搜档网
当前位置:搜档网 › AdSCFT and QCD

AdSCFT and QCD

AdSCFT and QCD
AdSCFT and QCD

a r X i v :h e p -t h /0702205v 1 27 F e

b 2007

ADS/CFT and QCD

Stanley J.Brodsky

Stanford Linear Accelerator Center,Stanford University,Stanford,California 94309

Guy F.de T′e ramond ?

Universidad de Costa Rica,San Jos′e ,Costa Rica,

and Stanford Linear Accelerator Center,Stanford University,Stanford,California 94309?

E-mail:gdt@asterix.crnet.cr

The AdS/CFT correspondence between string theory in AdS space and conformal ?eld theories in physical space-time leads to an analytic,semi-classical model for strongly-coupled QCD which has scale invariance and dimensional counting at short distances and color con?nement at large distances.Although QCD is not conformally invariant,one can nevertheless use the mathematical representation of the conformal group in ?ve-dimensional anti-de Sitter space to construct a ?rst approximation to the theory.The AdS/CFT correspondence also provides insights into the inherently non-perturbative aspects of QCD,such as the orbital and radial spectra of hadrons and the form of hadronic wavefunctions.In particular,we show that there is an exact correspondence between the ?fth-dimensional coordinate of AdS space z and a speci?c impact variable ζwhich measures the separation of the quark and gluonic constituents within the hadron in ordinary space-time.This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions,the fundamental entities which encode hadron properties and allow the computation of decay constants,form factors,and other exclusive scattering amplitudes.New relativistic light-front equations in ordinary space-time are found which reproduce the results obtained using the 5-dimensional theory.The e?ective light-front equations possess remarkable algebraic structures and integrability properties.Since they are complete and orthonormal,the AdS/CFT model wavefunctions can also be used as a basis for the diagonalization of the full light-front QCD Hamiltonian,thus systematically improving the AdS/CFT approximation.

1.The Conformal Approximation to QCD

Quantum Chromodynamics,the Yang-Mills local gauge ?eld theory of SU (3)C color symmetry provides a fun-damental understanding of hadron and nuclear physics in terms of quark and gluon degrees of freedom.However,because of its strong-coupling nature,it is di?cult to ?nd analytic solutions to QCD or to make precise predictions outside of its perturbative domain.An important goal is thus to ?nd an initial approximation to QCD which is both analytically tractable and which can be systematically improved.For example,in quantum electrodynamics,the Schr¨o dinger and Dirac equations provide accurate ?rst approximations to atomic bound state problems which can then be systematically improved by using the Bethe-Salpeter formalism and correcting for quantum ?uctuations,such as the Lamb Shift and vacuum polarization.

One of the most signi?cant theoretical advances in recent years has been the application of the AdS/CFT corre-spondence [1]between string states de?ned on the 5-dimensional Anti–de Sitter (AdS)space-time and conformal ?eld theories in physical space-time.The essential principle underlying the AdS/CFT approach to conformal gauge theo-ries is the isomorphism of the group of Poincare’and conformal transformations SO (4,2)to the group of isometries of Anti-de Sitter space.The AdS metric is

ds 2

=

R 2

refs.[33,34].It is also remarkable that the dynamical properties of the quark-gluon plasma observed at RHIC[35] can be computed within the AdS/CFT correspondence[36].In contrast to the simple bottom-up approach described above,the introduction of additional higher dimensional branes to the AdS5×S5background has been used to study chiral symmetry breaking[37],and recently baryonic properties by using D4-D8brane constructs[38,39,40].

It was originally believed that the AdS/CFT mathematical tool would only be applicable to strictly conformal theories such as N=4supersymmetry.In our approach,we will apply AdS/CFT to the low momentum,strong coupling regime of QCD where the coupling is approximately constant.Theoretical[41]and phenomenological[42] evidence is in fact accumulating that the QCD couplings de?ned from physical observables such asτdecay[43] become constant at small virtuality;i.e.,e?ective charges develop an infrared?xed point in contradiction to the usual assumption of singular growth in the infrared.Recent lattice gauge theory simulations[44]also indicate an infrared ?xed point for QCD.

It is clear from a physical perspective that in a con?ning theory where gluons and quarks have an e?ective mass or maximal wavelength,all vacuum polarization corrections to the gluon self-energy must decouple at long wavelength; thus an infrared?xed point appears to be a natural consequence of con?nement.Furthermore,if one considers a semi-classical approximation to QCD with massless quarks and without particle creation or absorption,then the resultingβfunction is zero,the coupling is constant,and the approximate theory is scale and conformal invariant. In the case of hard exclusive reactions[6],the virtuality of the gluons exchanged in the underlying QCD process is typically much less than the momentum transfer scale Q since typically several gluons share the total momentum transfer.Since the coupling is probed in the conformal window,this kinematic feature can explain why the measured proton Dirac form factor scales as Q4F1(Q2)?const up to Q2<35GeV2[45]with little sign of the logarithmic running of the QCD coupling.

