搜档网
当前位置:搜档网 › 2008年中国西部数学奥林匹克解答

2008年中国西部数学奥林匹克解答

2008年中国西部数学奥林匹克解答
2008年中国西部数学奥林匹克解答

2008年中国西部数学奥林匹克

(2008年11月1日 8:00-12:00)

贵州省贵阳市

每题15分

1. 实数数列}{n a 满足:1,00≠a ,011a a -=,)(11n n 1n a a a --=+,n=1,2,…. 证明:对任意正整数n ,都有 )1

11(

n

1010a a a a a a n +++ =1. 证明:由条件可知1-a n+1=a n (1-a n )=a n a n-1(1-a n-1)=…=a n …a 1(1-a 1)=a n …a 1a 0,即a n+1= 1-a 0a 1…a n ,n=1,2,…. 下面对n 归纳来证明

当n=1时,命题显然成立.假设n =k 时,命题成立,对n=k+1的情形有 )1111(

1

k k 101k 10++++++a a a a a a a =k 2101k

10k 210)1

11(

a a a a a a a a a a a a k +++++ =k 2101a a a a a k ++=1. 故命题对n=k+1成立.

所以,对任意正整数n,

2. 在ABC ?中,AC AB =,其 内切圆⊙I 切边AB CA BC ,, 于点F E D ,,,P 为弧EF (不含点D 的弧)上一点. 设线段

BP 交⊙I 于另一点Q ,直线

EQ EP ,分别交直线BC 于点N M ,.证明:

(1) M B F P ,,,四点共圆; (2)

BP

BD

EN EM =. 证明: (1) 连EF,由条件可知EF//BC,故

∠ABC=∠AFE=∠AFP+∠PFE=∠PEF+∠PFE=180?-∠FPE. 所以,P,F,B,M 四点共圆.

(2) 利用正弦定理,EF//BC 及P,F,B,M 四点共圆可知

EMN ENM EN EM ∠∠=sin sin =)sin(sin PFB FEN

∠-∠π=PFB FPB ∠∠sin sin =BP

BF . 结合BF=BD 即可知命题成立.

3.设整数2≥m ,m 21,,a a a ,都是正整数.证明:存在无穷多个正整数n ,使得数n n n m a a a ?++?+?m 2121 都是合数.

证明:取数a 1+2a 2+…+ma m 的质因子p,由Fermart 小定理可知对任意1≤k ≤m,都有k p ≡k(mod p),所以,对任意正整数n,都有

a 1?n

p 1+a 2?n

p 2+…+a m ?n

p m ≡a 1+2a 2+…+ma m ≡0(mod p), 从而,数a 1?n

p 1+a 2?n

p 2+…+a m ?n

p m (n=1,2,…)都是合数.

4.设整数2≥m ,a 为正实数,b 为非零实数,数列}

{n x 定义如下:b x =1, ,2,1,1=+=+n b x a x m

n n .证明:

(1) 当b <0且m 为偶数时,数列}{n x 有界的充要条件是1-m ab ≥-2; (2) 当b <0且m 为奇数,或b >0时,数列}

{n x 有界的充要条件是1

-m ab

≤m

m m m 1

)1(--.

证明:(1) 当b<0且m 为偶数时,如果ab m-1<-2,那么首先有ab m +b>-b>0,于是a(ab m +b)m +b>ab m +b>0,即x 3>x 2>0.利用ax m +b 在(0,+∞)上单调增可知数列}

{n x 的每一项都比前一项大,并且从第二项起每一项都大于-b. 考察数列}

{n x 中的连续三项x n ,x n+1,x n+2,n=2,3,…,我们有

x n+2-x n+1=a(x n+1m -x n m )=a(x n+1-x n )(x n+1m-1+x n+1m-2x n +…+x n m ) >amx n m-1(x n+1-x n )>am(-b)m-1(x n+1-x n )>2m(x n+1-x n )>x n+1-x n , 这表明数列}

{n x 中相邻两项的差距越来越大,因此是无界的. 若ab m-1≥-2,我们用归纳法证明数列}{n x 的每一项都落在区间[b,-b]中. 第一项b 已经在区间[b,-b]中,如果某项x n 满足b ≤x n ≤-b ,那么0≤x n m ≤b m ,从而b=a ?0m +b ≤x n+1≤ab m +b ≤-b.

所以,此时数列}

{n x 有界的充要条件为ab m-1≥-2. (2) 当b>0时,数列}{n x 的每一项都是正数.我们先来证明,数列{x n }有界的充要条件是方程ax m +b=x 有正实根.

如果方程ax m +b=x 无正实根,那么函数p(x)= ax m +b-x 在(0,+∞)上的最小值大于0,不妨设其为t .那么对于数列中的任意连续两项x n 与x n+1,有x n+1-x n =a m n x -x n +b ,故数列}{n x 中后一项至少比前一项大t ,因而此时无界. 如果ax m +b=x 有正实根,设其一正根为x 0,下面利用归纳法证明数列}{n x 中的每一项都小于x 0.首先第一项b 显然小于x 0,假设某项x n

在[0,+∞)上是增函数知x n+1=a m n x +b

而ax m +b=x 有正根的充要条件是ax m-1+x

b

在(0,+∞)上的最小值不大于1,

而ax m-1+x

b

的最小值可以由平均值不等式给出,即

ax

m-1

+x b =ax m-1

+x

m b x m b )1()1(-++- ≥m m m m ab m 1

1)1(---. 此时数列{x n }有界的充要条件是m m m m ab m 11)1(---≤1,即1

-m ab ≤m

m m m 1)1(--.

当b<0,m 为奇数时,令y n =-x n ,则y 1=-b>0,y n+1=ay n m +(-b),注意到{x n }有界的充要条件是{y n }有界,故可转化为上述情形.综上可知(2)成立.

2008年中国西部数学奥林匹克

第二天

(2008年11月2日 8:00-12:00)

贵州省贵阳市

每题15分

5. 在一直线上相邻两点的距离都等于1的四个点上各有一只青蛙,允许任意一只青蛙以其余三只青蛙中的某一只为中心跳到其对称点上.证明:无论跳动多少次后,四只青蛙所在的点中相邻两点之间的距离不能都等于2008. 证明:将青蛙放在数轴上讨论,不妨设最初四只青蛙所在的位置为1,2,3,4.注意到,处于奇数位置上的青蛙每次跳动后仍处在奇数位置上,处于偶数位置上的青蛙每次跳动后仍处在偶数位置上.因此,任意多次跳动后,四只青蛙中总是两只处于奇数位置上,另两只处在偶数位置上.如果若干次跳动后,青蛙所在位置中每相邻两只之间的距离都是2008,则要求它们处在具有相同奇偶性的位置上,不可能.

