搜档网
当前位置:搜档网 › 我国超超临界燃煤机组现状和发展趋势

我国超超临界燃煤机组现状和发展趋势

我国超超临界燃煤机组现状和发展趋势
我国超超临界燃煤机组现状和发展趋势

我国超超临界燃煤机组现状和发展趋势

【摘要】我国是煤炭生产与消费大国,随着社会市场经济的发展,社会的电力需求在不断增大,作为耗煤量高、能源利用率低的典型航呀,发电行业在运行的过程中,由于大量煤炭的燃烧,对环境造成非常严重的污染,积极提升燃煤发电机组的能源利用率非常的必要,本文就主要对我国超超临界燃煤机组的现状及发展趋势进行简单分析。

【关键词】超超临界燃煤机组;发展现状;发展趋势

发电行业与人们的日常生活息息相关,在社会发展过程中发挥着非常重要的作用,但是在火力发电厂运行过程中,伴随着巨大的能量消耗,这不仅会加剧我国的能源危机,还会带来严重的环境污染问题,积极提升超超临界燃煤机组的能源利用率、减少污染物的排放非常的重要,本文就主要针对此予以简单分析研究。

1超超临界燃煤机组的简单介绍

首先对超超临界的参数概念进行简单分析,通常会将水蒸气参数值超过临界状态点的参数值称作超临界参数,并且当水蒸气参数值超出水蒸气参数值,并且升高到一定数值时,就达到了超超临界参数范围中,我国的相关标准中,超超临界状态主要是指,蒸汽压力值大于27兆帕的状态,国内外的大多数发电企业及动力设备制造企业,认为机组的主蒸汽参数满足下列条件之一时,可以将其称之为超超临界机组:

(1)机组的主蒸汽压力大于等于27兆帕;

(2)机组的主蒸汽压力大于等于24兆帕,并且蒸汽的温度值≥580e。

超超临界机组与普通的燃煤机组相比,其水蒸气的温度、压力等明显提升,这对于机组的热效率的提升具有非常重要的作用,与亚临界机组的效率相比,超临界机组能够提升2%~3%,而超超临界机组的效率能够在超临界机组的基础上,再提升2%~4%,但是在机组使用寿命、运行灵活性、可靠性、可用率等方面与亚临界机组相比没有明显的差别,在二氧化硫、二氧化碳的排放量、能源利用率等方面,超超临界机组是明显优于普通的超临界机组及亚临界机组的。

将超超临界发电技术与其他相关的洁净煤发电技术进行对比分析,其具有这样的优势:

(1)超超临界机组的单机容量能够达到1000MW及以上,这与电力工业的大容量机组需求相符;

(2)超超临界发电技术具有很高的发电效率,并且其应用高效的除尘技术、低二氧化氮技术及烟气脱硫技术,能够有效降低污染物的排放量,与其他发电技

超超临界燃煤发电技术的发展历程

超超临界燃煤发电技术的发展历程 从上个世纪50年代开始,世界上以美国和德国等为主的工业化国家就已经开始了对超临界和超超临界发电技术的研究。经过近半个世纪的不断进步、完善和发展,目前超临界和超超临界发电技术已经进入了成熟和商业化运行的阶段。 世界上超临界和超超临界发电技术的发展过程大致可以分成三个阶段: 第一个阶段,是从上个世纪50年代开始,以美国和德国等为代表。当时的起步参数就是超超临界参数,但随后由于电厂可靠性的问题,在经历了初期超超临界参数后,从60年代后期开始美国超临界机组大规模发展时期所采用的参数均降低到常规超临界参数。直至80年代,美国超临界机组的参数基本稳定在这个水平。第二个阶段,大约是从上个世纪80年代初期开始。由于材料技术的发展,尤其是锅炉和汽轮机材料性能的大幅度改进,及对电厂水化学方面的认识的深入,克服了早期超临界机组所遇到的可靠性问题。同时,美国对已投运的机组进行了大规模的优化及改造,可靠性和可用率指标已经达到甚至超过了相应的亚临界机组。通过改造实践,形成了新的结构和新的设计方法,大大提高了机组的经济性、可靠性、运行灵活性。其间,美国又将超临界技术转让给日本(GE向东芝、日立,西屋向三菱),联合进行了一系列新超临界电厂的开发设计。这样,超临界机组的市场逐步转移到了欧洲及日本,涌现出了一批新的超临界机组。 第三个阶段,大约是从20世纪九十年代开始进入了新一轮的发展阶段。这也是世界上超超临界机组快速发展的阶段,即在保证机组高可靠性、高可用率的前提下采用更高的蒸汽温度和压力。其主要原因在于国际上环保要求日益严格,同时新材料的开发成功和和常规超临界技术的成熟也为超超临界机组的发展提供了条件。主要以日本(三菱、东芝、日立)、欧洲(西门子、阿尔斯通)的技术为主。这个阶段超超临界机组的发展有以下三方面的趋势:

660MW超临界火力发电热力系统分析报告

1 绪论 1.1 课题研究背景及意义 我国的煤炭消耗量在世界上名列前茅,并且我们知道一次能源的主要消耗就是煤炭的消耗,而在电力行业中煤炭又作为主要的消耗品。根据统计,在2010年的时候,全国的煤炭在一次能源消费和生产的结构中,占有率达到了71.0%和75.9%,从全球围来看,煤炭在一次能源的消费和生产结构中达到了48.5%和47.9%。根据权威机构的预测,到了2020年,我国一次能源的消费结构中,煤炭占有率约为55%,煤炭的消费量将达到38亿吨以上;到了2050年,煤炭在一次能源消费的结构中占有率仍有50%左右。由此看来,煤炭消耗量还是最主要的能源消耗 [1]。电力生产这块来看,在2011年,我国整体的用电量达到46819亿千瓦时,比2010年增长了11.79%.在这中间,火力发电的发电量达到了38900亿千瓦时,比2010年增长了14.10%,整个火力发电量占据全国发电量的82.45%,对比2010年增长了1.73个百分点,这说明电力行业的主要生产来自于火力发电,是电力生产的主要提供[2]。自改革开放以来,国家大力发展电力工业中的火力发电,每年的装机发电量以每年8各百分点飞速增长[3]。飞速发展的中国经济使得电力需求急剧上升,这也带来相应的高能耗,据统计,全国2002年到2009年的火力发电装机容量从几乎翻2.5倍的增长为到了,煤耗的消耗量增加了13亿吨。预计到2020年,火电装机的容量还会增长到,需要的煤耗量预计为38亿吨多,估计占有量会达到届时总煤碳量的55%[4],[5]。随着发展的需要,大功率和高参数的机组对能耗的能量使用率会大大提升,这样对于提高火力发电燃煤机组的效率有着很重要的发展方向。 2011年,全国600兆瓦级别以上的火力发电厂消耗的标准煤是329克/千瓦时,比2010年降低了约有4克/千瓦时,在2012年时,消耗的标准煤降低了3克/千瓦时达到了326克/千瓦时,但是在发达国家,美、日等技术成熟国家的600兆瓦级别以上的火力发电厂消耗的标准煤仅仅约为每千瓦时300克上下,可以从中看出和我国的差距还是很大的。这表明,全国600兆瓦及其以上级别的超临界火电机组在设计水平、实际运行等方面与国外成熟的火电技术是有着较大的差距。这样看来,对于600兆瓦及其以上级别的超临界火电机组的热力系统优化,探求其节能的潜力有着很重要的意义[6]。 节能是我国很多年来一直遵循的重要方针和贯彻可持续发展的重要战略,从2016年开始,我国进入十三五规划的重要时期,在这一时期,我国全面建成小康社会的最为重要的时期。预计世界经济会进入后危机时期,全国经济建设和工业发展将进入新的平稳上升期[7]-[9]。工业发展进入更为绿色的新阶段,新能源带来的冲击会给传统工业带来更

中国超超临界机组与电厂统计

中国已建、在建、拟建1000MW超超临界机组与电厂统计1.浙江华能玉环电厂 位于浙江台州玉环县的华能玉环电厂工程是国家“十五”863计划“超超临界燃煤发电技术”课题的依托工程和超超临界国产化示范项目,规划装机容量为4台1000MW超超临界燃煤机组,一期建设二台1000MW机组,投资约96亿元,机组主蒸汽压力达到兆帕,主蒸汽和再热蒸汽温度达到600度,是目前国内单机容量最大、运行参数最高的燃煤发电机组,该工程是国内机组热效率、环保综合性能最高,发电煤耗最低的燃煤发电厂。自2004年6月开工以来,按照华能集团公司总经理李小鹏提出的建设“技术水平最高,经济效益最好,单位千瓦用人最少,国内最好、国际优秀” 高效、节能、环保电厂的目标,在业主、设计、施工、调试、监理、制造各参建方的共同努力下,坚持技术创新,敢于走前人未走之路,攻克了一个又一个技术难题,创造了一个又一个国内电建史上的第一。 1#机组投产比计划工期提前6个月,2006年11月28日,华能玉环电厂1#机组顺利经过土建、安装、调试、并网试运环节,正式投入商业运行。2#机组于2006年12月投产。 二期3#、4#机组于2007年11月投产,成为我国最大的超超临界机组火力发电厂。 2.山东华电邹县发电厂 地处山东省邹城市。南面是水资源丰富的微山湖,北与兖州煤田相邻,向东4公里,有津浦铁路南北贯通。充足的煤炭,便利的交通,以及丰富的水资源,为邹县电厂的建设与发展提供了非常优越的条件。邹县发电厂一、二、三期工程,是“六五”至“九五”期间国家重点建设工程。现有1台300MW、1台330MW和2台335MW国产改造机组和2台600MW机组,装机总容量2500MW,是目前我国内地最大的火力发电厂之一。四期工程计划再安装2台1000MW等级超超临界机组,华电国际邹县发电厂国产百万千瓦超超临界燃煤凝汽式汽轮发电机组,是国家“863”计划依托项目和“十一五”重点建设工程,是引进超超临界技术建设的大容量、高参数、环保型机组的里程碑工程,也是2006年华电集团突破装机规模和经营效益的标志性项目。7号机组工程从开工到

700℃超超临界燃煤发电机组发展情况概述

700℃超超临界燃煤发电机组发展情况概述(一) 目前,在整个电网中,燃煤火力发电占70%左右,电力工业以燃煤发电为主的格局在很长一段时期内难以改变。但是,燃煤发电在创造优质清洁电力的同时,又产生大量的排放污染。为实现2008年G8(八国首脑高峰会议)确定的2050年CO2排放降低50%的目标,提高效率和降低排放的发电技术成为欧盟、日本和美国重点关注的领域。洁净燃煤发电技有几种方法,如整体煤气化联合循环(IGCC)、增压流化床联合循环(PFBC)及超超临界技术(USC)。目前,超超临界燃煤发电技术比较容易实现大规模产业化。 超超临界燃煤发电技术经过几十年的发展,目前已经是世界上先进、成熟达到商业化规模应用的洁净煤发电技术,在不少国家推广应用并取得了显著的节能和改善环境的效果。据统计,目前全世界已投入运行的超临界及以上参数的发电机组大约有600余台,其中美国约有170台,日本和欧洲各约60台,俄罗斯及原东欧国家280余台。目前发展700℃超超临界发电技术领先的国家主要是欧盟、日本和美国等。700℃超超临界机组作为超超临界机组未来发展方向,本文对其发展情况进行概述,供参考。 一、概念 燃煤发电机组是将煤燃烧产生的热能通过发电动力装置(电厂锅炉、汽轮机和发电机及其辅助装置等)转换成电能。燃煤发电机组主要由燃烧系统(以锅炉为核心)、汽水系统(主要由各类泵、给水加热器、凝汽器、管道、水冷壁等组成)、发电系统(汽轮机、汽轮发电机)和控制系统等组成。燃烧系统和汽水系统产生高温高压蒸汽,发电系统实现由热能、机械能到电能的转变,控制系统保证各系统安全、合理、经济运行。 燃煤发电机组运行过程中,锅炉内工质都是水,水的临界点压力为22.12MPa,温度374.15℃;在这个压力和温度时,水和蒸汽的密度是相同的,就叫水的临界点。超临界机组是指主蒸汽压力大于水的临界压力22.12 MPa的机组,而亚临界机组是指主蒸汽压力低于这个临界压力的机组,通常出口压力在15.7~19.6 MPa。习惯上,又将超临界机组分为两个类型:一是常规超临界燃煤发电机组,其主蒸汽压力一般为24兆帕左右,主蒸汽和再热蒸汽温度为566~593℃;二是超超临界燃煤发电机组,其主蒸汽压力为25~35 MPa及以上,主蒸汽和再热蒸汽温度一般600℃以上,700℃超超临界燃煤发电机组是超超临界发电技术发展前沿。在超临界与超超临界状态,水由液态直接成为汽态,即由湿蒸汽直接成

