搜档网
当前位置:搜档网 › 多光谱遥感图像的特征提取与比较

多光谱遥感图像的特征提取与比较

多光谱遥感图像的特征提取与比较
多光谱遥感图像的特征提取与比较

6-遥感图像特征和解译标志

上次课主要内容 4.4简单自然地物可识别性分析 4.5复杂地物识别概率(重点理解) ①要素t 的价值②要素总和(t 1,t 2,…,t m )t 的价值 K -K E ∑ = ③复杂地物识别概率的计算理解p70~71例子

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 5.2 遥感图像特征与解译标志的关系 5.3 遥感图像的时空特性 5.4 遥感图像中的独立变量 5.5 地物统计特征的构造

第五章遥感图像特征和解译标志 地物特征 电磁波特性 影像特征 遥感图像记录过程 n 图像解译就是建立在研究地物性质、电磁波性质 及影像特征三者的关系之上 n 图像要素或特征,分“色”和“形”两大类:?色:色调、颜色、阴影、反差; ?形:形状、大小、空间分布、纹理等。“形”只有依靠“色”来解译才有意义。

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n两个定义: ?解译标志定义:遥感图像光谱、辐射、空间和时间特征决定 图像的视觉效果、表现形式和计算特点,并导致物体在图像上 的差别。 l给出了区分遥感图像中物体或现象的可能性; l解译标志包括:色调与色彩、形状、尺寸、阴影、细部(图 案)、以及结构(纹理)等; l解译标志是以遥感图像的形式传递的揭示标志; ?揭示标志定义:在目视观察时借以将物体彼此分开的被感知 对象的典型特征。 l揭示标志包括:形状、尺寸、细部、光谱辐射特性、物体的阴 影、位置、相互关系和人类活动的痕迹; l揭示标志的等级决定于物体的性质、他们的相对位置及与周围 环境的相互作用等;

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n解译标志和揭示标志的关系: ?解译标志是以遥感图像的形式传递的揭示标志; ?虽然我们是通过遥感图像识别地物目标的,但是大多数情况 下,基于遥感图像识别地物并作出决定时,似乎并不是利用解 译标志,而是利用揭示标志。 例如,很多解译人员刚看到图像就差不多在脑海中形成地物的形象, 然后仅仅分析这个形象就能作出一定的决定。实际上,有经验的解译人 员,在研究图像的解译标志并估计到传递信息的传感系统的影响以后, 思想中就建立起地物的揭示标志,并在这些标志的基础上识别被感知物 体。解译人员在实地或图像上都没见过的地物或现象是例外。 n解译标志和揭示标志可以按两种方式进行划分:?直接标志和间接标志; ?永久标志和临时标志;

关于图像特征提取

关于图像特征提取 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 特征的定义 至今为止特征没有万能和精确的定义。特征的精确定义往往由问题或者应用类型决定。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 有时,假如特征提取需要许多的计算时间,而可以使用的时间有限制,一个高层次算法可以用来控制特征提取阶层,这样仅图像的部分被用来寻找特征。 由于许多计算机图像算法使用特征提取作为其初级计算步骤,因此有大量特征提取算法被发展,其提取的特征各种各样,它们的计算复杂性和可重复性也非常不同。 边缘 边缘是组成两个图像区域之间边界(或边缘)的像素。一般一个边缘的形状可以是任意的,还可能包括交叉点。在实践中边缘一般被定义为图像中拥有大的梯度的点组成的子集。一些常用的算法还会把梯度高的点联系起来来构成一个更完善的边缘的描写。这些算法也可能对边缘提出一些限制。 局部地看边缘是一维结构。 角 角是图像中点似的特征,在局部它有两维结构。早期的算法首先进行边缘检测,然后分析边缘的走向来寻找边缘突然转向(角)。后来发展的算法不再需要边缘检测这个步骤,而是可以直接在图像梯度中寻找高度曲率。后来发现这样有时可以在图像中本来没有角的地方发现具有同角一样的特征的区域。 区域 与角不同的是区域描写一个图像中的一个区域性的结构,但是区域也可能仅由一个像素组成,因此许多区域检测也可以用来监测角。一个区域监测器检测图像中一个对于角监测器来说太平滑的区域。区域检测可以被想象为把一张图像缩小,然后在缩小的图像上进行角检测。 脊 长条形的物体被称为脊。在实践中脊可以被看作是代表对称轴的一维曲线,此外局部针对于每个脊像素有一个脊宽度。从灰梯度图像中提取脊要比提取边缘、角和区域困难。在空中摄影中往往使用脊检测来分辨道路,在医学图像中它被用来分辨血管。 特征抽取 特征被检测后它可以从图像中被抽取出来。这个过程可能需要许多图像处理的计算机。其结果被称为特征描述或者特征向量。 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特

