设计标准10BaseT使用的就是基带信号。 频带信号(通带信号)

手机充电器电路图讲解(DOC)

手机充电器电路图讲解 时间:2012-12-18 来源:作者: 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容

滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关 13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能 量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。 而下方的1KΩ电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。右边的次级绕组就没有太多好说的了,经二极管RF93整流,220uF电容滤波后输出6V的电压。没找到二极管RF93 的资料,估计是一个快速回复管,例如肖特基二极管等,因为开关电源的工作频率较高,所以需要工作频率的二极管。这里可以用常见的1N5816、1N5817等肖特基二极管代替。 同样因为频率高的原因,变压器也必须使用高频开关变压器,铁心一般为高频铁氧体磁芯,具有高的电阻率,以减小涡流。 霓虹灯灯管要求很高的启动电压,需用一个漏磁变压器作启动和整流用。漏磁变压器的空载二次电压不小于15kV、容量为450V·A、电流为24mA、短路电流为30mA。这样的漏磁变压器能点亮管径为12mm、展开长度约为12m的灯管。霓虹灯控制电路:

手机基带坏了有什么现象-换一个手机基带多少钱

手机基带坏了有什么现象?换一个手机基带多少钱 手机基带坏了有什么现象手机基带损坏或导致手机无法接收信号,无法上网也无法接打电话。基带损坏后会影响您的正常使用。如果出现这种情况,建议携带相关产品前往售后服务中心进行刷入。 提示关机是因为基带问题,就相当于没插卡偶尔出现这个问题的话有可能是基带芯片出问题,也有可能是系统基带文件损坏。 刷机不能解决,那就是芯片的问题。 苹果基带坏了怎么办iPhone的信号是和基带直接相关连的。通常情况下,升级固件,基带也会跟着升级,而且基带升级是不可逆的,所以有锁设备在执行恢复、更新、平刷固件操作时需谨慎、以免升级后基带不能解锁。那么iphone基带坏了怎么办呢?接下来就让我们一起来了解下吧。 1、基带就是iPhone的通讯系统,是用来控制手机通讯的程序,控制电话通讯,WiFi无线通讯,还有蓝牙通讯。iPhone有相关的通讯硬件,是需要靠基带这个通讯系统来驱动的,有了正常工作的基带,才能打电话、收发短信、使用3G功能。 2、当然WIFI除外。基带版本可以从iphone中设置关于本机的调制解调器使用的版本号中查询到。iOS和基带相对独立,协同工作。基带升级后,很多软解就会失效,有锁版的iPhone便无法使用。而最严重的是,基带几乎无法降级。所以对于有锁版的手机来说,基带升级一定要慎重,一定要等破解后再升级。当然无锁版也要慎重对待基带升级。 3、触摸屏损坏是iphone的常见现象,因为表面是钢化玻璃材质的,比较脆,稍有不慎摔在地上,就会导致屏幕破损有裂痕。一般表面玻璃屏摔碎了,触摸还是能用。是因为表面的屏幕,俗称玻璃屏、触摸屏,是由一层玻璃屏和一个触摸屏组成的,它们两个是整体的不可拆分的,一般外部损坏碎裂的都是表面的玻璃,里面的触摸屏没有伤害到,触感就能正常使用,有的时候表面玻璃屏没有问题,里面触摸屏有裂痕,那么触感就会失灵。

手机充电器的设计与制作报告

广东白云学院 CDIO项目设计报告 项目级别:一级 题目:手机充电器设计 指导教师:林春景、苗耀洲 专业班级:电子信息工程专业10级 组别:第四组 组长:苏炳坤 团队成员:祁沛超、熊志东、麦妙仪、魏健斌 院系名称:电子信息工程系 成绩: 使用学期: 2010-2011 学年第 1 学期

