搜档网
当前位置:搜档网 › 用MatLab仿真通信原理系列实验

用MatLab仿真通信原理系列实验

用MatLab仿真通信原理系列实验
用MatLab仿真通信原理系列实验

目录

摘要 (2)

英文摘要(Abstract) (2)

第一章引言 (3)

第二章理论与方法 (4)

2.1 Matlab简介 (4)

2.2 Simulink简介 (6)

第三章设计方案 (7)

实验一:模拟线性调制 (7)

实验二:扰码与解扰 (13)

实验三:低通信号的抽样定理 (16)

第四章小结 (18)

致谢 (18)

参考文献 (18)

摘要:本毕业设计用Matlab中的建模仿真工具Simulink对通信原理实验进行仿真。作为系列实验的第一部分,包括模拟信号的线性调制解调(AM、DSB、SSB)过程、扰码与解扰实验和低通信号的抽样定理实验。论文中讲述了Matlab的基础知识、Simulink仿真操作方法以及在通信系统中的应用,对被仿真实验的基本原理也进行了简要介绍。通过本设计对构造通信原理虚拟实验室这一课题进行了初步的探索。

关键词:MatLab; Simulink; 通信仿真

Abstract:The title of my my graduate design is “Simulate Communication Experiments by Simulink”.

Simulink is a simulation tool integrated in Matlab.Matlab is the most popular, influential and active language in the academic world, especially in the communities of automatic control, nowadays. It originated from matrix computation, and now becomes a highly integrated language. Simulink is an interactive tool for modeling, simulating, and analyzing dynamic systems. Commonly used in control system design, DSP design, communication system design, and other simulation applications, Simulink enables you to build graphical block diagrams, simulate dynamic systems, evaluate system performance, and refine your designs.

I successfully simulate some experiments of communication principal,including:

1.Modulation of analogue linear signals:AM、DSB、SSB

2.Code and decode of digital signals

3.Sample principal of lowband signals

Besides what is mentioned above,this paper gives us some introductions of how to

use Matlab and Simulink as a freshman,through these introductions you can get some basic knowledge of Matlab.

Communication principle is very abstract ,the simulated experiments are also hard to understand,so in order to make the simulated experiments understood easily,this paper offers detailed description about some correlative communication principle.

Key W ords:MatLab; Simulink; Communition Simulation

第一章引言

通信技术的发展日新月异,通信系统也日趋复杂,在通信系统的设计研发过程中,软件仿真已成为必不可少的一部分,电子设计自动化EDA技术已成为电子设计的潮流。随着信息技术的不断发展,电子EDA仿真技术也在突飞猛进之中。涌现出了许多功能强大的电子仿真软件,如Workbeench、Protel、Systemview、Matlab等。许多知名IT企业其实在产品开发阶段也是应用仿真软件进行开发。虚拟实验技术发展迅速,应用领域广泛,一些在现实世界无法开展的科研项目可借助于虚拟实验技术完成,例如交通网的智能控制、军事上新型武器开发等。

《通信原理》是电子通信专业的一门极为重要的专业基础课。在通信类专业的硕士研究生考试中,各学校也都把它列为考试课程。《通信原理》由于内容抽象,基本概念较多,是一门难度较大的课程,要想学好并非易事。通信原理实验是该课程的重要组成部分,通过实验,可以使学生对书本上抽象的原理有进一步的感性认识,加深对基本原理的理解。但是通信原理实验需要大量昂贵的实验器材,再加上近几年大学持续扩招,在当前的条件下给每一位同学都配置硬件实验器材显然是比较困难的,也是不太现实的,这受到经费、教学场所等等因素的限制。世界各国在电子系统理论的教学中,均采用Matlab及Simulink作为辅助教学软件,摆脱了繁杂的计算,所花的代价远小于实际建模。我校已开始重组和优化信息工程专业实验课的结构,旨在改革传统的实验模式。

构建通信原理虚拟实验室,首先要用仿真软件对实验进行仿真,这里我使用Simulink,这个集成在Matlab中的动态系统建模、仿真工具,仿真了若干通信系统基本实验。

第二章理论与方法

2.1 Matlab简介

数学作为基础学科,是和工程技术及科学研究领域密不可分的。在工程技术和科学研究中,数值运算往往很复杂,稍有疏忽,便会影响到整个工程或研究的成果,因此,精确的数值计算及其工程仿真对于每一个科学研究者来说极其重要。MA TLAB是Mathwork公司推出的一套高效率的数值计算和可视化软件。它以及其强大的数值分析、矩阵运算、信号处理和图形显示功能以及一个方便的、界面友好的用户环境吸引了广大专家学者的关注。

MATLAB由主包和功能各异的工具箱组成,其最基本的数据结构是矩阵,也就是说它的操作对象是以矩阵为单位的。正如MATLAB这个名字(Matrix Laboratory,矩阵实验室),MATLAB起初主要用来进行矩阵运算。而随着MATLAB不断的发展,和各种工具箱的不断开发,它已经成为一种功能强大的综合性的实时工程计算软件,广泛应用于各种领域。

MATLAB系统共有5个主要部分构成:

1)MATLAB语言;

2)MATLAB工作环境;

3)MATLAB数学函数库;

4)MATLAB图形处理系统;

5)MATLAB应用程序接口。

1.MATLAB语言

MATLAB语言是一种面向对象的高级语言,正如前面所述,它以矩阵作为最基本的数据结构。MATLAB语言由自己独特的数据结构、输入输出功能、流程控制语句和函数。MATLAB在工程计算方面具有其他高级语言无法比拟的优越性,它集计算、数据可视化、程序设计于一体,并能将数学问题和解决方案以用户熟悉的数学符号表示出来。

2.MATLAB工作环境

MATLAB工作环境是一个个集成化的工作空间,它给用户提供了管理变量和输入输出数据的功能,并提供了用于管理测试M文件的工具。它主要包括以下部分:

1)命令窗口

2)M文件编辑调试器

3)MATLAB工作空间

4)M在线帮助文档

3.MATLAB数学函数库

MATLAB数学函数库中包括了大量的数学函数,既有诸如求和、取正弦、指数运算等简单函数,也包含了矩阵转置、傅里叶变换、矩阵分解、求解线性方程组等复杂的函数。MATLAB数学函数有两种方式,第一种是比较简单的内部函数,他们直接内置于MATLAB的核心中,因此运行的效率很高;第二种是以M文件提供的外部函数,他们极大的扩展了MATLAB的功能,并使MATLAB 具有了很高的可扩充性,使MATLAB能够应用于越来越多的科学领域。

4.MATLAB图形处理系统

MATLAB具有强大的图形处理功能,用于使科学计算的结果可视化。MATLAB图形处理系统的功能主要包括:

1)二维图形的绘制和处理

2)三维图形的绘制和处理

3)图形用户界面的定制

5.MATLAB应用程序接口

MATLAB应用程序接口是一个让MATLAB语言同C、FORTRAN等其他高级语言进行交互的函数库,该函数库的函数通过动态链接来读写MATLAB文件。

MATLAB应用程序接口的主要功能如下:

1)在MATLAB中输入和输出数据;

2)MATLAB中调用C和FORTRAN程序;

3)在MATLAB和其他应用程序中建立客户机服务器的关系。

MATLAB的主要功能

1.数值运算功能

2.符号计算功能

3.数据分析和可视化功能

4.Simulink动态仿真功能

2.2 Simulink简介

近几年,在学术界和工业领域,Simulink已经成为在动态系统建模和仿真方面应用最广泛的软件包之一。它的魅力在于强大的功能和使用方法。确切的说,它是对动态系统进行建模、仿真和分析的一个软件包。它支持线性和非线性系统、连续时间系统、离散时间系统等,而且系统可以是多进程的。

Simulink是实现动态系统建模、仿真的一个集成环境。它的存在使MA TLAB的功能得到进一步的扩展。这种扩展的意义表现在:

(1)实现了可视化建模,用户通过简单的鼠标操作就可建立起直观的系统模型,并进行仿

真;

(2)实现了多工作环境间文件互用和数据交换,如Simulink与MA TLAB、FORTRAN以及C

的工作环境的信息交换都可以方便的实现;

(3)把理论研究和工程实现有机地结合在一起。

Simulink为用户提供了用方框图进行建模的图形接口,采用这种方法进行系统设计,就像你用笔和纸来画一样容易。它与传统的仿真软件包用微分方程和差分方程建模相比,具有更直观、方便、灵活的优点。用Simulink创建的模型可以具有递接层次结构,及允许用户建立自己的子系统。在察看时,用户可以从最顶层开始,然后用鼠标双击其中的子系统模块,从而进入自信同模块进行察看,这样非常便于模型的条理化,从而帮助用户理解模型的整体结构以及各模块之间的关系。

Simulink是MATLAB为模拟动态系统而提供的一个面向用户的交互式程序,它采用鼠标驱动方式,允许用户在屏幕上绘制框图,模拟系统并能动态的控制该系统。它还提供了两个应用程序扩展集,分别是Simulink EXTENSION和BLOCKSET。

第三章设计方案

本设计所选的3个实验都是通信原理中具有代表性的实验。“模拟线性调制”是模拟通信的重要内容,“扰码与解扰”涉及的是数字通信传输系统,“抽样定理”是模数转换的基础理论,它将模拟通信与数字通信结合起来。因此,我选择这3个实验进行仿真,具有代表性。

在实际的电子实验中,我们用低频信号发生器产生各种波形,用示波器观察波形,一些比较复杂的功能则由专门的电路实现,电路中含有大量电子元件,比如可实现译码功能的积分器,就是由集成运放、电阻、电容等电子元件构成的电路模块。如何在计算机中仿真这些仪器、电路,从而把实验由现实世界转入机器世界呢?通过我对Simulink的使用,发现这的确是一个优秀的放真环境。Simulink的模块库中提供了大量用于各种应用范畴的模块。如输入源模块库(Sources),它含有十多个模块,相应可产生十多种信号。使用这些模块,可以实现信号发生器的功能。例如在本设计中我多次用Sine Wave模块产生正弦信号,在仿真常规调幅(AM)时用Constant模块产生直流分量。与之类似示波器的功能可通过接收模块库实现。对于一些比较复杂的功能,我们还可以把若干基本模块封装成新的功能模块,或编程生成S-function函数实现之,在仿真“扰码与解扰”实验时,我采用封装子系统的方式实现了对移位寄存器的仿真。Simulink的仿真方式比较灵活,比如在仿真SSB单边带信号调制时,我用Transport-Delay模块实现了移相器的功能,该模块在时间上延迟接收到的正弦信号,从而达到了对信号移相的目的。

各实验的具体仿真过程如下:

实验一:模拟线性调制

一.常规调幅(AM)

1.基本原理:

任意的AM已调信号可以表示为S am(t)=c(t)m(t),当m(t)=A0+f(t);c(t)=cos(ωc t+θ0),且A0不等于0时,称为常规调幅,其时域表达式为:

S am(t)= c(t)m(t)= [A0 +f(t)] cos(ωc t+θ0)

其中A0是外加的直流分量,f(t)是调制信号

2.Simulink实现如图:

1).选用的模块(数字为所选模块的个数):

2).参数设置:

信号源的幅度为1,频率为2*pi rad/s(1Hz),命名为sin(t);

载波的幅度为1,频率为20*pi rad/s(10Hz),命名为sin(10t);

相干本地载波的幅度为1,频率为20*pi rad/s(10Hz),命名为sin(10t);

直流分量为常数2;

示波器输入信号个数为5;

下面设置仿真的时间、步长及算法,这些参数在Simulink菜单下的“Parameters”命令中设置。单机该命令,可看到仿真参数设置对话框,如下图所示:

设置仿真始末时间为0到10秒;仿真步长种类设为V ariable-step(不定步长);由于是连续系统,算法选用ode算法,这里选择ode45。下面的实验中系统参数设置同此例。

3).观察仿真结果:

二.双边带调幅(DSB)

1.基本原理:

双边带调制信号的时域表达式:S DSB(t)=f(t)cosωc t

双边带调制信号的频域表达式:S DSB(ω)=[F(ω+ωc)+F(ω-ωc)]/2

双边带调制节省了载波功率,提高了调制效率,但已调信号的带宽仍与调幅信号一样,是基带信号带宽的两倍。

2.Simulink实现如图:

