搜档网
当前位置:搜档网 › 基本函数求导公式

基本函数求导公式

基本函数求导公式
基本函数求导公式

基本初等函数求导公式

(1) 0)(='C (2) 1

)(-='μμμx x

(3) x x cos )(sin ='

(4) x x sin )(cos -='

(5)

x x 2

sec )(tan =' (6)

x x 2csc )(cot -=' (7) x x x tan sec )(sec ='

(8) x x x cot csc )(csc -='

(9)

a a a x

x ln )(=' (10) (e )e x

x '=

(11)

a x x a ln 1

)(log =

'

(12)

x x 1)(ln =

',

(13)

211)(arcsin x x -=

' (14)

211)(arccos x x --

=' (15)

21(arctan )1x x '=

+

(16)

21(arccot )1x x '=-

+

函数的与、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则

(1) v u v u '±'='±)( (2) u C Cu '=')((C 就是常数)

(3) v u v u uv '+'=')(

(4) 2v v u v u v u '-'='

??? ??

反函数求导法则

若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应区

x

I 内也可导,且

)(1)(y x f ?'=

' 或 dy dx dx dy 1=

复合函数求导法则

设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为

dy dy du dx du dx =g

或()()y f u x ?'''=g

2、 双曲函数与反双曲函数的导数、

双曲函数与反双曲函数都就是初等函数,它们的导数都可以用前面的求导公式与求导法则求出.

可以推出下表列出的公式:

在第二章第六节中我们已经提出了隐函数的概念,并且指出了不经过显化直接由方程

),(y x f =0 (1) 求它所确定的隐函数的方法。现在介绍隐函数存在定理,并根据多元复合函数的求导法来导出隐函数的导数公式、

隐函数存在定理1 设函数),(y x F 在点

),(00y x P 的某一邻域内具有连续的偏导数,且0),(00=y x F ,, 0),(00≠y x F y ,则方程),(y x F =0在点),(00y x 的某一邻域内恒能唯一确

定一个单值连续且具有连续导数的函数)(x f y =,它满足条件)(00x f y =,并有

y x F F dx dy

-= (2)

公式(2)就就是隐函数的求导公式

这个定理我们不证。现仅就公式(2)作如下推导。 将方程(1)所确定的函数)(x f y =代入,得恒等式 0))(,(≡x f x F ,

其左端可以瞧作就是x 的一个复合函数,求这个函数的全导数,由于恒等式两端求导后仍

然恒等,即得

,0=??+??dx dy y F x F

由于

y

F 连续,且

),(00≠y x F y ,所以存在(x 0,y 0)的一个邻域,在这个邻域内

≠y F ,于就是得

.y x F F dx dy

-=

如果),(y x F 的二阶偏导数也都连续,我们可以把等式(2)的两端瞧作x 的复合函数而再

一次求导,即得

dx

dy F F y F F x dx y d y x y x ???? ??-??+???? ??-??=22

.23

2222y

x yy y x xy y xx y x y

x yy y xy y x

yz y xx F F F F F F F F F F F F F F F F F F F F +--=???

?

??-----=

例1 验证方程012

2

=-+y x 在点(0,1)的某一邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =,并求这函数的一阶与二阶导数在x =0的值。

解 设=),(y x F 122-+y x ,则y F x F y x 2,2==,0

2)1,0(,0)1,0(≠==y F F 、因此由定理1可知,方程

012

2=-+y x 在点(0,1)的某邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =。

下面求这函数的一阶与二阶导数

y x F F dx dy -==y x -, 0

==x dx dy ;

22dx y d =

,1)

(332222y y x y y y x

x y y y x y -=+-=---='--

1

22-==x dx y

d 。

隐函数存在定理还可以推广到多元函数、既然一个二元方程(1)可以确定一个一元隐函数,那末一个三元方程

F (z y x ,,)=0 (3)

基本初等函数的导数公式的推导过程

基本初等函数的导数公 式的推导过程 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

基本初等函数的导数公式推导过程 一、幂函数()f x x α=(α∈Q *)的导数公式推导过程 命题 若()f x x α=(α∈Q *),则()1f x x αα-'=. 推导过程 ()f x ' ()()()()()()000112220011222011222011220 lim lim C C C C lim C C C C lim C C C lim lim C C C x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x αα αααααα ααααααααααααααααααα αααααα?→?→--?→--?→--?→--?→+?-=?+?-=?+?+?++?-=?-+?+?++?=??+?++?=?=+?++()1111 C x x x ααααα αα---?== 所以原命题得证.