多光谱图像

多光谱图像 图像理解是在数字图像处理、计算机技术和人工智能不断发展的基础上产生的一种模拟人的图像识别机理的理论,它与计算机视觉理论有许多共同的部分,或者说有许多交叉的部分,它与人工智能、专家系统也有着一些共同的地方。 图像理解主要包括三个层次,其低层为一般图像处理;中层为图像中特征的符号化组织过程;高层为抽象的符号推理。因此,计算机视觉主要与其低层,人工智能主要与其高层产生重叠。目前,就图像理解这一理论的研究探讨有了专门的期刊;有关大学设置了专门的课程;有关专家学者写了专著。比如国防科技大学的王润生教授就系统地介绍和总结了图像理解的基本理论、方法和国内外研究现状等〔1〕。这一方面的基础理论和方法引起了有关学者和科研人员的注意和浓厚兴趣,他们结合自己的工作领域,进行了更深入的研究。应当说,有关的理论和方法已经被极大地丰富了。比如,有关图像纹理分析这方面的论文、论著数不胜数,其中,有关新理论新方法(如分形分维方法)的应用,更为这一理论注入了新内容;再如,我国数字摄影测量界已经将“双目”图像的分析理论和方法推向了具有世界先进水平的境界。 尽管如此,图像理解的理论与方法仍有严重不足之处。这并不是指这一理论尚未成熟,而是指它的理论与方法还存在着片面性,还没有成为一个完整的体系。因为图像理解的对象是各类图像,并没有限定是某一类图像,那么,现在的问题就是遥感图像理解(主要是多光谱图像理解)的理论十分贫乏。以人类生存环境及地球资源为主要研究目标获取的各种遥感图像已经得到越来越广泛的应用,丰富的光谱信息及其在时间空间域的分辨率的提高,配合着地理信息系统技术,全球定位系统技术和因特网技术的发展和普及,为图像信息的广泛应用创造了空前繁荣的局面,成为信息时代的显著特征,在信息高速公路和数字地球战略中占据着极其重要的地位。然而,现有的图像理解理论和方法在如此丰富的信息面前却显得苍白无力。应当说,面对丰富的遥感信息,人们一直在研究如何处理和应用,有关这方面的理论和方法的研究成果也是不少的,但似乎并没有从图像理解的角度加以总结、提练,有的方面甚至缺乏系统的研究。如对于多光谱图像边缘提取、区域分割等应以什么理论为基础,应采取什么方法;在纹理分析方面,多光谱图像的纹理具有怎样的意义,或者多光谱图像的纹理概念是什么,需要采取什么方法进行分析;时序多光谱图像又应当采取什么分析方法;针对多光谱图像的符号化工作应当如何进行,在此基础上如何利用知识进行推断,如何在模拟人的思维模式方面更深入地开展研究,等等,这些都是应当考虑的问题。这些问题在图像理解的理论与方法之中尚没有或很少有现成的答案。应该承认,对上述一些问题已有一些研究,至少我们自己就已经在一些方面作了初步的研究,但这些研究还不够,研究的成果还未加以总结。 在现实工作中,多光谱图像的分析具有非常重要的意义。丰富的光谱信息为地物的边界和地物目标的识别创造了良好的条件,比起单色图像,多光谱图像具有极大的优越性。随着多光谱图像空间分辨率的提高和地理信息系统技术的发展,人们的信心更加增强,对多光谱图像处理的要求也越来越高。比如,在地形图更新生产中,如果以多光谱图像为背景,就可以半自动地确定地物分布的边缘或跟踪线状地物的“骨架线”,从而大大减轻人工劳动强度,提高效率;又如,利用多光谱图像和各种背景数据如地貌、土壤信息,即将遥感与地理信息系统结合,引入人工智能方法,就象已有的图像理解系统那样,更好、更准确地提取地物目标信息,为土地利用分析、资源环境调查,提供更高质量的成果,已经是许