One can also use conformal symmetry as a template[46],systematically correcting for its nonzeroβfunction as well as higher-twist e?ects.For example,“commensurate scale relations”[47]which relate QCD observables to each other,such as the generalized Crewther relation[48],have no renormalization scale or scheme ambiguity and retain a convergent perturbative structure which re?ects the underlying conformal symmetry of the classical theory.In general,the scale is set such that one has the correct analytic behavior at the heavy particle thresholds[49].The importance of using an analytic e?ective charge[50]such as the pinch scheme[51,52]for unifying the electroweak and strong couplings and forces is also important[53].Thus conformal symmetry is a useful?rst approximant even for physical QCD.

In the AdS/CFT duality,the amplitudeΦ(z)represents the extension of the hadron into the compact?fth dimension. The behavior ofΦ(z)→z?at z→0must match the twist-dimension of the hadron at short distances x2→0.As we shall discuss,one can use holography to map the amplitudeΦ(z)describing the hadronic state in the?fth dimension of Anti-de Sitter space AdS5to the light-front wavefunctionsψn/h of hadrons in physical space-time[19],thus providing a relativistic description of hadrons in QCD at the amplitude level.In fact,there is an exact correspondence between the ?fth-dimensional coordinate of anti-de Sitter space z and a speci?c impact variableζin the light-front formalism which measures the separation of the constituents within the hadron in ordinary space-time.We derive this correspondence by noticing that the mapping of z→ζanalytically transforms the expression for the form factors in AdS/CFT to the exact QCD Drell-Yan-West expression in terms of light-front wavefunctions.

Light-front wavefunctions are relativistic and frame-independent generalizations of the familiar Schr¨o dinger wave-functions of atomic physics,but they are determined at?xed light-cone timeτ=t+z/c—the“front form”advocated by Dirac—rather than at?xed ordinary time t.An important advantage of light-front quantization is the fact that it provides exact formulas to write down matrix elements as a sum of bilinear forms,which can be mapped into their AdS/CFT counterparts in the semi-classical approximation.One can thus obtain not only an accurate description of the hadron spectrum for light quarks,but also a remarkably simple but realistic model of the valence wavefunctions of mesons,baryons,and glueballs.The light-front wavefunctions predicted by AdS/QCD have many phenomenological applications ranging from exclusive B and D decays,deeply virtual Compton scattering and exclusive reactions such as form factors,two-photon processes,and two-body scattering.One thus obtains a connection between the theories and tools used in string theory and the fundamental phenomenology of hadrons.

2.Light-Front Wavefunctions in Impact Space

The light-front expansion is constructed by quantizing QCD at?xed light-cone time[54]τ=t+z/c and forming the

invariant light-front Hamiltonian:H QCD

LF =P+P?? P2⊥where P±=P0±P z[55].The momentum generators P+and

P

⊥are kinematical;i.e.,they are independent of the interactions.The generator P?=i d

The holographic mapping of hadronic LFWFs to AdS string modes

is most transparent when one uses the impact

parameter space representation[56].The total position coordinate of a hadron or its transverse center of momentum R⊥,is de?ned in terms of the energy momentum tensor Tμν

R⊥=

1

2n?1

j=1 d2b⊥j exp i n?1 j=1b⊥j·k⊥j ψn(x j,b⊥j).(3)

The normalization is de?ned by

n n?1 j=1 dx j d2b⊥j ψn(x j,b⊥j) 2=1.(4) One of the important advantages of the light-front formalism is that current matrix elements can be represented without approximation as overlaps of light-front wavefunctions.In the case of the elastic space-like form factors,the matrix element of the J+current only couples Fock states with the same number of constituents.If the charged parton n is the active constituent struck by the current,and the quarks i=1,2,...,n?1are spectators,then the Drell-Yan West formula[57,58,59]in impact space is

F(q2)= n n?1 j=1 dx j d2b⊥j exp i q⊥·n?1 j=1x j b⊥j ψn(x j,b⊥j) 2,(5)

corresponding to a change of transverse momenta x j q⊥for each of the n?1spectators.This is a convenient form for comparison with AdS results,since the form factor is expressed in terms of the product of light-front wave functions with identical variables.

We can now establish an explicit connection between the AdS/CFT and the LF formulae.It is useful to express (5)in terms of an e?ective single particle transverse distribution ρ[19]

F(q2)=2π 10dx(1?x)1?x

x

z3

ΦP′(z)J(Q,z)ΦP(z).(8)

If we compare(6)in impact space with the expression for the form factor in AdS space(8)for arbitrary values of Q using the identity

10dx J0 ζQ x =ζQK1(ζQ),(9)

then we can identify the spectator density function appearing in the light-front formalism with the corresponding AdS density

?ρ(x,ζ)=R3

1?x

|Φ(ζ)|2

2πx(1?x)|Φ(ζ)|

2

R ?3/2Φ(ζ),in the AdS wave equation describing the propagation of scalar modes in AdS space

z2?2z?(d?1)z?z+z2M2?(μR)2 Φ(z)=0,(13)

we?nd an e?ective Schr¨o dinger equation as a function of the weighted impact variableζ

?d2

2Φ(z)= Cz1

x(1?x)J L(ζβL,kΛQCD)θ z≤Λ?1QCD ,(16) where B L,k=ΛQCD/

x(1?x)→k 2

+m22

1?x

.