选用的模块:Sine Wave:3 Product:2 Scope:5 Analog Filter:1

参数设置:信号源的幅度为1,频率为2*pi rad/s(1Hz),命名为sin(t);

载波的幅度为1,频率为20*pi rad/s(10Hz),命名为sin(10t);

3.观察仿真结果:

原信号:

载波:

相干解调后的信号:

恢复出的信号:

三.SSB单边带信号调制

1.基本原理:

只传输一个边带的调制方式称为单边带抑制载波调制,简称为单边带调制(SSB)。采用单边带调制,除了节省载波功率,还可以节省一半传输频带,仅传输双边带信号的一个边带(上边带或下边带)。

设调制信号为单频信号f(t)=A m cosωm t,载波为c(t)=cosωc t,则调制后的双边带时域波形为:S DSB(t)=A m cosωm t cos t=[A m cos(ωc+ωm)t+ A m cos(ωc-ωm)t] /2

上两式中的第一项与调制信号和载波信号的乘积成正比,称为同相分量;而第二项的乘积则是调制信号与载波信号分别移相90°后相乘的结果,称为正交分量。由此可以引出一种形成单边带信号的方法——移相法。

2.Simulink实现如图:

选用的模块:Sine Wave、Product、Sum、Scope、Analog Filter、Transport Delay

Gain

上边带波形为:S USB(t)=[A m cos(ωc+ωm)t]/2=A m(cosωc tcosωm t-sinωc tsinωm t) /2

下边带波形为:S LSB(t)=[A m cos(ωc-ωm)t]/2=A m(cosωc tcosωm t+sinωc tsinωm t) /2

设置信号源频率为1Hz,命名为cos(t);载波频率为10Hz,命名为cos(10t);两个延时器的延时分别设为0.75S、0.075S,起到移相-90度的作用

观察仿真结果:

原信号:

载波:

经过相干解调后的信号:

恢复出的信号:

实验二:扰码与解扰

1.基本原理:

在数字基带信号传输中,减少连“0”码或连“1”码来保证位定时恢复质量,这是十分重要的一个环节。但在一般信号中,难免出现长串的0或1,所以我们必须人为地将二进制数字信息先做“随机化”处理,变为伪随机序列,从而限制连“0”码或连“1”码的长度。这种随机化处理称为扰码。这种技术的基础是建立在反馈移存器序列(伪随机序列)理论之上的。

扰码虽然扰乱了数字信息的原有形式,但这种“扰乱”是有人为规律的,因而也是可以解除的。在解手段解除这种“扰乱”的过程称为“解扰”。完成“扰码”和“解扰”的电路相应称为扰码器和解码器。

采用扰码技术的通信系统组成原理如下图所示:

数字信号输入输出

2.Simulink实现如图:

扰码原理是以线性反馈移位寄存器理论为基础的。这里关键是要设计出移位寄存器,用移位寄存器来充当扰码器和解扰器。下面设计一个移位寄存器。

移位寄存器工作状态表

移位寄存器内部结构如图:

将基本RS触发器改造成下降沿触发的RS触发器,用4个这样的RS触发器和若干逻辑运算单元组成双向移位寄存器电路。每一个触发器下面有一个4输入或门,这个或门提供了触发器的置位信号,送到了S端。然后将这个或门的输出经过反向后送到了R端,这样就保证了R、S 不能同时为1,满足RS触发器的工作条件。然后这个或门有四个输入端,分别来自4个3输入的与门。在同一时刻仅有一个信号能送到或门,这是由于控制端S0S1组成了一个数据选择器,每次只让一个与门导通。这四个与门从左到右分别代表了右移信号、并行传送信号、保持信号以及左移信号,它们的导通取决于控制端S1、S0的信号。触发器的输出端首先经过一个延时器,然后分别送往三个地方,第一个地方是自己下方的4与门阵列的第三个,形成保持信号;第二个地方是右边的4与门阵列的第一个,用来提供右移信号;第三个地方是左边4与门阵列的第四个,用来提供左移信号。至此移位寄存器设计完成,添加其他模块。

用线性反馈移位寄存器的反馈逻辑输出与第一级寄存器输入之间引入一个模二相加电路,以输入数据作为作为模二和的另一个输入端,即可得到扰码器的一般形式。在接收端所采用解扰器,它的寄存器堆和扰码器完全一致,这样才能从扰码序列中恢复出原信号,将扰码信号直接送到寄存器堆的输入端,解码信号来自与扰码信号和寄存器堆输出的模二和。这里使用的触发器堆有4

个触发器Q0Q1Q2Q3,反馈逻辑采用Q3,Q2的模二和。将S1、S0接到常数源0、1,保证移位寄存器处于数据右移状态;将Rd端连到常数源1,十移位寄存器处于工作状态。将时钟源的幅度设为1,周期设为2,脉宽设为1,采样时间设为0.5秒;将信号源的幅度设为1,周期设为60,脉宽设为30,采样时间设为0.1秒;

这样信号源对应的二进制信号为:111000111000111000………

观察仿真结果:

原信号:

扰码后的信号:

解码后的信号:

实验三:低通信号的抽样定理

1.基本原理:

抽样定理是模拟信号数字化传输的理论基础,如果对某一带宽的有限时间连续信号(模拟信号)进行抽样,且在抽样率达到一定数值时,根据这些抽样值可以在接收端准确地恢复原信号。

2.Simulink实现如图:

设置被抽样信号为频率为1Hz的正弦信号;

选用2个Pulse Generator作为抽样脉冲源,一个周期设为0.1S,频率10Hz,进行充分抽样;另一个周期设为0.6S,进行非充分抽样。

充分抽样波形:不充分抽样波形:

第四章小结

通过本次毕业设计,我熟悉了Matlab下用Simulink进行通信仿真的过程,对一些过去没有弄懂或认识模糊的概念、理论有了正确的认识,为以后的工作和学习打下基础。比如在仿真“扰码与解扰”实验中,需要设计移位寄存器,涉及到许多数字电子技术方面的知识,我查阅了相应资料,加深了对时序逻辑电路的理解。