_高分一号_多光谱遥感数据特征评价分析_孙明

“高分一号”多光谱遥感数据特征评价分析 孙明1,钟仕全1,孙涵1,谢敏2,吴朝晖1 (1 广西区气象减灾研究所/国家气象卫星中心遥感应用试验基地/气象GIS应用联合实验室,南宁 530022; 2 广西区气候中心,南宁 530022) 摘 要:本文主要利用多种数据质量指标对高分一号WFV4传感器的多光谱图像数据进行了评价,并将其和美国最新发射的Landsat-8 OLI数据进行对比分析,结果表明:GF-1卫星在灰度值分布、影像所含信息量等方面与Landsat-8卫星有一定差距,但在空间分辨率、近红外波段的独立性以及地物可分性方面则要强于Landsat-8,在国土资源调查、环境监测等方面具有很大的潜力。 关键词:高分一号;Landsat-8 OLI;地物光谱;遥感 1 引言 随着我国经济建设的快速发展,广大用户对高空间分辨率、高时间分辨率、高光谱分辨率和全天候的卫星遥感数据的需求十分迫切,面对复杂多样的自然灾害及环境问题,急需能够共享的、标准化的、能满足不同需求的不同类型的卫星遥感数据, 满足灾害和环境监测与预报的要求。随着微电子、微机械等技术的迅猛发展,对地遥感技术取得了重大的突破性进展,作为对地遥感卫星家族的主要成员之一的高分辨率遥感卫星成为国内外用户的宠儿,尤其是在精细农业、化工、资源详查、水利、测绘、重大工程、新闻报道等领域的应用为世界各国带来了巨大的经济效益和难以估量的社会效益。国家根据这一经济发展大需要,提出建设“天地一体化的对地观测体系”的发展思路,近年来接连发射成功了多颗高分辨率的资源卫星:主要包括资源一号02C星、资源三号卫星以及最新发射的高分一号卫星,这一系列卫星构成了我国高空间分辨率和高时间分辨率对地观测体系,改变了我国从国外大量购买卫星影像的被动局面,提升了高分辨率遥感卫星影像的自主供给能力和国际竞争力[1]。其中,最新发射的“高分一号”卫星突破了高空间分辨率、多光谱与高时间分辨率结合的光学遥感技术,对于推动我国卫星工程水平的提升,提高我国高分辨率数据自给率,具有重大战略意义。 本文主要选用几项数据评价指标对高分一号卫星WFV4传感器的多光谱图像数据特征进行评价,并与美国最新发射的Landsat-8 OLI多光谱数据进行对比分析,为该数据的后期推广及应用提供参考。 2 数据选取及预处理 本文所选取的实验数据为2014年1月04日GF-1卫星WFV4传感器的一景16m分辨率多光谱数据,覆盖范围包括南宁、来宾、柳州以及百色,影像基本晴空(如图1所示)。为了对比分析,本文同时选取美国最新发射的Landsat-8卫星数据,成像时间为2013年12月04日(如图2所示),选择与GF-1卫星多光谱波段相对应的4个波段数据,并选取两种数据共同覆盖的区域作为实验样区。 386

图像特征提取总结

图像常见特征提取方法简介 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一、颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1)颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。 (4)颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。(5)颜色相关图 二纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实

遥感数字图像处理要点

遥感数字图像处理-要点 1.概论 遥感、遥感过程 遥感图像、遥感数字图像、遥感图像的数据量 遥感图像的数字化、采样和量化 通用遥感数据格式(BSQ、BIL、BIP) 遥感图像的模型:多光谱空间 遥感图像的信息内容: 遥感数字图像处理、遥感数字图像处理的内容 遥感图像的获取方式主要有哪几种? 如何估计一幅遥感图像的存储空间大小? 遥感图像的信息内容包括哪几个方面? 多光谱空间中,像元点的坐标值的含义是什么? 与通用图像处理技术比较,遥感数字图像处理有何特点? 遥感数字图像处理包括那几个环节?各环节的处理目的是什么? 2.遥感图像的统计特征 2.1图像空间的统计量 灰度直方图:概念、类型、性质、应用 最大值、最小值、均值、方差的意义 2.2多光谱空间的统计特征 均值向量、协方差矩阵、相关系数、相关矩阵的概念及意义 波段散点图概念及分析 主要遥感图像的统计特征量的意义 两个重要的图像分析工具:直方图、散点图 3.遥感数字图像增强处理 图像增强:概念、方法 空间域增强、频率域增强

