搜档网
当前位置:搜档网 › 电压基准源选型

电压基准源选型

电压基准源选型
电压基准源选型

摘要:电压基准源简单、稳定的基准电压,作为电路设计的一个关键因素,电压基准源的选择需要考虑多方面的问题并作出折衷。本文讨论了不同类型的电压基准源以及它们的关键特性和设计中需要考虑的问题,如精确度、受温度的影响程度、电流驱动能力、功率消耗、稳定性、噪声和成本。

几乎在所有先进的电子产品中都可以找到电压基准源,它们可能是独立的、也可能集成在具有更多功能的器件中。例如:

在数据转换器中,基准源提供了一个绝对电压,与输入电压进行比较以确定适当的数字输出。在电压调节器中,基准源提供了一个已知的电压值,用它与输出作比较,得到一个用于调节输出电压的反馈。在电压检测器中,基准源被当作一个设置触发点的门限。

要求什么样的指标取决于具体应用,本文讨论不同类型的电压基准源、它们的关键指标和设计过程中要综合考虑的问题。为设计人员提供了选择最佳电压基准源的信息。

理想情况

理想的电压基准源应该具有完美的初始精度,并且在负载电流、温度和时间变化时电压保持稳定不变。实际应用中,设计人员必须在初始电压精度、电压温漂、迟滞以及供出/吸入电流的能力、静态电流(即功率消耗)、长期稳定性、噪声和成本等指标中进行权衡与折衷。

基准源的类型

两种常见的基准源是齐纳和带隙基准源。齐纳基准源通常采用两端并联拓扑;带隙基准源通常采用三端串连拓扑。

齐纳二极管和并联拓扑

齐纳二极管优化工作在反偏击穿区域,因为击穿电压相对比较稳定,可以通过一定的反向电流驱动产生稳定的基准源。

齐纳基准源的最大好处是可以得到很宽的电压范围,2V到200V。它们还具有很宽范围的功率,从几个毫瓦到几瓦。

齐纳二极管的主要缺点是精确度达不到高精度应用的要求,而且,很难胜任低功耗应用的要求。例如:BZX84C2V7LT1,它的击穿电压,即标称基准电压是2.5V,在2.3V至2.7V之间变化,即精确度为±8%,这只适合低精度应用。

齐纳基准源的另一个问题是它的输出阻抗。上例中器件的内部阻抗为5mA时100Ω和1mA时600Ω。非零阻抗将导致基准电压随负载电流的变化而发生变化。选择低输出阻抗的齐纳基准源将减小这一效应。

埋入型齐纳二极管是一种比常规齐纳二极管更稳定的特殊齐纳二极管,这是因为采用了植入硅表面以下的结构。

作为另一种选择,可以用有源电路仿真齐纳二极管。这种电路可以显著改善传统齐纳器件的缺点。MAX6330就是一个这样的电路。负载电流在10 0μA至50mA范围变化时,具有1.5% (最大)的初始精度。此类IC的典型应用如图1所示。

图1.

选择合适的并联电阻

所有的并联结构基准都需要一个与其串联的限流电阻。可以按照下式选择电阻:

(VIN(max)-VSHUNT(min)) / (ISHUNT(max)+ ILOAD(min)) < RS < (VIN(min) -VSHUNT(max)) / (ISHUNT(min) + ILOAD(max))

其中:

VIN是输入电压

VSHUNT是调节后的电压

ILOAD是输出电流

ISHUNT是最小并联工作电流。

注意,无论是否加有负载,并联电路消耗的电流都是ILOAD(max) + ISHUNT。

选择合适的RS,相同的并联基准源可以用于10Vin或100Vin。为RS的最大标称阻值对应于最小的电流消耗。注意,要保证一个满足电阻误差容限最差时的安全余量。利用下式,可确保电阻有足够的额定功率:

PR = IIN(VIN(max) - VSHUNT)

= I2INRS

= (VIN(max) - VSHUNT)2/RS

带隙基准源和串联模式拓扑

带隙基准电压源的设计

哈尔滨理工大学 软件学院 课程设计报告 课程大三学年设计 题目带隙基准电压源设计 专业集成电路设计与集成系统班级集成10-2 班 学生唐贝贝 学号1014020227 指导老师董长春 2013年6月28日

目录 一.课程设计题目描述和要求………………………………………… 二.课程设计报告内容………………………………………………… 2.1课程设计的计算过程…………………………………………. 2.2带隙电压基准的基本原理……………………………………. 2.3指标的仿真验证结果…………………………………………. 2.4 网表文件……………………………………………………… 三.心得体会……………………………………………………………四.参考书目………………………………………………………….