1000MW超超临界机组锅炉启动系统结构与运行特性

1000MW超超临界机组锅炉启动系统结构与运行特性

摘要 介绍了国产1000MW超超临界机组锅炉启动系统结构及运行特性,阐述了启动系统的结构,启动系统的流程以及运行特性,分析了各种启动系统之间的不同(包括安全性,经济性等)以及不同设备运行对于启动系统运行的影响等。 关键词:超超临界启动系统结构特性运行特性 Abstract Introduced domestic 1000MW Supercritical Boiler Start System structure and operating characteristics, described the structure of the boot system, boot the system processes, and operational characteristics of the different promoters, the difference between the systems (including security, economy, etc.) and

start the system running for different devices running on and so on. Keywords:USC;Start System ;operational characteristics;operating characteristics

目录 第一章前言 (3) 第二章 1000MW超超临界锅炉主要系统 (5) 第三章超超临界锅炉启动系统 (9) 第一节超超临界锅炉启动系统的结构 (9) 第二节超超临界锅炉启动系统的分类 (12) 第三节锅炉启动系统的比较 (15) 第四章超超临界锅炉启动系统运行特性分析 (17) 第五章典型超超临界锅炉启动系统 (20) 第六章结束语 (28) 参考文献 (29) 附录 (30)

超临界、超超临界燃煤发电技术

1.工程热力学将水的临界状态点的参数定义为:2 2.115MPa,374.15℃。当水蒸气参数值大于上述临界状态点的压力和温度时,则称其为超临界参数。超超临界设定在蒸汽压力大于25MPa、或蒸汽温度高于593℃的范围。 2.提高机组热效率:提高蒸汽参数(压力、温度)、采用再热系统、增加再热次数。 3.常规亚临界机组参数为16.7MPa/538℃/538℃,发电效率约38%;超临界机组主汽压力一般为24MPa左右,主蒸汽和再热蒸汽温度为538—560℃,典型参数为2 4.1MPa/538℃/538℃,发电效率约41%;超超临界追压力25—31MPa及以上,主蒸汽和再热蒸汽温度为580—600℃及以上。超临界机组热效率比亚临界机组的高2%—3%,超超临界机组的热效率比超临界机组高4%以上。 4.在超超临界机组参数条件下,主蒸汽压力提高1MPa,机组的热效率就可下降0.13—0.15%;主蒸汽温度每提高10℃,机组的热效率就可下降0.25%—0.30%。再热蒸汽温度每提高10℃,机组的热耗率就可下降0.15%—0.20%。如果增加再热参数,采用二次再热,则其热耗率可下降1.4%—1.6%。当压力低于30MPa时,机组热效率随压力的提高上升很快;当压力高于30MPa时,机组热效率随压力的提高上升幅度较小。 5.锅炉布置主要采用Ⅱ型布置、塔式布置、T型布置。超超临界机组可采用四角单切圆塔式布置、墙式对冲塔式布置、单炉膛双切圆Ⅱ型布置及墙式对冲Ⅱ型布置。Ⅱ型布置适用于切向燃烧方式和旋流对冲燃烧方式;塔式炉适用于切向燃烧方式和旋流对冲燃烧方式;T型布置适用于切向燃烧方式和旋流对冲燃烧方式。 6.水冷壁型式:变压运行超临界直流锅炉水冷壁:炉膛上部用垂直管,下部用螺旋管圈及内螺纹垂直管屏。 7.我国超超临界技术参数:一次再热、蒸汽参数(25—28)MPa/600℃/600℃,相应发电效率预计为44.63%—44.99%,发电煤耗率预计为275—273g/kWh。 8.煤粉燃烧方式:切向燃烧方式(四角、六角、八角、墙式)、墙式燃烧方式(前墙燃烧、对冲燃烧)、W型火焰燃烧方式(拱式燃烧)。切向燃烧指煤粉气流从布置在炉膛四角的直流式燃烧器切向引入炉膛进行燃烧。对冲燃烧是将一定数量的旋流式燃烧器布置在两面相对的炉墙上,形成对冲火焰的燃烧方式。W型火焰燃烧是将直流或弱旋流式燃烧器布置在燃烧室两侧炉墙拱上,使火焰开始向下,再折回向上,在炉内形成W状火焰。 9.空冷机组的水耗率比同等容量的常规湿冷机组约低65%,但其供电煤耗率同比高3%—5%,电厂总投资同比高10%—15%。因此,空冷机组尤其适合在缺水或水价昂贵而燃烧便宜的的地区建设。 10.常规火电湿冷循环冷却系统系统采用自然通风冷却塔形式,循环水损失约占电厂耗水量的80%。而空冷几乎没有循环水损失。 11.直接空冷系统是指汽轮机的排汽直接用空气来冷凝,蒸汽与空气进行热交换,冷却所需的空气由机械通风方式供应。