3.1辐射增强:概念、实现原理 直方图修正,线性变换、分段线性变换算法原理 直方图均衡化、直方图匹配的应用 3.2空间增强 邻域、邻域运算、模板、模板运算 空间增强的概念 平滑(均值滤波、中值滤波)原理、特点、应用 锐化、边缘增强概念 方向模板、罗伯特算子、索伯尔算子、拉普拉斯算子的算法和特点 ?计算图像经过下列操作后,其中心象元的值: –3×3中值滤波 –采用3×3平滑图像的减平滑边缘增强 –域值为2的3×1平滑模板 –Sobel边缘检测 –Roberts边缘检测 –模板 3.3频率域处理 高频和低频的意义 图像的傅里叶频谱 频率域增强的一般过程 频率域低通滤波 频率域高通滤波 同态滤波的应用

遥感专题讲座——影像信息提取(四、面向对象特征提取)

面向对象的影像分类技术 “同物异谱,同谱异物”会对影像分类产生的影响,加上高分辨率影像的光谱信息不是很丰富,还有经常伴有光谱相互影响的现象,这对基于像素的分类方法提出了一种挑战,面向对象的影像分类技术可以一定程度减少上述影响。 本小节以ENVI中的面向对象的特征提取FX模块为例,对这种技术和处理流程做一个简单的介绍。 本专题包括以下内容: ??●面向对象分类技术概述 ??●ENVI FX简介 ??●ENVI FX操作说明 1、面向对象分类技术概述 面向对象分类技术集合临近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间,纹理,和光谱信息来分割和分类的特点,以高精度的分类结果或者矢量输出。它主要分成两部分过程:影像对象构建和对象的分类。

影像对象构建主要用了影像分割技术,常用分割方法包括基于多尺度的、基于灰度的、纹理的、基于知识的及基于分水岭的等分割算法。比较常用的就是多尺度分割算法,这种方法综合遥感图像的光谱特征和形状特征,计算图像中每个波段的光谱异质性与形状异质性的综合特征值,然后根据各个波段所占的权重,计算图像所有波段的加权值,当分割出对象或基元的光谱和形状综合加权值小于某个指定的阈值时,进行重复迭代运算,直到所有分割对象的综合加权值大于指定阈值即完成图像的多尺度分割操作。 影像对象的分类,目前常用的方法是“监督分类”和“基于知识分类”。这里的监督分类和我们常说的监督分类是有区别的,它分类时和样本的对比参数更多,不仅仅是光谱信息,还包括空间、纹理等信息。基于知识分类也是根据影像对象的熟悉来设定规则进行分类。 目前很多遥感软件都具有这个功能,如ENVI的FX扩展模块、易康(现在叫Definiens)、ERDAS的Objective模块、PCI的FeatureObjeX(新收购)等。 表1为三大类分类方法的一个大概的对比。 类型基本原理影像的最小单元适用数据源缺陷 传统基于光谱的分类方 法地物的光谱信息 特征 单个的影像像元 中低分辨率多光谱 和高光谱影像 丰富的空间信息利 用率几乎为零 基于专家知识决策树根据光谱特征、空 间关系和其他上 下文关系归类像 元 单个的影像像元多源数据知识获取比较复杂 面向对象的分类方法几何信息、结构信 息以及光谱信息 一个个影像对象 中高分辨率多光谱 和全色影像 速度比较慢

图像特征提取方法

图像特征提取方法 摘要 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 至今为止特征没有万能和精确的图像特征定义。特征的精确定义往往由问题或者应用类型决定。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。当光差图像时,常 常看到的是连续的纹理与灰度级相似的区域,他们相结合形成物体。但如果物体的尺寸很小 或者对比度不高,通常要采用较高的分辨率观察:如果物体的尺寸很大或对比度很强,只需 要降低分辨率。如果物体尺寸有大有小,或对比有强有弱的情况下同事存在,这时提取图像 的特征对进行图像研究有优势。 常用的特征提取方法有:Fourier变换法、窗口Fourier变换(Gabor)、小波变换法、最 小二乘法、边界方向直方图法、基于Tamura纹理特征的纹理特征提取等。