6. 设)1,0(∈z y x ,,,满足:

2111=-+-+-xy

z

zx y yz x , 求xyz 的最大值.

解: 记u=6xyz ,则由条件及均值不等式可知 2u 3=2xyz =

-)33(3

1x x ≤

∑-+2)33(31

x x =233-3

1

(x+y+z) ≤

233-33xyz ?=2

3

3-3u 2.

故4u 3+23u 2-33≤0,即(2u-3)(2u 2+23u+3)≤0,所以,u ≤2

3

.依此可知,xyz ≤6427,等号在x=y=z=43时可以取到.因此,所求最大值为64

27.

7. 设n 为给定的正整数,求最大的正整数k ,使得存在三个由非负整数组成的k 元集}{21k x x x A ,,, =,}{21k y y y B ,,, =和}{21k z z z C ,,, =满足:对任意1≤j ≤k ,都有n z y x j j j =++. 解:由条件可知kn ≥∑=++k

i i i i z y x 1

)(≥3∑-=1

k i i =

2)1(3-k k ,因此,k ≤[3

2n

]+1. 下面给出k=[

3

2n

]+1的例子 若n=3m,对1≤j ≤m+1,令x j =j-1,y j =m+j-1,z j =2m-2j+2;对m+2≤j ≤2m+1,令x j =j-1,y j =j-m-2,z j =4m-2j+3即可;

若n=3m+1, 对1≤j ≤m,令x j =j-1,y j =m+j,z j =2m-2j+2;对m+1≤j ≤2m,令x j =j+1,y j =j-m-1,z j =4m+1-2j;而x 2m+1=m,y 2m+1=2m+1,z 2m+1=0即可;

若n=3m+2, 对1≤j ≤m+1,令x j =j-1,y j =m+j,z j =2m-2j+3;对m+2≤j ≤2m+1,令x j =j,y j =j-m-2,z j =4m-2j+4;而x 2m+2=2m+2,y 2m+2=m,z 2m+2=0即可. 综上可知,k 的最大值为[3

2n

]+1.

8. 设P 为正n 边形n A A A 21内的任意一点,直线P A i 交正n 边形n A A A 21的边界于另一点i B ,i =1,2,…,n .证明:∑∑==≥n

i i n

i i PB PA 1

1

证明: 记t=[

2

n

]+1,并设A n+j =A j ,j=1,2…,n. 注意到,正n 边形的任意一个顶点与边界上任意一点之间的距离不大于其最长的对角线的长度d,因此,对任意1≤i ≤n,都有 A i P+PB i =A i B i ≤d ①

另一方面,由三角形两边之和大于第三边可知,对任意1≤i ≤n,都有 A i P+PA i+t ≥A i A i+t =d ②

对①,②分别对i=1,2,…,n 求和可得

∑∑==++≥≥+n

i i i n

i t i i PB P A nd PA P A 1

1

)()(,

即2∑∑∑===+≥n

i i n i i n i i PB P A PA 1

1

1

,依此可知命题成立.

2007年中国西部数学奥林匹克试题及答案

2007年中国西部数学奥林匹克 第一天 11月10日 上午8:00-12:00 每题15分 一、已知{}1,2,3,4,5,6,7,8T =,对于,定义为A 中所有元素之和,问:T 有多少个非空子集A ,使得为3的倍数,但不是5的倍数? ,A T A ?≠?()S A ()S A 二、如图,⊙与⊙相交于点C ,D ,过点D 的一条直线分别与⊙,⊙相交于点A ,B ,点P 在⊙的弧AD 上,PD 与线段AC 的延长线交于点M ,点Q 在 ⊙的弧BD 上,QD 与线段BC 的延长线交于点N .O 是△ABC 的外心.求证: 的充要条件为P ,Q ,M ,N 四点共圆. 1O 2O 1O 2O 1O 2O OD MN ⊥ 三、设实数a ,b ,c 满足3a b c ++=.求证: 2221115411541154114 a a b b c c ++?+?+?+1≤. 四、设O 是△ABC 内部一点.证明:存在正整数p ,q ,r ,使得 12007 p OA q OB r OC ?+?+?

广西 南宁 第二天 11月11日 上午8:00-12:00 每题15分 五、是否存在三边长都为整数的三角形,满足以下条件:最短边长为2007,且最大的角等于最小角的两倍? 六、求所有的正整数n ,使得存在非零整数12,,,n x x x y ,L 2,n ,满足 ???=++=++. ,022211ny x x x x n n L L 七、设P 是锐角三角形ABC 内一点,AP ,BP ,CP 分别交边BC ,CA ,AB 于点D ,E ,F ,已知△DEF ∽△ABC ,求证:P 是△ABC 的重心. 八、将n 个白子与n 个黑子任意地放在一个圆周上.从某个白子起,按顺时针方向依次将白子标以1,.再从某个黑子起,按逆时针方向依次将黑子标以1,. 证明:存在连续个棋子(不计黑白), 它们的标号所成的集合为{,L 2,,n L n }1,2,,n L .

第38届全俄数学奥林匹克竞赛

第38届全俄数学奥林匹克竞赛 九年级 9.1 a1,a2,?,a11是不小于2的互异正整数,满足:a1+a2+?+ a11=407。是否存在正整数n,使得当n分别除以a1,a2,?,a11,4a1,4a2,?,4a11这22个数时所得到的余数的和等于2012? 9.2 已知:在正2012边形的顶点中,存在k个顶点,使得以这k个顶点为顶点的凸k多边形的任意两条边不平行。求k的最大值。 9.3 ABCD是一个平行四边形,∠A为钝角。H是点A向直线BC的垂直投影。△ABC过顶点C的中线的延长线交其外接圆于K。求证:K,H,C,D四点共圆。 9.4 正实数a1,a2,?,a n,k满足:a1+a2+?+a11=3k,a12+a22+?+a n2=3k2,a13+a23+?+a n3>3k3+k。求证:在a1,a2,?,a n中存在两个数使得它们的差的绝对值大于1。 9.5 101个智者围坐一圈开圆桌会议讨论地球和木星谁绕谁转的问题。开始及随后的每个时刻每个智者持有地球绕木星转或木星绕地球转这两种观点之一。各智者按一下规则每分钟一次同时宣布自己的观点:除了第一次以外,如果在上一分钟时一个智者的相邻两人(左右各一人)与其观点都不相同,则智者改变自己的观点,否则不改变自己的观点。求证:若干分钟后,所有的人都不再改变自己的观点。 9.6 A1,B1,C1分别是△ABC的边BC,CA,AB上的点,满足AA1?AA1=AA1?AA1=AA1?AA1。I A,I B和I C分别是△AB1C1,