国外超超临界机组技术的发展状况

国外超超临界机组技术的发展状况 一、超超临界的定义 水的临界状态点:压力 22.115MPa,温度374.15℃;蒸汽参数超过临界点压力和温度称为超临界。锅炉、汽轮机系列(通常以汽轮机进口蒸汽初压力划分等级):次中压2.5 MPa,中压3.5 MPa,次高压6.5 MPa,高压9.0MPa,超高压13.5 MPa ,亚临界16.7 MPa,超临界24.1 MPa。 超超临界(Ultra Super-critical)(也有称高效超临界High Efficiency Supercritical))的定义:丹麦人认为:蒸汽压力27.5MPa是超临界与超超临界的分界线;日本人认为:压力>24.2MPa,或温度达到593℃(或超过 566℃)以上定义为超超临界;德国西门子公司的观点:从材料的等级来区分超临界和超超临界;我国电力百科全书:通常把蒸汽压力高于27MPa称为超超临界。 结论:其实没有统一的定义,本质上超临界与超超临界无区别。 二、国外超超临界技术发展趋势 (一)超超临界机组的发展历史 超超临界机组发展至今有50年的历史,最早的超超临界机组于1957年投产,建在美国俄亥俄州(Philo 电厂6#机组),容量为125MW,蒸汽进汽压力31MPa,进汽温度621 / 566 / 566 C(二次再热)。汽轮机制造商为美国GE公司,锅炉制造商为美国B&W公司。 世界上超超临界发电技术的发展过程一般划分为三个阶段: 第一阶段(上世纪50-70年代)

以美国为核心,追求高压/双再的超超临界参数。1959年Eddystone 电厂1#机组,容量为325MW,蒸汽压力为34.5MPa,蒸汽温度为 649 / 566 / 566 C(二次再热),热耗为8630kJ/kWh,汽轮机制造商美国WH 公司,锅炉制造商美国CE公司。其打破了最大出力、最高压力、最高温度和最高效率的4项记录。1968 年降参数(32.2MPa/610/560/560 C)运行直至今,但至今仍是世界上蒸汽压力和温度较高的机组。 结果,早期的超超临界机组,更注重提高初压(30MPa或以上),迫使采用二次再热。使结构与系统趋于复杂,运行控制难度更难,并忽视了当时技术水平和材料水平,使机组可用率不高。 第二阶段(上世纪80年代) 以材料技术发展为中心,超超临界机组处于调整期。锅炉和汽轮机材料性能大幅度提高,电厂水化学方面的认识更趋深入,美国对已投运的超临界机组进行大规模的优化和改造,形成了新的结构和新的设计方法,使可靠性和可用率指标达到甚至超过了相应的亚临界机组。其后,美国将超临界技术转让给日本,GE公司转让给东芝和日立公司,西屋公司转让给三菱公司。 第三阶段(上世纪90年代开始) 迎来了超超临界机组新一轮的发展阶段。主要原因是国际上环保要求日趋严格,新材料的开发成功,常规超临界技术的成熟。大规模发展超超临界机组的国家以日本、欧洲(德国、丹麦)为主要代表。日本以川越电厂31 MPa /654℃/566℃/566℃超超临界为代表,开拓了一条从引进到自主开发,有步骤有计划的发展之路,成为当今超超临界技术领先国家。其值得我们认真学习。 三、各国超超临界发电技术情况

超超临界燃煤空冷机组锅炉设备价格表

附件5 价格表 价格总表 单位:人民币万元 项目1#炉2#炉合计备注 设备本体 51389.851389.8102779.6 见附表1 随机备品备件 127.6 127.6 255.2 见附表2 专用工具 6.3 6.3 12.6 见附表3 运杂费含在设备本体 价中含在设备本体 价中 含在设备本体 价中 见附表5 设备(DDP)价格小计 51523.7 51523.7 103047.4 技术服务费 116.3116.3232.6 见附表4 总价 51640 51640 103280 附表1 分项价格表(单台) 单位:万元人民币序号设备品名规格型号数量单价DDP价格产地/制造厂名备注 1.地脚螺栓,柱底板及安 装架1套39.6 见附件6 2.第一层钢架1套435 见附件6 3.第二层钢架1套612 见附件6 4.第三层及以上钢架,大 板梁,平台扶梯等1套2130 见附件6 5.空气预热器1套1760 见附件6 6.炉顶钢结构(顶板及密 封件) 1套682 见附件6 7.锅炉外护板及炉顶罩壳1套409.7 见附件6 8.轻型屋盖1套121.1 见附件6 9.启动系统1套1011 北京巴威公司

序号设备品名规格型号数量单价DDP价格产地/制造厂名备注 10.水冷壁系统1套5384.4 北京巴威公司 11.过热器系统1套22237.7 北京巴威公司 12.再热器系统1套9380.2 北京巴威公司 13.省煤器系统1套2204.15 北京巴威公司 14.燃烧器1套612 北京巴威公司 15.吹灰器,减压站,程控装 置及管道阀门1套479.4 见附件6 16.烟温探针及控制设备1套16.2 见附件6 17.空气预热器间隙自控装 置-0 - 18.炉膛火焰监视工业电视1套7.7 见附件6 19.FSSS炉前控制设备-0 - 20.过热器出口动力排放阀 (PCV) 1套0 见附件6 21.安全阀1套105.3 见附件6 22.调节阀1套186.9 见附件6 23.其它进口阀门1套765.35 见附件6 24.消音器,排放管道及支 吊架1套144.7 见附件6 25.燃烧器二次风门及燃烧 器执行机构1套113.4 见附件6 26.炉内可升降检修平台0.5套51.8 见附件6 两炉共用 27.其它1套2500.2 见附件6 合计51389.8 注: 1. 第27项其它包括:紧身封闭、国产阀门、风箱、尾部烟道、省煤器灰斗、空预器灰斗、刚性梁、尾部挡板、炉墙附件等。

2019华能营口电厂600MW超超临界机组设计特点水利工程

XX电厂600MW超超临界机组设计特点 3.2机组的形式 XX电厂二期工程的2X600MW超超临界机组采用的是日本三菱公司设计的两缸两排汽机组,与备选方案三缸四排汽机型相比,机组的高中压部分设计相同,均为三菱公司的设计技术;两缸机组的低压缸为三菱公司设计技术,而三缸机组的低压缸为哈汽的常规超临界设计技术。两缸两排汽机组长21米,宽10.5米,高7.5米,本体总重770吨;三缸四排汽机组长28米,宽10.5米,高6.2米,本体总重1020吨。两缸机组的外形及重量均远小于三缸机组,制造成本低。从热耗率来看,三缸机组THA工况的设计热耗率比两缸机组低24kJ/kW.h,全年加权平均热耗率比两缸机组低6.4kJ/kW.h,两缸机组的热耗率略高于三缸机组。与两缸机组完全相同的日本广野5#机组,到目前运行的各项指标均达到设计值。尤其是世界上最长的48英寸末级钢制叶片在投运前进行了大量的实验验证,以确保其安全性,并且在广野5#机组上安全运行。综合上述因素,由于两缸机组与三缸机组的经济性基本相当,而两缸机组的制造成本及运行维护成本均低于三缸机组,安全性也得到了相应的验证,因而两缸两排汽机型是比较合理的选择。 3.2机组参数的确定 主蒸汽的温度拟采用580℃或600℃,汽机厂对采用两种不同的主蒸汽温度,从热耗率和制造成本方面进行了计算比较,主蒸汽温度采用580℃,在THA工况下,机组的热耗率比主蒸汽温度采用600℃