命题 若()sin f x x =,则()cos f x x '=. 推导过程 ()f x ' ()() ()()()()0000020lim sin sin lim sin cos cos sin sin lim cos sin sin cos sin lim cos sin sin cos 1lim cos 2sin cos sin 12sin 1222lim x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→?→?→+?-=?+?-=??+?-=??+?-=??+?-=???????????+?-- ? ????????=2 00002sin cos cos 2sin sin 222lim 2sin cos cos sin sin 222lim 2sin cos 22lim sin 2lim cos 22x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→????????- ???=???????- ???=?????+ ???=?????????=+??? ???????? 当0x ?→时,sin 22 x x ??=,所以此时sin 212x x ?=?. 所以()0lim cos cos 2x x f x x x ?→???'=+= ??? ,所以原命题得证.

(整理)基本初等函数求导公式

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx =g 或()()y f u x ?'''=g 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出. 可以推出下表列出的公式: sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A

高数三角函数公式大全

三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) = tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A = A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3 π +a)·tan( 3 π -a) 半角公式 sin( 2A )= 2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )= A A sin cos 1-=A A cos 1sin +

sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2 b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2 b a +sin 2 b a - tana+tanb= b a b a cos cos ) sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2 π -a) = cosa cos(2 π -a) = sina sin(2 π +a) = cosa cos( 2 π +a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina c os(π+a) = -cosa tgA=tanA =a a cos sin

反角函数求导公式的证明

反三角函数求导公式的证明 §2.3 反函数的导数,复合函数的求导法则 一、反函数的导数 设)(y x ?=是直接函数,)(x f y =是它的反函数,假定)(y x ?=在I y 内单调、可 导,而且0)(≠'y ?,则反函数)(x f y =在间},)(|{y x I y y x x I ∈==?内也是单调、可 导的,而且 )(1 )(y x f ?'=' (1) 证明: ?∈x I x ,给x 以增量x ?),0(x I x x x ∈?+≠? 由 )(x f y = 在 I x 上的单调性可知 0)()(≠-?+=?x f x x f y 于是 y x x y ??=??1因直接函数)(y x ?=在I y 上单调、可导,故它是连续的,且反函数)(x f y =在I x 上也是连续的,当0→?x 时,必有0→?y )(11lim lim 00y y x x y y x ?'=??=??→?→?即:)(1)(y x f ?'=' 【例1】试证明下列基本导数公式 ().(arcsin )().()().(log )ln 11 1211312 2 x x arctgx x a x a x '=-'=+'=

证1、设y x sin =为直接函数,x y arcsin =是它的反函数 函数 y x sin =在 )2,2(ππ-=y I 上单调、可导,且 '=≠x y cos 0 因此,在 )1,1(-=x I 上, 有 y x cos 1)arcsin (= ' 注意到,当)2,2(π π-∈y 时,0cos >y ,221sin 1cos x y y -=-= 因此, 211)arcsin (x x -= ' 证2 设x tgy =,)2,2(ππ-=y I 则y arctgx =,I x =-∞+∞(,) tgy x = 在 I y 上单调、可导且 0cos 12>='y x 故 2221111cos )(1)(x y tg y tgy arctgx +=+=='= ' 证3 a x a a a a y y x ln 1ln 1)(1)log (=='= ' 类似地,我们可以证明下列导数公式:

基本初等函数的导数公式表

导数基本知识汇总试题 基本知识点: 知识点一、基本初等函数的导数公式表(须掌握的知识点) 1、=c '0 2、 =n n x nx -1'() (n 为正整数) 3、 ln =x x a a a '() =x x e e '() 4、ln =a long x x a 1'() 5、ln =x x 1 '() 6、sin cos =x x '() 7、 cos sin =-x x '() 8、=-x x 211'() 知识点二:导数的四则运算法则 1、v =u v u '''±±() 2、 =u v uv v u '''+() 3、(=Cu Cu '' ) 4、u -v =u v u v v 2'''() 知识点三:利用函数导数判断函数单调性的法则 1、如果在(,)a b ,()f x '>0,则()f x 在此区间是增区间,(,)a b 为()f x 的单调增区间。 2、如果在(,)a b ,()f x '<0,则()f x 在此区间是减区间,(,)a b 为()f x 的单调减区间。 一、计算题 1、计算下列函数的导数; (1)y x 15= (2) )-y x x 3=≠0( (3))y x x 54=0 ( (4))y x x 23=0 ( (5))-y x x 23 =0 ( (6)y x 5=