一.课程设计题目描述和要求1.1电路原理图: (1).带隙基准电路 (2).放大器电路

1.2设计指标 放大器:开环增益:大于70dB 相位裕量:大于60度 失调电压:小于1mV 带隙基准电路:温度系数小于10ppm/C ? 1.3要求 1>手工计算出每个晶体管的宽长比。通过仿真验证设计是否正确,是否满足指标的要求,保证每个晶体管的正常工作状态。 2>使用Hspice 工具得到电路相关参数仿真结果,包括:幅频和相频特性(低频增益,相位裕度,失调电压)等。 3>每个学生应该独立完成电路设计,设计指标比较开放,如果出现雷同按不及格处理。 4>完成课程设计报告的同时需要提交仿真文件,包括所有仿真电路的网表,仿真结果。 5>相关问题参考教材第六章,仿真问题请查看HSPICE 手册。 二. 课程设计报告内容 由于原电路中增加了两个BJT 管,所以Vref 需要再加上一个Vbe ,导致最后结果为(ln )8.6M n β??≈,最后Vref 大概为1.2V ,且电路具有较大的电流,可以驱动较大的负载。 2.1课程设计的计算过程 1> M8,M9,M10,M11,M12,M13宽长比的计算 设Im8=Im9=20uA (W/L)8=(W/L)9=20uA 为了满足调零电阻的匹配要求,必须有Vgs13=Vgs6 ->因此还必须满足(W/L)13=(Im8/I6)*(W/L)6 即(W/L)13/(W/L)6=(W/L)9/(W/L)7 取(W/L)13=27 取(W/L)10=(W/L)11=(W/L)13=27 因为偏置电路存在整反馈,环路增益经计算可得为1/(gm13*Rb),若使环路

各PFC芯片选型

型号厂商引脚基准电压(V)最大开关频率(KHz)UCC28019TI85=65 UCC3817TI167.5 UCC28051TI8 2.5 UCC28060TI166 UC3852TI85 UC2854/3854TI87.5 UCC38050TI8 2.5 UCC3817 TI167.5 UCC3818TI207.5220 UCC3819TI167.5220 UCC38500/02TI207.5250 UCC385/01/03TI20250 NCP1601A ON8405 NCP1601B ON8405 NCP1654ON865/133/200 NCP1910ON24565 LT1248LT167.5300 LT1509LT207.5300 L4981A ST20 5.1=100 L4981B ST20 L6561ST8 FAN4810Fairchair16 ML4821Fairchair16/20 FAn9612Fairchair16 TEA1751NXP16 MC33/4261Motorala8

门限电压(V)工作模式功率范围(W) 10.5/9.5CCM 16.0/10.0CCM 12.5/9.7CRM 12.6/10.35CRM 16.3/11.5DCM 16.0/10.0CCM 15.8/9.7CRM 16.0/10.0CCM 10.5/10.0CCM 10.2/9.7CCM 16.0/10.0CCM 10.5/10.0CCM 13.75/9DCM+CRM 10.5/9.5DCM+CRM 10.5/9.0CCM 10.5/9.0CCM 16.5/10.5CCM/DCM 16.5/10.5CCM/DCM 15.5/10.0CCM 15.5/10.0CCM 13.0/9.9CRM 13.0/2.8CCM 16.5/11.0CCM 12.5/7.5CRM 22.0/15.0DCM 10.0/8.0CRM

一种用于高速高精度ADC的电压基准源设计

0引言 随着集成电路规模不断扩大,尤其是芯片系统集成技术的提出,对模拟集成电路基本模块(如A/D、D/A转换器、滤波器以及锁相环等电路)提出了更高的精度和速度要求,这也就意味着系统对其中的基准源模块提出了更高的要求。 用于高速高精度A DC的片内电压基准源不仅要满足A DC精度和采样速率的要求,并应具有较低的温度系数和较高的电源抑制比,此外,随着低功耗和便携的要求,A DC也在朝着低压方向发展,相应的基准源也要满足低电源电压的要求。 本文分析了基准源对流水线A DC精度的影响,并建立了相应的模型,确定了高速高精度A DC对电压基准源的性能要求。 给出了基于1.8 V的低电源电压,并采用结构简单的VBE非线性二阶补偿带隙基准源的核心电路,该补偿方式可以实现较低的温度系数,能满足高速高精度A DC的要求。箝位运放采用一种低噪声两级运算放大器,该运放可提供小于0.02 mV 的失调电压,因而保证了基准源的补偿精度。为了提高基准源的电源抑制比,本文除采用常用的共源共栅电流镜技术以外,还设计了一种简单有效的电源抑制比提高电路,从而使得基准源的电源抑制比有了较大提高。 1 电压基准源影响的建模分析 在Pipelined A DC系统中,基准源的主要作用是为子A DC提供比较电平,同时为MD A C提供残差电压。差分基准电压源发生偏移会导致子A DC比较电平和MDA C残差电压发生变化。而通过引入冗余位矫正技术可大大减小差分基准电压源所引起的比较电平变化对系统指标造成的影响,但是,MDA C残差电压变化的影响却无法消除,系统的转移特性曲线仍将会发生变化,从而造成系统指标下降。其中基准电压源的偏移主要来源于温度和电源电压的影响。 下面分析基准电压源温度漂移特性对DNL的影响。一般情况下,实际相邻输出与理想相邻输出之间的偏差可以表示为: 对于首级精度为3.5位的12位A DC,在-40℃~85℃的温度范围内,对温度要求最严格的比较器一般要求基准电压源的最大温漂不超过(7/8)V diff。 根据下列两式: 可以得到DNL对基准电压源温度系数的要求,即温度系数T C≤6.84 ppm/℃。式中,V T0为室温25℃时的基准电压值。

MP3解码芯片选型指南

MP3解码芯片选型指南 前言: 随着人们生活水平的提高,人们对生活质量的追求也越来越高了,所以人性化、智能化的产品很受消费者青睐,例如现在大多数人的家门都会装上MP3解码芯片的智能防盗电子锁,当半夜小偷非法撬门时可立即发出刺耳的报警声,惊醒入睡的房主吓跑小偷,及时避免盗窃损失,晚上再也不用担心被盗窃,可以安心的睡觉。而广州九芯的N910X系列的解码芯片就有此功能。