高43 kJ/kW.h,全年的运行成本高228万元左右(年运行小时7800h,标准煤价400元/吨,标准煤发热量29300 kJ/kg)。主蒸汽温度从580℃提高到600℃,汽轮机主要部件的材料不变,只是高压进汽部分的壁厚增加20%左右,对汽轮机的制造成本的影响仅20万元左右。综合上述,主蒸汽温度采用600℃比主蒸汽温度采用580℃有较大优势。主蒸汽压力经过优化后,确定锅炉出口为26.25MPa,汽轮机入口为25MPa。 3.3机组的特点 汽轮机为单轴、两缸、两排汽、一次中间再热、凝汽式机组。高中压汽轮机采用合缸结构,汽轮机低压缸采用48英寸末级叶片,这种设计降低了汽轮机总长度,紧缩电厂布局。机组采用超超临界蒸汽参数(25MPa、600℃/600℃),因此具有较高的经济性,设计工况下机组热耗率为7428kj/kwh,发电煤耗274.65g/kwh,供电煤耗294.13g/kwh,处于同功率等级机组领先地位。两台机组分别于2007年8月31日及10月14日移交生产,通过投产后运行实践,机组各项指标达到设计值。 3.4 机组技术经济性比较 与超临界机组的经济性比较 营口600MW超超临界机组与600MW超临界机组经济指标比较 技术经济指标比较

世界火力发电机组的发展历史及现状

世界火力发电机组的发展历史及现状, 论证采用超临界和超超临界参数将是新世纪初火力发电厂主要发展方向之一,近而说明我厂三期建成一台超临界机组符合时代发展的要求。 关键词:火力发电机组;超临界 1 前言 对我厂三期工程建设一台亚临界机组还是超监界机组的问题进行分析论证。并最终得出结论。 2 超临界化发展模式的成功实践 超临界火电机组是常规蒸汽动力火电机组的自然发展和延伸。提高蒸汽初参数一直是提高这类火电厂效率的主要措施。当蒸汽压力提到高于22.1MPa时就称为超临界机组,如果蒸汽初压力超过27MPa,则称为超超临界火电机组。目前一些发达国家中,超临界和超超临界机组巳是火电结构中的主导机组或是占据一个举足轻重的比例,也就是说火电结构巳经"超临界化"了。以超临界化为特点的对火电结构的更新换代早在20世纪的中叶就已开始。超临界化可以说是火电发展的一种模式,一条道路,是被多国实践证明的成功模式。 美国于1957年投运的第一台125MW超临界机组的参数为31MPa/621℃/566℃/560℃,1958年投运的325MW机组的参数为34.4MPa/649℃/566℃/566℃,实质上它们已是迄今最高参数的超超临界机组。到60年代中期,新增机组中有一半采用超临界参数,但到70年代订货台数急剧下降。根据EPRI的一份调查报告认为,这一下降的原因是多方面的,当时美国缺乏超临界机组调峰运行的经验,最重要的是核电站担负起了基本负荷,因而对带基荷的超临界机组的需求量出现了下降,在采用超临界参数方面出现了反复。在日本和欧洲则情况则有所不同。尽管如此,从宏观上看美国在1967年-1976年的10年期间,共安装118台超临界机组,单机最大容量为1300MW,到80年代初,超临界机组仍增至170余台,占燃煤机组的70%以上,占总装机容量的25.22%,其中单机容量介于500-800MW者占60%-70%,至1994年共安装和投运了9台1300MW的超临界机组。 日本在1967年第一台超临界的600MW机组系从美国引进,在长崎电厂投运。此后日本的超临界压力火力发电得到了迅速的发展。截止1989年3月,日本各大电力公司的48个主要火电厂的总装机容量75870 MW中,超临界压力的为49350MW,占总装机量的65%,比重很大,致使火电机组全国供电煤耗由1963年的366g/kWh 降低到1987年335g/kWh 。1989和1990年在川越电厂投运的两台700MW机组的参数是两次再过热的31MPa /566/566/ 566℃℃℃,在满负荷下的热效率达41.9%,投运以来情况很好。目前在日本,450MW以上的机组全部采用超临界参数。从1993年以后已把蒸汽温度提高到566/593℃℃和593/593℃℃,一次再过热,说明这种等级的超超临界参数已达到成熟阶段。 原苏联也是世界上拥有超临界机级最多的国家,共有224台,总容量达79300MW,凝汽式汽轮机中,超临界机组的容量占48.7%。1963年,苏联投入第一台300MW超临界机组,其热耗率比超高压的200MW机组降低了5.2%。这一成功促使苏联决定,300MW以上的机组全部采用超临界参数。300MW 机组在70年代中期的可用率已达86.4%,1984年雷夫提恩电厂的300MW机组的利用小时达7043小时。德国早在60年代开始发展超临界机组,是研究和制造超临界机组最早的国家之一,但初期容量较小。1972年投运了一台430MW的超临界机组,1979年投入了一台475MW二次再过热的机组。德国VEAG电力公司在1999和2000年于Lippendorf电厂投产的两台900MW褐煤机组,蒸汽参数为26.8MPa/ 554/ 583℃℃,净效率为42%;计划于2002年在Niederaussen 发电厂投产的985MW褐煤机组,使用的蒸汽参数为26MPa/580/600℃℃,由于采用了以超超临界参数为主的多项提高效率的措施,净效率高达45.2%,机组滑压运行,可超负荷5 %。最低负荷为50%,电厂大修期最少为4年。 丹麦是热能动力方面很先进的国家,在火电机组上也处于领先地位。在1998年在Skaebaek发电厂投产的

