搜档网
当前位置:搜档网 › On how much X-ray and UV radiation processes are coupled in accretion disks AGN case

On how much X-ray and UV radiation processes are coupled in accretion disks AGN case

On how much X-ray and UV radiation processes are coupled in accretion disks AGN case
On how much X-ray and UV radiation processes are coupled in accretion disks AGN case

a r X i v :a s t r o -p h /0507152v 1 6 J u l 2005On how much X-ray and UV radiation processes are coupled in

accretion disks:AGN case

Daniel Proga,1

1Princeton University Observatory,Peyton Hall,Princeton,NJ 08544.e-mail:

dproga@https://www.sodocs.net/doc/796486388.html,

ABSTRACT

Within the standard accretion disk theory for active galactic nuclei (AGN),the observed X-rays are often modeled by Compton up-scattering of ultraviolet (UV)disk photons inside a hot disk corona.Here,we point out that for many AGN,radiation pressure due to the very same UV disk photons can drive a ?ow from the disk into the corona and couple the processes producing X-rays and UV photons.This coupling could lead to quenching of the disk corona because the regions above the UV disk will be too dense,too opaque,and consequently too cold.We discuss various consequences of this new type of the X-ray/UV coupling on the dynamical and radiative properties of AGN.Subject headings:accretion,accretion disks –galaxies:active:nuclei –methods:numerical –radiation mechanisms 1.Introduction High X-ray ?uxes observed in active galactic nuclei (AGN)are a serious challenge for

the standard accretion disk theory.They are also a serious challenge for any AGN out?ow model because no matter what is the physics of X-ray production,one has to deal with the so-called overionization problem:how out?ows absorbing the ultraviolet (UV)radiation avoid full photoionization due to strong X-ray radiation.

In most pictures depicting the centers of AGN,the X-rays are produced in a small region,referred to as the central engine,whereas the out?ows are produced outside of the central engine.Therefore,the X-ray production mechanisms are usually considered to op-erate separately from the out?ow production mechanisms.In this paper,we discuss new dynamical and radiative consequences of UV photons being emitted into the central engine.In particular,we argue that radiation pressure due to UV lines (line force)couples the X-ray and UV radiation processes by driving the disk material into the regime above the disk where X-rays are to be produced.

2.Disk Corona and Disk Out?ow:“a tale of two merging cities”

The spectral energy distribution(SED)of active galactic nuclei(AGN)is very broad. It spans the wavelength range from radio to hard X-rays.Most of the AGN luminosity, L is in the optical–UV–IR regime but some signi?cant fraction is in the X-ray band.It is commonly accepted that AGN are powered by accretion of matter onto a supermassive black hole(BH).AGN are typically very luminous(0.001L Edd<~L<~1L Edd,where L Edd is the Eddington limit).For most AGN,the accretion?ow is thought to form an optically thick,geometrically thin Keplerian disk.In the standard picture,this disk radiates thermally mostly in the optical–UV regime(Shakura&Sunyaev1973).

2.1.Disk Corona

Generally,the optically thick disk model can account for the optical–UV radiation but it does not account for the spectral shape and high?ux observed in X-rays.The most commonly accepted model for the production of X-rays is multiple Compton up-scattering (Comptonization)of UV photons(e.g.,Sunyaev&Titarchuck1980)o?hot electrons in a disk corona(e.g.,Walter&Courvoisier1992;Haardt&Maraschi1991,1993;Sobolewska et al.2004).The derived X-ray spectrum depends on the temperature and optical depth of the scattering electrons.Despite recent advances in observations and modeling of X-rays,the geometry and radiation processes responsible for X-ray emission remain poorly constrained. Two types of geometries are being considered for an accretion disk and Comptonizing corona: (1)“slab”or“sandwich”geometries(e.g.,the top and bottom panels of Fig.1in Reynolds &Nowak2003,hereafter RN)and(2)“sphere+disk geometries”(e.g.,the middle two panels of Fig.1in RN).

Here we focus on exploring the?rst class of geometries where the hot corona is thought to be located immediately above the disk.The disk emits soft thermal photons which provide the main source of cooling for the hot electrons in the corona.It is possible that at the same time,the hard photons produced by Comptonization are an important source of heating for the re?ecting matter which reprocesses them into soft photons.Thus there is a radiative coupling between the X-ray and UV radiation.Many models account for this coupling and assume that a signi?cant fraction of the gravitational power is dissipated in the hot tenuous layers(e.g.,Haardt&Maraschi1993;Svensson&Zdziarski1994).Although the basic idea behind a hot disk corona is straightforward,the physical model of the corona remains one of the biggest challenges in the?eld.Phenomenologically,one can imagine that the corona is heated by dissipation of the accretion power via magnetic processes(e.g.,Galeev et al. 1979;Field&Rogers1993).

Direct studies of these complex multidimensional,time-dependent processes by means of numerical magnetohydrodynamical(MHD)simulations have begun.For example,Miller &Stone(2000)found that in a strati?ed disk,a MHD turbulence driven by the magnetoro-tational instability(MRI,Balbus&Hawley1998)is capable of driving magnetogravitational modes of the Parker instability.However,it has not been demonstrated yet that magnetic buoyancy can supply the disk corona with su?cient power to explain the observed X-ray emission.In fact,several numerical simulations indicate that local dissipation not magnetic buoyancy is the primary saturation mechanism of the MRI(e.g.,Brandenburg et al.1995; Stone et al.1996;Miller&Stone2000,Turner2004).

2.2.Disk Wind

Viable models for AGN must also account for mass out?ows which is another important aspect of activity in galactic nuclei.The most relevant to this paper are the out?ows that can be inferred from spectral features observed in the UV and X-ray bands(i.e.,we do not discuss AGN jets).Broad absorption lines(BALs)in QSOs are the best example of spectral features revealing the existence of such out?ows.These lines are almost always blueshifted relative to the emission-line rest frame,indicating the presence of out?ows from the active nucleus,with velocities as large as0.2c(e.g.,Turnshek1998).The apparent X-ray properties can be a?ected by out?ows,too.For example,the relative strength of the soft X-ray?ux anti-correlates with the C IV absorption equivalent width for QSOs(e.g.,Brandt,Laor& Wills2000).

There has been considerable time and e?ort spent to understand AGN out?ows(e.g., Arav,Shlosman&Weymann1997;Crenshaw,Kraemer&George2002,and references therein).In particular,many theoretical models have been proposed to explain out?ows in AGNs(e.g.,Crenshaw et al.2002).One of most plausible scenarios for AGN out?ows is a wind from an accretion disk around a black hole where the line force drives a wind from a disk by the local disk radiation at radii where the disk radiation is mostly in the UV(e.g., Murray et al.1995,MCGV hereafter;Proga,Stone,&Kallman2000,PSK hereafter;Proga &Kallman2004,PK hereafter).In this scenario,AGN out?ows are a natural consequence of the standard accretion disk theory because the theory predicts high enough radiative?ux and gas opacity in the UV regime,for the line force to drive an out?ow.