本设计所仿真的实验都是《通信原理》课程中非常基础、重要的实验,通过对这些实验的演示,可帮助学生把一些抽象的概念、原理具体化,进而加深对这些概念、原理的理解,这对《通信原理》课程的教学有一定的帮助。

除了Simulink,还有一些可用于通信仿真的软件,Systemview就是其中之一,它可作为各种通信、控制及其他系统的设计和仿真平台以及通信系统综合实验平台。我在使用中发现一些功能用Simulink可能需要较多模块,而Systemview用很少的模块就能实现同样功能,从而了解到了该软件在通信仿真方面的强大功能。毕业设计中,我只用Simulink进行仿真,今后应尝试用Systemview等软件进行仿真设计,以达到最佳仿真效果。

在毕业设计中有收获,也有许多不足之处。仿真实验主要用Simulink模块实现,对Matlab 编程涉及较少,限制了仿真实验的种类,比如在模拟增量调制中积分器需要编程,生成S-Function 模块实现,但由于我对Matlab语言还不熟悉,没能成功仿真,这还有待以后进一步完善。

致谢

在毕业设计的过程中,我得到了教研室老师们的帮助,特别是指导教师给我很多鼓励与支持,帮助我解决遇到的难题,在此我要向他们表示由衷的谢意,感谢老师们四年来对我的培养!

参考文献

《Matlab基础与应用简明教程》北京航空航天大学出版社张平

《Matlab与通信仿真》人民邮电出版社王立宁

《通信原理》国防工业出版社樊昌信

《数字电子技术基础》高等教育出版社阎石

通信原理课程设计报告(基于Matlab)

2DPSK调制与解调系统的仿真 设计原理 (1) 2DPSK信号原理 1.1 2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。定义为本码元初相与前一码元初相之差,假设: →数字信息“0”; →数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0

或 : 1.2 2DPSK 信号的调制原理 一般来说,2DPSK 信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK 信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0” 时接相位0,当输入数字信息为“1”时接pi 。 图1.2.2 键控法调制原理图 1.3 2DPSK 信号的解调原理 2DPSK 信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 码变换 相乘 载波 s(t) e o (t)

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

通信原理实验--数字基带传输仿真实验

数字基带传输实验 实验报告

一、实验目的 1、提高独立学习的能力; 2、培养发现问题、解决问题和分析问题的能力; 3、学习Matlab 的使用; 4、掌握基带数字传输系统的仿真方法; 5、熟悉基带传输系统的基本结构; 6、掌握带限信道的仿真以及性能分析; 7、通过观测眼图和星座图判断信号的传输质量。 二、系统框图及编程原理 1.带限信道的基带系统模型(连续域分析) ?输入符号序列―― ?发送信号―― ――比特周期,二进制码元周期 ?发送滤波器―― 或或 ?发送滤波器输出――

?信道输出信号或接收滤波器输入信号 (信道特性为1) ?接收滤波器―― 或或 ?接收滤波器的输出信号 其中 (画出眼图) ?如果位同步理想,则抽样时刻为 ?抽样点数值为(画出星座图) ?判决为 2.升余弦滚降滤波器 式中称为滚降系数,取值为, 是常数。时,带宽为Hz;时,带宽为Hz。此频率特性在内可以叠加成一条直线,故系统无码间干扰传输的最小符号间隔为s,或无码间干扰传输的最大符号速率为Baud。

相应的时域波形为 此信号满足 在理想信道中,,上述信号波形在抽样时刻上无码间干扰。 如果传输码元速率满足,则通过此基带系统后无码间干扰。 3.最佳基带系统 将发送滤波器和接收滤波器联合设计为无码间干扰的基带系统,而且具有最佳的抗加性高斯白噪声的性能。 要求接收滤波器的频率特性与发送信号频谱共轭匹配。由于最佳基带系统的总特性是确定的,故最佳基带系统的设计归结为发送滤波器和接收滤波器特性的选择。 设信道特性理想,则有

(延时为0) 有 可选择滤波器长度使其具有线性相位。 如果基带系统为升余弦特性,则发送和接收滤波器为平方根升余弦特性。 由模拟滤波器设计数字滤波器的时域冲激响应 升余弦滤波器(或平方根升余弦滤波器)的带宽为,故其时域抽样速率至少为,取,其中为时域抽样间隔,归一化为1。 抽样后,系统的频率特性是以为周期的,折叠频率为。故在一个周期内 以间隔抽样,N为抽样个数。频率抽样为,。 相应的离散系统的冲激响应为 将上述信号移位,可得因果系统的冲激响应。 5.基带传输系统(离散域分析) ?输入符号序列―― ?发送信号―― ――比特周期,二进制码元周期 ?发送滤波器――

通信原理基于matlab的计算机仿真_源代码

例错误!文档中没有指定样式的文字。-1 %周期信号(方波)的展开,fb_jinshi.m close all; clear all; N=100; %取展开式的项数为2N+1项 T=1; fs=1/T; N_sample=128; %为了画出波形,设置每个周期的采样点数 dt = T/N_sample; t=0:dt:10*T-dt; n=-N:N; Fn = sinc(n/2).*exp(-j*n*pi/2); Fn(N+1)=0; ft = zeros(1,length(t)); for m=-N:N ft = ft + Fn(m+N+1)*exp(j*2*pi*m*fs*t); end plot(t,ft) 例错误!文档中没有指定样式的文字。-4 利用FFT计算信号的频谱并与信号的真实频谱的抽样比较。 脚本文件T2F.m定义了函数T2F,计算信号的傅立叶变换。 function [f,sf]= T2F(t,st) %This is a function using the FFT function to calculate a signal's Fourier %Translation %Input is the time and the signal vectors,the length of time must greater %than 2 %Output is the frequency and the signal spectrum dt = t(2)-t(1); T=t(end); df = 1/T; N = length(st); f=-N/2*df:df:N/2*df-df; sf = fft(st); sf = T/N*fftshift(sf); 脚本文件F2T.m定义了函数F2T,计算信号的反傅立叶变换。 function [t st]=F2T(f,sf) %This function calculate the time signal using ifft function for the input %signal's spectrum