1000MW 超超临界锅炉启动过程分析

1000MW超超临界锅炉启动过程分析 刘崇刚国电泰州发电有限公司生产运行部 江苏泰州 213000 择要:本文简单介绍泰州电厂工程概况及等离子助燃点火,重点论述超超临界1000MW机组在启动过程如何成功实现无油点火,而且对启动过程中出现的具体问题进行详细分析并提出针对性解决方法,具有很大的推广价值,为即将投产和在建机组超超机组提供了实现无油启动成功的范列。 关键词:等离子无油点火锅炉启动参数控制关键点控制 一、工程概况 国电泰州电厂一期工程2×1000MW超超临界燃煤机组锅炉是哈尔滨锅炉厂有限责任公司由三菱重工业株式会社(Mitsuibishi Heavy Industries Co. Ltd)提供技术支持,设计的锅炉是超超临界变压运行直流锅炉,采用П型布置、双炉膛、一次中间再热、低NO X PM 主燃烧器和MACT燃烧技术、反向双切园燃烧方式,底层1A磨煤机采用等离子助燃技术,炉膛为内螺纹管垂直上升膜式水冷壁,循环泵启动系统;调温方式除煤/水比外,还采用烟气分配挡板、燃烧器摆动、喷水等方式。 锅炉采用平衡通风、露天布置、固态排渣、全钢构架、全悬吊结构,设计煤种为神华煤,校核煤种分别为兖州煤和同忻煤。 锅炉主要参数如下: 二、启动过程分析 1、等离子点火 等离子点火原理:等离子是利用直流电流在介质气压0.01~0.03Ma的条件下接触引弧,并在强磁场控制下获得稳定功率的直流空气等离子体,该等离子体在燃烧器的中心燃烧筒中形成温度》5000K的梯度极大的局部高温区,煤粉颗粒通过该等离子“火核”受到高温作用,并在1/1000秒内迅速释放出挥发物,使煤粉颗粒破裂粉碎,从而迅速燃烧。由于反

我国1000MW级超超临界燃煤发电技术的瓶颈浅析

第39卷第6期2011年6 月Vol.39No.6 Jun.2011 我国1000MW级超超临界燃煤发电技术的瓶颈浅析 金利勤1,王家军2,王剑平1 (1.浙江浙能嘉华发电有限公司,浙江嘉兴314201;2.杭州电子科技大学自动化研究所,杭州310018) 摘要:对我国1000MW级超超临界燃煤发电技术的现状进行了综述,并和发达工业国家的超超临界燃煤机组进行了对比分析。针对我国超超临界机组发展的技术瓶颈,提出了亟需研究解决的课题。对高超超临界燃煤发电技术进行了展望。 关键词:1000MW级;超超临界;燃煤火力发电;技术瓶颈 作者简介:金利勤(1960-),男,高级工程师,从事火电厂技术管理工作。 中图分类号:TK325文献标志码:A文章编号:1001-9529(2011)06-0976-04 基金项目:浙江省科技厅重点软科学研究资助项目(2010C25096) Analysis on the Technological bottleneck of1000MW Ultra-supercritical Coal-fired Power Generation in China JIN Li-qin1,WANG Jia-jun2,WANG Jian-ping1 (1.Jiahua Power Generation Co.Ltd of Zhejiang Zhe Energy,Jiaxing Zhejiang,314201; 2.Institute of Automation,Hangzhou Dianzi University,Hangzhou Zhejiang,310018) Abstract:In this paper,a survey is given about the present1000MW ultra supercritical coal-fired power generation technology in China.The development of ultra supercritical coal-fired power generation technology in China is ana-lyzed and compared with that of industrialized countries.After summarizing the technological bottlenecks existed in this field,the problems needing to be solved are pointed out and the future developments of ultra supercritical coal-fired power generation technology are proposed. Key words:1000MW;ultra-supercritical;coal-fired power generation;technology bottleneck Foundation items:The Important Soft Science Research Foundation of Science Technology Department of Zhejiang Province(2010C25096 櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚) 参考文献: [1]陈春元,李永兴.大型煤粉锅炉燃烧设备的优化设计问题[J].锅炉制造,1992(2). [2]范从振.锅炉原理[M].北京:水利电力出版社,1986.[3]VAPNIK V N.The nature of statistical learning theory[M].NY:Springer-Verlag,1995:8-50.[4]VAPNIK V N,LEVIN E,LE Cun Y.Measuring the VC-dimension of a learning machine[J].Neural Computation, 1994(6):851-876. [5]连慧莉.电站锅炉燃煤特性预测建模研究[D].南京:东南大学,2005. 收稿日期:2010-03-28 本文编辑:王延婷 1000MW级超超临界燃煤发电是一种先进、高效的发电技术,代表了当前火力发电的最高水平,1000MW级超超临界燃煤发电技术的研发和应用对实现我国火电结构调整、节能降耗,建设资源节约型、环境友好型社会,促进电力工业可持续发展具有重要意义。国家能源局表示在“十二五”期间将进一步降低200MW以下小型火电机组在整个发电装机容量中的比例,提高600MW 以上超超临界发电机组的比例,特别是1000MW 级超超临界燃煤发电机组将成为当前我国火电发展的主流机组。 虽然我国已投运和在建、拟建的1000MW 级超超临界燃煤发电机组居世界首位,但是在超超临界燃煤发电的核心技术方面与发达工业国家