(7)sin y x = (8)cos y x = (9)x y =2 (10)ln y x = (11)x y e = 2、求下列函数在给定点的导数; (1)y x 1 4= ,x =16 (2)sin y x = ,x π =2 (3)cos y x = ,x π=2 (4)sin y x x = ,x π =4 (5)3y x = ,11 28(,) (6)+x y x 2=1 ,x =1 (7)y x 2 = ,,24()

函数导数公式及证明

函数导数公式及证明

复合函数导数公式

) ), ()0g x ≠' ''2 )()()()() ()()f x g x f x g x g x g x ?-=?? ())() x g x , 1.证明幂函数()a f x x =的导数为''1()()a a f x x ax -== 证: ' 00()()()()lim lim n n x x f x x f x x x x f x x x →→+-+-== 根据二项式定理展开()n x x + 011222110(...)lim n n n n n n n n n n n n n x C x C x x C x x C x x C x x x ----→+++++-= 消去0n n n C x x - 11222110...lim n n n n n n n n n n x C x x C x x C x x C x x ----→++++= 分式上下约去x 112211210 lim(...)n n n n n n n n n n x C x C x x C x x C x -----→=++++ 因0x →,上式去掉零项 111 n n n C x nx --== 12210()[()()...()]lim n n n n x x x x x x x x x x x x x x ----→+-+++++++=

12210 lim[()()...()]n n n n x x x x x x x x x x ----→=+++++++ 1221...n n n n x x x x x x ----=++++ 1n n x -= 2.证明指数函数()x f x a =的导数为'ln ()x x a a a = 证: ' 00()()()lim lim x x x x x f x x f x a a f x x x +→→+--== 0(1)lim x x x a a x →-= 令1x a m -=,则有log (1)a x m =-,代入上式 00(1)lim lim log (1)x x x x x a a a a m x m →→-==+ 1000 ln ln lim lim lim ln(1)1ln(1)ln(1)ln x x x x x x m a m a a a a m m m a m →→→===+++ 根据e 的定义1lim(1)x x e x →∞ =+ ,则1 0lim(1)m x m e →+=,于是 1 ln ln lim ln ln ln(1) x x x x m a a a a a a e m →===+ 3.证明对数函数()log a f x x =的导数为''1 ()(log )ln a f x x x a == 证: '0 0log ()log ()() ()lim lim a a x x x x x f x x f x f x x x →→+-+-== 00log log (1)ln(1) lim lim lim ln a a x x x x x x x x x x x x x a →→→+++===

三角函数公式大全7768

高中三角函数公式大全[图] 1 三角函数的定义1.1 三角形中的定义 图1 在直角三角形中定义三角函数的示意图在直角三角形ABC,如下定义六个三角函数: ?正弦函数 ?余弦函数 ?正切函数 ?余切函数 ?正割函数 ?余割函数 1.2 直角坐标系中的定义

图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数: ?正弦函数 ?余弦函数 ?正切函数 ?余切函数 ?正割函数

余割函数 2 转化关系2.1 倒数关系 2.2 平方关系 2 和角公式 3 倍角公式、半角公式3.1 倍角公式 3.2 半角公式

3.3 万能公式 4 积化和差、和差化积4.1 积化和差公式

4.2 和差化积公式 诱导公式 ?sin(-a)=-sin(a) ?cos(-a)=cos(a) ?sin(pi/2-a)=cos(a) ?cos(pi/2-a)=sin(a) ?sin(pi/2+a)=cos(a) ?cos(pi/2+a)=-sin(a) ?sin(pi-a)=sin(a) ?cos(pi-a)=-cos(a) ?sin(pi+a)=-sin(a) ?cos(pi+a)=-cos(a) ?tgA=tanA=sinA/cosA 两角和与差的三角函数