ζ

ψ(x,ζ)

2-2006 8721A14?(a)(b)(c)

x x x

0.2

Figure1:AdS/QCD Predictions for the light-front wavefunctions of a meson.

4.Integrability of AdS/CFT Equations

The integrability methods of Ref.[[61]]?nd a remarkable application in the AdS/CFT correspondence.Integrability follows if the equations describing a physical model can be factorized in terms of linear operators.These ladder operators then generate all the eigenfunctions once the lowest mass eigenfunction is known.In holographic QCD,the conformally invariant3+1light-front di?erential equations can be expressed as ladder operators and their solutions can then be expressed in terms of analytical functions.

In the conformal limit the ladder algebra for bosonic(B)or fermionic(F)modes is given in terms of the operator (ΓB=1,ΓF=γ5)

ΠB,F

ν

(ζ)=?i d2

dζ+

ν+1

ζ

ΓB,F ,(18)

with commutation relations

ΠB,Fν(ζ),ΠB,Fν(ζ)? =2ν+1

q,qqq and gg bound states.Speci?c hadrons are identi?ed by the correspondence of the amplitude in the?fth dimension with the twist dimension of the interpolating operator for the hadron’s valence Fock state,including its orbital angular momentum excitations.Bosonic modes with conformal dimension2+L are dual to the interpolating operator Oτ+L withτ=2.For fermionic modesτ=3.For example,the set of three-quark baryons with spin1/2 and higher is described by the light-front Dirac equation

αΠF(ζ)?M ψ(ζ)=0,(20) where iα= 0I?I0 in the Weyl representation.The solution is

ψ(ζ)=C

with γ5u ±=u ±.A discrete four-dimensional spectrum follows when we impose the boundary condition ψ±(ζ=

1/ΛQCD )=0:M +α,k =βα,k ΛQCD ,M ?

α,k =βα+1,k ΛQCD ,with a scale-independent mass ratio[15].

Figure 2(a)shows the predicted orbital spectrum of the nucleon states and Fig.2(b)the ?orbital resonances.The spin-3/2trajectories are determined from the corresponding Rarita-Schwinger equation.The solution of the spin-3/2for polarization along Minkowski coordinates,ψμ,is similar to the spin-1/2solution.The data for the baryon spectra are from [[64]].The internal parity of states is determined from the SU(6)spin-?avor symmetry.Since only one parameter,the QCD mass scale ΛQCD ,is introduced,the agreement with the pattern of physical

02

L

6

02

L

62

4

6

8

(G e V 2)

1-20068694A14

Figure 2:Predictions for the light baryon orbital spectrum for ΛQCD =0.25GeV.The 56trajectory corresponds to L even P =+states,and the 70to L odd P =?states.

states is remarkable.In particular,the ratio of ?to nucleon trajectories is determined by the ratio of zeros of Bessel functions.The predicted mass spectrum in the truncated space model is linear M ∝L at high orbital angular momentum,in contrast to the quadratic dependence M 2∝L in the usual Regge parameterization.One can obtain M 2∝(L +n )dependence in the holographic model by the introduction of a harmonic potential κ2z 2in the AdS wave equations [18].This result can also be obtained by extending the conformal algebra written above.An account of the extended algebraic holographic model and a possible supersymmetric connection between the bosonic and fermionic operators used in the holographic construction will be described elsewhere.

6.Pion Form Factor

Hadron form factors can be predicted from the overlap integral representation in AdS space or equivalently by using the Drell-Yan West formula in physical space-time.For the pion string mode Φin the harmonic oscillator model [18]

ΦHO π(z )=√

R 3/2z 2e ?κ2z 2/2

,(22)the form factor has a closed form solution

F (Q 2)=1+

Q 2

4κ2

Ei

?

Q 2

t

.(24)

Expanding the function Ei (?x )for large arguments,we ?nd for ?Q 2?κ2

F (Q 2)→

4κ2

Figure3:Q2Fπ(Q2)in the harmonic oscillator model forκ=0.4GeV.

to small b⊥~O(1/Q)(high relative k⊥~O(Q)),as well as x→1.The AdS/CFT dynamics is thus distinct from endpoint models[29]in which the LFWF is evaluated solely at small transverse momentum or large impact separation. The x→1endpoint domain is often referred to as a“soft”Feynman contribution.In fact x→1for the struck quark requires that all of the spectators have x=k+/P+=(k0+k z)/P+→0;this in turn requires high longitudinal momenta k z→?∞for all spectators–unless one has both massless spectator quarks m≡0with zero transverse momentum k⊥≡0,which is a regime of measure zero.If one uses a covariant formalism,such as the Bethe-Salpeter theory,then the virtuality of the struck quark becomes in?nitely spacelike:k2F~?k2⊥+m2

N C 10dx d2 k⊥qq/π(x,k⊥).(26)

This light-cone equation allows the exact computation of the pion decay constant in terms of the valence pion light-front wave function[6].