Numerical simulations of the radiation driven disk winds illustrate why and how a wind from an accretion disk can account for AGN out?ows.In particular,the simulations have been essential in studying the robustness of the radiation launching and acceleration of the wind(e.g.,PSK,PK).For example,PK considered relatively unfavorable conditions for line

driving(LD)as they took into account the central engine radiation as a source of ionizing photons but neglected its contribution to the radiation force.Additionally,they accounted for the attenuation of the X-ray radiation by computing the X-ray optical depth in the radial direction assuming that only electron scattering contributes to the opacity.The main result of the simulations is that the disk atmosphere can’shield’itself from external X-rays so that the local disk radiation can launch gas o?the disk photosphere.

2.3.The Role of the Failed Wind

LD can change the?ow near the accretion disk in many ways.A powerful wind is just the most dramatic of them for which fairly strict requirements must be https://www.sodocs.net/doc/796486388.html,ing some physical arguments as well as numerical simulations one can show that line-driven disk winds are produced only when the e?ective luminosity of the disk(i.e.the luminosity of the disk, L D times the total line opacity in the optically thin case,M max)exceeds the Eddington limit (e.g.,Proga,Stone&Drew1998,PSD hereafter).For the BH mass M BH=108M⊙of a typical quasar,PK found that for L D>0.3L Edd a strong disk wind develops whereas for L D<~0.3L Edd there is no disk wind.For a less luminous disk or stronger ionizing radiation that reduces M max,or both,the line force can still lift material o?the disk but it fails to accelerate the?ow to escape velocity.Such a failed disk wind has been found in simulations with and without X-ray ionization(see PSD98for no X-ray cases,runs1and6there,and PSK and PK for X-ray cases).

For X-ray cases,a large fraction of the failed wind is not fully ionized and its temperature is comparable the disk e?ective temperature,T D(see Fig.1).LD can then change the vertical structure of an accretion disk by dynamically increasing the disk scale height.Therefore,a failed wind solution can be referred to as a pu?ed-up disk.

The disk wind solution is very sensitive to M BH:for a?xed ratio,L D/L Edd(e.g.,0.5) it is easier to produce a wind for M BH>~107M⊙than for M BH<~107M⊙(PK).Thus less dramatic but very important changes in the density distribution above the disk occur for a broad range of AGN luminosities and BH masses(e.g.,L D M max

To illustrate properties of the pu?ed-up disk/failed wind,we show results from one of PK’s simulations for an AGN with M BH=108M⊙(we refer a reader to PK for a description of the calculations).PK present detail results from only one of the simulations

where M BH=108M⊙and L D=0.5L Edd.Here,we present and discuss results for the same M BH but for L D=0.3L Edd.For these parameters,the disk radiation launches the?ow o?the disk but fails to accelerate it to escape velocity(Fig.1).

The top panel of Fig.1shows very clearly a high density?ow above the disk,i.e.,the line force can maintain gas with the density as high as10?14g cm?3as high as40%of radius along the equator.We note that in the radiation dominated regime,the standard disk theory predicts the disk scale height,H D=3L/L Edd r?=0.9r?(where r?≡6GM BH/c2 is the inner disk radius and unit of the length scale:r′=r/r?and z′=z/r?).The density distribution in the vertical direction is much broader compared not only to the standard disk model but also compared to the X-ray heated disk corona.For example,for the gas temperature T=8×108K,the scale height of a disk corona in hydrostatic equilibrium (HSE),H C/r?=[kT r3/(μm p GM BH)]1/2=0.7at r′=20.The pu?ed-up disk is far from HSE and displays unsteady behavior:the?ow is complex with a few?laments and various knots and clumps of gas moving both upwards and downwards.The direction and speed of motion at any one position is apt to change unpredictably with time.There are two main reasons for this behavior:(i)the gravity and driving?ux di?erently scale with z′(e.g.,PSD) and(ii)the overionization of the innermost?ow by the central engine radiation(compare the left and right panels).

PK’s line-driven wind model takes into account X-ray radiation from a point source located at the origin of the coordinate system.Thus it does not account for the X-ray emission as envisioned in the disk corona scenario described in§2.1.However,we can estimate some of the e?ects of X-rays emitted immediately above the UV disk.For example, we can estimate the photoionization parameter,ξ≡4πF x/n inside the pu?ed-up disk(F x is the X-ray?ux and n is the number density).We assume that at a give point(r′,z′) above the disk,the ionizing?ux is comparable to the?ux emitted by the disk at(r′,0), i.e.,F x(r′,z′)≈σT4D(r′)(where T D is the e?ective disk temperature at r′).For r′=20this yields T D=20,000K and F X=2×1013erg s?1cm?2s?1.For the density of10?13g cm?3, typical for the region above the disk at z′≈4,ξ=5000.This highξimplies that at this location,the gas would be fully ionized.However,for a few of reasons,this does not mean that the energy released above the disk must suppress formation of the failed wind.

Firstly,the failed wind is opaque as illustrated in the middle panel of Fig.1which plots an estimate of the electron scattering optical depth as a function of position over the unit length scale,τ≡ρr?σe.Thus the size of a region fully ionized by locally dissipated energy will be small compared to the size of the failed wind.In other words,the failed wind can likely shield itself from locally produced X-rays as it does from external X-rays. Secondly,as we eluded to above,the presence of dense and cold gas above the disk creates

unfavorable conditions for transport and liberation of the energy above the disk in the?rst place.Contrary to the standard disk corona scenario where the magnetized bubble carrying energy expands almost freely once outside the disk,here the bubble must rise through an extended,high density,dynamic region.Generally,in a case of a disk with a failed disk wind, the strength of a magnetic?eld needed to dominate over the gas and radiation pressure outside the disk must be orders of magnitude higher than in a case of a bare disk.Finally, the critical assumption about the X-ray production is the fact that the hot gas is tenuous so that the main cooling mechanism is inverse Compton emission.However,for the gas density in the failed wind of>10?14g cm?3the bremsstrahlung losses will exceed the Compton losses(e.g.,eq.1in Haardt&Maraschi1993).Therefore,even if the hot electrons were produced above the disk,they will cool very e?ciently by bremsstrahlung instead of inverse Compton emission and the coronal X-ray?ux would be suppressed.

3.Summary and Discussion

In the standard accretion disk theory for AGN,strong X-ray radiation is accounted for by allowing the gravitational energy to be dissipated above the disk.This energy dissipation is to lead to formation of a hot disk corona located immediately above the disk and inside this corona,UV disk photons are to be up-scattered to X-rays.We point out here,that for a broad range of AGN properties,radiation pressure due to the very same UV disk photons can drive a?ow from the disk into the corona.

LD as a mechanism producing disk winds has been studied extensively,but LD as a mechanism changing the density distribution above and inside the disk has not been given its due.Therefore,we comment mostly on some qualitative e?ects that would be very important and relevant to AGN and other accretion disk systems such as X-ray binaries(XBs).In particular,we use some physical arguments,quote and present results from simulations of line-driven disk winds to explore possible coupling between the X-ray and UV production processes.

The base for our discussion are simulations of line-driven?ows from accretion disks studied by PK.The simulations show that the?ows are opaque and can shield themselves not only from external X-rays but also from X-rays produced locally(i.e.,in the region just above the disk where the?ows are driven into).These opaque?ows can lead to a suppression of energy dissipation above the disk.If so,the corona and X-rays would have to be produced interior to the UV emitting part of the disk.This means that the UV and X-ray emitting regions do not overlap and argues against a two-phase accretion disk model(i.e.,against the slab/sandwich type of geometries).If this is true then we have an inverse overionization

problem:UV driven?ow suppresses X-ray production.If however,line-driven?ows were suppressed by locally emitted X-rays,then the AGN wind would have to be launched from the disk exterior to the UV disk where coronal activity is negligible.It is possible that the intermediate situation occurs where X-rays are produced above the disk and the disk material is launched o?the disk at di?erent location/time.Such a double activity above the disk would lead to formation of a two-phase corona where high temperature plasma bubbles coexist with cooler and denser clumps.