超临界火电机组

火力发电革命性变革 ——超临界(超超临界)机组运用 超临界(超超临界)是一个热力学概念。对于水和水蒸气,压力超过临界压力22.129MPa的状态,即为超临界状态。同时这一状态下对应的饱和温度为374.15℃。超临界机组即指蒸汽压力达到超临界状态的发电机组。蒸汽参数达到27MPa/580℃/600℃以上的高效超临界机组,属于超超临界机组。 超临界(超超临界)机组最大的优势是能够大幅度提高循环效率,降低发电煤耗。但相应地需要提高金属材料的档次和金属部件的焊接工艺水平。现在全世界各国都非常重视超临界(超超临界)机组技术的发展。 超超临界机组蒸汽参数愈高,热效率也随之提高。热力循环分析表明,在超超临界机组参数范围的条件下,主蒸汽压力提高1MPa,机组的热耗率就可下降0.13%~0.15%;主蒸汽温度每提高10℃,机组的热耗率就可下降0.25~0.30%;再热蒸汽温度每提高10℃,机组的热耗率就可下降0.15%~0.20%。在一定的范围内,如果采用二次再热,则其热耗率可较采用一次再热的机组下降1.4%~1.6%。 超临界(超超临界)机组的发展在20世纪60~70年代曾经历过低谷时期,主要是因为当时的试验条件所限,没有认识到超临界(超超临界)压力下工质的大比热容特性对水动力特性以及传热特性的影响,因而引发了水冷壁多次爆管等事故。经过理论和技术方面的不断发展,发现了超临界压力下的工质存在类膜态沸腾导致传热恶化问题,克服了技术发展障碍。与此同时,随着金属材料工业的发展,超临界(超超临界)机组获得了新的生命。 超临界(超超临界)机组具有如下特点: (1)热效率高、热耗低。超临界机组比亚临界机组可降低热耗约 2.5%,故可节约燃料,降低能源消耗和大气污染物的排放量。 (2)超临界压力时水和蒸汽比容相同,状态相似,单相的流动特性稳定,没有汽水分层和在中间集箱处分配不均的困难,并不需要象亚临界压力锅炉那样用复杂的分配系统来保证良好的汽水混合,回路比较简单。

超临界与亚临界机组特点比较

超临界机组与亚临界机组特点的比较2006-10-25 20:42

600MW 亚临界及超临界机组甩负荷试验技术研究 一、任务来源 汽轮机作为一个高速转动机械必须保证转速不超过它设计允许的最高转速,以防止超速产生的 严重后果。在防止机组发生甩负荷工况时的动态转速飞升方面,起主要作用的就是超速保护限制回 路,也即OPC 保护回路,而甩负荷试验是考核汽轮机调速系统动态特性最直接、最常用的方法。所 以,对于甩负荷试验而言,OPC 超速保护回路是最重要的。 甩负荷试验是一项较为复杂和极其重要的试验.涉及到各机、炉、电、热、化各专业,并具有一定 的风险性。由于甩负荷试验对于保证机组安全稳定运行有重要意义,目前新机组在基建期间,移交 生产前,都基本会按照有关要求进行甩负荷试验,但由于甩负荷试验涉及到各专业,自身技术上比 较复杂,在各地实际进行的甩负荷试验中,由于认知和理解上的不同,存在不同的技术观点,导致 实际甩负荷试验操作中,有不同的操作方式,甩负荷的试验结果也不尽相同,很多试验存在一些问 题,比如试验过程中二次飞升转速比较高、OPC 动作次数过多、甩负荷后机组没法维持空转并再次 并网接带负荷等问题,不仅影响到机组的定期投产,也影响到电网的安全稳定。尤其近年超临界机 组的建设投产比较多,超临界机组的甩负荷试验,暴露出一些新的问题。 本文正是在这个背景下,结合广东正在建设的600MW 等级的亚临界及超临界机组,对于600MW 机组的甩负荷试验,进行了深入的分析和比较研究,全面掌握现代大型机组甩负荷试验的技术要点, 着重解决实际甩负荷试验过程中的关键技术难点,为大型机组的甩负荷试验,包括即将大规模投产 的1000MW 机组的甩负荷试验,提供技术支持和技术指导,为保证现代大型机组甩负荷试验的顺利进 行和机组的安全稳定运行服务。 为此,广东省电力工业局试验研究所于2006 年开始了该项目的研究工作,项目名称:600MW 亚 临界及超临界机组甩负荷试验技术研究。 二、应用领域和技术原理 防止汽轮机超速是调节保安系统的一个重要功能,尤其是发生甩负荷等恶劣工况时,要求调节 汽门能尽快关闭,控制汽轮机转速不致使机组跳闸,并将转速控制在同步转速。若是电网短时故障, 应能迅速重新并网接带负荷。甩负荷试验是考核汽轮机调速系统动态特性最直接、最常用的方法。 由于甩负荷试验对于保证机组和整个电网的安全稳定运行,都有重要意义,本项目通过研究600MW 亚临界及超临界机组的甩负荷试验技术,来为机组和电网安全稳定运行提供支持和服务。 本课题的技术主要包括以下几个部分: 1、比较不同机组的甩负荷技术特点 实施方案:调查研究典型机组的OPC 保护逻辑的技术特点分析。包括1)国产引进型600MW 机组 的OPC 逻辑特点;2)俄罗斯列宁格勒、日立、三菱、ABB 等进口机组的OPC 逻辑特点 2、分析600MW 亚临界及超临界机组甩负荷试验中的主要技术难点和对应解决方法 实施方案:1)分析600MW 亚临界及超临界机组甩负荷试验中的主要技术难点,主要是OPC 的复位逻辑、再热汽压力的控制、转子转动惯量的计算等;2)对存在的技术难点,研究对应的解决方法;3) 制定出科学合理的甩负荷试验执行方案;