概述: N910X是一个提供串口的MP3 芯片,完美的集成了MP3、WMV的硬解码芯片。它包括了四种功能型号的MP3芯片,即N9100、N9101、N9102和N9103 MP3芯片,支持TF 卡驱动,支持电脑直接更新spi flash 的内容,支持FAT16、FAT32 文件系统。通过简单的UART串口指令或一线串口指令即可完成播放指定的音乐,以及如何播放音乐等功能,无需繁琐的底层操作,音质优美,使用方便,稳定可靠是此款产品的最大特点。另外该芯片也是深度定制的产品,专为固定语音播放领域开发的低成本解决方案。 功能: 支持采样率(KHz):8/11.025/12/16/22.05/24/32/44.1/48。音质优美,立体声。 24 位DAC 输出,内部采用DSP硬解码,非PWM输出,动态范围支持90dB,信 噪比支持85dB 完全支持FAT16、FAT32 文件系统,最大支持32G的TF 卡,支持32G的U盘 多种控制模式,UART串口模式、一线串口模式、AD按键控制模式。 广播语插播功能,可以暂停正在播放的背景音乐,支持指定路径下的歌曲播放,支持跨盘符插播,支持插播提前结束 指定盘符播放,指定曲目播放 30级音量可调,5种EQ可调(NORMAL—POP—ROCK—JAZZ--CLASSIC) 指定路径播放(支持中英文)功能以及文件夹切换功能,指定时间段播放功能; 支持立体声输出播放,MP3格式,可以直推0.25W耳机喇叭; 支持电脑声卡控制,支持USB mass storage SOP16封装形式,外围简单; 宽泛的输入电源范围3V--5V输入,内置看门狗复位电路,性能稳定; 支持开发定制特殊功能;

电压基准源的选择

电压基准源的选择 在DAC和DAC里面都有电压基准源,它可以是芯片内部提供的基准也可以是外接的电压基准芯片。 基准源的类型 两种常见的基准源是齐纳和带隙基准源。齐纳基准源通常采用两端并联拓扑;带隙基准源通常采用三端串连拓扑。选择依据如下表: 并联结构的齐纳基准与串联结构的带隙基准的对照表。 表1.电压基准对照表 齐纳二极管缺点: 1)精确度达不到高精度应用的要求,而且,很难胜任低功耗应用的要求。例如: BZX84C2V7LT1,它的击穿电压,即标称基准电压是2.5V,在2.3V至2.7V 之间变化,即精确度为±8%,这只适合低精度应用。 2)齐纳基准源的另一个问题是它的输出阻抗。上例中器件的内部阻抗为5mA 时100Ω和1mA时600Ω。非零阻抗将导致基准电压随负载电流的变化而发生变化。选择低输出阻抗的齐纳基准源将减小这一效应。 所以在高精度应用的场合通常用带隙基准源。如14bit,210MSPS(刷新速率 UpDate Rate)的DAC9744内部就带一个2.1V的带隙基准源。

AD9744内部基准源配置 AD9744外部基准源配置 AD9744基准源配置管脚 (这个是AD9742的基准源配置管脚,AD9744的我怀疑错了,AD9742是与AD9744同系列的,一样管脚,只是AD9742是12bit,AD9744 16bit) REFLO——内部参考基准源地端。当使用内部1.2V参考基准源时,接AGND。当使用外部参考源时,接AVDD REFIO——参考基准源输入输出/输入端。 REFLO=AVDD,内部参考基准源无效,REFIO用作外部参考基准源输入。 REFLO=AGND=ACOM,REFIO用作内部基准源1.2V输出(100nA),REFIO 接0.1μF接ACOM(AGND)。

低压基准电压源电路的版图设计_毕业设计

摘要 集成电路版图是集成电路系统与集成电路工艺之间的中间重要环节,集成电路版图设计是指把一张经过设计的电路图转变为用于集成电路制造的光刻掩膜版图形,再经过相应的工艺加工制造出能够实际应用的集成电路芯片。版图设计的优劣直接影响电路生成的芯片的成品率及可靠性。而集成电路中的基准电压源可以在温度和电压不断变化的环境中保持相对稳定的参考电压,基准电压源的性能直接影响到整个系统的精度和性能。因此,低压基准电压源版图设计具有非常有意义。 本文基于Cadence软件版图设计平台,采用的是XiYue 3um 40V Bipolar Design Rule。设计的版图元件包括NPN、PNP、二极管、电阻、电容。本次设计的主要目的是熟练使用cadence版图设计软件,熟悉电路知识和版图设计规则,掌握基本元器件的内部结构及版图画法,学会布局布线及其优化,从而掌握版图设计方法。 本次设计的版图顺利通过DRC和LVS验证,表明本版图设计符合要求。 关键词 cadence软件,版图设计,TL431 Subject: The Layout Design of Low-voltage reference voltage source circui Specialty: Microelectronics Name:Yuan XiaoWei (Signature)____ Instructor:Liu ShuLin (Signature)____ Abstract The IC layout is in the middle of an essential link between the IC system