The wind quenching of the hot corona raises many questions about the geometry,dy-namics and energetics of AGN.For example,if the X-rays are quenched by the failed wind, what happens to the energy pumped into the gas via magnetic?elds?Could this energy contribute to the UV continuum?Will the resulted UV continuum drive a?ow di?erent than that predicted by current models?

To address these and other issues,one would need to perform global simulations of a turbulent MHD accretion disk with line driven?ows in the radiation-dominated regime.We anticipate that this will be possible soon as local simulations of these type without LD have been already preformed(e.g.,Turner2004;Hirose et al.in preparation).

There are many observational implications of the fact that the radiation driven wind or the failed wind can quench the X-ray production.For example,one would expect an inverse correlation between X-ray?uxes and winds.Perhaps,the observed anti-correlation between the relative strength of the soft X-ray?ux and the C IV absorption equivalent width for QSOs(e.g.,Brandt et al.2000)is due to the wind quenching rather than obscuration.The wind quenching can also play a role in solving the overionization problem in QSOs.The expected inverse correlation between X-ray?uxes and winds is consistent with the fact that BALs are not observed in X-ray sources such as Seyfert galaxies.

The wind quenching can also a?ect the disk re?ected spectrum,big blue bump and iron lines.The observed spectra are complex convolutions of the primary and reprocessed photons because some fraction of the X-rays are always intercepted by the optically thick matter and reprocessed before escaping.Thus,to understand those spectra,it is necessary to compute very carefully the e?ects of reprocessing as many physical processes play a role (e.g.,Ross&Fabian1993;˙Zycki et al.1994;Nayakshin et al.2000).Future calculations of X-ray spectra should include the e?ects of line-driven?ows because the?ows change the key parameters determining the spectra,i.e.,the temperature and optical depth of the scattering electrons.These e?ects have at their core a coupling between X-rays and UV photons and therefore can help to better constrain the AGN models.

We note that the X-ray/UV coupling is unlikely to operate in the solar corona.For this

reasons among others,solar and AGN coronal activities may signi?cantly di?er.However, this coupling or its variant may operate in XBs.For AGN and XBs,the same two types of disk/corona geometries are being considered(e.g.,Zdziarski&Gierli′n ski2004and Fig. 14there).Except for smallest radii,the bound-free and line opacities and radiation?ux are likely high enough for radiation pressure to lift dense material o?the disk in some spectral/luminosity states of XBs.Therefore,one can expect the sphere-disk geometry in these systems because of quenching of the disk corona.In fact,this geometry is inferred from analysis of the photon index of Comptonization spectrum and frequencies of quasi periodic oscillations observed in some XBs(e.g.,Titarchuk&Fiorito2004;Titarchuk& Shaposhnikov2005).It appears then that we identi?ed a physical mechanism that can determine a geometry of an accretion disk and corona in a wide range of accreting systems.

We thank T.Kallman,G.Richards,A.R′o˙z a′n ska,A.Siemiginowska,and J.Stone for useful discussions.We acknowledge support from NASA under LTSA grant NAG5-11736and support provided by NASA through grants HST-AR-09947.01-A and HST-AR-10305.05-A from the Space Telescope Science Institute,which is operated by the Association of Univer-sities for Research in Astronomy,Inc.,under NASA contract NAS5-26555.

REFERENCES

Arav N.,Shlosman I.,&Weymann.R.ed.1997,in ASP Conf.Ser.128,Mass Ejection from Active Galactic Nuclei,(San Francisco:ASP)

Crenshaw,D.M.,Kraemer,S.B.,&George,I.M.ed.2002,in ASP Conf.Ser.255,Mass Out?ow in Active Galactic Nuclei:New Perspectives,(San Francisco:ASP) Balbus,S.A.,&Hawley,J.F.1998,Rev.Mod.Phys.,70,1

Brandenburg,A.,Nordlund,A.,Stein,R.F.,&Torkelsson,U.1995,ApJ,446,741 Brandt,W.N.,Laor,A.,&Wills,B.J.2000,ApJ,528,637

Field,G.B.,&Rogers,R.D.1993,ApJ,403,94

Galeev,A.A.,Rosner,R.,&Vaiana,G.S.1979,ApJ,229,318

Haardt,F.,&Maraschi,L.,1991,ApJ,380,L51

Haardt,F.,&Maraschi,L.,1993,ApJ,413,507

Miller,K.,&Stone,J.M.2000,ApJ,534,398

Murray,N.,Chiang,J.,Grossman,S.A.,&Voit,G.M.1995,ApJ,451,498(MCGV) Nayakshin,S.,Kazanas,D,&Kallman,T.R.2000,ApJ,537,833

Proga,D.,&Kallman,T.R.2004,ApJ,616,688(PK)

Proga,D.,Stone J.M.,&Drew J.E.1998,MNRAS,295,595(PSD)

Proga,D.,Stone,J.M.,&Kallman,T.R.2000,ApJ,543,686(PSK)

Reynolds,C.S.,&Nowak,M.A.2003,Phys.Rep.,377,389

Ross,R.R.&Fabian,A.C.1993,MNRAS,261,74

Shakura N.I.,&Sunyaev R.A.1973A&A,24,337

Sobolewska,M.A.,Siemiginowska,A.,˙Zycki,P.T.2004,ApJ,608,80

Stone,J.M.,Hawley,J.F.,Gammie,C.F.,&Balbus,S.A.1996,ApJ,463,656 Sunyaev,R.,&Titarchuck,L.G.1980,A&A,86,121

Svensson,R.,&Zdziarski,A.A.1994,ApJ436,599

Titarchuk,L.G.,&Fiorito,R.2004,ApJ,612,988

Titarchuk,L.&Shaposhnikov,N.2005,ApJ,626,298

Turner,N.J.2004,ApJ,605,L45

Turnshek,D.A.1988,in QSO Absorption Lines:Probing the Universe,ed.J.C.Blades,D.

A.Turnshek,&C.A.Norman(Cambridge:Cambridge Univ.Press),17

Walter,R.,&Courvoisier,T.J.-L.1992,A&A,2389,157

Zdziarski,A.A.,&Gierli′n ski,M.2004,Prog.Theor.Phys.Suppl.,155,99

˙Zycki,P.T.,Krolik,J.H.,Zdziarski,A.A.,&Kallman,T.R.1994,ApJ,437,597

Fig.1.—From top to bottom:Maps of logarithmic density(top panel),optical depth(middle panel),and gas temperature(bottom panel) of the AGN failed disk wind,described in the text.The density and temperature maps are overplotted with the direction of the poloidal velocity ?eld.In making this?gure,we used the density and optical depth?oors of10?20g cm?3and10?2,respectively.In all three panels,the disk rotational axis is along the left hand vertical frame,while the disk photosphere is along the lower horizontal frame.Note the di?erence in the range along the r′and′z′axises.