The meson distribution amplitudeφ(x,Q)is de?ned as[63]

φ(x,Q)= Q2d2 k⊥

√x(1?x),(28) with

fπ=13

ζ2

,(29)

sinceφ(x,Q→∞)→ ψ(x, b⊥→0)/√3

3

3fπx(1?x).The broader shape of the pion distribution increases the magnitude of the leading twist perturbative QCD prediction for the pion form factor by a factor of16/9compared to the prediction based on the asymptotic form,bringing the PQCD prediction close to the empirical pion form factor[31]. Acknowledgments

This research was supported by the Department of Energy contract DE–AC02–76SF00515.We thank Alexander Gorsky,Chueng-Ryong Ji,and Mitat Unsal for helpful comments.

References

[1]J.M.Maldacena,Adv.Theor.Math.Phys.2,231(1998)[Int.J.Theor.Phys.38,1113(1999)]

[arXiv:hep-th/9711200].

[2]J.Polchinski and M.J.Strassler,Phys.Rev.Lett.88,031601(2002)[arXiv:hep-th/0109174].

[3]S.J.Brodsky and G.R.Farrar,Phys.Rev.Lett.31,1153(1973).

[4]S.J.Brodsky and G.R.Farrar,Phys.Rev.D11,1309(1975).

[5]V.A.Matveev,R.M.Muradian and A.N.Tavkhelidze,Lett.Nuovo Cim.7,719(1973).

[6]G.P.Lepage and S.J.Brodsky,Phys.Rev.D22,2157(1980).

[7]R.A.Janik and R.Peschanski,Nucl.Phys.B565,193(2000)[arXiv:hep-th/9907177].

[8]J.Polchinski and M.J.Strassler,JHEP0305,012(2003)[arXiv:hep-th/0209211].

[9]R.C.Brower and C.I.Tan,Nucl.Phys.B662,393(2003)[arXiv:hep-th/0207144].

[10]S.B.Giddings,Phys.Rev.D67,126001(2003)[arXiv:hep-th/0203004].

[11]S.J.Brodsky and G.F.de Teramond,Phys.Lett.B582,211(2004)[arXiv:hep-th/0310227].

[12]O.Andreev and W.Siegel,Phys.Rev.D71,086001(2005)[arXiv:hep-th/0410131].

[13]H.Boschi-Filho and N.R.F.Braga,JHEP0305,009(2003)[arXiv:hep-th/0212207].

[14]G.F.de Teramond and S.J.Brodsky,arXiv:hep-th/0409074.

[15]G.F.de Teramond and S.J.Brodsky,Phys.Rev.Lett.94,201601(2005)[arXiv:hep-th/0501022].

[16]J.Erlich,E.Katz,D.T.Son and M.A.Stephanov,Phys.Rev.Lett.95,261602(2005)[arXiv:hep-ph/0501128].

[17]E.Katz,A.Lewandowski and M.D.Schwartz,Phys.Rev.D74,086004(2006)[arXiv:hep-ph/0510388].

[18]A.Karch,E.Katz,D.T.Son and M.A.Stephanov,Phys.Rev.D74,015005(2006)[arXiv:hep-ph/0602229].

[19]S.J.Brodsky,arXiv:hep-ph/0610115.4th International Conference On Quarks And Nuclear Physics(QNP06),

5-10June2006,Madrid,Spain

[20]D.K.Hong,T.Inami and H.U.Yee,arXiv:hep-ph/0609270.

[21]S.Hong,S.Yoon and M.J.Strassler,JHEP0604,003(2006)[arXiv:hep-th/0409118].

[22]L.Da Rold and A.Pomarol,Nucl.Phys.B721,79(2005)[arXiv:hep-ph/0501218].

[23]J.Hirn,N.Rius and V.Sanz,Phys.Rev.D73,085005(2006)[arXiv:hep-ph/0512240].

[24]K.Ghoroku,N.Maru,M.Tachibana and M.Yahiro,Phys.Lett.B633,602(2006)[arXiv:hep-ph/0510334].

[25]H.Boschi-Filho,N.R.F.Braga and C.N.Ferreira,Phys.Rev.D73,106006(2006)[Erratum-ibid.D74,089903

(2006)][arXiv:hep-th/0512295].

[26]O.Andreev and V.I.Zakharov,Phys.Rev.D74,025023(2006)[arXiv:hep-ph/0604204].

[27]H.Boschi-Filho,N.R.F.Braga and H.L.Carrion,Phys.Rev.D73,047901(2006)[arXiv:hep-th/0507063].

[28]R.C.Brower,J.Polchinski,M.J.Strassler and C.I.Tan,arXiv:hep-th/0603115.

[29]A.V.Radyushkin,Phys.Lett.B642,459(2006)[arXiv:hep-ph/0605116].

[30]S.J.Brodsky,arXiv:hep-ph/0608005.Seventh Workshop on Continuous Advances in QCD,Minneapolis,Min-

nesota,11-14May2006.