硬件选型手册07继电器

继电器 C5-M10 (TURCK RELECO) ③一般负载为纯感性与纯阻性之间,针对于设备启 停回路,触点容量可以大于220VDC/5A。EDPF-NT系统使用继电器主要作为DO卡输出的中间继电器使用,主要使用图尔克(TURCK RELECO德国)、欧姆龙(Omron 日本)、P&B KUEP(tyco 美国)和和泉(idec 日本)的继电器产品。 C5-M10①电力型继电器 直流大负载继电器,单极双闭合触点 内置磁吹灭弧 16A/500V AC1,10A@220V DC1 3.6A@110V DC13,2A@220V DC13② 触点指标 材质AgNi、AgSnO2 最大开关电流 16A 启动电流峰值40A 最大电压容量500V 最大交流负载4KV·A 技术说明 额定线圈功耗 2.4V·A(AC),1.3W(DC)吸合时间20ms 释放时间10ms 隔离:EN60947 pollution3,Gr C 500V 绝缘强度,线圈/触点4KV 注:①C5-M10只有一对常开接点,需要常闭接点时要选用RF-5610,C5-M10带指示灯的型 号为C5-M10X; ②AC1和DC1表示阻性负载, AC15和DC13表示感性负载。

C5-R20 (TURCK RELECO) C7-A20 (TURCK RELECO)C5-R20 磁保持继电器 具有两对可转换触点 16A/500V AC1,10A@30V DC1 6A@500V AC15,0.5A@110V DC1 触点指标 材质AgNi、AgSnO2最大开关电流10A 启动电流峰值30A 最大电压容量500V 最大交流负载 2.5KV·A 技术说明 吸合脉冲功耗 1.5V·A(W)释放脉冲功耗0.5V·A(W)吸合与释放触发的最小脉宽50ms 隔离:EN60947 pollution3,Gr C 500V 绝缘强度,线圈/触点4KV 绝缘强度,极与极间4KV C7-A20 具有两对可转换触点 10A/250V AC1,10A@30V DC1 6A@500V AC15,0.5A@110V DC1 触点指标 材质AgNi 最大开关电流 10A 启动电流峰值 30A 最大电压容量400V 最大交流负载 2.5KV·A 技术说明 线圈功耗 1.5V·A(AC),1W(DC)吸合时间16ms 释放时间8ms 隔离:EN60947 pollution3,Gr C 250V 绝缘强度,线圈/触点 2.5KV 绝缘强度,极与极间 2.5KV

带隙基准电压源设计解析

0 引言 基准电压是集成电路设计中的一个重要部分,特别是在高精度电压比较器、数据采集系统以及A/D和 D/A转换器等中,基准电压随温度和电源电压波动而产生的变化将直接影响到整个系统的性能。因此,在高精度的应用场合,拥有一个具有低温度系数、高电源电压抑制的基准电压是整个系统设计的前提。传统带隙基准由于仅对晶体管基一射极电压进行一阶的温度补偿,忽略了曲率系数的影响,产生的基准电压和温度仍然有较大的相干性,所以输出电压温度特性一般在20 ppm/℃以上,无法满足高精度的需要。 基于以上的要求,在此设计一种适合高精度应用场合的基准电压源。在传统带隙基准的基础上利用工作在亚阈值区MOS管电流的指数特性,提出一种新型二阶曲率补偿方法。同时,为了尽可能减少电源电压波动对基准电压的影响,在设计中除了对带隙电路的镜相电流源采用cascode结构外还增加了高增益反馈回路。在此,对电路原理进行了详细的阐述,并针对版图设计中应该的注意问题进行了说明,最后给出了后仿真结果。 l 电路设计 1.1 传统带隙基准分析 通常带隙基准电压是通过PTAT电压和CTAT电压相加来获得的。由于双极型晶体管的基一射极电压Vbe呈负温度系数,而偏置在相同电流下不同面积的双极型晶体管的基一射极电压之差呈正温度系数,在两者温度系数相同的情况下将二者相加就得到一个与温度无关的基准电压。 传统带隙电路结构如图1所示,其中Q2的发射极面积为Q1和Q3的m倍,流过Q1~Q3的电流相等,运算放大器工作在反馈状态,以A,B两点为输入,驱动Q1和Q2的电流源,使A,B两点稳定在近似相等的电压上。

假设流过Q1的电流为J,有: 由于式(5)中的第一项具有负温度系数,第二项具有正温度系数,通过调整m值使两项具有大小相同而方向相反的温度系数,从而得到一个与温度无关的电压。理想情况下,输出电压与电源无关。 然而,标准工艺下晶体管基一射极电压Vbe随温度的变化并非是纯线性的,而且由于器件的非理想性,输出电压也会受到电源电压波动的影响。其中,曲线随温度的变化主要取决于Vbe自身特性、集电极电流和电路中运放的失调电压,Vbe

带隙基准源电路和版图设计

论文题目:带隙基准源电路与版图设计 摘要 基准电压源具有相对较高的精度和稳定度,它的温度稳定性以及抗噪性能影响着整个系统的精度和性能。模拟电路使用基准源,或者是为了得到与电源无关的偏置,或者为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定,可见基准源是子电路不可或缺的一部分,因此性能优良的基准源是一切电子系统设计最基本和最关键的要求之一,而集成电路版图是为了实现集成电路设计的输出。本文的主要目的是用BiCMOS工艺设计出基准源电路的版图并对其进行验证。 本文首先介绍了基准电压源的背景发展趋势及研究意义,然后简单介绍了基准电压源电路的结构及工作原理。接着主要介绍了版图的设计,验证工具及对设计的版图进行验证。 本设计采用40V的0.5u BiCMOS工艺库设计并绘制版图。仿真结果表明,设计的基准电压源温度变化为-40℃~~85℃,输出电压为2.5V及1.25V。最后对用Diva 验证工具对版图进行了DRC和LVS验证,并通过验证,表明本次设计的版图符合要求。 关键字:BiCMOS,基准电压源,温度系数,版图 I