通信原理实验报告-含MATLAB程序

通信原理实验报告 实验一 数字基带传输实验 一、实验目的 1、提高独立学习的能力; 2、培养发现问题、解决问题和分析问题的能力; 3、学习Matlab 的使用; 4、掌握基带数字传输系统的仿真方法; 5、熟悉基带传输系统的基本结构; 6、掌握带限信道的仿真以及性能分析; 7、通过观测眼图和星座图判断信号的传输质量。 二、实验原理 1. 带限信道的基带系统模型(连续域分析) 输入符号序列 ————{al } 发送信号 ————1 0()()L l d t al t lTb δ-==-∑ Tb 是比特周期,二进制码元周期 发送滤波器 ————GT(w)或GT (t )

发送滤波器输出 ———— 11 00()()*()()*()()L L l b T l T b T l l x t d t t a t lT g t a g t lT g δ--====-=-∑∑ 信道输出信号或接收滤波器输入信号()()()y t x t n t =+ 接收滤波器 ()R G ω或()R G f 接收滤波器输出信号 1 0()()*()()*()*()()*()()()L R T R R l b R l r t y t g t d t g t g t n t g t a g t lT n t -===+=-+∑ 其中2()()()j ft T R g t G f G f e df π∞ -∞=? 如果位同步理想,则抽样时刻为b l T ? 0 1l L =- 判决为 '{}l a 2. 升余弦滚降滤波器 1()||2s s H f T f T α-=≤; ()H f =111[1cos (||)]||2222s s s s s T T f f T T T παααα--++-<≤ ()H f = 10||2s f T α+> 式中α 称为滚降系数,取值为0 <α ≤1, T s 是常数。α = 0时,带宽为1/ 2T s Hz ;α =1时, 带宽为1/T s Hz 。此频率特性在(?1/(2T s ),1/(2T s ))内可以叠加成一条直线,故系统无码间干 扰传输的最小符号间隔为T s s ,或无码间干扰传输的最大符号速率为1/T s Baud 。相应的时 域波形h (t )为 222sin /cos /()/14/s s s s t T t T h t t T t T παππα=?- 此信号满足

通信原理MATLAB验证低通抽样定理实验报告

通信原理实验报告 一、实验名称 MATLAB验证低通抽样定理 二、实验目的 1、掌握抽样定理的工作原理。 2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。 4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。 三、实验步骤及原理 1、对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性的延拓形成的。 2、设连续信号的的最高频率为Fmax,如果采样频率Fs>2Fmax,那么采样信号可以唯一的恢复出原连续信号,否则Fs<=2Fmax会造成采样信号中的频谱混叠现象,不可能无失真地恢复原连续信号。 四、实验内容 1、画出连续时间信号的时域波形及其幅频特性曲线,信号为 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t) 2、对信号进行采样,得到采样序列,画出采样频率分别为10Hz,20 Hz,50 Hz时的采样序列波形; 3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。 4、对信号进行谱分析,观察与3中结果有无差别。 5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。 五、实验仿真图 (1) x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)的时域波形及幅频特性曲线。clear; close all; dt=0.05; t=-2:dt:2 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); N=length(t); Y=fft(x)/N*2; fs=1/dt; df=fs/(N-1); f=(0:N-1)*df;

matlab验证时域采样定理实验报告

通信原理实验报告实验名称:采样定理 实验时间: 201211日年12月 指导老师:应娜 学院:计算机学院 级:班 学号: 姓名:

通信原理实验报告 一、实验名称 MATLAB验证低通抽样定理 二、实验目的 1、掌握抽样定理的工作原理。 2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。 4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。 三、实验步骤 1、画出连续时间信号的时域波形及其幅频特性曲线,信号为 f(x)=sin(2*pi*80*t)+ cos(2*pi*30*t); 2、对信号进行采样,得到采样序列,画出采样频率分别为80Hz,110 Hz,140 Hz时的采样序列波形; 3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。 4、对信号进行谱分析,观察与3中结果有无差别。 5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。 四、数据分析 (1)部分程序分析: f=[fs0*k2/m2,fs0*k1/m1]; %设置原信号的频率数组 axis([min(t),max(t),min(fx1),max(fx1)]) %画原信号幅度频谱 f1=[fs*k2/m2,fs*k1/m1]; %设置采样信号的频率数组 fz=eval(fy); %获取采样序列 FZ=fz*exp(-j*[1:length(fz)]'*w); %采样信号的离散时间傅里叶变换 TMN=ones(length(n),1)*t-n'*T*ones(1,length(t)); 由采样信号恢复原信号fh=fz*sinc(fs*TMN); %. (2)原信号的波形与幅度频谱:

通信原理matlab实验1

实验一 设计任务: 用MatLib仿真一个BFSK通信系统,基本参数: 1)fc=1000Hz; 2)Rb=100bps; 3)信息序列:“Hello world”的ASCII 实验与报告基本要求: 1)Matlab程序,要点旁注(可打印后手写); 2)绘出信号波形,绘出信号PSD; 3)给出解调后的信息序列; 4)将信息重复3遍以上,FSK信号保存为WAV文件格式,使用音频播放,聆听;M文件: wave.m function[t,mt]=wave(m,dt,fs) l=length(m); mt=[]; ddt=1/fs; n=floor(dt*fs); m_add=ones(1,n); for i=1:l if(m(i)) mt=[mt,m(i),m_add]; else mt=[mt,m(i),m_add*0]; end t=(1:((n+1)*l))*ddt; end my_filter.m function[num,den]=my_filter(wp,ws,ap,as) if nargin<4 as=15; end if nargin<4 ap=3; end [n,wn]=buttord(wp,ws,ap,as); [num,den]=butter(n,wn); end 代码:

f0=800;%‘0’码载波频率 f1=1200;%‘1’码载波频率 fs=4000;%采样频率 Rb=100;%比特率 dt=1/Rb;%一个比特发送时间 A0=2;%调制幅度 A1=2;%相干解调幅度 miu=0;sigma=0.3;%miu:高斯白噪声均值,sigma:高斯白噪声均方差 str='Hello world';%信号字符串 m_dec=abs(str);%将信号字符串转换成ASCII码(十进制) m_bin=dec2bin(m_dec,8); m_bin=abs(m_bin)-48;%将十进制转换成8比特二进制矩阵 m=[]; for i=1:size(m_bin,1) m=[m,m_bin(i,:)]; end%将二进制转换成行向量 [t,m]=wave(m,dt,fs);%对信号采样 mt_f1=m.*cos(2*pi*f1*t)*A0;%频率f1调制 mt_f0=(~m).*cos(2*pi*f0*t)*A0;%频率f0调制 mt=mt_f1+mt_f0;%发送信号 l=length(mt); subplot(2,1,1);plot(t,mt); grid on;xlabel('t/s');title('m(t)');%发送信号波形subplot(2,1,2);periodogram(mt,[],l,fs);grid on;%发送信号PSD