[31]H.M.Choi and C.R.Ji,Phys.Rev.D74,093010(2006)[arXiv:hep-ph/0608148].

[32]G.F.de Teramond,arXiv:hep-ph/0606143.Seventh Workshop on Continuous Advances in QCD,Minneapolis,

May11-14,2006

[33]C.Csaki and M.Reece,arXiv:hep-ph/0608266.

[34]J.P.Shock,F.Wu,Y.L.Wu and Z.F.Xie,arXiv:hep-ph/0611227.

[35]B.Muller and J.L.Nagle,arXiv:nucl-th/0602029.

[36]G.Policastro,D.T.Son and A.O.Starinets,Phys.Rev.Lett.87,081601(2001)[arXiv:hep-th/0104066].

[37]J.Babington,J.Erdmenger,N.J.Evans,Z.Guralnik and I.Kirsch,Phys.Rev.D69,066007(2004)

[arXiv:hep-th/0306018].

[38]K.Nawa,H.Suganuma and T.Kojo,arXiv:hep-th/0612187.

[39]D.K.Hong,M.Rho,H.U.Yee and P.Yi,arXiv:hep-th/0701276.

[40]H.Hata,T.Sakai,S.Sugimoto and S.Yamato,arXiv:hep-th/0701280.

[41]R.Alkofer,C.S.Fischer and F.J.Llanes-Estrada,Phys.Lett.B611,279(2005)[arXiv:hep-th/0412330].

[42]S.J.Brodsky,S.Menke,C.Merino and J.Rathsman,Phys.Rev.D67,055008(2003)[arXiv:hep-ph/0212078].

[43]S.J.Brodsky,J.R.Pelaez and N.Toumbas,Phys.Rev.D60,037501(1999)[arXiv:hep-ph/9810424].

[44]S.Furui and H.Nakajima,Few Body Syst.40,101(2006)[arXiv:hep-lat/0612009].

[45]M.Diehl,T.Feldmann,R.Jakob and P.Kroll,Eur.Phys.J.C39,1(2005)[arXiv:hep-ph/0408173].

[46]S.J.Brodsky and J.Rathsman,arXiv:hep-ph/9906339.

[47]S.J.Brodsky and H.J.Lu,Phys.Rev.D51,3652(1995)[arXiv:hep-ph/9405218].

[48]S.J.Brodsky,G.T.Gabadadze,A.L.Kataev and H.J.Lu,Phys.Lett.B372,133(1996)[arXiv:hep-ph/9512367].

[49]S.J.Brodsky,G.P.Lepage and P.B.Mackenzie,Phys.Rev.D28,228(1983).

[50]S.J.Brodsky,M.S.Gill,M.Melles and J.Rathsman,Phys.Rev.D58,116006(1998)[arXiv:hep-ph/9801330].

[51]M.Binger and S.J.Brodsky,Phys.Rev.D74,054016(2006)[arXiv:hep-ph/0602199].

[52]J.M.Cornwall and J.Papavassiliou,Phys.Rev.D40,3474(1989).

[53]M.Binger and S.J.Brodsky,Phys.Rev.D69,095007(2004)[arXiv:hep-ph/0310322].

[54]P.A.M.Dirac,Rev.Mod.Phys.21,392(1949).

[55]S.J.Brodsky,H.C.Pauli and S.S.Pinsky,Phys.Rept.301,299(1998)[arXiv:hep-ph/9705477].

[56]D.E.Soper,Phys.Rev.D15,1141(1977).

[57]S.D.Drell and T.M.Yan,Phys.Rev.Lett.24,181(1970).

[58]G.B.West,Phys.Rev.Lett.24,1206(1970).

[59]S.J.Brodsky and S.D.Drell,Phys.Rev.D22,2236(1980).

[60]P.Breitenlohner and D.Z.Freedman,Annals Phys.144,249(1982).

[61]L.Infeld,Phys.Rev.59,737(1941).

[62]M.E.Peskin and D.V.Schroeder,“An Introduction To Quantum Field Theory,”Reading,USA:Addison-Wesley

(1995)842p

[63]G.P.Lepage and S.J.Brodsky,Phys.Lett.B87,359(1979).

[64]S.Eidelman et al.[Particle Data Group],Phys.Lett.B592,1(2004).