人教版小学英语四大时态上课讲义

人教版小学英语四大 时态

人教版小学英语四大时态(一般现在时、一般过去时、一般将来时、现在进行时)练习题集锦 一、用动词的正确形式填空 1. I ________ (do) my homework every evening. 2. We _______ (fly) kites in the park on Sundays. 3. My mother ________ (clean) our room on Sundays. 4. Tom _______(play) the piano every Saturday. Now he______ (play). 5. She _______(like) swimming. She ______ (swim) this weekend. 6. Usually my mother _______ (wash) the dishes after lunch. But my gra ndma_______ (wash) today. 7. Look at the man! He ______ (read) a magazine. 8. Look! The plane ________ (fly) over the building. 9. Listen! My aunt ________ (sing) in the room.She is a singer. She _ ____ (like) singing. She _______(have) a music show. She is excited. 10. Tom and Mike always ______ (swim) in the river. They _____ (swim) in the swimming pool this Sunday. Look! They ______ (swim). 11. What ______ you usually ______ (do) in the evening? I _______ (play) computer games. 12. What _______ you _______ (do) now? I _______ (make) a paper plane. 13. What _______ he _______ (do)? He ______ (dance). 14. What _______ she ______ (do) yesterday? She ______ (visit) her grandparents. 15. ______ your mother ______ (read) newspaper in the morning? Yes, She ________ .

小学英语课堂教学活动设计的有效性

小学英语课堂教学活动设计的有效性 在小学英语教学中,活动是实施课堂教学的主要形式,而课堂教学又是在教学活动中得以体现的。因此,作为一名小学英语教师就应在课前精心设计有针对性、实效性的课堂教学活动。教师在课堂教学中应努力引导学生通过活动去体验、感悟、发现和探究,创设贴近学生实际的活动,组织并开展活动教学,提高学生运用英语的能力。因此如何加强小学英语教学有效性,不断提高教学质量,是每一位小学英语教师急需解决的问题。听了这次晋江市举行的研讨课及结合自己的教学实践,我就课堂教学活动设计的有效性谈几点体会。 一、教学目标是教学活动的出发点和回归点 一堂好课必须有一个恰当、实际的教学目标。新课程改革背景下,教师在表述教学目标时,不仅要做到意思明确,还要符合课改的精神和要求;不仅要涉及知识目标,还要涉及能力、情感和价值观。科学、合理的教学目标的设计才能使课堂教学活动更具有方向性、针对性和有效性。因此,教师对课堂教学设计和安排的各个环节的教学活动都必须有明确的目的,每个活动都应以达成教学目标为导向。教师要思考和明确设计活动的目的和意图是什么,通过活动是否能达成教学目标,活动与教学主题和教学目标是否相关,活动是否必要,活动是否体现了教育价值等。在活动实施过程中生成的新目标也应以预设的教学目标为基础。因此,活动从设计到实施都应在教学目标的调控下进行。 二、培养兴趣是有效教学活动的出发点 小学生在刚接触英语时,有新颖感出于好奇,兴趣盎然。但随着学习时间的增加,年级的升高,内容难度的加大,学习的兴趣就会逐渐降低,有的甚至会产生畏惧感。因而,教师在设计小学英语课堂教学活动时应注意以下几点:1、活动要符合小学生的年龄特征小学生具有好动、对新鲜事物易感兴趣。因此,设计教学活动时应形式多样,如对话、唱歌、叙述、演示、游戏、小制作、全身反应法、chant等,让学生的眼、耳、口和四肢都参与到活动中来。2、新课程标准明确指出,要重视从学生的日常生活出发,培养学生实际运用语言的能力。因此活动设计要贴近学生的生活。实践表明,学生对源于自己生活的活动特别感兴趣,并有强烈的参与欲望。教师要关注来自学生生活的各种信息,在设计活动时要以学生的生活为基础,选择符合学生生活经验和认知水平的活动,力图真实地反映学生的生活。让学生融入到学习活动中去,同时让学生享受在用中学英语和在学中用英语的喜悦。如在教学《A new house》一课后,我让学生设计了自己的理想之家,画室内房间图,然后用英语标出图中物品的名称,并用英语作简单的介绍,课后写成小短文。由于活动内容和形式十分贴近学生的生活经历。又富有挑战性,学生兴趣盎然,积极参与,他们发挥了丰富的想像力,设计出的房子五花

2016年人教版小学六年级上册英语时态专项习题

2016人教版小学六年级上册英语时态专项习题 look , read and write 1. There ( is / are ) some bananas ( on / near ) the table . 2. There ( is / are ) a football (in / under ) the bed . 3. There (is / are ) some tall buildings in the ( village /city ). 4. My teacher is ( strong / thin ) . And she’s(old / young ) . 5. I have ( onions / mutton ) and cabbage for lunch . 6. Mike ( has / have ) English and ( science / math ) on _________________ ( Friday / Sunday ) . When , Where , What , Who , How , Why 1. ---- Can I get to the zoo ?---- You can ride a bike there . 2. ---- do you go to school on foot ?---- Because my home is near . 3. ---- are you going after lunch ?---- I am going to the bookstore . 4. ---- are you going ? ---- I am going at 4 o’clock . 5. ---- are you going to do ? ---- I am going to play football . 6. ---- are you going to play with ? ---- My brother . 一般现在时专项练习 一.写出下列各词的复数 I _________him _________this ___________her ______ watch _______child _______photo ________diary ______ day________ foot________ book_______ dress ________ tooth_______ sheep ______box_______ strawberry _____ thief _______yo-yo ______ peach______ sandwich ______ man______ woman_______ paper_______ juice___________ water________ milk________ rice__________ tea__________ 二、写出下列动词的第三人称单数 drink ________ go _______ stay ________ make ________ look _________ have_______ pass_______ carry ____ come________ watch______ plant_______ fly ________ study_______ brush________ do_________ teach_______ 三、用括号内动词的适当形式填空。 1. He often ________(have) dinner at home. 2. Daniel and Tommy _______(be) in Class One.

(完整)如何提高小学英语课堂教学的有效性

如何提高小学英语课堂教学的有效性 -----浅析小学英语趣味教学爱因斯坦说过:“兴趣是最好的老师。”为了激发学生的学习兴趣,一个成功的英语教师会创造和谐融洽的师生关系和轻松愉快的学习环境,采用灵活多变的教学方法,让学生在做中学,学中用,学得主动,提高效率。在教学中有意识的培养学生对英语的持久兴趣,激励学生不断处于较佳的学习状态之中,使他们对英语乐学、善学、会学,学而忘我,乐此不疲;还要通过多种手段激发学生实践的热情,加强学生对英语的兴趣,完成新课程标准要求的任务。 一、融洽的师生关系,营造良好的学习氛围 作为一名21世纪的英语教师,要懂得尊重和热爱自己的学生,同他们建立起一种新型、平等、合作的师生关系。教育是充满情感和爱的事业,教师应多于学生进行情感方面的交流,做学生的知心朋友,让学生觉得老师是最值得信任的人,跟老师无话不说、无事不谈,达到师生关系的最佳状态。这就要求教师要深入学生,了解学生的兴趣、爱好、喜怒哀乐情绪的变化,要时时处处关心学生,爱护学生,尊重学生,有的放矢的帮助学生。老师在学生眼中不仅是可敬的师长,更是他们可亲可近的亲密朋友,用爱来激发学生学习英语的兴趣。 二、创设英语教学环境,调动多种感官参与活动 好的开始是成功的一半。在课堂教学中,教师首先要特别注意利用上课前的十分钟创造出一个良好的课堂气氛(Warming up)。比如唱一些英语歌曲,开展如“Let me guess.”或“Follow me.”等有趣的复习知识型游戏,活跃课堂气氛,增加英语课堂的趣味性,引发学生的求知欲。