通信原理课程设计:基于matlab的b4b编码与译码的设计与仿真

课程设计I(数据通信原理) 设计说明书 题目:3B4B编码与译码的设计与仿真 学生姓名樊佳佳 学号1318064017 班级网络工程1301班 成绩 指导教师贾伟

数学与计算机科学学院2015年 9 月 12 日

课程设计任务书 2015—2016学年第 1 学期 课程设计名 称: 课程设计I(数据通信原理) 课程设计题 目: 3B4B编码与译码的设计与仿真 完成期限:自 2015 年 8 月 11 日至 2015 年 9 月 11 日共2 周 设计内容: 设计一种数字基带传输中的一种编译码系统(HDB3、AMI、CMI、2B1Q、3B4B、曼切斯特、差分曼切斯特等选取一种)。 使用Matlab/Simulink仿真软件,设计所选择的基带传输的编码和译码系统。系统能根据随机信源输入的二进制信息序列给出对应的编码及译码结果,并以图形化的方式显示出波形,能观察各分系统的各级波形。 指导教师:教研室负责人: 课程设计评阅

摘要 设计一个码元信息传递系统,包括编码和译码两部分,这个系统可以高效地传递信息。该系统是基于matlab/simulik实现的,设计数字电路来实现码元由3bit一组到4bit一组的转换,提高信息的传输效率。 关键词: 3B4B ; 编码器; 译码器

目录 目录 (2) 1.课题描述 (3) 2.3B4B码编译码模块设计 (4) 2.1 3B4B码编译码原理 (3) 2.2 3B4B编码器原理及框图 (4) 2.3 3B4B译码器原理及框图 (5) 2.4 编译码程序图 (5) 3.3B4B编译码程序图的参数设置及其仿真结 (8) 3.1仿真系统中模块参数设置和仿真实验结果 (8) 4.总结 (11) 5.参考文献 (13)

北邮通信原理软件实验报告XXXX27页

通信原理软件实验报告 学院:信息与通信工程学院 班级: 一、通信原理Matlab仿真实验 实验八 一、实验内容 假设基带信号为m(t)=sin(2000*pi*t)+2cos(1000*pi*t),载波频率为20kHz,请仿真出AM、DSB-SC、SSB信号,观察已调信号的波形和频谱。 二、实验原理 1、具有离散大载波的双边带幅度调制信号AM 该幅度调制是由DSB-SC AM信号加上离散的大载波分量得到,其表达式及时间波形图为: 应当注意的是,m(t)的绝对值必须小于等于1,否则会出现下图的过调制: AM信号的频谱特性如下图所示: 由图可以发现,AM信号的频谱是双边带抑制载波调幅信号的频谱加上离散的大载波分量。 2、双边带抑制载波调幅(DSB—SC AM)信号的产生 双边带抑制载波调幅信号s(t)是利用均值为0的模拟基带信号m(t)和正弦载波 c(t)相乘得到,如图所示: m(t)和正弦载波s(t)的信号波形如图所示:

若调制信号m(t)是确定的,其相应的傅立叶频谱为M(f),载波信号c(t)的傅立叶频谱是C(f),调制信号s(t)的傅立叶频谱S(f)由M(f)和C(f)相卷积得到,因此经过调制之后,基带信号的频谱被搬移到了载频fc处,若模拟基带信号带宽为W,则调制信号带宽为2W,并且频谱中不含有离散的载频分量,只是由于模拟基带信号的频谱成分中不含离散的直流分量。 3、单边带条幅SSB信号 双边带抑制载波调幅信号要求信道带宽B=2W, 其中W是模拟基带信号带宽。从信息论关点开看,此双边带是有剩余度的,因而只要利用双边带中的任一边带来传输,仍能在接收机解调出原基带信号,这样可减少传送已调信号的信道带宽。 单边带条幅SSB AM信号的其表达式: 或 其频谱图为: 三、仿真设计 1、流程图:

通信原理实验教程(MATLAB)

实验教程

目录 实验一:连续时间信号与系统的时域分析-------------------------------------------------6 一、实验目的及要求---------------------------------------------------------------------------6 二、实验原理-----------------------------------------------------------------------------------6 1、信号的时域表示方法------------------------------------------------------------------6 2、用MATLAB仿真连续时间信号和离散时间信号----------------------------------7 3、LTI系统的时域描述-----------------------------------------------------------------11 三、实验步骤及内容--------------------------------------------------------------------------15 四、实验报告要求-----------------------------------------------------------------------------26 实验二:连续时间信号的频域分析---------------------------------------------------------27 一、实验目的及要求--------------------------------------------------------------------------27 二、实验原理----------------------------------------------------------------------------------27 1、连续时间周期信号的傅里叶级数CTFS---------------------------------------------27 2、连续时间信号的傅里叶变换CTFT--------------------------------------------------28 3、离散时间信号的傅里叶变换DTFT -------------------------------------------------28 4、连续时间周期信号的傅里叶级数CTFS的MATLAB实现------------------------29 5、用MATLAB实现CTFT及其逆变换的计算---------------------------------------33 三、实验步骤及内容----------------------------------------------------------------------34 四、实验报告要求-------------------------------------------------------------------------48 实验三:连续时间LTI系统的频域分析---------------------------------------------------49 一、实验目的及要求--------------------------------------------------------------------------49 二、实验原理----------------------------------------------------------------------------------49 1、连续时间LTI系统的频率响应-------------------------------------------------------49 2、LTI系统的群延时---------------------------------------------------------------------50 3、用MATLAB计算系统的频率响应--------------------------------------------------50 三、实验步骤及内容----------------------------------------------------------------------51 四、实验报告要求-------------------------------------------------------------------------58 实验四:调制与解调以及抽样与重建------------------------------------------------------59 一、实验目的及要求--------------------------------------------------------------------------59 二、实验原理----------------------------------------------------------------------------------59