QCD改善项目管理办法1226

QCD改善项目管理制度代号 1 主题容与适用围 1.1 本制度规定了QCD改善项目管理的定义、层级分类、组织结构、管理流程、改善流程、评价与激励。 1.2 本制度适用于车桥公司QCD改善项目管理。 2 定义 对于一个异常的KPI指标或现存的问题点,研究其改善的可能性和效果,提出具体的改善方案并实施,以PDCA循环为管理思路,进行过程控制,以确保KPI指标的达成或现状改善的管理过程。 3 层级与分类 3.1 QCD改善项目层级:公司级改善项目、工厂(部)级改善项目(以下简称工厂级)、车间(科室)级改善项目(含总部科室,以下简称车间级)、班组、员工个人级改善项目(以下简称班组级)。 3.2 QCD改善项目分类: QCD改善课题分质量(Q)、成本(C)、交货期(D)、安全(S)、管理(M)等五个方面。 4组织结构 本管理制度规定了公司级、工厂级改善项目的组织结构及职责分工,依据“全面展开全员参与规管理提升水平”的工作指导思想,公司各部门应对车间级、班组级改善项目应成立相应的组织,明确职责分工,开展改善项目管理工作。 4. 1 公司领导对关系到公司战略、发展、重大课题进行审议并决策,公司级改善项目必须经过公司领导讨论通过方可有效。工厂级QCD改善项目必须经过工厂领导讨论通过后方可有效。 4.2 公司级、工厂级改善项目以多功能小组(项目小组)形式开展改善工作,项目负责人对本改善项目的计划、实施、进度、目标达成负全责,可以跨越部门、行政权限,调动资源确保实施进度、目标顺利达成,并对项目成员及涉及部门工作开展情况实施评价、提出考核激励意见。

4.3 公司各部门是涉及QCD改善项目实施的主体单元,对所承接的改善项目容的进度、目标达成负责,接受项目小组的评价及考核激励意见。 4.4 生产规划部QCD室是公司QCD改善项目的归口管理部门:负责组织公司级、工厂级改善项目的审议,确定公司级、工厂级QCD改善项目节点评价工作;组织公司级、工厂级改善项目总体验收;负责组织对QCD改善方法进行培训、指导,执行上级QCD管理部门的工作指导和安排。 4.5 质量部是公司质量改善项目的归口管理部门,负责公司质量改善项目的审议、确定及组织公司级、工厂级QCD改善项目节点验收、评价工作。 4.6 研发部是公司技术改善项目的归口管理部门,负责公司技术改善项目的审议、确定及组织公司级、工厂级QCD改善项目节点验收、评价工作。 4.7 生产规划部是公司生产管理、安全、环境、装备技术、装备管理改善项目的归口管理部门,负责公司生产管理、安全、环境、装备技术、装备管理改善项目的审议、确定及组织对公司级、工厂级QCD改善项目节点验收、评价工作。 4.8 财务信息部是公司成本改善项目的归口管理部门,负责公司成本改善项目的审议、确定及组织公司级、工厂级QCD改善项目节点验收、评价工作。 4.9 综合管理部是公司管理改善项目的归口管理部门,负责组织公司管理改善项目的审议、确定及组织公司级、工厂级QCD改善项目节点验收、评价工作。 4.10 党群工作部是群众性创新(含小改善)项目的归口管理部门,负责组织群众性创新项目的部门验收、评价及成果发表等工作。 5 管理流程 5.1 改善项目来源 ①公司根据战略发展需要提出公司级重点改善课题; ②上级部门指令性改善课题; ③各级部门根据活动计划异常管理项目或异常指标提出有针对性的改善课题; ④工厂根据工厂发展需要由厂务会提出工厂级重点改善课题; ⑤各级部门以与时俱进的精神提出自主改善课题; ⑥根据现场管理的推进需要提出改善课题;

QCD改善项目管理办法1226

QCD改善项目管理制度代号 1 主题内容与适用范围 1.1 本制度规定了QCD改善项目管理的定义、层级分类、组织结构、管理流程、改善流程、评价与激励。 1.2 本制度适用于车桥公司QCD改善项目管理。 2 定义 对于一个异常的KPI指标或现存的问题点,研究其改善的可能性和效果,提出具体的改善方案并实施,以PDCA循环为管理思路,进行过程控制,以确保KPI指标的达成或现状改善的管理过程。 3 层级与分类 3.1 QCD改善项目层级:公司级改善项目、工厂(部)级改善项目(以下简称工厂级)、车间(科室)级改善项目(含总部科室,以下简称车间级)、班组、员工个人级改善项目(以下简称班组级)。 3.2 QCD改善项目分类: QCD改善课题分质量(Q)、成本(C)、交货期(D)、安全(S)、管理(M)等五个方面。 4组织结构 本管理制度规定了公司级、工厂级改善项目的组织结构及职责分工,依据“全面展开全员参与规范管理提升水平”的工作指导思想,公司各部门应对车间级、班组级改善项目应成立相应的组织,明确职责分工,开展改善项目管理工作。 4. 1 公司领导对关系到公司战略、发展、重大课题进行审议并决策,公司级改善项目必须经过公司领导讨论通过方可有效。工厂级QCD改善项目必须经过工厂领导讨论通过后方可有效。 4.2 公司级、工厂级改善项目以多功能小组(项目小组)形式开展改善工作,项目负责人对本改善项目的计划、实施、进度、目标达成负全责,可以跨越部门、行政权限,调动资源确保实施进度、目标顺利达成,并对项目成员及涉及部门工作开展情况实施评价、提出考核激励意见。