设计内容 课程设计的内容与要求(包括原始数据、技术参数、条件、设计要求等):一、课程设计的内容 本设计采用边界方向直方图法、基于PCA的图像数据特征提取、基于Tamura纹理特征的纹理特征提取、颜色直方图提取颜色特征等等四种方法设计。 (1)边界方向直方图法 由于单一特征不足以准确地描述图像特征,提出了一种结合颜色特征和边界方向特征的图像检索方法.针对传统颜色直方图中图像对所有像素具有相同重要性的问题进行了改进,提出了像素加权的改进颜色直方图方法;然后采用非分割图像的边界方向直方图方法提取图像的形状特征,该方法相对分割方法具有简单、有效等特点,并对图像的缩放、旋转以及视角具有不变性.为进一步提高图像检索的质量引入相关反馈机制,动态调整两幅图像相似度中颜色特征和方向特征的权值系数,并给出了相应的权值调整算法.实验结果表明,上述方法明显地优于其它方法.小波理论和几个其他课题相关。所有小波变换可以视为时域频域的形式,所以和调和分析相关。所有实际有用的离散小波变换使用包含有限脉冲响应滤波器的滤波器段(filterbank)。构成CWT的小波受海森堡的测不准原理制约,或者说,离散小波基可以在测不准原理的其他形式的上下文中考虑。 通过边缘检测,把图像分为边缘区域和非边缘区域,然后在边缘区域内进行边缘定位.根据局部区域内边缘的直线特性,求得小邻域内直线段的高精度位置;再根据边缘区域内边缘的全局直线特性,用线段的中点来拟合整个直线边缘,得到亚像素精度的图像边缘.在拟合的过程中,根据直线段转角的变化剔除了噪声点,提高了定位精度.并且,根据角度和距离区分出不同直线和它们的交点,给出了图像精确的矢量化结果 图像的边界是指其周围像素灰度有阶跃变化或屋顶变化的那些像素的集合,边界广泛的存在于物体和背 景之间、物体和物体之间,它是图像分割所依赖的重要特征.边界方向直方图具有尺度不变性,能够比较好的 描述图像的大体形状.边界直方图一般是通过边界算子提取边界,得到边界信息后,需要表征这些图像的边 界,对于每一个边界点,根据图像中该点的梯度方向计算出该边界点处法向量的方向角,将空间量化为M级, 计算每个边界点处法向量的方向角落在M级中的频率,这样便得到了边界方向直方图. 图像中像素的梯度向量可以表示为[ ( ,),),( ,),)] ,其中Gx( ,),),G ( ,),)可以用下面的

全色卫星影像 多光谱卫星影像 高光谱卫星影像

北京揽宇方圆信息技术有限公司 全色卫星影像多光谱卫星影像高光谱卫星影像 随着光谱分辨率的不断提高,光学遥感的发展过程可分为:全色(Panchromatic)→彩色(Color Photography)→多光谱(Multispectral)→高光谱(hyspectral)。 注: 全色波段(Panchromatic band),因为是单波段,在图上显示是灰度图片。全色遥感影像一般空间分辨率高,但无法显示地物色彩。实际操作中,我们经常将之与波段影象融合处理,得到既有全色影象的高分辨率,又有多波段影象的彩色信息的影象。 全色波段,一般指使用0.5微米到0.75微米左右的单波段,即从绿色往后的可见光波段。全色遥感影象也就是对地物辐射中全色波段的影象摄取,因为是单波段,在图上显示是灰度图片。全色遥感影象一般空间分辨率高,但无法显示地物色彩。 多光谱遥感 多光谱遥感:将地物辐射电磁破分割成若干个较窄的光谱段,以摄影或扫描的方式,在同一时间获得同一目标不同波段信息的遥感技术。 原理:不同地物有不同的光谱特性,同一地物则具有相同的光谱特性。不同地物在不同波段的辐射能量有差别,取得的不同波段图像上有差别。 优点:多光谱遥感不仅可以根据影像的形态和结构的差异判别地物,还可以根据光谱特性的差异判别地物,扩大了遥感的信息量。 航空摄影用的多光谱摄影与陆地卫星所用的多光谱扫描均能得到不同普段的遥感资料,分普段的图像或数据可以通过摄影彩色合成或计算机图像处理,获得比常规方法更为丰富的图像,也为地物影像计算机识别与分类提供了可能。