Subject: Research and Layout Design Of Bandgap Reference Specialty: Microelectronics Name: Zhong Ting (Signature)____Instructor: Liu Shulin (Signature)____ ABSTRACT The reference voltage source with relatively high precision and stability, temperature stability and noise immunity affect the accuracy and performance of the entire system. Analog circuit using the reference source, or in order to get the bias has nothing to do with power, or in order to be independent of temperature, bias, and its performance directly affects the performance and stability of the circuit shows that the reference source is an integral part of the sub-circuit, excellent reference source is the design of all electronic systems the most basic and critical requirements of one of the IC layout in order to achieve the output of integrated circuit design. The main purpose of this paper is the territory of the reference circuit and BiCMOS process to be verified. This paper first introduces the background of the trends and significance of the reference voltage source, and then briefly introduced the structure and working principle of the voltage reference circuit. Then introduces the layout design and verification tools to verify the design of the territory. This design uses a 40V 0.5u BiCMOS process database design and draw the layout.The simulation results show that the design of voltage reference temperature of -40 ° C ~ ~ 85 ° C, the output voltage of 2.5V and 1.25V. Finally, the Diva verification tool on the territory of the DRC and LVS verification, and validated, show that the territory of the design meet the requirements. Keywords: BiCMOS,band gap , temperature coefficient, layout II

步进电机驱动芯片选型指南

以下是中国步进电机网对步进电机驱动系统所做的较为完整的表述: 1、系统常识: 步进电机和步进电机驱动器构成步进电机驱动系统。步进电机驱动系统的性能,不但取决于步进电机自身的性能,也取决于步进电机驱动器的优劣。对步进电机驱动器的研究几乎是与步进电机的研究同步进行的。 2、系统概述: 步进电机是一种将电脉冲转化为角位移的执行元件。当步进电机驱动器接收到一个脉冲信号(来自控制器),它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它 的旋转是以固定的角度一步一步运行的。 3、系统控制: 步进电机不能直接接到直流或交流电源上工作,必须使用专用的驱动电源(步进电机驱动器)。控制器(脉冲信号发生器)可以通过控制脉冲的个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 4、用途: 步进电机是一种控制用的特种电机,作为执行元件,是机电一体化的关键产品之一,随着微电子和计算机技术的发展(步进电机驱动器性能提高),步进电机的需求量与日俱增。步进电机在运行中精度没有积累误差的特点,使其广泛应用于各种自动化控制系统,特别是开环控制系统。 5、步进电机按结构分类: 步进电机也叫脉冲电机,包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)等。 (1)反应式步进电机: 也叫感应式、磁滞式或磁阻式步进电机。其定子和转子均由软磁材料制成,定子上均匀分布的大磁极上装有多相励磁绕组,定、转子周边均匀分布小齿和槽,通电后利用磁导的变化产生转矩。一般为三、四、五、六相;可实现大转矩输出(消耗功率较大,电流最高可达20A,驱动电压较高);步距角小(最小可做到六分之一度);断电时无定位转矩;电机内阻尼较小,单步运行(指脉冲频率很低时)震荡时间较长;启动和运行频率较高。 (2)永磁式步进电机: 通常电机转子由永磁材料制成,软磁材料制成的定子上有多相励磁绕组,定、转子周边没有小齿和槽,通电后利用永磁体与定子电流磁场相互作用产生转矩。一般为两相或四相;输出转矩小(消耗功率较小,电流一般小于2A,驱动电压12V);步距角大(例如7.5度、15度、22.5度等);断电时具有一定的保持转矩;启动和运行频率较低。 (3)混合式步进电机: 也叫永磁反应式、永磁感应式步进电机,混合了永磁式和反应式的优点。其定子和四相反应式步进电机没有区别(但同一相的两个磁极相对,且两个磁极上绕组产生的N、S极性必须相同),转子结构较为复杂(转子内部为圆柱形永磁铁,两端外套软磁材料,周边有小齿和槽)。一般为两相或四相;须供给正负脉冲信号;输出转矩较永磁式大(消耗功率相对较小);步距角较永磁式小(一般为1.8度);断电时无定位转矩;启动和运行频率较高;是目前发展较快的一种步进电机。 6、步进电机按工作方式分类:可分为功率式和伺服式两种。 (1)功率式:输出转矩较大,能直接带动较大负载(一般使用反应式、混合式步进电机)。(2)伺服式:输出转矩较小,只能带动较小负载(一般使用永磁式、混合式步进电机)。 7、步进电机的选择: (1)首先选择类型,其次是具体的品种与型号。

TRINAMIC驱动芯片选型手册2019版

选型手册 2019集成电路我们将数字信号转化为物理运动

关于我们 拥有数以十年构筑高可靠性嵌 入式构架的行业经验 Trinamic 是一家在嵌入式电机运动控制领域的全球领导企业。 我们的芯片和微控制系统将数字信号和现实物理世界联系在 一起。 我们的工程师是解决现实世界问题的专家, 他们几十年 的经验体现在我们的每一个产品中。Trinamic代表了精密、可 靠和高效。 2 Trinamic 选型手册