A1BC1和A1B1C的内心。求证△I A I B I C的外心和△ABC的内心重合。9.7 开始时黑板上写着10个连续正整数。对黑板上的数进行如下操作:任取黑板上的两个数a和b,将他们用数a2?2011b2和ab替换。经过若干次上述操作后,黑板上开始时的10个数已全部被替换掉,问此时在黑板上是否可能还是10个连续的正整数? 9.8 城市里有若干路公共汽车线。已知任两路公共汽车线恰有一个公共的车站;任一路公共汽车线至少有4站。求证:可以将所有的车站分成不交的两组,使得任意一路公共汽车线含每组中至少一站。

2020年中国数学奥林匹克试题和详细解答word版

2020年中国数学奥林匹克试题和详细解答word 版 一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分不是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分不作OE ⊥AB ,OF ⊥CD ,垂足分不为E ,F ,线段BC ,AD 的中点分不为M ,N . 〔1〕假设A ,B ,C ,D 四点共圆,求证:EM FN EN FM ?=?; 〔2〕假设 EM FN EN FM ?=?,是否一定有A ,B ,C ,D 四点共圆?证明你的结论. 解〔1〕设Q ,R 分不是OB ,OC 的中点,连接 EQ ,MQ ,FR ,MR ,那么 11 ,22EQ OB RM MQ OC RF ====, 又OQMR 是平行四边形,因此 OQM ORM ∠=∠, 由题设A ,B ,C ,D 四点共圆,因此 ABD ACD ∠=∠, 因此 图1 22EQO ABD ACD FRO ∠=∠=∠=∠, 因此 EQM EQO OQM FRO ORM FRM ∠=∠+∠=∠+∠=∠, 故 EQM MRF ???, 因此 EM =FM , 同理可得 EN =FN , 因此 EM FN EN FM ?=?. 〔2〕答案是否定的. 当AD ∥BC 时,由于B C ∠≠∠,因此A ,B ,C ,D 四点不共圆,但现在仍旧有 EM FN EN FM ?=?,证明如下: 如图2所示,设S ,Q 分不是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,那么 11 ,22 NS OD EQ OB ==, C B

因此 NS OD EQ OB =.①又 11 , 22 ES OA MQ OC ==,因此 ES OA MQ OC =.② 而AD∥BC,因此 OA OD OC OB =,③ 由①,②,③得NS ES EQ MQ =. 因为2 NSE NSA ASE AOD AOE ∠=∠+∠=∠+∠, ()(1802) EQM MQO OQE AOE EOB EOB ∠=∠+∠=∠+∠+?-∠ (180)2 AOE EOB AOD AOE =∠+?-∠=∠+∠, 即NSE EQM ∠=∠, 因此NSE ?~EQM ?, 故 EN SE OA EM QM OC ==〔由②〕.同理可得, FN OA FM OC =, 因此EN FN EM FM =, 从而EM FN EN FM ?=?. C B

第40届俄罗斯数学奥林匹克九年级试题(无答案)

第40届俄罗斯数学奥林匹克(九年级) 1. 放置了99个正整数. 已知任意两个相邻的数相差1或相差2或一个为另一个的2倍. 证明:这99个数中,有3的倍数. 2. 已知a b ,为两个不同的正整数. 问: ()()()()()()222222a a ab a b a b a b b b ++++++,,,,, 这六个数中,至多有多少个完全平方数? 3. 令A 是由一个凸n 边形的若干对角线组成的集合. 若集合A 中的一条对角线恰有另外一条对角线与其相交在凸n 边形内部,则称该对角线为“好的”. 求好对角线条数的最大可能值. 4. 在锐角ABC △中,已知AB BC >,M 为边AC 的中点,圆Γ为ABC △的外接圆,圆Γ在点A C ,处的切线交于点P ,线段BP 与AC 交于点S ,AD 为ABP △的高,CSD △的外接圆与圆Γ交于点K (异于点C ). 证明:90CKM ∠=?. 5. 设正整数1N >,m 表示N 的小于N 的最大因数. 若N m +为10的幂,求N .

6. 已知内接于圆Γ的梯形ABCD 两底分别为AB CD ,,过点C D ,的一个圆1Γ与线段 CA CB ,分别交于点1A (异于点C ),1B (异于点D ). 若22A B ,为11A B ,分别关于CA CB ,中点的对称点,证明:22A B A B ,,,四点共圆. 7. 麦斯国中央银行决定发行面值为()01k k α=,,的硬币. 央行行长希望能够找到一个正 实数α,使得对任意1k k α, ≥为大于2的无理数,且对于任意正整数n ,理论上均存在若干枚面值之和等于n 的硬币,其中每种面值的硬币均不超过六枚. 问:行长的愿望能够实现吗? 8. 某国有n 座城市,任意两座城市之间有双向直达航班. 已知对任意两座城市,它们之间 的两个方向的机票价格相同,不同城市对之间的航班机票价格互不相同. 证明:存在由1n -段依次相连的航班,使得各段航班机票的价格依次严格单调下降.

2009中国数学奥林匹克解答

2009中国数学奥林匹克解答 一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分别是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分别作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,线段BC ,AD 的中点分别为M ,N . (1)若A ,B ,C ,D 四点共圆,求证:EM FN EN FM ?=?; (2)若 EM FN EN FM ?=?,是否一定有A ,B ,C ,D 四点共圆?证明你的结论. 解(1)设Q ,R 分别是OB ,OC 的中点,连接 EQ ,MQ ,FR ,MR ,则 11 ,22 EQ OB RM MQ OC RF ====, 又OQMR 是平行四边形,所以 OQM ORM ∠=∠, 由题设A ,B ,C ,D 四点共圆,所以 ABD ACD ∠=∠, 于是 图1 22EQO ABD ACD FRO ∠=∠=∠=∠, 所以 E Q M E Q O O Q M F R O O R M ∠=∠+∠=∠+∠=∠, 故 E Q M M R F ???, 所以 EM =FM , 同理可得 EN =FN , 所以 E M F N E N F M ?=?. (2)答案是否定的. 当AD ∥BC 时,由于B C ∠≠∠,所以A ,B ,C ,D 四点不共圆,但此时仍然有 EM FN EN FM ?=?,证明如下: 如图2所示,设S ,Q 分别是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,则 11 ,22 NS OD EQ OB ==, 所以 N S O D E Q O B =. ① C B