?sin(a+b)=sin(a)cos(b)+cos(α)sin(b) ?cos(a+b)=cos(a)cos(b)-sin(a)sin(b) ?sin(a-b)=sin(a)cos(b)-cos(a)sin(b) ?cos(a-b)=cos(a)cos(b)+sin(a)sin(b) ?tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b)) ?tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b)) 三角函数和差化积公式 ?sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2) ?sin(a)?sin(b)=2cos((a+b)/2)sin((a-b)/2) ?cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2) ?cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2) 积化和差公式 ?sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)] ?cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)] ?sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)] 二倍角公式 ?sin(2a)=2sin(a)cos(a) ?cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a) 半角公式

三角函数_反三角函数_积分公式_求导公式

sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A - cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2 )2(tan 12tan 2a a - 6、其他非重点三角函数 csc(a) = a sin 1 sec(a) =a cos 1 7、(a +b )的三次方,(a -b )的三次方公式

1.基本初等函数求导公式

1. 基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx =g 或()()y f u x ?'''=g 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导 公式和求导法则求出.可以推出下表列出的公式: 三、基本初等函数的微分公式与微分运算法则 从函数的微分表达式: d ()d y f x x '= 可以看出,要计算函数的微分,只要计算函数的导数,再乘以自变量的微分.因此,可得如下的微分公式和微分运算法则. 1. 基本初等函数的微分公式 由基本初等函数的导数公式,可以直接写出基本初等函数的微分公式.为了便于对照,列表于下:

反三角函数求导公式证明

§ 反函数的导数,复合函数的求导法则 一、反函数的导数 设)(y x ?=是直接函数,)(x f y =是它的反函数,假定)(y x ?=在I y 内单调、可导,而且0)(≠'y ?,则反函数)(x f y =在间 },)(|{y x I y y x x I ∈==?内也是单调、可导的,而且 )(1 )(y x f ?'=' (1) 证明: ?∈x I x ,给x 以增量x ?),0(x I x x x ∈?+≠? 由 )(x f y = 在 I x 上的单调性可知 0)()(≠-?+=?x f x x f y 于是 y x x y ??=??1因直接函数)(y x ?=在I y 上单调、可导,故它是连续的,且反函数)(x f y =在I x 上也是连续的,当0→?x 时,必有0→?y )(11lim lim 00y y x x y y x ?'=??=??→?→?即:)(1)(y x f ?'=' 【例1】试证明下列基本导数公式 ().(arcsin )().()().(log )ln 11 1211312 2 x x arctgx x a x a x '=-'=+'= 证1、设y x sin =为直接函数,x y arcsin =是它的反函数 函数 y x sin =在 )2,2(ππ-=y I 上单调、可导,且 '=≠x y cos 0 因此,在 )1,1(-=x I 上, 有 y x cos 1)arcsin (= ' 注意到,当)2,2(ππ-∈y 时,0cos >y ,221sin 1cos x y y -=-= 因此, 211)arcsin (x x -= ' 证2 设x tgy =,)2,2(ππ-=y I 则y arctgx =,I x =-∞+∞(,) tgy x = 在 I y 上单调、可导且 0cos 12>='y x 故 2221111cos )(1)(x y tg y tgy arctgx +=+=='= ' 证3 a x a a a a y y x ln 1ln 1)(1)log (=='= '

常用基本初等函数求导公式积分公式.doc

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) , (13) (14) (15) (16) 函数的和、差、积、商的求导法则 设,都可导,则 ( 1)( 2)(是常数) ( 3)( 4) 反函数求导法则 若函数在某区间内可导、单调且,则它的反函数在对应区间内也可导,且 或 复合函数求导法则 设,而且及都可导,则复合函数的导数为 或 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.

可以推出下表列出的公式: 常用积分公式表·例题和点评 ⑴kdx kx c ( k 为常数) ⑵x dx( 1) 1 x 1 c 1 特别, 1 dx 1 c , x d x 2 x23 c , 1 dx 2 x c x 2 x 3 x ⑶1 dx ln | x | c x ⑷ a x d x a x c , 特别,e x d x e x c ln a