电动机是日常生活中必不可少的一部分,近年来,这些设备的使用量持续上升。中产阶级的不断壮大,加上家庭自动化程度的提高,以及家庭周围电动马达驱动的 产品数量的增加,是经济增长的主要动力” 使用TRINAMIC技术来提升您的产品品质 人类生活环境对自动化不断增加的需求趋势导致了控制运动系统的爆炸式增长。 产品开发人员必须处理日益复杂的系统,而且很难成为所有领域的专家。Trinamic通过一种基于API的方法解决了这一问题,帮住用户缩短其产品上市时间,节约了成本,并最终提 高产品性能。 Trinamic产品服务于多个市场,包括实验室自动化,工厂自动化,半导体设备,纺织设备,机器人,金融设备......等对可靠性要求比较 高的场合。 Bryan Turnbough, IHS分析师。 我们最新的产品为高速增长的新兴市场,如3D打印,医疗泵和自动化移液提升了新的性能标准。 为什么世界上最具前瞻性的公司一再选择Trinamic? 诚然, 有些人选择我们是因为我们的产品性能优越。然而,我们的大多数客户选择我们,是因为我们对运动控制的专注 为用户提供了深入的应用知识,并使我们的客户能够在他们的特定领域更快地创新。 Trinamic 选型手册 3

带隙基准设计实例

带隙基准设计实例-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

带隙基准电路的设计 基准电压源是集成电路中一个重要的单元模块。目前,基准电压源被广泛应用在高精度比较器、A/ D 和D/ A 转换器、动态随机存取存储器等集成电路中。它产生的基准电压精度、温度稳定性和抗噪声干扰能力直接影响到芯片,甚至整个控制系统的性能。因此,设计一个高性能的基准电压源具有十分重要的意义。自1971 年Robert Widla 提出带隙基准电压源技术以后,由于带隙基准电压源电路具有相对其他类型基准电压源的低温度系数、低电源电压,以及可以与标准CMOS 工艺兼容的特点,所以在模拟集成电路中很快得到广泛研究和应用。 带隙基准是一种几乎不依赖于温度和电源的基准技术,本设计主要在传统电路的基础上设计一种零温度系数基准电路。 一 设计指标: 1、 温度系数:ref F V TC V T ?=? 2、 电压系数:ref F dd V VC V V ?=? 二 带隙基准电路结构:

三 性能指标分析 如果将两个具有相反温度系数(TCs )的量以适合的权重相加,那么结果就会显示出零温度系数。在零温度系数下,会产生一个对温度变化保持恒定的量V REF 。 V REF = a 1V BE + a 2V T ㏑(n) 其中, V REF 为基准电压, V BE 为双极型三极管的基极-发射极正偏电压, V T 为热电压。对于a 1和a 2的选择,因为室温下/ 1.5m /BE T V V K ??≈-,然而/0.087m /T V T V K ??≈+,所以我们可以选择令a 1=1,选择a 2lnn 使得2(ln )(0.087/) 1.5/n mV K mV K α=,也就是2ln 17.2n α≈,表明零温度系数的基准为: 17.2 1.25REF BE T V V V V ≈+≈ 对于带隙基准电路的分析,主要是在Cadence 环境下进行瞬态分析、dc 扫描分析。 1、瞬态分析 电源电压Vdd=5v 时,Vref ≈,下图为瞬态分析图。 2.电压系数的计算: 下图为基准电压Vref 随电源电压Vdd 变化dc 分析扫描。 扫描电压范围为:3到6v ,基准电压Vref 为,保持基本不变。

电源类芯片选型指南

MOSFET驱动器 TPS28225DR 特征: 8引脚高频4-amp库同步MOSFET驱动器 广泛的门驱动电压:4.5V至8.8V 最好的效率在7v到8V 宽功率系统输入电压:3v到27v 宽输入PWM信号:2.0v到13.2v振幅 能够驱动MOSFET开关的电流>=每相40A 高频操作:14ns传播延迟和10ns的上升/下降时间允许FSW - 2MHz 可小于30 ns输入PWM脉冲的传播 低侧驱动器接收器电阻(0.4?)防止相关直通电流DV / DT 三态PWM输入为了关闭功率级 节省空间的启用(输入)和电源良好(输出)在相同的引脚信号 热关机 欠压保护 内部自举二极管 经济的SOIC - 8和热增强

3毫米x 3毫米DFN 8包 高性能的替代流行的三态输入驱动器 应用: 多相DC-DC转换器的模拟或数字控制桌面和服务器Vrms和evrds 笔记本电脑/笔记本管理 用于隔离电源的同步整流 典型应用

对于互补驱动MOSFET同步整流驱动器 多相同步降压转换器

输入电源电压范围VDD: 启动电压Vboot: 相电压:DC: 脉冲<400ns,E=20uJ 输入电压范围, 输出电压范围 输出电压范围 ESD额定值,HBM ESD额定值,HBM的ESD额定值,CDM

连续总功耗见耗散评级表 经营虚拟结温范围,Tj 工作环境温度范围,TA 铅的温度 TPS40210, 适用于升压,反激式,SEPIC,和LED 驱动器拓扑 宽输入电压:4.5 V至52 V 振荡器频率可调 固定频率电流模式控制 内部斜率补偿 集成的低侧驱动器 可编程闭环软启动 过流保护 700 mV参考(tps40210) 低电流禁用功能