高光谱 高光谱遥感起源于20世纪70年代初的多光谱遥感,它将成像技术与光谱技术结合在一起,在对目标的空间特征成像的同时,对每个空间像元经过色散形成几十乃至几百个窄波段以进行连续的光谱覆盖,这样形成的遥感数据可以用“图像立方体”来形象的描述。同传统遥感技术相比,其所获取的图像包含丰富的空间、辐射和光谱三重信息。 高光谱遥感技术已经成为当前遥感领域的前沿技术。 高光谱遥感具有不同于传统遥感的新特点: 1)波段多:可以为每个像元提供十几、数百甚至上千个波段; 2)光谱范围窄:波段范围一般小于10nm; 3)波段连续:有些传感器可以在350~2500nm的太阳光谱范围内提供几乎连续的地物光谱; 4)数据量大:随着波段数的增加,数据量成指数增加; 5)信息冗余增加:由于相邻波段高度相关,冗余信息也相对增加。 优点: 1)有利于利用光谱特征分析来研究地物; 2)有利于采用各种光谱匹配模型; 3)有利于地物的精细分类与识别; 异同点 国际遥感界的共识是光谱分辨率在λ/10数量级范围的称为多光谱(Multispectral),这样的遥感器在可见光和近红外光谱区只有几个波段,如美国LandsatMSS,TM,法国的SPOT等;而光谱分辨率在λ/100的遥感信息称之为高光谱遥感(HyPerspectral);随着遥感光谱分辨率的进一步提高,在达到λ/1000时,遥感即进入超高光谱(ultraspectral)阶段(陈述彭等,1998)。 高光谱和多光谱实质上的差别就是:高光谱的波段较多,普带较窄。(Hyperion有233~309个波段,MODIS有36个波段) 多光谱相对波段较少。(如ETM+,8个波段,分为红波段,绿波段,蓝波段,可见光,热红外(2个),近红外和全色波段) 高光谱遥感就是多比多光谱遥感的光谱分辨率更高,但光谱分辨率高的同时空间分辨率会降低。

多光谱遥感卫星影像植被指数种类

遥感植被指数的种类、适用性和优缺点分析 摘要:遥感是现代科学技术中的一种远距离观测、分析目标地物的理论和方法,它在现代环境监测中具有广泛的应用。遥感植被指数是指利用遥感图像进行植被长势、生物量生产潜能等监测的重要指标。本文将在对植物的光谱特征分析的基础上,总结相关研究,对植被指数的种类以及它们的适用性和优缺点进行分析。 1、引言 遥感是指利用不同地物波谱特征不同这一特性,通过传感器这类对电磁波敏感的仪器,在远离目标和非接触目标物体条件下探测目标地物,获取其反射、辐射或散射的电磁波信息,进行处理、分析与应用的一门科学和技术。而植被指数则是利用遥感图像获取多光谱遥感数据,经过分析得到植被分布、种类等数值,对某些植被的长势、生物量等有一定应用价值。 目前,国内外学者已研究发展了几十种不同的植被指数模型,常用的有以下几类: 1、比值植被指数(RVI); 2、归一化植被指数(NDVI); 3、差值植被指数(DVI); 4、缨帽变换中的绿度植被指数(GVI); 5、垂直植被指数(PVI); 6、土壤调整植被指数(SAVI)等, 这几类植被指数对植被的敏感性、抗土壤和大气的干扰性等不尽相同。一般情况下由于归一化植被指数(NDVI)与一些重要的生物物理参数如生物量、叶面积指数和光有效辐射等有密切的联系[1],所以NDVI被广泛用于植被研究。 遥感植被指数是预测生物量、作物生产潜能以及评价一个生态系统结构与功能特征的重要指标[2],然而遥感的植被指数不仅取决于植被的种类,还要受到其他环境条件的干扰,如土壤湿度、土壤的物理化学属性、大气条件以及季节等的影响。于是如何在不同的条件下选择不同的植被指数对更好的进行植被监测、农作物估产等有着较大的影响。本文正是通过对植被遥感的原理、植物光谱特征分析研究等的基础上,总结有关资料数据,对各类遥感植被指数的适用性和优缺点进行了分析,作为今后相关研究的参考。 2、植被遥感的原理 植物遥感依赖于植物本身的特征,主要是叶片结构特点和植被冠层光谱特性。我们都知道,植物叶片能进行光合作用,但所利用的仅是太阳光的可见光部分(0.4~0.76μm),即称之为光合有效辐射(PAR),约占太阳辐射的47%~50%,其强度随着时间、地点、大气条件等变化。 植物的光谱特征可使其在遥感影像上有效地与其他地物相区别。同时,不同

遥感卫星影像数据信息提取.