4.3 公司各部门是涉及QCD改善项目实施的主体单元,对所承接的改善项目内容的进度、目标达成负责,接受项目小组的评价及考核激励意见。 4.4 生产规划部QCD室是公司QCD改善项目的归口管理部门:负责组织公司级、工厂级改善项目的审议,确定公司级、工厂级QCD改善项目节点评价工作;组织公司级、工厂级改善项目总体验收;负责组织对QCD改善方法进行培训、指导,执行上级QCD管理部门的工作指导和安排。 4.5 质量部是公司质量改善项目的归口管理部门,负责公司质量改善项目的审议、确定及组织公司级、工厂级QCD改善项目节点验收、评价工作。 4.6 研发部是公司技术改善项目的归口管理部门,负责公司技术改善项目的审议、确定及组织公司级、工厂级QCD改善项目节点验收、评价工作。 4.7 生产规划部是公司生产管理、安全、环境、装备技术、装备管理改善项目的归口管理部门,负责公司生产管理、安全、环境、装备技术、装备管理改善项目的审议、确定及组织对公司级、工厂级QCD改善项目节点验收、评价工作。 4.8 财务信息部是公司成本改善项目的归口管理部门,负责公司成本改善项目的审议、确定及组织公司级、工厂级QCD改善项目节点验收、评价工作。 4.9 综合管理部是公司管理改善项目的归口管理部门,负责组织公司管理改善项目的审议、确定及组织公司级、工厂级QCD改善项目节点验收、评价工作。 4.10 党群工作部是群众性创新(含小改善)项目的归口管理部门,负责组织群众性创新项目的部门验收、评价及成果发表等工作。 5 管理流程 5.1 改善项目来源 ①公司根据战略发展需要提出公司级重点改善课题; ②上级部门指令性改善课题; ③各级部门根据活动计划异常管理项目或异常指标提出有针对性的改善课题; ④工厂根据工厂发展需要由厂务会提出工厂级重点改善课题; ⑤各级部门以与时俱进的精神提出自主改善课题; ⑥根据现场管理的推进需要提出改善课题;

工作报告 qcd改善先进汇报

qcd改善先进汇报 qcd改善先进汇报 QCD管理 “QCD”管理是指质量(Quality)、成本(Cost)与交货期(delivery)的管理,要求以优异的质量、最低的成本、最快的速度向用户提供最好的产品。 Quality,Cost,andDelivery,常简写为QCD,是品质、成本、与交付在精简生产方式(leanmanufacturing)中用以衡量商业活动并用以计算关键绩效指标(KeyPerformanceIndicators,KPI)。QCD的分析通常可以持续的改进商业活动的运作。QCD在很多不同类型的产业中都可适用,例如供应链产业、或是工程产业。QCD在专案管理领域中也常被拿来作为评估专案进展与决策的参考之一。 分析QCD的好处 QCD提供了一个很直觉的方法来衡量并评估简易与复杂的商业程序中,哪一种较为合适。它也提供了一个商业的比较基准。当品质、成本、与交付时程的其中之一必须改变时,借由QCD的分析可以有助于决策者做出决策。此外,在日常的商业运作当中,定期且事实的借由QCD的分析,也可追踪这三个要素是否均衡的被兼顾,解此可确保商业运作的顺利。QCD于专案管理上的应用 QCD有时也应用在专案管理上,不过一般而言,在专案管理上较常专注于专案范畴、成本、与时间(Scope,Cost,Time)。这三个变量为专案管理过程当中的三个重要变量,并且彼此相互牵连。

专案的范畴:在专案开始进行时便应已明确的定义,而会被拿来衡量的是品质。一般而言,当投注相当的时间与成本于专案的进行时,相对的会有一定的品质产出,然而,当时间与成本受限时,品质也许就会被牺牲。 专案的成本:成本虽然在专案开始前会大致估算,然而,随着专案的进行,相当多的变异都会影响额外成本的资出,诸如难度的低估、需要更多的人力或时间等。当专案进度落后,而交期又不可延展,并且品质也不可妥协时,通常会考虑增加生产力以加速进度,增加的生产力对应的就是成本的增加。 专案的时间:时间反应到专案最后的交付,当专案的工作被细部分解以排定各项工作所需时间后,专案便会依照拟定的进度进行。然而,彼此相互牵连的工作,意味着前期工作进度的落后将会影响最终是否可以准时交付成品。时间一般而言不算是一种成本,因为真正的成本是实际多少资源的投入,因此时间也许是可以妥协的,当客户希望所交付的成品必须维持一定品质,并且也不愿意增加经费以加快生产速度,而专案团队也无法借由自行吸收成本增加生产力,这时便可能针对可否延迟交期来进行讨论。 由此可见,事实上专案管理中的三个主要变量:范畴、成本、与时间,事实上与精简生产方式所谈的:品质、成本、与交付相当,也都是两两相依,相互影响。 能善用品质、成本、与交付,或是范畴、成本、与时间这两两相依的三个要素,便可改进管理的成效,确保生产的一贯品质与预期的交付。