通信原理MATLAB仿真课程设计

《通信系统仿真》课程设计报告书 课题名称 Rayleigh 无线衰落信道的MATLAB 仿真 姓 名 伍伟 学 号 1312402-02 学 院 通信与电子工程学院 专 业 通信工程 指导教师 肖湘 2015年 12月19日 ※※※※※※※※※ ※※ ※ ※ ※※ ※※※※※※※※ ※ 2013级学生 通信系统仿真课程设计

Rayleigh 无线衰落信道的MATLAB 仿真 1 设计目的 (1) 对瑞利信道的数学分析,得出瑞利信道的数学模型。 (2) 利用MATLAB 对瑞利无线衰落信道进行编程。 (3) 针对服从瑞利分布的多径信道进行仿真,加深对多径信道特性的了解。 (4) 对仿真后的结果进行分析,得出瑞利无线衰落信道的特性。 2 设计要求 (1) 设计一个瑞利无线衰落信道; (2) 进一步地了解瑞利无线衰落信道对信号的影响; (3) 在设计无线多径信道时,对路径的多少一定要选择合理。 3 设计思路 (1) 分析出无线信道符合瑞利概率密度分布函数,写出数学表达式。 (2) 建立多径衰落信道的基本模型。 (3) 对符合瑞利信道的路径衰落进行分析,并利用MATLAB 进行仿真。 4 设计内容 4.1 理论分析及数学推导 无线信道大体可以分为4种:慢变瑞利衰落信道、快变瑞利衰落信道、慢变频率选择性信道、快变频率选择性信道。 在N 条路径的情况下,信道的输出为 1()()[()]N n n n y t a t x t t =τ=-∑ (4.1.1) 式中,()n a t 和()n t τ表示与第N 条多径分量相关的衰落和传播延迟,延迟和衰减都表示为时间的函数。 由于大量散射分量导致接收机输入信号的复包络是一个复高斯过程。在该

通信原理MATLAB仿真

小学期报告 实习题目通信原理Matlab仿真专业通信与信息工程 班级 学号 学生姓名 实习成绩 指导教师 2010年

通信原理Matlab仿真 目录 一、实验目的------------------------------------------------------------------------------------------------2 二、实验题目------------------------------------------------------------------------------------------------2 三、正弦信号波形及频谱仿真------------------------------------------------------------------------2 (一)通信原理知识--------------------------------------------------------------------------------------2 (二)仿真原理及思路--------------------------------------------------------------------------------------2 (三)程序流程图------------------------------------------------------------------------------------------- 3 (四)仿真程序及运行结果------------------------------------------------------------------------------3 (五)实验结果分析---------------------------------------------------------------------------------------5 四、单极性归零波形及其功率谱密度仿真--------------------------------------------------------5 (一)通信原理知识--------------------------------------------------------------------------------------6 (二)仿真原理及思路------------------------------------------------------------------------------ -------6 (三)程序流程图-------------------------------------------------------------------------------------------6 (四)仿真程序及运行结果--------------------------------------------------------------------------------6 (五)实验结果分析-------------------------------------------------------------------------------- -------6 五、升余弦滚降波形的眼图及功率谱密度仿真-------------------------------------------------8 (一)通信原理知识--------------------------------------------------------------------------------------8 (二)仿真原理及思路------------------------------------------------------------------------------ -------9 (三)程序流程图------------------------------------------------------------------------------- -----------9 (四)仿真程序及运行结果------------------------------------------------------------------------------10 (五)实验结果分析---------------------------------------------------------------------------------------11 六、PCM编码及解码仿真-----------------------------------------------------------------------------12 (一)通信原理知识---------------------------------------------------------------------------------- ---12 (二)仿真原理及思路------------------------------------------------------------------------------ ------ 13 (三)程序流程图------------------------------------------------------------------------------- -----------14 (四)仿真程序及运行结果------------------------------------------------------------------------------15 (五)实验结果分析---------------------------------------------------------------------------------------18 七、实验心得---------------------------------------------------------------------------- -------------------18

现代通信原理实验---模拟调制的MATLAB实现

画出频谱、功率谱密度图。 dt=0.001; fmax=1; fc=10; T=5; N=T/dt; t=[0:N-1]*dt; mt=sqrt(2)*cos(2*pi*fmax*t); A=0; s_ssb=real(hilbert(mt).*exp(j*2*pi*fc*t)); [f,Xf]=FFT_SHIFT(t,s_ssb); PSD=(abs(Xf).^2)/T; figure(1) subplot(211); plot(t,s_ssb);hold on ; title('SSB 调制信号'); subplot(212); plot(f,PSD); axis([-2*fc 2*fc 0 1.5*max(PSD)]); title('SSB 信号功率谱'); xlabel('f'); xlabel('f'); 00.20.40.60.81 1.2 1.4 1.6 1.82 -2-1 1 2 SSB 调制信号 -20-15-10-50 51015200 1 2 3 SSB 信号功率谱 f

画出频谱、功率谱密度图。 dt=0.001; %时间采样频谱 fmax=1; %信源最高频谱 fc=10; %载波中心频率 T=5; %信号时长 N=T/dt; t=[0:N-1]*dt; mt=sqrt(2)*cos(2*pi*fmax*t); %信源 A=0; s_dsb=mt.*cos(2*pi*fc*t); [f,Xf]=FFT_SHIFT(t,s_dsb); %调制信号频谱 PSD=(abs(Xf).^2)/T; %调制信号功率谱密度 figure(1) subplot(211); plot(t,s_dsb);hold on; %画出DSB 信号波形 plot(t,A+mt,'r--'); %表示DSB 包络 plot(t,-A-mt,'r--'); title('DSB 调制信号及其包络'); xlabel('t'); subplot(212); %画出功率谱图形 plot(f,PSD); axis([-2*fc 2*fc 0 1.5*max(PSD)]); title('DSB 信号功率谱'); xlabel('f'); xlabel('f'); 00.51 1.52 2.53 3.54 4.55 -2-1 1 2 DSB 调制信号 及其包络 t -20-15-10-50 51015200 0.2 0.4 0.6 0.8 DSB 信号功率谱f