⑸ sin x dx cos x c ⑹ cos x d x sin x c ⑺ 1 d x csc 2 x dx cot x c sin 2 x ⑻ 1 d x sec 2 x dx tan x c cos 2 x ⑼ 1 dx x c ( a 0) , 特别, a 2 x 2 arcsin a ⑽ 1 dx 1 x c (a 0) , 特别, a 2 x 2 arctan a a ⑾ 1 1 a x a 2 x 2 d x 2a ln a x c ( a 0) 或 1 1 x a x 2 a 2 dx 2a ln x a c ( a 0) ⑿ tan x dx ln cos x c ⒀ cot x dx ln sin x c 1 arcsin x c 1 d x x 2 1 1 x 2 dx arctan x c 1 ln csc x cot x c ⒁ csc x d x x dx ln tan c sin x 2 1 ln sec x tan x c ⒂ secx d x x dx c cos x ln tan 4 2 1 ( a 0) x 2 a 2 ⒃ a 2 dx ln x c x 2 ⒄ a 2 x 2 dx ( a 0) a 2 x x a 2 x 2 c arcsin 2 2 a ⒅ x 2 2 (a 0) x x 2 a 2 a 2 ln x x 2 a 2 c a d x 2 2

三角函数诱导公式大全

三角函数得求导公式就是什么? tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角与与差得三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2)

基本初等函数的导数公式的推导过程

基本初等函数的导数公式推导过程 一、幂函数()f x x α=(α∈Q *)的导数公式推导过程 命题 若()f x x α=(α∈Q *),则()1f x x αα-'=. 推导过程 ()f x ' ()()()()()()000112220 011222011222011220 lim lim C C C C lim C C C C lim C C C lim lim C C C x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x αα αααααααααααααααααααααααα ααααααα?→?→--?→--?→--?→--?→+?-=?+?-=?+?+?++?-=?-+?+?++?=??+?++?=?=+?++L L L L ()11 11 C x x x ααααααα---?== 所以原命题得证. 二、正弦函数()sin f x x =的导数公式推导过程 命题

推导过程 ()f x ' ()() ()()()()0000020lim sin sin lim sin cos cos sin sin lim cos sin sin cos sin lim cos sin sin cos 1lim cos 2sin cos sin 12sin 1222lim x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→?→?→+?-=?+?-=??+?-=??+?-=??+?-=???????????+?-- ? ????????=2 00002sin cos cos 2sin sin 222lim 2sin cos cos sin sin 222lim 2sin cos 22lim sin 2lim cos 22x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→????????- ???=???????- ???=?????+ ???=?????????=+??? ???????? 当0x ?→时,sin 22 x x ??=,所以此时sin 212x x ?=?. 所以()0lim cos cos 2x x f x x x ?→???'=+= ??? ,所以原命题得证. 三、余弦函数()cos f x x =的导数公式推导过程 命题

构造函数法证明导数不等式的八种方法

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22) 1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

三角函数公式大全(很详细).docx

高中三角函数公式大全[ 图] 1 三角函数的定义三角形中的定义 图1 在直角三角形中定义三角函数的示意图 在直角三角形 ABC,如下定义六个三角函数: 正弦函数 余弦函数 正切函数 余切函数 正割函数 余割函数

直角坐标系中的定义 图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数: 正弦函数 r 余弦函数 正切函数 余切函数 正割函数 余割函数 2 转化关系倒数关系

平方关系 2和角公式 3倍角公式、半角公式倍角公式 半角公式

万能公式 4积化和差、和差化积积化和差公式 证明过程

首先, sin( α+β)=sin αcosβ+sin β(cos已证α。证明过程见《》)因为 sin( α+β)=sin αcosβ+sin β(cos正弦α和角公式)则 sin( -αβ) =sin[ α-β+( )] =sin α cos(-β )+sin(-β )cos α =sin α cos-sinβ β cos α 于是 sin( -αβ )=sin α cos-sinββ cos(α正弦差角公式) 将正弦的和角、差角公式相加,得到 sin( α +β )+sin(-β )=2sinα α cos β 则 sin α cos β =sin( α +β )/2+sin(-β(“α积化和差公式”之一)同样地,运用诱导公式cosα=sin( π-/2α),有 cos( α +β )= sin[ π-/2(α +β )] =sin( π-/2α-β) =sin[(π-α/2 )+(-β )] =sin( π-/2α )cos(-β )+sin(-β )cos( π-α)/2 =cos α cos- βsin α sin β 于是 cos( α +β )=cos α-cossin βα sin(β余弦和角公式) 那么 cos( α-β) =cos[ α-+(β )] =cos α cos(-β)-sin α sin(-β) =cos α cos β +sin α sin β cos( α-β )=cos α cos β +sin (α余sin弦β差角公式) 将余弦的和角、差角公式相减,得到 cos( α +β)-cos( α-β )=-2sin α sin β