QCD管理

QCD管理 “QCD”管理是指质量(Quality)、成本(Cost)与交货期(delivery)的管理,要求以优异的质量、最低的成本、最快的速度向用户提供最好的产品。 Quality, Cost, and Delivery,常简写为QCD,是品质、成本、与交付在精简生产方式(lean manufacturing)中用以衡量商业活动并用以计算关键绩效指标(Key Performance Indicators, KPI)。QCD 的分析通常可以持续的改进商业活动的运作。 QCD 在很多不同类型的产业中都可适用,例如供应链产业、或是工程产业。QCD 在专案管理领域中也常被拿来作为评估专案进展与决策的参考之一。 分析QCD 的好处 QCD 提供了一个很直觉的方法来衡量并评估简易与复杂的商业程序中,哪一种较为合适。它也提供了一个商业的比较基准。当品质、成本、与交付时程的其中之一必须改变时,借由QCD 的分析可以有助于决策者做出决策。此外,在日常的商业运作当中,定期且事实的借由QCD 的分析,也可追踪这三个要素是否均衡的被兼顾,解此可确保商业运作的顺利。 QCD 于专案管理上的应用 QCD 有时也应用在专案管理上,不过一般而言,在专案管理上较常专注于专案范畴、成本、与时间(Scope, Cost, Time)。这三个变量为专案管理过程当中的三个重要变量,并且彼此相互牵连。

专案的范畴:在专案开始进行时便应已明确的定义,而会被拿来衡量的是'品质。一般而言,当投注相当的时间与成本于专案的进行时,相对的会有一定的品质产出,然而,当时间与成本受限时,品质也许就会被牺牲。 专案的成本:成本虽然在专案开始前会大致估算,然而,随着专案的进行,相当多的变异都会影响额外成本的资出,诸如难度的低估、需要更多的人力或时间等。当专案进度落后,而交期又不可延展,并且品质也不可妥协时,通常会考虑增加生产力以加速进度,增加的生产力对应的就是成本的增加。 专案的时间:时间反应到专案最后的交付,当专案的工作被细部分解以排定各项工作所需时间后,专案便会依照拟定的进度进行。然而,彼此相互牵连的工作,意味着前期工作进度的落后将会影响最终是否可以准时交付成品。时间一般而言不算是一种成本,因为真正的成本是实际多少资源的投入,因此时间也许是可以妥协的,当客户希望所交付的成品必须维持一定品质,并且也不愿意增加经费以加快生产速度,而专案团队也无法借由自行吸收成本增加生产力,这时便可能针对可否延迟交期来进行讨论。 由此可见,事实上专案管理中的三个主要变量:范畴、成本、与时间,事实上与精简生产方式所谈的:品质、成本、与交付相当,也都是两两相依,相互影响。 能善用品质、成本、与交付,或是范畴、成本、与时间这两两相依的三个要素,便可改进管理的成效,确保生产的一贯品质与预期的交付。

QCD改善基层员工培训用题含答案(一)

QCD改善基层员工培训用题含答案(一) 1、我们应有的改善思想有哪些? 答:A、抛开固有的观念。 B、马上就做,不讲理由。 C、不以金钱投入为借口,以智慧取胜。 D、找出【真因】,问五次【为什么】。 E、总想着现在还很差,改善无止境。 2、5S分别是什么?如何理解? 答:5S:整理、整顿、清扫、清洁、素养 整理:将有用的和没用的分开,只对有用的进行管理,把没用的进行隔离或处理掉; 整顿:定位、定品、定量,以便减少寻找的时间,方便作业; 清扫:保持现场的清洁,确保现场、装备和零件的整洁; 清洁:对上述三个步骤成果标准化,以便维持和改善提升; 素养:使员工养成遵守标准的良好习惯,并不断地改善和提高。 3、什么是标准作业? 答:能够确保安全、质量最好、生产效率最高的最佳的作业方法。 4、标准作业的四要素是什么? 答:作业顺序、作业量(目标时间)、标准库存、作业要点。 5、什么是标准库存? 答:指作业按照规定的要求能够连续顺畅生产所需的最低的库存量。 6、目标时间是什么含义? 答:熟练作业者(L水平)在进行标准作业时所需要的时间。 7、简述目标时间的测量方法? 答:A、确定作业者(能够正常进行标准作业); B、在生产状态正常时进行测量; C、决定作业开始点; D、按照作业顺序,测定每一个步骤的时间,并记录汇总。 8、标准作业书有哪些种类? 答:分解版、顺序版、编成版、组合版、流程版。 9、装配和机加常用的标准作业书分别是什么版本? 答:装配常用的标准作业书是编成版; 机加常用的标准作业书是组合版。 10、作业重点是指什么?如何选取? 答:作业重点是指在实施主要步骤中最重要的地方,如果不遵守,则会在质量、安全及可操作性上受到影响。 选取方法:A、从作业分解中选取,并在作业分解的重点地方画下划线; B、在补充主要步骤动作的要点、方法等中选取主要部分; C、如果一个主要步骤中有三个以上的重点,需要重新评估主要步骤的选 取是否合理; D、表达应该具体易懂。 11、什么是主体作业、附随作业、定型作业和非定型作业? 答:主体作业:产生附加价值的作业,如:零部件装配、工具拿放等;

相关主题