其次,创造一个轻松愉快的学习环境,教师要以蛮强的热情,全心地投入课堂教学,仪表要洒脱;精神要饱满;表情要轻松愉快;目光要亲切;态度要和蔼;举止要大方、文雅;言吐简洁;语言要纯正、地道、流利;书法要规范、漂亮;版面设计要合理、醒目等。 再次,调动学生多种感官参与学习,学生单靠视觉回忆能再现原内容的70%,而视觉并用能再现原内容的86.5%,所以应该让学生尽可能多的处于英语环境中,并调动多种感官参与活动,让学生从多个角度接受信息。多种感官的运用有益于学生对知识的理解,记忆的加深。它能激发学习兴趣,使学生全面发展。教学中让学生动嘴说、用眼看、用耳听、用笔画、手脑并用,同时可以加强学生对所学语言国家文化的了解。 三、不断更新教学方法,以此获趣 教学不仅是一门技巧,更是一门艺术。教师必须在教学中尽量让学生感到有趣、新奇,这就要求教师顺应时代的发展,与时俱进,充分运用现代教育技术手段,通过模型、图片、幻灯、录像、投影、多媒体课件等,激发学生的想象能力,变抽象为具体,使教学活动变得生动,使学生学得轻松、练得扎实。在教学中教师要善于用各种方法。如“表演法”、“竞赛法”、“游戏法”等。 1.当“小老师”、“模仿秀” 比如“talk about it”这一模块中,我们就可以鼓励学生大胆地模仿,带表情说句子。还可以鼓励学生上讲台当“小老师”,领读句子。让他们模仿教师平时上课时的表情、动作,鼓励他们学者使用课堂用语。 2.把身体语言带入课堂 在教单词或句子时,我们可以带领学生做动作,甚至做夸张的动作或

六年级下册英语-时态专项复习卷(含答案)人教PEP

时态专项复习卷 时间: 60分钟满分: 100分 考点一: 一般现在时 一、【动词单数第三人称形式】写出下列动词的单数第三人称形式。(15分) 1. like___________ 2. look________ 3. play__________ 4. read__________ 5. kiss__________ 6. fix__________ 7. watch________ 8. wash__________ 9. teach__________ 10. do________ 11. go__________ 12. fly____________ 13. carry________ 14. say________ 15. have________ 二、【应用】读一读,选择恰当的一项。(9分) () 1. My mother ________ delicious food for us in the kitchen. A. make B. cooks C. to cook () 2. The table ________ three long legs. A. has B. have C. having () 3. The old man________ go for a walk in the evening. A. like B. like to C. likes to () 4. Jenny often ________ to school by bus. A. goes B. go C. going () 5. My sister ________ ten years old. A. does B. is C. are () 6. ________ he play football for fun on Sundays? A. Is B. Do C. Does () 7. The child________ go to the zoo. A. doesn't B. don't C. is () 8. The sun ________ in the east every day. A. rise B. rises C. rising ()9. He________his teeth, ________ his face and then ________ breakfast.

人教版小学英语时态总复习资料

人教版小学英语时态总复习资料 1.一般现在时 (1)句中be动词和动词一般情况下只能有一种而且也必须有一种。如: ThechildrenareveryhappyonChristmasDay. Sheoftendoessomehouseworkattheweekend. (2)一般现在时中的be动词: 一般用原形:amisare am用于第一人称单数(I);is用于第三人称单数(hesheit和其他 人名或称谓,如:Benhissister等);are用于第二人称单数(you)和 所有复数(包括第一人称复数we、第二人称复数you;第三人称复数they和其他复数,如thechildren、hisparents等)。 (3)一般过去时中的动词: 有两种情况: 第一种情况:主语是第三人称单数(hesheit和其他,如Helen、hercousin等),动词后一般加s或es。 第二种情况:主语不是第三人称单数,动词都用原形。 (4)一般现在时判断依据(如何判断一个句子是一般现在时): △be动词是am、is、are △动词用原形或加s、es △没有时间状语或有usually、often、everyday、sometimes等不是具体的时间

(5)有用的的依据: Be动词是is、am←→名词用原形(这里包括可数名词的单数和不可数名词) Be动词是are←→名词加s或es 动词加s或es←→主语是第三人称单数 动词用原形←→主语不是第三人称单数 (6)情态动词: 我们现在学过的情态动词有:can、must、should、would。 情态动词后动词总是用原形。(不受其他任何条件影响)

小学英语教学的有效性

小学英语教学的有效性 发表时间:2011-05-10T09:13:26.643Z 来源:《少年智力开发报》(小学英语)2011年第27期供稿作者:宋晓云[导读] 在小学英语教学中,创设情境让学生感知语言,在真实情境中运用语言会收到意想不到的效果。 河北平泉县榆树林子学区宋晓云 英语教师作为实施新课程标准的主体,应学会如何巧妙自然地寓英语学习于生活体验之中,把新理念推向课堂班级层面,变理想的课程为现实的课程,从而改变学生的学习和思维方式,释放学生的创造潜能。为此在教学中我进行了一些尝试,做到了以下几点,也从中感受到了新课改的实效。 一、采用任务型教学模式 对于一年级的小学英语课堂来讲,“任务型”的课堂教学就是在英语学科的教学目标确定之后,教师需要分析和设计具体任务,完成任务所需要的其他前提知识以及需要采用的教学方法和技巧等,旨在将每一个教学目标拓展为教学活动中可用的具体内容。由于在我的课堂上采用了任务型的教学模式,学生在课堂上都有事可做,并且在做事的过程中体验到了英语的乐趣,英语课也变得丰富多彩,学生从中也体验到了成功的喜悦。 二、创设英语的教学情境 在小学英语教学中,创设情境让学生感知语言,在真实情境中运用语言会收到意想不到的效果。在课堂中我经常利用多媒体设备来突破教学重点和难点,把文字、声音、图像等融为一体,创设学生主动参与语言交际活动的情境,让学生走入情境、理解情境、表演情境以此突破语言关。学生在真实的情境中更容易进入角色,课堂气氛也异常活跃。 三、运用现代教育技术 在小学英语课堂教学上,教师恰当运用现代教育技术,利用多媒体的优势,可以最大限度地激发学生学习的积极性,帮助他们提高学习英语的兴趣。在小学英语课堂中运用现代教育技术,创设教学情景,可以优化课堂教学,有效地培养学生初步运用英语进行交际的能力,激活儿童的思维,促进学生综合能力的提高。 四、使用合理的评价手段 评价也是一门艺术,好的评价手段不仅可以满足学生的成功感,而且可以激励学生产生不断向上的精神。学习评价可采用多种形式:形式性评价与终结性评价相结合,个人评与他人、小组评组合、等级与评语相结合,在教学中要灵活地使用。这样,对学生的评价才是全面的、合理的。 总之,通过教学中的这些尝试,我的英语课堂气氛异常活跃,学生学习积极主动,听说能力大大提高,合作意识和交往能力也大大增强,学生学习英语的兴趣空前高涨。作为教师,我由衷地感到高兴,也切身体会到了新课改所带来的欣慰和喜悦。但这只是一个开端,我们要做的还有很多,还需要不断学习新课改的有关理论,并运用到教学实践中去,不断充实我们的小学英语课堂!