又 11 , 22 ES OA MQ OC ==,所以 ES OA MQ OC =.② 而AD∥BC,所以 OA OD OC OB =,③ 由①,②,③得NS ES EQ MQ =. 因为2 NSE NSA ASE AOD AOE ∠=∠+∠=∠+∠, ()(1802) EQM MQO OQE AOE EOB EOB ∠=∠+∠=∠+∠+?-∠ (180)2 AOE EOB AOD AOE =∠+?-∠=∠+∠, 即NSE EQM ∠=∠, 所以NSE ?~EQM ?, 故 EN SE OA EM QM OC ==(由②).同理可得, FN OA FM OC =, 所以EN FN EM FM =, 从而EM FN EN FM ?=?. C B

2017中国西部数学邀请赛试题及解析

2017中国西部数学邀请赛 1.设素数p 、正整数n 满足()2 2 1 1n k p k =+∏.证明:2p n <. 1.按照 ()2 1 1n k k =+∏中的因子所含p 的幂次分情形讨论. (1)若存在()1k k n ≤≤,使得()2 2 1p k +,则221p n ≤+. 于是,2p n ≤ <. (2)若对任意的()1k k n ≤≤,( ) 2 2 1p k +?,由条件,知存在1j k n ≤≠≤,使得()21p j +且() 2 1p k +. 则( )22 p k j -. 于是,|()()p k j k j -+. 当|()p k j -,则12p k j n n ≤-≤-<;当|()p k j +,则1212p k j n n n n ≤+≤+-=-<, 综上,2p n <. 2、已知n 为正整数,使得存在正整数12,,,n x x x 满足:()12 12100n n x x x x x x n +++=,求n 的最 大可能值. 2、n 的最大可能值为9702, 显然:由已知等式得 1n i i x n =≥∑,所以:1 100n i i x =≤∏ 又等号无法成立,则 1 99n i i x =≤∏ 而 ()()()1 1 1111111n n n n i i i i i i i i x x x x n =====-+≥-+=-+∑∑∏∏ 则 1 1 198n n i i i i x x n n ==≤+-≤+∑∏99(98)10099989702n n n ?+?≤?=… 取123970299,1x x x x =====,可使上式等号成立

第32届中国数学奥林匹克获奖名单及2017年集训队名单

第32届中国数学奥林匹克获奖名单 一等奖(116人,按省市自治区排列) 编号姓名地区学校 M16001 吴蔚琰安徽合肥一六八 M16002 考图南安徽安师大附中 M16003 徐名宇安徽合肥一中 M16004 吴作凡安徽安师大附中 M16005 周行健北京人大附中 M16006 王阳昇北京北京四中 M16007 陈远洲北京北师大附属实验中学M16008 杨向谦北京人大附中 M16009 夏晨曦北京北师大二附 M16010 谢卓凡北京清华附中 M16011 薛彦钊北京人大附中 M16012 胡宇征北京北京四中 M16013 徐天杨北京北京101中学 M16014 董昕妍北京人大附中 M16015 冯韫禛北京人大附中 M16016 林挺福建福建师范大学附属中学M16017 任秋宇广东华南师大附中 M16018 何天成广东华南师大附中 M16019 戴悦浩广东华南师大附中 M16020 谭健翔广东华南师大附中 M16021 王迩东广东华南师大附中 M16022 程佳文广东深圳中学 M16023 李振广东深圳外国语学校 M16024 张坤隆广东深圳中学 M16025 齐文轩广东深圳中学 M16026 卜辰璟贵州贵阳一中 M16027 顾树锴河北衡水第一中学 M16028 袁铭泽河北衡水第一中学 M16029 卢梓潼河北石家庄二中 M16030 赵振华河南郑州外国语学校 M16031 陈泰杰河南郑州外国语学校

M16032 迟舒乘黑龙江哈尔滨市第三中学 M16033 黄桢黑龙江哈尔滨市第三中学 M16034 姚睿湖北华中师范大学第一附属中学M16035 魏昕湖北武汉二中 M16036 黄楚昊湖北武钢三中 M16037 刘鹏飞湖北武汉二中 M16038 赵子源湖北华中师范大学第一附属中学M16039 徐行知湖北武钢三中 M16040 吴金泽湖北武汉二中 M16041 李弘梓湖北武汉二中 M16042 施奕成湖北华中师范大学第一附属中学M16043 袁睦苏湖北武汉二中 M16044 王子迎湖北武汉二中 M16045 袁昕湖北华中师范大学第一附属中学M16046 陈子瞻湖北湖北省黄冈中学 M16047 詹立宸湖北华中师范大学第一附属中学M16048 严子恒湖北武钢三中 M16049 陈贵显湖北华中师范大学第一附属中学M16050 张騄湖南长沙市长郡中学 M16051 刘哲成湖南长沙市雅礼中学 M16052 仝方舟湖南长沙市长郡中学 M16053 谢添乐湖南长沙市雅礼中学 M16054 尹龙晖湖南长沙市雅礼中学 M16055 黄磊湖南长沙市雅礼中学 M16056 肖煜湖南长沙市长郡中学 M16057 吴雨澄湖南湖南师范大学附属中学M16058 方浩湖南长沙市第一中学 M16059 郭鹏吉林东北师大附中 M16060 丁力煌江苏南京外国语学校 M16061 朱心一江苏南京外国语学校 M16062 高轶寒江苏南京外国语学校 M16063 彭展翔江西高安二中 M16064 刘鸿骏江西江西省吉安市第一中学M16065 孔繁淏辽宁大连二十四中 M16066 孔繁浩辽宁东北育才学校 M16067 孟响辽宁大连24中 M16068 毕梦达辽宁辽宁省实验中学