北京揽宇方圆信息技术有限公司 、 遥感卫星影像数据信息提取 北京揽宇方圆信息技术有限公司中科院企业,卫星影像数据服务全国领先。业务包括遥感数据获取与分发、遥感数据产品深加工与处理。按照遥感卫星数据一星多用、多星组网、多网协同的发展思路,根据观测任务的技术特征和用户需求特征,重点发展光学卫星影像、雷达卫星影像、历史卫星影像三个系列,构建由 26个星座及三类专题卫星组成的遥感卫星系统,逐步形成高、中、低空间分辨率合理配置、多种观测技术优化组合的综合高效全球观测和数据获取能力形成卫星遥感数据全球接收与全球服务能力。 (1光学卫星影像系列。 面向国土资源、环境保护、防灾减灾、水利、农业、林业、统计、地震、测绘、交通、住房城乡建设、卫生等行业以及市场应用对中、高空间分辨率遥感数据的需求,提供 worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、 ikonos、pleiades、spot1、spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm、 landsat(etm、 rapideye、alos、Kompsat 卫星、北京二号、资源三 号、高分一号、高分二号等高分辨率光学观测星座。围绕行业及市场应用对基础地理信息、土地利用、植被覆盖、矿产开发、精细农业、城镇建设、交通运输、水利设施、生态建设、环境保护、水土保持、灾害评估以及热点区域应急等高精度、高重访观测业务需求,发展极轨高分辨率光学卫星星座,实现全球范围内精细化观测的数据获取能力。像国产的中分辨率光学观测星座。围绕资源调查、环境监测、防灾减灾、碳源碳汇调查、地质调查、水资源管理、农情监测等对大幅宽、快速覆盖和综合观测需求,建设高、低轨道合理配置的中分辨率光学卫星星座,实现全球范围天级快速动态观测以及全国范围小时级观测。

卫星全色和多光谱模式介绍

QuickBird卫星全色和多光谱模式 时间:2009-08-24 众所周知,遥感是使用各种传感器远距离探测目标所辐射、反射或散射的电磁波,经加工处理变成能够识别和分析的图像和信号,以获取目标性质和状态信息的综合技术。 遥感根据获取目标的手段不同可分为狭义遥感和广义遥感。 狭义遥感以电磁辐射为感测对象,而广义遥感还包括磁力、重力等地球物理的测量和属于地球物理测量范畴的地震波、声波等弹性波。 我们通常所说的遥感概念则专指以电磁辐射为特征的狭义遥感。不同的目标物受到太阳或其他辐射源的电磁辐射时,它们所特有的反射、发射、透射、吸收电磁辐射的性质是不同的。通过获取目标物对电磁辐射的显示特征,可识别目标的属性和状态。所以传感器谱段的设置与目标物的光谱特性有着密切的关系。 目前世界上用于卫星遥感的传感器有两大类:光学遥感和微波遥感。 光学遥感: 光学遥感指利用光学设备探测和记录被测物体辐射、反射和散射的相应谱段电磁波,并分析、研究其特性及变化的技术。 光学遥感覆盖了红外、可见光和紫外三个谱段,常用的有以下三种: 可见光遥感: 其工作波长为0.4~0.76微米,一般采用感光胶片或光电探测器作为感测元件,属于摄影成像遥感。它主要使用可见光远摄镜头照相和可变焦距电视摄像等,感测的是目标及背景反射或自身发出的可见光,记录的信息或拍摄的图像是物体反射光或发光强度的空间分布。可见光遥感是光学遥感中历史最长的一种,是对地观测和军事侦察的主要手段之一。摄影成像的分辨率(G)很高,可以近似地表示为: G=f×R/H 其中f为镜头焦距,R为镜头与底片的综合分辨率,H为高度(或距离)。 红外遥感器: 主要包括红外扫描仪、红外辐射仪等。红外遥感通过探测红外辐射获取目标和背景的辐射温度或热成像。其探测能力取决于目标、背景与周围环境的温度差。红外遥感的最大优点是可获取无光照或薄云下目标和背景的图像。 多谱段遥感: 使用几个不同的谱段同时对一目标或地区进行感测,从而获得与各谱段相对应的各种信息。将不同谱段的遥感信息加以组合,可获取目标物更多的信息。多谱段遥感是在可见光和红外遥感的基础上发展起来的,它能明显地分辨多种目标和背景特性,兼有可见光和红外遥感技术的优点。也为高光谱和超高光谱的发展提供了依据。微波遥感: 微波遥感是利用微波遥感设备,对地物目标和环境的微波辐射、反射或散射能量实施探测的技术,其波长为1~1000毫米. 微波遥感按工作模式的不同可分为两种: 有源微波遥感: 主要由成像雷达、微波散射计和微波高度计组成。在卫星遥感中应用较多的是合成孔径雷达,它是利用平台与目标的相对运动产生的多普勒频移,经二维相关处理或匹配滤波处理而获得高分辨率的图像。 无源微波遥感: 主要指各种微波辐射计,它是通过测量自然界各种物体发出的微弱微波辐射来测量目标的辐射特性和实际温度。