最新小学英语四种时态总结

小学英语四种时态总结 1.一般现在时。主要描述经常会发生的动作、状态或不变的真理。句末常出现every day/week/year/Monday , in the morning, 句中常有always, usually, often, sometimes 组成:主语+be+名词(形容词) I am a student. He is tall. 否定句:在be 后加not I am not a student. He is not tall. 疑问句:be 动词提前到第一位。 Are you a student? Is he tall? Yes, I am. / No, I am not.Yes, he is. / No, he isn’t. 主语+动词+地点+时间 We go to school on Monday. He goes to the park on Sunday. 否定句:主语+don’t/doesn’t’t+动词原形+地点+时间 We don’t go to school on Monday. He doesn’t’t go to the park on Sunday. 疑问句:在句首加do或does Do you go to school on Monday? Yes, we do./ No, we don’t. Does he go to the park on Sunday? Yes, he does./ No, he doesn’t’t. 动词单三变化:1. 在原单词末尾加s , 如:like –likes

2. 单词以o, sh, ch, s, x 结尾加es, 如:go –goes 3. 单词末尾为辅音+y结尾去y加ies 如:study- studies 2. 现在进行时:主要叙述正在发生的事情。句末常出现now, 句首常出现look, listen 组成:主语+be +动词ing形式 I am reading English. They are swimming. He is playing football. 否定句:在be后加not I am not reading English. They are not swimming. He is not playing football. 疑问句:将be 放到第一位。 Are you reading English? Yes, I am./ No, I am not. Are they swimming? Yes, they are. / No, they aren’t. Is he playing football? Yes, he i s. / No, he isn’t. 动词变ing形式:1.在动词末尾加ing. 如:play- playing 2. 末尾有e 要去e加ing. 如:ride –riding 3. 末尾以辅音元音辅音结尾双写末尾一个辅音如:swim-swimming 3.一般将来时。主要描述将来要发生的事情。 句末常出现next Monday/week/ year, tomorrow

小学英语有效性教学

小学英语有效性教学 小学英语课堂教学应体现有趣,有用,有效。有趣、有用、有效,构成了一个三角形,使得老师展开课堂教学能更有意义。“有效”是指教师的教学方式能促使学生较好地达到三维目标,在整个过程中达到事半功倍之效。“有趣”是指学生具有有意义学习的心向。它需要教师在课堂教学中能够激发学生的学习兴趣,在平时注意培养学生的学习动机。“有用”是指学习的材料使学生感到有价值。它需要教师在课堂教学中,使学生感受到所学知识能够协助他们解决生活中的实际问题。 关键词:课堂教学有效性有趣有用有效教学目标新教材给我们教师带来了新的教学理念,也给我们教师的教与学生的学带来了新的挑战。在新课程理念的指导下,现在的小学英语课堂中教师的教学方式在改变,学生的学习方法在改变,课堂上学生学习英语的兴趣提升了,积极性增强了。小学英语教学的主要途径是课堂教学,而课堂教学又是在教学活动中得以体现的。 所以,注重学生学习,如何使小学英语教学科学有效地发展,怎样使教学成为有意义的教学已成为广大教育工作者共同思考的问题。 教师在日常教学中应该牢固树立以下有效教学的理念:有趣、有用、有效,构成了一个三角形,使得老师展开课堂教学能更有意

义。“有效”是指教师的教学方式能促使学生较好地达到三维目标,在整个过程中起到事半功倍的作用。有效教学注重学生的进步和发展,教师必须确立学生的主体地位,树立“一切为了学生的发展”的思想。“有趣”是指如何使用游戏教学、故事教学、TPR的教学等新的教学方法,来调动学生参与课堂活动的积极性?“有用”是指学习的材料,使学生感到有价值。它需要教师在课堂教学中使学生感受到所学知识能够协助他们解决生活中的实际问题。有效教学需要教师具备一种反思的意识,经常实行行动研究。要求每一位教师持续地反思自己的日常教学行为,持续地改进自己的教学。 有效教学强调教学效果,注重学生通过一段时间在教师引导下努力学习所获得的进步与发展。有效教学应该包括有效果和有效率两个层面。我们知道,小学英语教学的主要途径是课堂教学,而课堂教学又是在教学活动中得以体现的。所以,有效的课堂教学活动是顺利达到教学目标的可靠保障。作者认为提升小学英语课堂教学的有效性,教师应从以下几方面考虑: 一、课堂教学活动要目标明确 新课程理念下,基础教育阶段英语课程的总体目标是:培养学生的综合语言使用水平,学生能够用英语做事情是课堂教学目标达成的主要体现。在小学英语课堂教学中,教师广泛采用贴近学生生活的,易于学生参与体验的任务型教学活动。例如,在教学 PEP 四年级上册 Unit 5“What would you like?”Part A的教学内容时,

PEP人教版小学英语六年级下册教材解析(精校版)

吉安县中小学教师说教材活动 全局把握温故知新 ——浅谈我对六年级英语下册教材的理解 吉安县实验小学 XXX 在我们的日常教学活动中,明确目标,吃透教材,选择合适的策略是非常重要的,在我们小学英语教学中也是一样。今年我继续担任我校六年级英语的教学工作,在此,说一说我对人教版小学六年级上册英语教材的理解,与各位同仁探讨。 一、紧扣课程标准,了解教材特点。 1.《英语课程标准》对小学阶段应达到的目标作了明确的阐述,我们小学六年级应该达到的应该是二级,其要求是: 对英语学习有持续的兴趣和爱好。能用简单的英语互致问候、交换有关个人、家庭和朋友的简单信息。能根据所学内容表演小对话或歌谣。能在图片的帮助下听懂、读懂并讲述简单的故事。能根据图片或提示写简单的句子。在学习中乐于参与、积极合作、主动请教。乐于了解异国文化、习俗。 我们的这一册教材就是人民教育出版社根据国家教育部颁布的《英语课程标准》编订的以小学三年级为起始年级的小学英语教材的最后一册课本。通过完成此册课本的学习,学生的英语水平要达到《英语课程标准》规定的基础教育阶段英语课程的二级目标。因此,本册教材的教学对学生在小学毕业时能否达到教学目标规定的要求有举足轻重的作用。 2.本套教材的编写特点是: *强调语言运用(如let’s do、let’s sing等) *注重能力培养(Group work、Let’s check等)

*突出兴趣出发(卡通插图、图文并茂) *重视双向交流(融合中西方文化知识) *融合学科内容(贯穿自然科学、社会文化、语言艺术领域) *重视灵活扩展(选学C部分) *实现整体设计(三至六年级系统编排) 3.在编写上,本套教材是这样安排的: (1)、全册共有4个单元,两个recycle是针对小学所有教学内容的总体复习单元。 (2)、新的教学内容较少,12周的时间完成新授单元的教学,2周的时间对这四个单元进行复习巩固,阶段复习; (3)、语言点较为集中,Unit One 是比较级,Unit 3 , Unit 4 是过去时,是本册的难点。 在每一个单元中,分12页,编写体例如下:

小学英语教学有效性的策略研究

小学英语教学有效性的策 略研究 Revised by Hanlin on 10 January 2021

《小学英语教学有效性的策略研究》 研究课题鉴定成果概况 课题名称:小学英语教学有效性的策略研究 课题类别:甘肃省教育科学“十二五”规划重点课题 课题批准号:GS(2010)Z045 课题鉴定证书号:GSGB【2013】J005 课题负责人:张旭东 所在单位:金昌市金川区第一小学 课题组参与人员:姚兴瑞刘婷娟杨兆光王文君李其霞张莉杨永涛武 功颜张海生顾秀文 鉴定等级:优秀 为了适应教育发展的趋势,让教师真正走进新课程,构建新课堂,我们结合本市区小学实际,根据自身条件,在充分酝酿的基础上,经多方论证,精心选题,确定《新课改理念下的小学英语有效学习策略研究》上报为省级课题,2010年10月被省教育科研组批复立项为甘肃省教育科学“十一五”重点课题。 三年多来,经过课题组成员不断的实践、反思、总结,我们对新课改理念下的小学英语有效学习的策略、教师的教学手段、有效学习的组织形式、课堂教学的模式、合作学习的有效策略等,进行了具体的研究,下面将我校的课题研究工作总结如下: 一、课题提出的背景 1.新一轮课程改革的需要 《英语课程标准》“倡导学生主动参与合作,交流与探究等多种学习活动,改进学习方式,促进学生相互帮助,体验集体荣誉感和成就感,发展合作精神,使学生真正成为学习的主人。”它要求把学生的交往活动即合作学习纳入语言学习活动。但是随着社会经济的不断发展,很多农民工进城打工创业,他们也渴望自

己的孩子拥有城里孩子所能得到的优质教育,这就造成了城市学校班额太大,再加上学生层次不齐,给我们教育教学提出了严峻的挑战,为了很快适应和扭转这种局面,不断提高教育教学质量,我们提出了在《新课改理念下的小学英语有效学习策略研究》。小组合作学习是一种教学策略,既能充分调动学生学习英语的兴趣和积极性,又能提高学习效果,在大班额环境下实施小组合作学习策略尤为重要。 2.我市教育现状的需要 截至目前,全市原有的162所完全小学已调整为142所;20所独立初中调整为16所,撤并了中小学24所。虽然通过集中力量办较大规模的寄宿制农村中小学,农村中小学教育资源进行有效整合后,改善了办学条件,使农村中小学生接受了良好的学校教育,对提高办学效益和教学质量,缩小城乡教育水平差距起到了推动作用,但是教育资源有效整合的力度还是不大,跟不上时代发展的需要,跟不上广大农村家长对高质量学校的需求。望子成龙、望女成凤的愿望使他们不惜一切代价将孩子送往城市学校读书。目前我市农村学校生源越来越少,班额越来越小,老师过剩。相反,城市学校生源越来越多,班额越来越大。如何解决大班额环境下的教学质量问题,就显得尤为重要。 3.我校实际情况的需要 我校在金昌市范围内是一所比较特殊的城市小学,说特殊是因为我校属城市小学,但是区属职工的子女少,而来自金川区宁远和双湾两镇和外来进城打工的子女多,虽学校各年级都增加了班级,还是满足不了源源不断增加的学生,每个班级学生都在60人左右,这样学校班额大、学生多,班级人数远远超过了正常班级人数的要求。一个专职的小学英语教师要负责的有近三百五十个学生,甚至更多。在英语课堂上,一方面教师感到力不从心;另一方面如果还依然采用“一刀切”的办法进行教学,在长期“齐步走”“一言堂”的课堂教学环境下,小组合作学习也只是简单的分组进行个别的合作学习而已,教师在有限的课堂40分钟内难以真正做到面向全体学生,让每个学生真正参与到活动中,鉴于此我们提出了“大班额环境下小学英语教学小组合作学习有效性”的课题,结合本校的实际,力争以其作为深化并打造我校英语特色学校的着力点,借他人肩膀,加

最新小学英语 时态公式

现在进行时:(主+be+V.ing)三要素(只有一个公式) 肯定句:主语+be动词+V.ing +其他. 否定句:主语+be动词+not+V.ing +其他. 一疑:Be动词+主语+ V.ing +其他? 肯回:Yes,主语+be动词 否回:No,主语+be动词+not 特疑:特词+ be动词+主语+ V.ing+其他? 一般现在时:(主+be+其)(主+V.+其)(主+V.+其)(三个公式)肯定句:主语+be动词+其他. 否定句:主语+be动词+not+其他. 一疑: Be动词+主语+其他? 肯回:Yes,主语+be动词 否回:No,主语+be动词+not 特疑:特词+ be动词+主语+其他? 肯定句:(非三单)主语+V.(原型)+其他. 否定句:(非三单)主语+don’t + V.(原型)+其他. 一疑:Do+(非三单)主语+ V.(原型)+其他 ? 肯回:Yes,主语+do 否回:No,主语+don’t 特疑:特词+ do+(非三单)主语+ V.(原型)+其他 ? 肯定句:(三单)主语+V.(三单)+其他. 否定句:(三单)主语+doesn’t + V.(原型)+其他. 一疑:Does+(三单)主语+ V.(原型)+其他 ? 肯回:Yes,主语+does 否回:No,主语+does’t 特疑:特词+ does+(三单)主语+ V.(原型)+其他 ?

一般过去时:(主+be+其)(主+V.+其)(两个公式) 肯定句:主语+be动词(过去式)+其他. 否定句:主语+be动词(过去式)+not+其他. 一疑: Be动词(过去式)+主语+其他? 肯回:Yes,主语+be动词(过去式) 否回:No,主语+be动词(过去式)+not 特疑:特词+ be动词(过去式)+主语+其他? 肯定句:主语+V.(过去式)+其他. 否定句:主语+didn’t + V.(原型)+其他. 一疑:Did+主语+ V.(原型)+其他 ? 肯回:Yes,主语+did 否回:No,主语+didn’t 特疑:特词+ did+主语+ V.(原型)+其他 ? 新人教版八年级物理上、下册知识点 八年级上册物理复习提纲 第一章机械运动 一、长度和时间的测量 1、测量某个物理量时用来进行比较的标准量叫做单位。为方便交流,国际计量组织制定了一套国际统一的单位, 叫国际单位制(简称SI)。 2、长度的单位:在国际单位制中,长度的基本单位是米(m),其他单位有:千米(km)、分米(dm)、厘米(cm)、毫 米(mm)、微米(μm)、纳米(nm)。1km=1 000m;1dm=0.1m;1cm=0.01m;1mm=0.001m;1μm=0.000 001m; 1nm=0.000 000 001m。测量长度的常用工具:刻度尺。刻度尺的使用方法:①注意刻度标尺的零刻度线、最小分度值和量程;②测量时刻度尺的刻度线要紧贴被测物体,位置要放正,不得歪斜,零刻度线应对准所测物体的一端;③读数时视线要垂直于尺面,并且对正观测点,不能仰视或者俯视。 3、国际单位制中,时间的基本单位是秒(s)。时间的单位还有小时(h)、分(min)。1h=60min 1min=60s。 4、测量值和真实值之间的差异叫做误差,我们不能消灭误差,但应尽量减小误差。误差的产生与测量仪器、测量 方法、测量的人有关。减少误差方法:多次测量求平均值、选用精密测量工具、改进测量方法。误差与错误区别:误差不是错误,错误不该发生能够避免,误差永远存在不能避免。 二、运动的描述 1、运动是宇宙中最普遍的现象,物理学里把物体位置变化叫做机械运动。 2、在研究物体的运动时,选作标准的物体叫做参照物。参照物的选择:任何物体都可做参照物,应根据需要选择 合适的参照物(不能选被研究的物体作参照物)。研究地面上物体的运动情况时,通常选地面为参照物。选择不同的参照物来观察同一个物体结论可能不同。同一个物体是运动还是静止取决于所选的参照物,这就是运动和静止的相对性。 三、运动的快慢 1、物体运动的快慢用速度表示。在相同时间内,物体经过的路程越长,它的速度就越快;物体经过相同的路程, 所花的时间越短,速度越快。在匀速直线运动中,速度等于运动物体在单位时间内通过的路程。在物理学中,为了比较物体运动的快慢,采用“相同时间比较路程”的方法,也就是将物体运动的路程除以所用时间。这样,在比较不同运动物体的快慢时,可以保证时间相同。