2006年第3届中国东南数学奥林匹克试题及答案

第三届中国东南地区数学奥林匹克 第一天 (2006年7月27日, 8:00-12:00, 南昌) 一、 设0,a b >>2()2()4a b x ab f x x a b ++= ++.证明:存在唯一的正数x ,使得 113 3 3 ()()2 a b f x +=. 二、 如图所示,在△ABC 中,90,,ABC D G ∠=?是 边CA 上的两点,连接BD ,BG 。过点A ,G 分别作BD 的垂线,垂足分别为E ,F ,连接CF 。若BE =EF ,求证:ABG DFC ∠=∠。 三、 一副纸牌共52张,其中“方块”、“梅花”、“红心”、“黑桃”每种 花色的牌各13张,标号依次是2,3,,10,,,,J Q K A ,其中相同花色、相邻标号的两张牌称为“同花顺牌”,并且A 与2也算是顺牌(即A 可以当成1使用). 试确定,从这副牌中取出13张牌,使每种标号的牌都出现,并且不含“同花顺牌”的取牌方法数。 四、 对任意正整数n ,设n a 是方程3 1x x n +=的实数根,求证: (1) 1n n a a +>; (2) 2 11 (1)n n i i a i a =<+∑。 第二天 (2006年7月28日, 8:00-12:00, 南昌) 五、 如图,在ABC ?中,60A ∠=?,ABC ?的内切圆I 分 别切边AB 、AC 于点D 、E ,直线DE 分别与直线BI 、 CI 相交于点F 、G ,证明:1 2 FG BC =。 六、 求最小的实数m ,使得对于满足a +b +c =1的任意正实数a ,b ,c ,都有333222(61m a b c a b c ++≥+++) ()。 七、 (1)求不定方程2()mn nr mr m n r ++=++的正整数解(,,)m n r 的组数。 (2)对于给定的整数k >1,证明:不定方程()mn nr mr k m n r ++=++至 少有3k +1组正整数解(,,)m n r 。 B A

2012年中国数学奥林匹克(CMO)试题(含答案word)

2012年中国数学奥林匹克(CMO)试题 第一天 1. 如图1,在圆内接ABC 中,A ∠为最大角,不含点A 的弧 BC 上两点D 、E 分别为弧 ABC 、 ACB 的中点。记过点A 、B 且与AC 相切的圆为1O ,过点A 、E 且与AD 相切的圆为2O ,1O 与2O 交于点A 、P 。证明:AP 平分ABC ∠。 2. 给定质数p 。设()ij A a =是一个p p ?的矩阵,满足2{|1}{1,2,,}ij a i j p p ≤≤= 、。 允许对一个矩阵作如下操作:选取一行或一列,将该行或该列的每个数同时加上1或同时减去1.若可以通过有限多次上述操作将A 中元素全变为0,则称A 是一个“好矩阵”。求好矩阵A 的个数。 3.证明:对于任意实数2M >,总存在满足下列条件的严格递增的正整数数列12,,a a : (1) 对每个正整数i ,有i i a M >; (2) 当且仅当整数0n ≠时,存在正整数m 以及12,,,{1,1}m b b b ∈- 使得 1122m m n b a b a b a =+++ .

第二天 4.设()()()(f x x a x b a b =++、是给定的正实数),2n ≥为给定的正整数。对满足 121n x x x +++= 的非负实数12,,,n x x x ,求1min{(),()}i j i j n F f x f x ≤<≤= ∑ 的最大值。

参考答案 第一天 1. 如图2,联结EP 、BE 、BP 、CD 。 分别记BAC ∠、ABC ∠、ACB ∠为A ∠、B ∠、C ∠,X 、Y 分别为CA 延长线、DA 延长线上的任意一点。 由已知条件易得,AD DC AE EB ==。结合A 、B 、D 、 12p x x x <<< ,这是因为交换i x 与j x 的值相当于交换第i 行和第j 行,既不改变题设也 不改变结论。同样,不妨设12p y y y <<< 。于是,假设数表的每一行从左到右是递增的,每一列从上到下也是递增的。 由上面的讨论知11121,2a a ==或212a =,不妨设122a =。否则,将整个数表关于主对

中国数学奥林匹克(cmo)试题(含答案word)

2012年中国数学奥林匹克(CM O)试题 第一天 1. 如图1,在圆内接ABC 中,A ∠为最大角,不含点A 的弧BC 上两点D 、E 分别为弧 ABC 、ACB 的中点。记过点A 、B 且与AC 相切的圆为1O ,过点A 、E 且与AD 相切的圆为 2O ,1O 与2O 交于点A 、P 。证明:AP 平分ABC ∠。 2. 给定质数p 。设()ij A a =是一个p p ?的矩阵,满足2{|1}{1,2,,}ij a i j p p ≤≤=、。 允许对一个矩阵作如下操作:选取一行或一列,将该行或该列的每个数同时加上1或同时减去1。若可以通过有限多次上述操作将A 中元素全变为0,则称A 是一个“好矩阵"。求好矩阵A 的个数. 3.证明:对于任意实数2M >,总存在满足下列条件的严格递增的正整数数列12,, a a : (1) 对每个正整数i ,有i i a M >; (2) 当且仅当整数0n ≠时,存在正整数m 以及12,,,{1,1}m b b b ∈-使得 1122m m n b a b a b a =+++.

第二天 4.设()()()(f x x a x b a b =++、是给定的正实数),2n ≥为给定的正整数。对满足 121n x x x ++ +=的非负实数12,,,n x x x ,求1min{(),()}i j i j n F f x f x ≤<≤=∑的最大值. 5.设n 为无平方因子的正偶数,k 为整数,p 为质数,满足 |p p <2,|()n p n k +。 证明:n 可以表示为ab bc ca ++,其中,,,a b c 为互不相同的正整数。 6.求满足下面条件的最小正整数k :对集合{1,2,,2012}S =的任意一个k 元子集A ,都存在S 中的三个互不相同的元素a 、b 、c ,使得a b +、b c +、c a +均在集合A 中.

中国数学奥林匹克竞赛试题【CMO】[1987-2003]

CMO 中国数学奥林匹克竞赛试题 1987第二届年中国数学奥林匹克 1.设n为自然数,求方程z n+1-z n-1=0有模为1的复根的充份必要条件是n+2可被6整 除。 2.把边长为1的正三角形ABC的各边都n等分,过各分点平行于其它两边的直线,将 这三角形分成小三角形,和小三角形的顶点都称为结点,在第一结点上放置了一个实数。已知 i.A、B、C三点上放置的数分别为a、b、c。 ii.在每个由有公共边的两个最负三角形组成的菱形之中,两组相对顶点上放置的数之和相等。 试求 3.放置最大数的点积放置最小数的点之间的最短距离。 4.所有结点上数的总和S。 3.某次体育比赛,每两名选手都进行一场比赛,每场比赛一定决出胜负,通过比赛确 定优秀选手,选手A被确定为优秀选手的条件是:对任何其它选手B,或者A胜B,或者存在选手C,C胜B,A胜C。 结果按上述规则确定的优秀选手只有一名,求证这名选手胜所有其它选手。 4.在一个面积为1的正三角形内部,任意放五个点,试证:在此正三角形内,一定可 以作三个正三角形盖住这五个点,这三个正三角形的各边分别平行于原三角形的边,并且它们的面积之和不超过0.64。 5.设A1A2A3A4是一个四面体,S1, S2, S3, S4分别是以A1, A2, A3, A4为球心的球,它们 两两相切。如果存在一点O,以这点为球心可作一个半径为r的球与S1, S2, S3, S4都相切,还可以作一个半径为R的球积四面体的各棱都相切,求证这个四面体是正四面体。 6.m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有这样的m 与n,问3m+4的最大值是多少?请证明你的结论。