手机充电器的设计与制作项目报告 前言:我们这次的项目是手机充电器的设计与制作秉承CDIO的理念,团队设计活动贯穿课程学习活动始终,让我们对电子应用系统项目设计的过程有实际的经历与理解。以下是我们小组项目制作期间成员的分工: (1)从各个途径查找关于手机充电器工作原理以及各原件的特性与在电路中的作用。负责人:苏炳坤、熊志东 (2)时间安排与策划。负责人:祁沛超、魏健斌 (3)项目监督与项目报告。负责人:麦妙仪 (4)项目作品制作。负责人:全组组员 (5)P PT与prolfel99SE软件画图,负责人:苏炳坤 正文: 第一部分:设计任务 一、项目标题:手机充电器的设计与制作。 二、项目设计要求: 设计制作一个输入交流电压为220v,输出充入手机上的直流电压为,允许5%误差的手机充电器。 (1)交流输入电压:220ACV10% 50/60HZ

(2)输出直流电压: 5% (3)充电电流:300mA~1800 mA 设计方案的分析论证简述: 在这次的项目设计里,首先是老师给我们上的导论课让我们了解到一些专业知识,再是到我们小组通过利用老师给我们讲解的知识再加以分析理解从而得出设计方案。 第二部分:设计方案 总体方案的选择与论证: 方案一:制作线性电源 线性电源(Liner power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,就得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。我们所需要的是达到高精度的直流电压,所以必须经过稳压电路进行稳压。 线性调整元件进行精细调节,使之输出高精度的直流电压源。

手机充电器的原理及故障维修

手机充电器的原理及故 障维修 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

该充电器采用了RCC型开关电源,即振荡抑制型变换器,它与PWM型开关电源有一定的区别。PWM型开关电源由独立的取样误差放大器和直流放大器组成脉宽调制系统;而RCC型开关电源只是由稳压器组成电平开关,控制过程为振荡状态和抑制状态。由于PWM型开关电源中的开关管总是周期性的通断,系统控制只是改变每个周期的脉冲宽度,而RCC型开关电源的控制过程并非线性连续变化,它只有两个状态:当开关电源输出电压超过额定值时,脉冲控制器输出低电平,开关管截止;当开关电源输出电压低于额定值时,脉冲控制器输出高电平,开关管导通。当负载电流减小时,滤波电容放电时间延长,输出电压不会很快降低,开关管处于截止状态,直到输出电压降低到额定值以下,开关管才会再次导通。开关管的截止时间取决于负载电流的大小。开关管的导通/截止由电平开关从输出电压取样进行控制。因此这种电源也称非周期性开关电源。

220V市电经VD1~VD4桥式整流后在V2的集电极上形成一个300V左右的直流电压。由V2和开关变压器组成间歇振荡器。开机后,300V直流电压经过变压器初级加到V2的集电极,同时该电压还经启动电阻R2为V2的基极提供一个偏置电压。由于正反馈作用,V2Ic迅速上升而饱和,在V2进入截止期间,开关变压器次级绕组产生的感应电压使VD7导通,向负载输出一个9V左右的直流电压。开关变压器的反馈绕组产生的感应脉冲经VD5整流、C1滤波后产生一个与振荡脉冲个数呈正比的直流电压。此电压若超过稳压管VD17的稳压值,VD17便导通,此负极性整流电压便加在V2的基极,使其迅速截止。V2的截止时间与其输出电压呈反比。VD17的导通/截止直接受电网电压和负载的影响。电网电压越低或负载电流越大,VD17的导通时间越短,V2的导通时间越长,反之,电网电压越高或负载电流越小,VD5的整流电压越高,VD17的导通时间越长,V2的导通时间越短。V1是过流保护管,R5是V2Ie的取样电阻。当V2Ie过大时,R5上的电压降使V1导通,V2截止,可有效消除开机瞬间的冲击电流,同时对VD17的控制功能也是一种补偿。VD17以电压取样来控制V2的振荡时间,而V1是以电流取样来控制V2振荡时间的。 如果是为镍镉、镍氢电池充电,由于这类电池存在一定的记忆效应,需不定时对其进行放电。SW1是镍镉、镍氢、锂离子电池充电转换开关。SW1与精密基准电源SL431为运放LM324⑨提供两个不同的精密基准源,由SW1切换。在给镍镉、镍氢电池充电时,LM324⑨脚的基准电压约0.09V(空载);在给锂离子电池充电时,LM324⑨脚的基准电压约为0.08V(空载),这种设计是由这两种类型电池特有的化学特性决定的。按下SW2,V5基极瞬间得一低电平而导通,可充电池上的残余电压通过V5的ec极在R17上放电,同时放电指示灯

相关主题