低电压带隙基准电压源设计

低电压带隙基准电压源设计 基准电压是数模混合电路设计中一个不可缺少的参数,而带隙基准电压源又是产生这个电压的最广泛的解决方案。在大量手持设备应用的今天,低功耗的设计已成为现今电路设计的一大趋势。随着CMOS 工艺尺寸的下降,数字电路的功耗和面积会显著下降,但电源电压的下降对模拟电路的设计提出新的挑战。传统的带隙基准电压源结构不再适应电源电压的要求,所以,新的低电压设计方案应运而生。本文采用一种低电压带隙基准结构。在TSMC0.13μmCMOS工艺条件下完成,包括核心电路、运算放大器、偏置及启动电路的设计,并用Cadence Spectre对电路进行了仿真验证。 1 传统带隙基准电压源的工作原理 传统带隙基准电压源的工作原理是利用两个温度系数相抵消来产生一个零温度系数的直流电压。图1所示是传统的带隙基准电压源的核心部分的结构。其中双极型晶体管Q2的面积是Q1的n倍。 假设运算放大器的增益足够高,在忽略电路失调的情况下,其输入端的电平近似相等,则有: VBE1=VBE2+IR1 (1)

其中,VBE具有负温度系数,VT具有正温度系数,这样,通过调节n和R2/R1,就可以使Vref得到一个零温度系数的值。一般在室温下,有: 但在0.13μm的CMOS工艺下,低电压MOS管的供电电压在1.2 V左右,因此,传统的带隙基准电压源结构已不再适用。 2 低电源带隙基准电压源的工作原理 低电源电压下的带隙基准电压源的核心思想与传统结构的带隙基准相同,也是借助工艺参数随温度变化的特性来产生正负两种温度系数的电压,从而达到零温度系数的目的。图2所示是低电压下带隙基准电压源的核心部分电路,包括基准电压产生部分和启动电路部分。

基准电压源设计及选用介绍

基准电压源设计及选用介绍 通常我们选用稳压二极管作为基准电压源,这是最简单、也是最传统的方法,按照所需电压值选一个对应型号的稳压管当然可以,但选得是否合适、是否最佳,却大有讲究。 最基本的电压基准源电路如图1(a)、稳压管的击穿特性如图1(b)所示。由 图1(b)可见,不同稳压值的击穿特性并不相同,4V以下稳压管的击穿特性非常“软”(动态电阻可高达100Ω以上),其端电压随通过电流的不同、变化很大; 而6V以上的特性就非常“硬”、尤以8V左右的特性最硬(动态电阻约4~15Ω),击穿电压越高动态电阻也越大,例如30V稳压管的动态电阻约为50~100Ω。 环境温度变化时稳压管的击穿特性还会产生漂移。6V以下的稳压管具有负 温度系数、温度升高时稳压值减小。击穿电压越低则负温度系数越大,例如3V 稳压管的温度系数约为-1.5mV/℃;6V以上为正温度系数、温度升高时稳压值增大,击穿电压越高的温度系数越大,例如30V稳压管的温度系数约为33mV/℃; 而6V左右稳压管的温度系数最小、且在正负之间变化。因而在允许情况下应尽可能选用击穿特性较硬、温度系数最小的6V稳压管。这类稳压管的另一个缺点是同一型号管子其击穿电压的离散性很大,例如2CW1为7~8.5V、2CW5 为11.5~14V,要想挑出合适电压值的管子是非常困难的。但如果对稳压值要求不高、电路又比较简单的场合,选用普通稳压管还是合适的。 如需要很低的基准电压,要求不高、而又不希望增加成本时,也可利用二极管的正向特性做为约0.7V的稳压管使用。笔者曾用图示仪对大量二极管的正向特性做过观察,发现稳压管的正向特性相对其它二极管而言最硬,整流管次之、开关管最差,因此可用稳压管正向串联的办法组成0.7V、1.4V、2.1V等的低压 基准源,还可以通过改变通过电流的办法微调其端电压值。其温度系数约为-2mV/℃左右。 另一类常用的电压基准是采用半导体集成工艺生产的“基准二极管”和“精密电压基准”。“基准二极管”是一个双端单片式器件,其电特性和使用方法等同于稳压二极管,由于设计时已经考虑了动态电阻和温度系数问题,因而其性能(尤其是低电压器件)要比普通稳压管优越得多。例如LM103基准二极管,击穿电

常用小型稳压LDO等芯片推荐参考.

目录 产品类型系列页码 1.电压调整器(LDO ME6201 1 ME6206 2 ME6211 3 ME6219 4 ME1084 5 ME1085 6 ME1117 7 ME3206 8 ME6401 9 2.升压DC/DC转换器MEXX1C 10 MEXX1D 11 ME2100 12 ME2101 13 ME2106 14

ME2108 15 ME2109 16 ME2111 17 ME2115 18 ME2206 19 ME2209 20 3.降压DC/DC转换器ME3101 21 ME3102 22 ME3110 23 4.功率MOSFET MEM2301 24 MEM2303 25 MEM2307 26 MEM2309 27 MEM2311 28 MEM2302 29 MEM2306 30 MEM2308 31 MEM2310 32 MEM2316 33

MEM2318 34 5.音频功率放大器ME5890 35 ME5990 36 ME5101 37 ME5103 38 6.其他 ME2801 39 ME2802 40 ME4054 41 ME7660 42 ME7661 43 MEL71XX 44 选型指南电压调整器(LDO 系列输出 电流 输入 电压 输出电压精度