中国数学奥林匹克试题及解答

一、 实数12,,,n a a a L 满足120n a a a +++=L ,求证: () 1 2 2 111 max ()3 n k i i k n i n a a a -+≤≤=≤-∑. 证明 只需对任意1k n ≤≤,证明不等式成立即可. 记1,1,2,,1k k k d a a k n +=-=-L ,则 k k a a =, 1k k k a a d +=-,2111,,k k k k n k k k n a a d d a a d d d +++-=--=----L L , 112121121,,,k k k k k k k k k k a a d a a d d a a d d d -------=+=++=++++L L , 把上面这n 个等式相加,并利用120n a a a +++=L 可得 11121()(1)(1)(2)0k k k n k k na n k d n k d d k d k d d +----------+-+-++=L L . 由Cauchy 不等式可得 ()2 211121()()(1)(1)(2)k k k n k k na n k d n k d d k d k d d +---=-+--++------L L 11222111k n k n i i i i i i d ---===???? ≤+ ??????? ∑∑∑ 111222111(1)(21)6n n n i i i i i n n n i d d ---===--?????? ≤= ??? ???????∑∑∑ 31213n i i n d -=??≤ ??? ∑, 所以 ()1 2 211 3 n k i i i n a a a -+=≤-∑. 二、正整数122006,,,a a a L (可以有相同的)使得20051223 2006 ,,,a a a a a a L 两

历届西部数学奥林匹克试题

目录 2001年西部数学奥林匹克 (2) 2002年西部数学奥林匹克 (4) 2003年西部数学奥林匹克 (6) 2004年西部数学奥林匹克 (7) 2005年西部数学奥林匹克 (8) 2006年西部数学奥林匹克 (10) 2007年西部数学奥林匹克 (12) 2008年西部数学奥林匹克 (14) 2009年西部数学奥林匹克 (16) 2010年西部数学奥林匹克 (18) 2011年西部数学奥林匹克 (21) 2012年西部数学奥林匹克 (23)

2001年西部数学奥林匹克 1.设数列{x n}满足x1=12,x n+1=x n+x n2n 2.证明:x2001<1001. (李伟固供题) 2.设ABCD是面积为2的长方形,P为边CD上的一点,Q为△P AB 的内切圆与边AB的切点.乘积PP?PP的值随着长方形ABCD及点P 的变化而变化,当PP?PP取最小值时, (1)证明:PP≥2PB; (2)求PQ?PQ的值. (罗增儒供题) 3.设n、m是具有不同奇偶性的正整数,且n>m.求所有的整数x,使得x2n?1x m?1是一个完全平方数. (潘曾彪供题) 4.设x、y、z为正实数,且x+y+z≥xyz.求x2+y2+z2xyz的最小值. (冯志刚供题) 5.求所有的实数x,使得[x3]=4x+3.这里[y]表示不超过实数y的最大整数. (杨文鹏供题) 6.P为⊙O外一点,过P作⊙O的两条切线,切点分别为A、B.设Q 为PO与AB的交点,过Q作⊙O的任意一条弦CD.证明:△PAB与 △PCD有相同的内心. (刘康宁供题) 7.求所有的实数x∈?0,π2?,使得(2?sss2x)sss?x+π4?=1,并证

中国西部数学奥林匹克试题及答案(广西南宁,11月10日、11日)

2007年中国西部数学奥林匹克(广西南宁,11月10日) 第一天 11月10日 上午8:00-12:00 每题15分 一、已知{}1,2,3,4,5,6,7,8T =,对于,A T A ?≠?,定义()S A 为A 中所有元素之和,问:T 有多少个非空子集A ,使得()S A 为3的倍数,但不是5的倍数? 二、如图,⊙1O 与⊙2O 相交于点C ,D ,过点D 的一条直线分别与⊙1O ,⊙2O 相交于点A ,B ,点P 在⊙1O 的弧AD 上,PD 与线段AC 的延长线交于点M ,点Q 在⊙2O 的弧BD 上,QD 与线段BC 的延长线交于点N .O 是△ABC 的外心.求证:OD MN ⊥的充要条件为P ,Q ,M ,N 四点共圆. 三、设实数a ,b ,c 满足 3a b c ++=.求证: 22211115411541154114 a a b b c c ++≤-+-+-+. 四、设O 是△ABC 内部一点.证明:存在正整数p ,q ,r ,使得 12007 p OA q OB r OC ?+?+?

六、求所有的正整数n ,使得存在非零整数12,,,n x x x L y ,,满足 七、设P 是锐角三角形ABC 内一点,AP ,BP ,CP 分别交边BC ,CA ,AB 于点D ,E ,F ,已知△DEF ∽△ABC ,求证:P 是△ABC 的重心. 八、将n 个白子与n 个黑子任意地放在一个圆周上.从某个白子起,按顺时针方向依次将白子标以1,2,,n L .再从某个黑子起,按逆时针方向依次将黑子标以1,2,,n L . 证明:存在连续n 个棋子(不计黑白), 它们的标号所成的集合为{}1,2,,n L . 2007西部数学奥林匹克 解 答 一、已知{}1,2,3,4,5,6,7,8T =,对于,A T A ?≠?,定义()S A 为A 中所有元素之和,问:T 有多少个非空子集A ,使得()S A 为3的倍数,但不是5的倍数? 解 对于空集?,定义()0S ?=.令012{3,6},{1,4,7},{2,5,8}T T T ===.对于A T ?,令001122,,A A T A A T A A T ===I I I ,则 01212()()()()(mod3)S A S A S A S A A A =++≡-, 因此,3()S A 当且仅当12(mod3)A A ≡.有以下几种情况: 从而满足3()S A 的非空子集A 的个数为 20003303311223333333333332()1C C C C C C C C C C C C +++++-=87. 若3()S A ,5()S A ,则15()S A . 由于()36S T =,故满足3()S A ,5()S A 的()S A 的可能值为15,30.而 15=8+7=8+6+1=8+5+2=8+4+3=8+4+2+1 =7+6+2=7+5+3=7+5+2+1=7+4+3+1 =6+5+4=6+5+3+1=6+4+3+2 =5+4+3+2+1, 36-30=6=5+1=4+2=3+2+1. 故满足3()S A ,5()S A ,A ≠?的A 的个数为17. 所以,所求的A 的个数为87-17=70.