导数公式证明大全(更新版)

(麻烦那些盗取他人成果的人素质点,最近总有人把我的作品抄袭过去,改改标题就作为他的东西。愤怒啊!!!!!!) 导数的定义:f'(x)=lim Δy/Δx Δx→0(下面就不再标明Δx→0了) 用定义求导数公式 (1)f(x)=x^n 证法一:(n为自然数) f'(x) =lim [(x+Δx)^n-x^n]/Δx =lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δ x)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx =lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δ x)+x^(n-1)] =x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1) =nx^(n-1)

证法二:(n为任意实数) f(x)=x^n lnf(x)=nlnx (lnf(x))'=(nlnx)' f'(x)/f(x)=n/x f'(x)=n/x*f(x) f'(x)=n/x*x^n f'(x)=nx^(n-1) (2)f(x)=sinx f'(x) =lim (sin(x+Δx)-sinx)/Δx =lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx

=lim cosxsinΔx/Δx =cosx (3)f(x)=cosx f'(x) =lim (cos(x+Δx)-cosx)/Δx =lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx =lim -sinxsinΔx/Δx =-sinx (4)f(x)=a^x 证法一: f'(x) =lim (a^(x+Δx)-a^x)/Δx

角函数反三角函数积分公式求导公式

1、两角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB tan(A+B)=tanAtanB -1tanB tanA +tan(A-B)=tanAtanB 1tanB tanA +- cot(A+B)=cotA cotB 1-cotAcotB +cot(A-B)=cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A=A tan 12tanA 2-Sin2A=2SinA?CosA Cos2A=Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A -cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a)=-sinacos(-a)=cosa sin(2π-a)=cosacos(2π-a)=sinasin(2π+a)=cosacos(2 π+a)=-sina sin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosa tgA=tanA=a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a +cosa=22)2(tan 1)2(tan 1a a +-tana=2 )2 (tan 12tan 2a a - 6、其他非重点三角函数 csc(a)=a sin 1sec(a)=a cos 1 7、(a +b )的三次方,(a -b )的三次方公式 (a+b)^3=a^3+3a^2b+3ab^2+b^3 (a-b)^3=a^3-3a^2b+3ab^2-b^3 a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b)(a^2+ab+b^2) 8、反三角函数公式 arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x)=-arctanx arccot(-x)=π-arccotx

反三角函数求导公式证明

§2.3 反函数的导数,复合函数的求导法则 一、反函数的导数 设)(y x ?=是直接函数,)(x f y =是它的反函数,假定)(y x ?=在I y 内单调、可导,而且0)(≠'y ?,则反函数)(x f y =在间 },)(|{y x I y y x x I ∈==?内也是单调、可导的,而且 )(1 )(y x f ?'=' (1) 证明: ?∈x I x ,给x 以增量x ?),0(x I x x x ∈?+≠? 由 )(x f y = 在 I x 上的单调性可知 0)()(≠-?+=?x f x x f y 于是 y x x y ??=??1 因直接函数)(y x ?=在I y 上单调、可导,故它是连续的,且反函数)(x f y =在I x 上也是连续的,当0→?x 时,必有0→?y )(11lim lim 00y y x x y y x ?'=??=??→?→?即:)(1)(y x f ?'=' 【例1】试证明下列基本导数公式 ().(arcsin )().()().(lo g )ln 11121131 2 2x x a rctg x x a x a x '= -'= +'= 证1、设y x sin =为直接函数,x y arcsin =是它的反函数 函数 y x sin =在 )2,2(ππ-=y I 上单调、可导,且 '=≠x y cos 0 因此,在 )1,1(-=x I 上, 有 y x cos 1)arcsin (= ' 注意到,当)2,2(π π-∈y 时,0cos >y ,2 21sin 1cos x y y -=-= 因此, 211 )arcsin (x x -=' 证2 设 x tgy =,)2,2(ππ-=y I 则y arctgx =,I x =-∞+∞(,) tgy x = 在 I y 上单调、可导且 0cos 12>='y x 故 22211 11 cos )(1)(x y tg y tgy arctgx +=+=='=' 证3 a x a a a a y y x ln 1ln 1)(1 )log (=='='

相关主题