火力发电机组超临界化的发展趋势

中国?海南中国科协2004年学术年会电力分会场暨中国电机工程学会2004年学术年会论文集 11 火力发电机组超临界化的发展趋势 李波 (通辽发电总厂) 摘要:从世界火力发电机组的发展历史及现状, 论证采用超临界和超超临界参数将是新世纪初火力发电厂主要发展方向之一,近而说明我厂三期建成一台超临界机组符合时代发展的要求。 关键词:火力发电机组;超临界 1 前言 对我厂三期工程建设一台亚临界机组还是超监界机组的问题进行分析论证。并最终得出结论。 2 超临界化发展模式的成功实践 超临界火电机组是常规蒸汽动力火电机组的自然发展和延伸。提高蒸汽初参数一直是提高这类火电厂效率的主要措施。当蒸汽压力提到高于22.1MPa时就称为超临界机组,如果蒸汽初压力超过27MPa,则称为超超临界火电机组。目前一些发达国家中,超临界和超超临界机组巳是火电结构中的主导机组或是占据一个举足轻重的比例,也就是说火电结构巳经"超临界化"了。以超临界化为特点的对火电结构的更新换代早在20世纪的中叶就已开始。超临界化可以说是火电发展的一种模式,一条道路,是被多国实践证明的成功模式。 美国于1957年投运的第一台125MW超临界机组的参数为31MPa/621℃/566℃/560℃,1958年投运的325MW机组的参数为34.4MPa/649℃/566℃/566℃,实质上它们已是迄今最高参数的超超临界机组。到60年代中期,新增机组中有一半采用超临界参数,但到70年代订货台数急剧下降。根据EPRI的一份调查报告认为,这一下降的原因是多方面的,当时美国缺乏超临界机组调峰运行的经验,最重要的是核电站担负起了基本负荷,因而对带基荷的超临界机组的需求量出现了下降,在采用超临界参数方面出现了反复。在日本和欧洲则情况则有所不同。尽管如此,从宏观上看美国在1967年-1976年的10年期间,共安装118台超临界机组,单机最大容量为1300MW,到80年代初,超临界机组仍增至170余台,占燃煤机组的70%以上,占总装机容量的25.22%,其中单机容量介于500-800MW者占60%-70%,至1994年共安装和投运了9台1300MW的超临界机组。 日本在1967年第一台超临界的600MW机组系从美国引进,在长崎电厂投运。此后日本的超临界压力火力发电得到了迅速的发展。截止1989年3月,日本各大电力公司的48个主要火电厂的总装机容量75870 MW中,超临界压力的为49350MW,占总装机量的65%,比重很大,致使火电机组全国供电煤耗由1963年的366g/kWh降低到1987年335g/kWh 。1989和1990年在川越电厂投运的两台700MW机组的参数是两次再过热的31MPa /566/566/ 566 ℃℃℃,在满负荷下的热效率达41.9%,投运以来情况很好。目前在日本,450MW以上的机组全部采用超临界参数。从1993年以后已把蒸汽温度提高到566/593 ℃℃和593/593 ℃℃,一次再过热,说明这种等级的超超临界参数已达到成熟阶段。 原苏联也是世界上拥有超临界机级最多的国家,共有224台,总容量达79300MW,凝汽式汽轮机中,超临界机组的容量占48.7%。1963年,苏联投入第一台300MW超临界机组,其热耗率比超高压的200MW机组降低了5.2%。这一成功促使苏联决定,300MW以上的机组全部采用超临界参数。300MW 机组在70年代中期的可用率已达86.4%,1984年雷夫提恩电厂的300MW机组的利用小时达7043小时。 德国早在60年代开始发展超临界机组,是研究和制造超临界机组最早的国家之一,但初期容量较小。 1972年投运了一台430MW的超临界机组,1979年投入了一台475MW二次再过热的机组。德国VEAG电力公司在1999和2000年于Lippendorf电厂投产的两台900MW褐煤机组,蒸汽参数为26.8MPa/ 554/ 583 ℃℃,净效率为42%;计划于2002年在Niederaussen 发电厂投产

超临界和超超临界发电机组

Latest Developments in the World ′s Wind Power Industry Luo Chengxian (Former SINOPEC Center of Information ,Beijing 100011) [Abstract]In recent years ,renewable energy source-based power generation ,particularly wind power ,has been growing rapidly.Pushed by some wind power foregoer countries ,significant progress has been made in the de -velopment of large-capacity wind turbine power generating sets with single-generator capacity having quickly broken through the key level of 1MW.10MW wind turbine power generating sets are expected to enter the market soon.The development of larger-capacity generators has enhanced the economic viability and competi -tiveness of wind power.The utilization rate of wind turbines will rise to 28%by 2015from the current about 25%and the investment cost will drop considerably.Under GWEC ′s high-growth scenario ,the investment cost will fall to 1093Euro/kW by 2030from 1350Euro/kW in 2009.Given the intermittent and stochastic nature of wind ,power storage technology is an effective approach to introducing renewable energy on a large scale.Japan and many American and European countries have invested in the research and development of power storage technology.A recent IEA research note shows that use in combination with heat and power cogenera -tion technology ,which focuses on heat supply ,can greatly expand the scale of use of renewable energy sources.Smart grids will be the fundamental approach to resolving the problems relating to the large -scale grid integration of wind power and power transmission.Smart grid technology will greatly enhance the overall utilization efficiency of the power system and can effectively reduce the fossil fuel consumption of power plants.China has made some progress in developing smart grids although there are still many problems yet to be resolved.The renewable energy -derived power purchasing policies enacted by countries around the globe have promoted the development of the global wind power industry.Germany ′s wind power purchasing policies can be used by China for reference. [Keywords]wind power generation ;larger generator ;equipment utilization rate ;investment cost ;power storage technology ;smart grid ;wind power purchasing policy ·39· 第5期罗承先.世界促进风电产业发展最新动向·能源知识· 超临界和超超临界发电机组 火电厂超临界和超超临界机组指的是锅炉内工质的压力。锅炉内的工质都是水,水的临界压力是22.115MPa ,温度为347.15℃。在这个压力和温度时,水和蒸汽的密度是相同的,这就叫水的临界点,炉内工质压力低于这个压力就叫亚临界锅炉,大于这个压力就是超临界锅炉,炉内蒸汽温度不低于593℃或蒸汽压力不低于31MPa 则称为超超临界。 超临界机组具有无可比拟的经济性,单台机组发电热效率最高可达50%,每千瓦时煤耗最低仅为255g(丹麦BWE 公司),较亚临界压力机组(最低约327g 左右)煤耗低;同时采用低氧化氮技术,在燃烧过程中减少65%的氮氧化合物及其他有害物质,且脱硫率超98%,可实现节能降耗、环保的目的。超临界、超超临界火电机组具有显著的节能和改善环境的效果,超超临界机组与超临界机组相比,热效率还要高1.2%,一年就可节约6000t 优质煤。未来火电建设将主要发展高效率、高参数的超临界(SC)和超超临界(USC)火电机组。我国已成功掌握先进的超超临界火力发电技术,并为百万千瓦超超临界机组产业化创造了条件。目前一批百万千瓦超超临界机组项目正在建设中。(供稿舟丹)

相关主题