2011年中国西部数学奥林匹克试题

2011年中国西部数学奥林匹克试题 江西 玉山 第一天 10月29日 上午 8:00~12:00 每题15分 1、已知0,1x y <<,求 (1) ()(1)(1) xy x y x y x y --+--的最大值. 2、设集合{1,2,,2011}M ?,满足:在M 的任意三个元素中,都可以找到两个元 素,a b 使得|a b 或|b a .求||M 的最大值(其中||M 表示集合M 的元素个数). 3、给定整数2n ≥, (I )求证:可以将集合{1,2, ,}n 的所有子集适当地排列为122,, ,n A A A ,使得i A 与 1i A +的元素个数恰相差1,其中1,2,3, ,2n i =,且121n A A +=; (II)对于满足(I )中条件的子集122,, ,n A A A ,求21 (1)()n i i i S A =-∑的所有可能值,其中 ()i i x A S A x ∈=∑,()0S ?=. 4、如图,线段AB 、CD 是⊙O 中长度不相等的两条弦,AB 与CD 的交点为E ,⊙I 内切⊙O 于点F ,且分别与弦AB 、CD 相切于点G 、H .过点O 的直线l 分别交AB 、CD 于点P 、Q ,使得EP EQ =.直线EF 与直线l 交于点M ,求证:过点M 且与AB 平行的直线是⊙O 的切线.

第二天 10月30日 上午 8:00~12:00 每题15分 5、是否存在奇数3n ≥及n 个互不相同的质数12,, ,n p p p ,使得 111(1,2,,,)i i n p p i n p p +++==其中都是完全平方数?请证明你的结论. 6、设,,0a b c >,求证:2222 222()()()()()()()()()()a b b c c a a b c a c b a b a c b c b a a b c ----++≥++++++++. 7、如图,在ABC ?中,AB AC >,内切圆⊙I 于边BC 、CA 、AB 分别相切于点D 、E 、F ,M 是边BC 的中点,AH BC ⊥于点H .BAC ∠的平分线AI 分别于直线DE 、DF 交于点K 、L . 求证:,,,M L H K 四点共圆. 8、求所有的整数对(,)a b ,使得对任意正整数n ,都有1 |()n n n a b ++.

第二届中国数学奥林匹克 (1987年)

第二届中国数学奥林匹克(1987年) 1.设n为自然数,求方程z n+1-z n-1=0有模为1的复根的充份必要条件是n+2 可被6整除。 2.把边长为1的正三角形ABC的各边都n等分,过各分点平行于其它两边 的直线,将这三角形分成小三角形,和小三角形的顶点都称为结点,在第一结点上放置了一个实数。已知 i.A、B、C三点上放置的数分别为a、b、c。 ii.在每个由有公共边的两个最负三角形组成的菱形之中,两组相对顶点上放置的数之和相等。 试求 (1)放置最大数的点积放置最小数的点之间的最短距离。 (2)所有结点上数的总和S。 3.某次体育比赛,每两名选手都进行一场比赛,每场比赛一定决出胜负, 通过比赛确定优秀选手,选手A被确定为优秀选手的条件是:对任何其它选手B,或者A胜B,或者存在选手C,C胜B,A胜C。 结果按上述规则确定的优秀选手只有一名,求证这名选手胜所有其它选手。 4.在一个面积为1的正三角形内部,任意放五个点,试证:在此正三角形 内,一定可以作三个正三角形盖住这五个点,这三个正三角形的各边分别平行于原三角形的边,并且它们的面积之和不超过0.64。 5.设A1A2A3A4是一个四面体,S1, S2, S3, S4分别是以A1, A2, A3, A4为球心的 球,它们两两相切。如果存在一点O,以这点为球心可作一个半径为r

的球与S1, S2, S3, S4都相切,还可以作一个半径为R的球积四面体的各棱都相切,求证这个四面体是正四面体。 6.m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所 有这样的m与n,问3m+4的最大值是多少?请证明你的结论。

2008年中国西部数学奥林匹克解答

2008年中国西部数学奥林匹克 (2008年11月1日 8:00-12:00) 贵州省贵阳市 每题15分 1. 实数数列}{n a 满足:1,00≠a ,011a a -=,)(11n n 1n a a a --=+,n=1,2,…. 证明:对任意正整数n ,都有 )1 11( n 1010a a a a a a n +++ =1. 证明:由条件可知1-a n+1=a n (1-a n )=a n a n-1(1-a n-1)=…=a n …a 1(1-a 1)=a n …a 1a 0,即a n+1= 1-a 0a 1…a n ,n=1,2,…. 下面对n 归纳来证明 当n=1时,命题显然成立.假设n =k 时,命题成立,对n=k+1的情形有 )1111( 1 k k 101k 10++++++a a a a a a a =k 2101k 10k 210)1 11( a a a a a a a a a a a a k +++++ =k 2101a a a a a k ++=1. 故命题对n=k+1成立. 所以,对任意正整数n, 2. 在ABC ?中,AC AB =,其 内切圆⊙I 切边AB CA BC ,, 于点F E D ,,,P 为弧EF (不含点D 的弧)上一点. 设线段 BP 交⊙I 于另一点Q ,直线 EQ EP ,分别交直线BC 于点N M ,.证明:

(1) M B F P ,,,四点共圆; (2) BP BD EN EM =. 证明: (1) 连EF,由条件可知EF//BC,故 ∠ABC=∠AFE=∠AFP+∠PFE=∠PEF+∠PFE=180?-∠FPE. 所以,P,F,B,M 四点共圆. (2) 利用正弦定理,EF//BC 及P,F,B,M 四点共圆可知 EMN ENM EN EM ∠∠=sin sin =)sin(sin PFB FEN ∠-∠π=PFB FPB ∠∠sin sin =BP BF . 结合BF=BD 即可知命题成立. 3.设整数2≥m ,m 21,,a a a ,都是正整数.证明:存在无穷多个正整数n ,使得数n n n m a a a ?++?+?m 2121 都是合数. 证明:取数a 1+2a 2+…+ma m 的质因子p,由Fermart 小定理可知对任意1≤k ≤m,都有k p ≡k(mod p),所以,对任意正整数n,都有 a 1?n p 1+a 2?n p 2+…+a m ?n p m ≡a 1+2a 2+…+ma m ≡0(mod p), 从而,数a 1?n p 1+a 2?n p 2+…+a m ?n p m (n=1,2,…)都是合数. 4.设整数2≥m ,a 为正实数,b 为非零实数,数列} {n x 定义如下:b x =1, ,2,1,1=+=+n b x a x m n n .证明: (1) 当b <0且m 为偶数时,数列}{n x 有界的充要条件是1-m ab ≥-2; (2) 当b <0且m 为奇数,或b >0时,数列} {n x 有界的充要条件是1 -m ab ≤m m m m 1 )1(--. 证明:(1) 当b<0且m 为偶数时,如果ab m-1<-2,那么首先有ab m +b>-b>0,于是a(ab m +b)m +b>ab m +b>0,即x 3>x 2>0.利用ax m +b 在(0,+∞)上单调增可知数列} {n x 的每一项都比前一项大,并且从第二项起每一项都大于-b. 考察数列} {n x 中的连续三项x n ,x n+1,x n+2,n=2,3,…,我们有