小学英语课堂教学有效性开题报告(正)

天水市教育科研“十二五”规划课题 开题报告书 课题批准号: TSJY[2012]T12 课题名称:小学英语课堂教学有效性研究负责人: 工作单位:清水县原泉小学

天水市教育科学“十二五”规划课题 开题报告书 尊敬的各位领导,各位专家,各位老师: 大家好!我校由老师负责申报的课题《小学英语课堂教学有效性研究》于2012年12月30日经天水市教育科学研究所批准立项,课题批准号为:TSJY[2012]T12。现就对本课题的课题研究的背景、课题概念的界定、课题研究的理论依据、课题的研究内容、课题研究的目标、课题研究的方法、课题研究的步骤等方面做如下说明,敬请大家提出宝贵意见: 一、课题研究的背景 随着基础教育课程改革的不断深入,我国的小学英语教育发生了根本性的变化。但由于种种现实因素,要把课改理念转化为教师自觉和具体的课堂教学行为,转化为有效的课堂教学技艺,还有很长一段路程需要跋涉和跨越。 当前,小学英语课堂教学有以下几个特点:一是学生从小受周围环境和家庭、学校教育的影响,养成了许多不良的行为和学习习惯。如:自我管理能力差,学习效率不高,作业潦草等。二是由于种种原因,教学行为不拘小节,课堂教学随意性大,对学生的学习习惯和行为习惯造成很大的负面影响;教学时为了省事,不尊重学生的个体差异,采取一刀切的教学方式。三是教学方法落后。有的老师观念比较陈旧,抓住应试教育方法不放,一味追求学习成绩,以成绩作为唯一的评价标准;组织课堂教学模式化,只重视预设,不重视生成,不愿捕捉课堂互动过程中有价

值的细节,课堂气氛沉闷,学生处于被动接受状态,无法满足他们的学习兴趣。四是大多数小学生英语学习的氛围尚未形成,他们所处的生活环境,基本上没有需要使用英语的情况,学生的课后英语学习几乎是零。但是我们可以想办法在有限的条件下,在仅有的课时中,最大限度地提高英语课堂教学的有效性,这就显得尤为重要了。 二、课题概念的界定 关键词:课堂教学有效性 课堂教学是教学的基本形式,是学生获取信息、锻炼提高多种能力和养成一定思想观念的主渠道。所谓教学,是指教师引起、维持或促进学生学习的所有行为。 所谓教学有效性是指通过一段时间的教学后,教师帮助学生完成了学习任务,实现了教学目标和促进了学生进步与全面发展,包括知识、智力、情感、创造力、思维与实践能力等方面。也就是说,学生有无进步或发展是教学有没有效益的唯一指标。教学有没有效益,并不是指教师有没有完成本节课的教学内容或教得认真不认真,而是指学生有没有学到什么或学生学得好不好。如果学生不想学或者学了没有收获,即使教师教得很辛苦也是无效教学。同样,如果学生学得很辛苦,但没有得到应有的发展,也是无效或低效教学。因此有效教学是为了提高教师的教学效益、强化过程评价和目标管理的一种现代教学理念。确定这一教学理念就是要在教育教学过程中,努力避免副作用,减少无用功,提高教育教学的针对性、有效性、策略性。 三、课题研究的理论依据 (一)有效教学理论,其理论源于20世纪上半叶,是20世纪极具代表性的教学思想,它关注和研究了课堂教学活动、教学环

人教版小学英语四大时态

人教版小学英语四大时态(一般现在时、一般过去时、一般将来时、现在进行时)练习题集锦 一、用动词的正确形式填空 1. I ________ (do) my homework every evening. 2. We _______ (fly) kites in the park on Sundays. 3. My mother ________ (clean) our room on Sundays. 4. Tom _______(play) the piano every Saturday. Now he______ (play). 5. She _______(like) swimming. She ______ (swim) this weekend. 6. Usually my mother _______ (wash) the dishes after lunch. But my grandma_______ (wash) today. 7. Look at the man! He ______ (read) a magazine. 8. Look! The plane ________ (fly) over the building. 9. Listen! My aunt ________ (sing) in the room.She is a singer. She _____ (like) singing. She _______(have) a music show. She is excited. 10. Tom and Mike always ______ (swim) in the river. They _____ (swim) in the swimming pool this Sunday. Look! They ______ (swim). 11. What ______ you usually ______ (do) in the evening? I _______ (play) computer games. 12. What _______ you _______ (do) now? I _______ (make) a paper plane. 13. What _______ he _______ (do)? He ______ (dance). 14. What _______ she ______ (do) yesterday? She ______ (visit) her grandparents. 15. ______ your mother ______ (read) newspaper in the morning? Yes, She ________ . 16. _______ you _______ (like) fishing? No, I ______ . I like ______ (swim),but my brother ______ (like). 17. How ______ your father _______ (go) to work every day? He ______ (go) by bike. But it’s cold today. He ______ (take) the No.21 bus,, and he _______ (go) to work by taxi yesterday. 18. _______ the monkey _______ (like) climbing trees? Yes, it _______ . 19. What _______ your father ______ (do) after lunch? He _______ (read) a comic book. What _____ he _______(do) today? He _______ (clean) the kitchen for my grandma. Look! He (clean). 20. ________ you ______ (collect) stamps? Yes. I _______ . ________ your brother ______ (collect), too? No, he ________ . 二、选择题 1. _____ he _____ to the park at 6:30 in the morning? No,he _____ . A. Does; goes; does B. Does; go; doesn’t C. Does; go; does 2. What colour _____ you _____ this bookcase? I _____ it pink. A. are; going to paint; am going to paint B. do; paint; paint C. did; paint; painted 3. Tim always _____ a picture at home. He _____ a car now. A. draws; is drawing B. draw; draw C. draws; draw 4. She usually _____ her friends. They often _____ tea. A. see; drink B. sees; drinks C. sees; drink 5. He usually _____ the dishes at night, but tonight he _____ clothes. A. wash; wash B.washes; is going to wash C. is washing; washes 6. Mr. Green usually _____ his newspaper in the evening, but he and his wife _____ television yesterday evening.

相关主题