通信原理课程设计 基于MATLAB的数字基带传输系统的研究和分析讲解

塔里木大学信息工程学院通信原理课程设计 2016届课程设计 《基于MATLAB的数字基带传输系统的研究与分 析》 课程设计说明书 学生姓名 学号 所属学院信息工程学院 专业通信工程 班级通信16-1 指导教师蒋霎

塔里木大学教务处制 摘要 本论文主要研究了数字信号的基带传输的基本概念及数字信号基带传输的传输过程和如何用MATLAB软件仿真设计数字基带传输系统。本文首先介绍了本课题的理论依据,包括数字通信,数字基带传输系统的组成及数字基带信号的传输过程。接着介绍了数字基带传输系统的特性包括数字PAM信号功率普密度及常用线路码型,并通过比较最终选择双极性不归零码。然后介绍了MATLAB仿真软件。之后介绍了数字基带信号的最佳接收的条件以及如何通过示波器观察基带信号的波形。最后按照仿真过程基本步骤用MATLAB的仿真工具实现了数字基带传输系统的仿真过程,对系统进行了分析。 关键字:数字基带传输系统MATLAB 计算机仿真;

目录 1.前言 0 2.正文 0 2.1数字基带传输系统 0 2.2 数字基带信号 (1) 2.2.1基本的基带信号波形 (1) 2.2.2基带传输的常用码型 (2) 2.3实验原理 (5) 2.3.1数字通信系统模型 (5) 2.3.2数字基带传输系统模型 (5) 3.1MATLAB软件简介 (6) 3.1.1软件介绍 (6) 3.1.2 Matlab语言的特点 (7) 4.1实验内容 (7) 4.1.1理想低通特性 (8) 4.1.2余弦滚降特性 (8) 4.1.3 Matlab设计流程图 (9) 4.1.4余弦滚降系基于matlab的程序及仿真结果 (9) 致谢 (12) 参考文献 (13) 附录 (14)

通信原理MATLAB仿真基础(新)

第三章设计性实验(MATLAB仿真实验) 3.1M ATALAB语言概述 3.1.1 MATALAB语言的发展 MATALAB是一种科学计算软件,主要适用于矩阵运算及控制和信息处理领域的分析设计。它使用方便,输入简洁,运算高效,内容丰富,并且很容易由用户自行扩展,因此,当前已成为美国和其他发达国家大学教学和科学研究中最常用而必不可少的工具。 MATLAB是由美国Mathworks公司与1984年正式推出的,从那时到现在已升级到7.x版本。随着版本的升级,内容不断扩充,功能更强大。特别是在系统仿真和实时运行等方面,有很多新进展,更扩大了它的应用前景。 MATLAB是“矩阵实验室”(MATrix Laboratoy)的缩写,它是一种以矩阵运算为基础的交互式程序语言,专门针对科学、工程计算及绘图的需求。它用解释方式工作,键入程序立即得出结果,人机交互性能好,适应于多种平台。MATLAB语言在国外的大学工学院中,特别是数值计算用的最频繁的电子信息类学科中,已成为每个学生都掌握的工具了。它大大提高了课程教学、解题作业、分析研究的效率。 MATLAB语言比较好学,因为它只有一种数据类型,一种标准的输入输出语句,不用“指针”,不需编译,比其他语言少了很多内容;听三、四个小时课,上机练几个小时,就可入门了。以后自学也十分方便,通过它的演示(demo)和求助(help)命令,人们可以方便地在线学习各种函数的用法及其内涵 MATLAB语言的难点是函数较多,仅基本部分就有700多个,其中常用的有二三百个,要尽量多记少查,可以提高编程效率。 3.1.2MATLAB语言的特点 1.矩阵运算:每个变量代表一个矩阵,它以矩阵运算见长;每个元素都看作复数,所有的运算都对矩阵和复数有效。(虚部符号可用i或j) clear %清除内存变量 format short % c1=1-2i,c2=3*(2-sqrt(-1)*3),c3=6+sin(.5)*1j c4=complex(1,2) %建立复数 c1 = 1.0000 - 2.0000i

MATLAB仿真实例(通信原理)

一、实验目的 (1) 二、实验题目 (1) 三、实验内容 (1) 3.1傅里叶变换与傅里叶反变换 (1) 3.2题目一:正弦信号波形及频谱 (2) 3.2.1仿真原理及思路 (2) 3.2.2程序流程图 (3) 3.2.3仿真程序及运行结果 (3) 3.2.4实验结果分析 (5) 3.3题目二:单极性归零(RZ)波形及其功率谱 (5) 3.3.1仿真原理及思路 (5) 3.3.2程序流程图 (6) 3.3.3仿真程序及运行结果 (6) 3.3.4实验结果分析 (8) 3.4题目三:升余弦滚降波形的眼图及其功率谱 (8) 3.4.1仿真原理及思路 (8) 3.4.2程序流程图 (8) 3.4.3仿真程序及运行结果 (8) 3.4.4实验结果分析: (10) 3.5题目四:完成PCM编码及解码的仿真 (11) 3.5.1仿真原理及思路 (11) 3.5.2程序流程图 (12) 3.5.3仿真程序及运行结果 (12) 3.5.4实验结果分析 (15) 3.6附加题一:最佳基带系统的Pe~Eb\No曲线,升余弦滚降系数a=0.5,取 样值的偏差是Ts/4 (16) 3.6.1仿真原理及思路 (16) 3.6.2程序流程图 (16) 3.6.3仿真程序及运行结果 (16) 3.6.4实验结果分析 (18) 3.7附加题二:试作出Pe~Eb/No曲线。升余弦滚降系数a=0.5,取样时间无 偏差,但信道是多径信道,C(f)=|1-0.5-j2 ft|,t=T s/2 (18) 3.7.1仿真原理及思路 (18) 3.7.2程序流程图 (19) 3.7.3仿真程序及运行结果 (19) 3.7.4实验结果分析 (21) 四、实验心得 (21)

相关主题