2006年中国数学奥林匹克获奖名单

2006年中国数学奥林匹克获奖名单 一等奖(27人) 姓名学校姓名学校邓煜深圳高级中学冯春远华南师大附中谌昭湖南雅礼中学刘建新河南省实验中学金龙东北师大附属中学朱傲雄湖南师大附中任庆春天津耀华中学甘文颖武钢三中 张安如湖南省长沙市一中张神星铜陵市一中 沈才立浙江镇海中学黄强连城一中 张瑞祥北京人大附中魏文哲武钢三中 杨光河南师大附中姚添宇江苏省启东中学汪哲楠武钢三中江建博东北师大附属中学周韦康江苏金陵中学熊欢南昌二中 柳智宇湖北华师一附中王欣西工大附中 蒋扬成都七中杨珏慜上海中学 张子立华东师大二附中陈晨青岛二中 张小楠寿光一中 二等奖(47人) 姓名学校姓名学校 陈祖维江苏省启东中学张峻豪翠园中学 姜子麟复旦大学附属中学周宁晨湖南师大附中黄昊阳安庆一中陈拉明鹰潭一中 石文博辽宁省实验中学熊英大连二十四中李禄俊华东师大二附中晋捷人大附中 王少峰外语学校樊昊阳西北师大附中黄溢辰南师附中张涛黄冈中学 刘可然成都七中赵守琦大连育明高中钟诤杭二中何广璐成都七中 何珂俊诸暨中学宿国龙东营市胜利一中谭新文湖南师大附中邱野耀华中学 刘雨晨耀华中学路昊兰州一中 章尧人大附中王烜深圳中学 徐劼人大附中裴迪哈市师大附中王梦源石家庄二中李超江苏省苏州中学张牧河南省实验中学杨涛临川一中 孙文博东北师大附属中学吴昊南昌十中 王潇涵吉林市一中林楠西安高新一中刘帅成都七中金睿璋南洋模范中学王颖慧华东师大二附中郭晓朦合肥一中 殷杰黄冈中学齐扬河南师大附中

陆剑南南开中学应鲍龙上海中学 曾宇南开中学谢腾镇海中学 谢凌曦福州一中 三等奖(60人) 姓名学校姓名学校 陈戈邯郸市一中吕诚南宁二中 邢豫盛江苏省启东中学王倩倩深圳松岗中学新疆班金文超华东师大二附中谢剑波杭二中 陈代晖南开中学张雅杰华中师大一附中田宇重庆一中郭嘉君南开中学 戴小川天津一中陈咭雨湖南师大附中 许有磊深圳松岗中学新疆班赵欣西安铁一中 李冰洁人大附中方扬钦西安铁一中 陈轩北京二中黄智杰仙游私立一中 张一楠北京人大附中张擎天河南师大附中 潘锦钊南宁二中周盛龙哈尔滨市三中 罗鹏深圳中学张镞远海南中学 张卓石家庄二中胡涵湖南师大附中 张端阳哈市师大附中乔磊赤峰市二中 闫世博吉林市一中连政星龙岩一中 贾晓玮石家庄二中章光达深圳中学 段聿飞海南中学邵万琦温州中学 戴杰湖南师大附中周文涓兰州一中 徐鑫江苏省华罗庚中学曹馨宇山西大学附属中学成宇翔山西省实验中学许蔚翔深圳松岗中学新疆班姚佳伟山西省实验中学丁薇哈尔滨市三中 罗威山西省实验中学王忱大连育明高中 王筑艺重庆一中张峰南开中学 黄洪武南安一中佘淼成都树德中学 彤一镭河南师大附中郭雨龙云南师大附中 乔罡南昌十中缴麟石家庄二中 刘斌东北育才学校刘笑彤实验中学 刘翀成都七中马锡铠西藏民院附中 赵军深圳松岗中学新疆班陈振航天中学 章俊安庆一中杨攀东银川一中

2009年俄罗斯数学奥林匹克决赛试题(英文版)

2009 Grade 91The denominators of two irreducible fractions are 600and 700.Find the minimum value of the denominator of their sum (written as an irreducible fraction).2Let be given a triangle ABC and its internal angle bisector BD (D ∈BC ).The line BD intersects the circumcircle ?of triangle ABC at B and E .Circle ωwith diameter DE cuts ?again at F .Prove that BF is the symmedian line of triangle ABC .3Given are positive integers n >1and a so that a >n 2,and among the integers a +1,a +2,...,a +n one can ?nd a multiple of each of the numbers n 2+1,n 2+2,...,n 2+n .Prove that a >n 4?n 3.4There are n cups arranged on the circle.Under one of cups is hiden a coin.For every move,it is allowed to choose 4cups and verify if the coin lies under these cups.After that,the cups are returned into its former places and the coin moves to one of two neigbor cups.What is the minimal number of moves we need in order to eventually ?nd where the coin is?Really nice problem and I dont know how to solve it.5Let a ,b ,c be three real numbers satisfying that (a +b )( b + c )(c + a )=abc a 3+ b 3 b 3+ c 3 c 3+a 3 = a 3 b 3 c 3 Prove that abc =0.6Can be colored the positive integers with 2009colors if we know that each color paints in?nitive integers and that we can not ?nd three numbers colored by three di?erent colors for which the product of two numbers equal to the third one?7We call any eight squares in a diagonal of a chessboard as a fence.The rook is moved on the chessboard in such way that he stands neither on each square over one time nor on the squares of the fences (the squares which the rook passes is not considered ones it has stood on).Then what is the maximum number of times which the rook jumped over the fence?8Triangles ABC and A 1B 1C 1have the same https://www.sodocs.net/doc/737118035.html,ing compass and ruler,can we always construct triangle A 2B 2C 2equal to triangle A 1B 1C 1so that the lines AA 2,BB 2,and CC 2are parallel?This ?le was downloaded from the AoPS Math Olympiad Resources Page Page 1

相关主题