静态 电流 纹波抑制比 (1KHz 封装状态 ME6201 100mA -18V 3.0-5.0V ±2% 3uA 60dB TO92/SOT89 量产ME6206 300mA -6.5V 1.2-5V ±2% 8uA 50dB SOT23/SOT89 量产 ME6211 500mA -6.5V 1.2-5V ±2% 50uA 75dB SOT-23-5LL/ SOT-89/DFN 量产 ME6219 300mA -6.5V 1.2-5V ±2% 65uA 62dB SOT-23-5LL 量产ME1084 5A -25V 3.3-12V ±2% 5mA 50dB TO220/TO263 2009/Q3 ME1085 3A -25V 3.3-12V ±2% 5mA 50dB TO220/TO263 2009/Q3 ME1117 800mA -20V 1.25-12V ±2% 2mA 50dB SOT223/TO252 2009/Q2 ME3206 300mA -6.5V 1.2-5V ±2% 16uA 50dB SOT-23-5LL 量产ME6401 200mA -6.5V 1.2-5V ±2% 130uA 62dB SOT-23-6LL 量产 升压DC/DC转换器 系列控制 模式 输入 电压

常用大功率D类音频功放IC芯片选型说明

常用大功率D类音频功放IC芯片选型说明传统大功率功放芯片,一般都是模拟的功放芯片,象大家都熟悉的TDA2030、LM1875、TDA1521等。这些功放除了音质会好一点,其它的对于现在的D类功放来说,都是缺点。如今随着技术的进步,D类功放的音质技术早已突破,比传统功放芯片差不了多少。以HX8330为代表的D类功放,是替代这些优秀的前辈产品不二之选。 二、模拟功放的缺点: ●电源供电一般都要用正负双电源供电。 ●大部分都是插件式。 ●因本身发热严重,需要带一块沉重的铝片散热。 ●占用PCB板和机壳的空间很大。 ●外围元件多,特别是电解电容也用的多。 三、HX8330概述: HX8330是一款30W高效D类音频功率放大电路,主要应用于音响等消费类音频设备。此款电路可以驱动低至4Ω负载的立体声扬声器,功效高达90%,使得在播放音乐时不需要额外的散热器。其特点如下: ●15W功率输出(12V电压,4Ω负载,TND+N=10%); ●30W功率输出(16V电压,4Ω负载,TND+N=10%); ●效率高达90%,无需散热片; ●较大的电源电压范围8V~20V; ●免滤波功能,输出不需要电感进行滤波; ●输出管脚方便布线布局; ●良好短路保护和具备自动恢复功能的温度保护; ●良好的失真; ●增益36dB; ●差分输入; ●简单的外围设计;QQ:1207435600 ●封装形式:ESOP8。 四、应用领域: ●拉杆音箱: ●大功率喊话器: ●落地音箱: ●蓝牙音箱 ●扩音器

五、芯片对比分析: 六、 功能框图与引脚说明:

七、应用原理图: 如上图,可以很清晰的看出硬件的外围电路是极其简单的,bom成本低廉 八、HX8330优势说明: 1、外围元件少,电路简单, 2、效率高达90%,无需散热片 3、占用PCB板空间小 4、16V供电时,功率可以到达30W 九、总结: 我写这边文章的目的,并不是想要抵扉传统的模拟功放。只是想告诉各位同仁,在如今市场竞争激烈的环境下,一个成品的利润能多铮几毛钱,都是一件不容易的事。我们在选择功放的时候,如果不是做HIFI级别的音箱,音质要求不是很高的情况下。选择合适的D类功放也是一种有效降低生产成本的方法。 IPET

带隙基准源电路与版图设计

带隙基准源电路与版图设计

论文题目:带隙基准源电路与版图设计 摘要 基准电压源具有相对较高的精度和稳定度,它的温度稳定性以及抗噪性能影响着整个系统的精度和性能。模拟电路使用基准源,或者是为了得到与电源无关的偏置,或者为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定,可见基准源是子电路不可或缺的一部分,因此性能优良的基准源是一切电子系统设计最基本和最关键的要求之一,而集成电路版图是为了实现集成电路设计的输出。本文的主要目的是用BiCMOS工艺设计出基准源电路的版图并对其进行验证。 本文首先介绍了基准电压源的背景发展趋势及研究意义,然后简单介绍了基准电压源电路的结构及工作原理。接着主要介绍了版图的设计,验证工具及对设计的版图进行验证。 本设计采用40V的0.5u BiCMOS工艺库设计并绘制版图。仿真结果表明,设计的基准电压源温度变化为-40℃~~85℃,输出电压为2.5V及1.25V。最后对用Diva 验证工具对版图进行了DRC和LVS验证,并通过验证,表明本次设计的版图符合要求。 关键字:BiCMOS,基准电压源,温度系数,版图

Subject: Research and Layout Design Of Bandgap Reference Specialty: Microelectronics Name: Zhong Ting (Signature)____Instructor: Liu Shulin (Signature)____ ABSTRACT The reference voltage source with relatively high precision and stability, temperature stability and noise immunity affect the accuracy and performance of the entire system. Analog circuit using the reference source, or in order to get the bias has nothing to do with power, or in order to be independent of temperature, bias, and its performance directly affects the performance and stability of the circuit shows that the reference source is an integral part of the sub-circuit, excellent reference source is the design of all electronic systems the most basic and critical requirements of one of the IC layout in order to achieve the output of integrated circuit design. The main purpose of this paper is the territory of the reference circuit and BiCMOS process to be verified. This paper first introduces the background of the trends and significance of the reference voltage source, and then briefly introduced the structure and working principle of the voltage reference circuit. Then introduces the layout design and verification tools to verify the design of the territory. This design uses a 40V 0.5u BiCMOS process database design and draw the layout.The simulation results show that the design of voltage reference temperature of -40 °C ~ ~ 85 °C, the output voltage of 2.5V and 1.25V. Finally, the Diva verification tool on the territory of the DRC and LVS verification, and validated, show that the territory of the design meet the requirements. I

相关主题