高光谱,多光谱及超光谱

1、光谱分辨率 光谱分辨率spectral resolution 定义1:遥感器能分辨的最小波长间隔,是遥感器的性能指标。遥感器的波段划分得越细,光谱的分辨率就越高,遥感影像区分不同地物的能力越强。 定义2:多光谱遥感器接收目标辐射信号时所能分辨的最小波长间隔。 光谱分辨率指成像的波段范围,分得愈细,波段愈多,光谱分辨率就愈高,现在的技术可以达到5~6nm(纳米)量级,400多个波段。细分光谱可以提高自动区分和识别目标性质和组成成分的能力。 传感器的波谱范围,一般来说识别某种波谱的范围窄,则相应光谱分辨率高。 举个例子:可以分辨红外、红橙黄绿青蓝紫紫外的传感器的光谱分辨率就比只能分辨红绿蓝的传感器的光谱分辨率高。 一般来说,传感器的波段数越多波段宽度越窄,地面物体的信息越容易区分和识别,针对性越强。 2、什么是高光谱,多光谱及超光谱 高光谱成像是新一代光电检测技术,兴起于2O世纪8O年代,目前仍在迅猛发展巾。高光谱成像是相对多光谱成像而言,通过高光谱成像方法获得的高光谱图像与通过多光谱成像获取的多光谱图像相比具有更丰富的图像和光谱信息。如果根据传感器的光谱分辨率对光谱成像技术进行分类,光谱成像技术一般可分成3类。 (1)多光谱成像——光谱分辨率在delta_lambda/lambda=0.1mm数量级,这样的传感器在可见光和近红外区域一般只有几个波段。 (2)高光谱成像——光谱分辨率在delta_lambda/lambda=0.01mm数量级,这样的传感器在可见光和近红外区域有几十到数百个波段,光谱分辨率可达nm 级。 (3)超光谱成像——光谱分辨率在delta_lambda/lambda =O.001mm=1nm数量级,这样的传感器在可见光和近红外区域可达数千个波段。 众所周知,光谱分析是自然科学中一种重要的研究手段,光谱技术能检测到被测物体的物理结构、化学成分等指标。光谱评价是基于点测量,而图像测量是基于空间特性变化,两者各有其优缺点。因此,可以说光谱成像技术是光谱分析

(完整版)图像特征特点及常用的特征提取与匹配方法

图像特征特点及常用的特征提取与匹配方法 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1) 颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2) 颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡 的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3) 颜色矩

图像特征特点及其常用的特征提取与匹配方法

图像特征特点及其常用的特征提取与匹配方法 [ 2006-9-22 15:53:00 | By: 天若有情 ] 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1)颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(m ean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。(4)颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。 (5)颜色相关图 二纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局

图像特征提取总结

图像常见xx方法简介 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一、颜色特征 (一)特点: 颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。 一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。 由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的xx与匹配方法 (1)颜色直方图 其优点在于: 它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于: 它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间: RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:

直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。 在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于: 图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。 (4)颜色聚合向量 其核心思想是: 将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。 (5)颜色相关图 二纹理特征 (一)特点: 纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行

相关主题